¹⁰H. Stanley, in *Proceedings of the International Conference on Disordered Systems and Localization*, edited by C. Di Castro (Springer-Verlag, Berlin, 1981), and references therein. ¹¹Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick, Phys. Rev. Lett. <u>47</u>, 1771 (1981). ¹²R. B. Leibovitz, E. I. Alessandrini, and G. Deutscher, Phys. Rev. B <u>25</u>, 2965 (1982).

Critical Fields of the "Heavy-Fermion" Superconductor CeCu₂Si₂

U. Rauchschwalbe, W. Lieke, C. D. Bredl, and F. Steglich Institut für Festkörperphysik, Technische Hochschule Darmstadt, D-6100 Darmstadt, West Germany

and

J. Aarts,^(a) K. M. Martini, and A. C. Mota^(b) II. Physikalisches Institut, Universität zu Köln, D-5000 Köln 41, West Germany (Received 12 April 1982)

Measurements are reported of the lower and upper critical fields, $B_{c1}(T)$ and $B_{c2}(T)$, of CeCu₂Si₂. The observed, extremely high values of the slope $(-dB_{c2}/dT)_{T_{c0}}$ lend strong support to the formation of Cooper pairs by the heavy fermions which exist in the normal state of CeCu₂Si₂. Characteristic parameters of the system of heavy fermions are derived.

PACS numbers: 74.60.-w, 72.15.Qm, 74.70.Rv

Unusual superconducting materials, e.g., Chevrel phases,¹ oxides,² or organic conductors,³ have recently become of great interest in view of potential technical applications and the possibility of nonconventional mechanisms in superconductivity.

The (nearly) trivalent ternary compound CeCu₂-Si₂ shows well-defined, localized magnetic moments above $T \cong 10$ K (Ref. 4), but approaches a nonmagnetic state below $T \cong 10$ K displaying the properties of a heavy Fermi liquid⁵; e.g., the specific heat was found to be $C \cong \gamma T$, where γ $\cong 1$ J mole⁻¹ K⁻² is about a thousand times larger than for simple metals. CeCu₂Si₂ becomes superconducting below $T_c \cong 0.6$ K (Ref. 5). The height of the specific-heat jump at T_c , comparable to the giant normal-state specific heat, γT_c , has led to the conclusion⁵ that the superconducting state of CeCu₂Si₂ must be of a hitherto unknown kind, in that its Cooper pairs are formed by quasiparticles of very large effective mass (heavy fermions). In fact, the reference system LaCu₂-Si₂, showing usual metallic behavior, does not become superconducting.⁵

To further support CeCu_2Si_2 being the first heavy-fermion superconductor, we present in this Letter results of the lower and upper critical fields, $B_{c1}(T)$ and $B_{c2}(T)$. Special emphasis has been put on the slope of $B_{c2}(T)$ at T_c , which should reflect¹ the high γ coefficient. Analysis of these data will be used to estimate the key parameters of the normal Fermi-liquid state.

A wide scatter of T_c 's has been reported for polycrystalline samples of CeCu₂Si₂, ranging from <0.06 K (Ref. 6) to 0.65 K (Ref. 7). As was recently shown,⁸ however, $T_c \approx 0.55 \pm 0.15$ K can always be achieved by powdering and subsequent proper heat treatment. On the other hand, no superconductivity has so far been observed for CeCu₂Si₂ single crystals.^{8,9} This might be due to a considerable ($\approx 20\%$) deficiency in Cu occupation, as established for one of those single crystals.⁸ For the present investigations, two polycrystalline bulk samples were used. One of them (No. 7) was annealed at 1100 °C and found to be very clean,⁷ while the other one (No. 4), annealed at only 900 °C, was less clean.¹⁰

Figure 1 shows the field dependence at constant temperatures of the magnetization M for sample No. 7, which exhibits a static Meissner effect corresponding to 60% of the volume, when measured in powder form.⁷ M was measured by using a superconducting flux transformer between the sample and a flux-gate magnetometer (Hewlett-Packard Model 428B). In the inset, the initial slopes of these M(B) curves are plotted as a function of temperature. The magnetization curves show broad maxima, probably caused by a broad distribution of demagnetizing fields within the polycrystalline sample. In such a situation, a lower

FIG. 1. dc magnetization, M, of $CeCu_2Si_2$ (No. 7) as a function of the external magnetic field, B, at different temperatures. Inset shows low-field slopes of M(B) curves vs temperature.

bound of the lower critical field is provided by $B_{c1} \cong \overline{B}_{c1}/(1-D)$ where \overline{B}_{c1} , plotted in the inset of Fig. 2, is the field at which the first deviation from the low-field linear M(B) dependence occurs. The demagnetization factor, $D \cong 0.20$, of sample No. 7 was experimentally determined with a Cd sample of the same geometry $(4.1 \times 2.1 \times 2.0$ mm³). Figure 2 shows the temperature dependence of B_{c2} as determined from the midpoints of either inductive or calorimetric transitions for both samples.

We shall discuss the results on the clean CeCu₂-Si₂ sample No. 7 first. When the data in Fig. 2 are extrapolated to T = 0, we find $\overline{B}_{c1}(0) \simeq 1.8$ mT, resulting in $B_{c1}(0) \simeq 2.3$ mT and $B_{c2}(0) \simeq 1.7$ T. This clearly indicates type-II behavior with a large Ginzburg-Landau (GL) parameter κ . For example, in proportion to the relatively low T_c , $B_{c2}(0)$ is comparable to that of Chevrel-phase superconductors.¹ An upward curvature is observed at low fields for both $B_{c2}(T)$ and $B_{c1}(T)$, presumably caused by inhomogeneities in the samples. For $B_{c2}(T)$, we obtain from the linear region $(-dB_{c2}/dT)_{T_{c0}} \equiv B_{c2}' = 5.8$ T/K, which is comparable to the highest values found for Chevrel-phase superconductors.¹

In the following, we shall attempt to analyze this initial slope by using an expression which has been successfully applied to A15 superconductors.¹¹ Ignoring possible anisotropy effects in the polycrystalline CeCu₂Si₂ samples, we shall *assume* a spherical Fermi surface determined

FIG. 2. Upper critical field, B_{c2} , of CeCu₂Si₂ as a function of the reduced temperature, T/T_c . While T_c is the transition temperature at $B_c = 0$ as measured, T_{c0} is defined by extrapolation of linear $B_{c2}(T)$ dependence to B = 0. Data were obtained from ac susceptibility (triangles: No. 7, $T_{c0} = 0.64$ K; squares: No. 4, $T_{c0} = 0.66$ K) or specific heat (circles: No. 4, $T_{c0} = 0.56$ K). Inset shows \vec{B}_{c1} vs T (No. 7) as explained in the text.

by a mean Fermi wave number $\overline{k}_{\rm F}$, yielding¹¹

$$B_{c2}' \simeq \left(7.95 \times 10^{32} \frac{\mathrm{T} \,\mathrm{m}^2 \mathrm{K}^2}{\mathrm{J}^2}\right) \frac{\gamma T_c}{\overline{k}_{\mathrm{F}}^4} + \left(4780 \,\frac{\mathrm{T} \,\mathrm{K} \,\mathrm{m}^2}{\Omega \mathrm{J}}\right) \gamma \rho_0 \,. \tag{1}$$

Inserting into Eq. (1) measured⁷ data for T_c (=0.64 K), the residual resistivity ρ_0 (=3.5imes10⁻⁸ Ω m), and the giant (heavy-fermion derived) coefficient γ ($\simeq 2.0 \times 10^4$ J K⁻² m⁻³, with $V_{\text{mole}} \simeq 5.03$ $\times 10^{-5} \text{ m}^3$), we obtain $\bar{k}_{\rm F} \simeq 1.7 \times 10^{10} \text{ m}^{-1}$. Probably because of anisotropy effects, this is slightly larger than $\overline{k}_{\rm F} \simeq 1.6 \times 10^{10} {\rm m}^{-1}$ of the ordinary conduction-electron gas as previously estimated from the maximum high-temperature resistivity.¹² The latter $\overline{k}_{\rm F}$ value corresponds to a reasonable valence-electron concentration of about 2/atom. We conclude that both the ordinary conductionelectron gas at high temperature and the lowtemperature Fermi-liquid phase can be described by similar mean values of the Fermi wave number. This strongly suggests a description of the Fermi-liquid phase in CeCu₂Si₂ in the spirit of Landau's phenomenological theory,¹³ i.e., by assuming some strong interaction between conduction electrons which leaves the Fermi wave number unchanged but dramatically renormalizes the properties of the conduction-electron states near $k_{\rm F}$. For example, the Fermi velocity of the quasiparticles, $\bar{v}_{\rm F} \simeq (6.02 \times 10^{-13} \text{ J K}^{-2} \text{ s}^{-1}) \bar{k}_{\rm F}^2 \gamma^{-1}$ $\simeq 8.7 \times 10^3 \text{ m s}^{-1}$, and their effective mass, m^* $= \hbar \bar{k}_{\rm F} \bar{v}_{\rm F}^{-1} \simeq 220 m_0$, differ by two orders of magnitude from the corresponding free-electron values. We wish to stress that, because of the measured B_{c2}' value, this Fermi-liquid phase cannot be attributed to a narrow 4f band originating from one tightly bound electron per Ce ion,¹⁴ since this would imply a much too small $\bar{k}_{\rm F}$, i.e., $\simeq 0.7 \times 10^{10} \text{ m}^{-1}$ (associated with $\bar{v}_{\rm F} \simeq 1.5 \times 10^3 \text{ m s}^{-1}$ and $m^* \simeq 530 m_0$).

The estimation of some important parameters, which characterize the novel superconducting state of CeCu₂Si₂, is also straightforward. Using relations given in Ref. 11 and the above values for T_c , ρ_0 and γ , we find the BCS coherence length $\xi_0 \simeq 1.9 \times 10^{-8}$ m. This is comparable to the mean free path of the quasiparticles, $l \simeq 1.2 \times 10^{-8}$ m. The London penetration depth (as T - 0) assumes an unusually high value, i.e., $\lambda \simeq 2 \times 10^{-7}$ m. The GL parameter is estimated to be $\kappa \simeq 22$ for sample No. 7 and $\simeq 10$ in the "pure limit" ($l \gg \xi_0$).

With use of this κ value, the above analysis of the initial slope of $B_{c2}(T)$ can now be supported by the calculation of certain quantities for sample No. 7 and comparing them with the corresponding quantities as either directly measured or calculated from the results of other experiments. For this purpose, we first estimate¹ the "orbital critical field" (as $T \rightarrow 0$), i.e., $B_{c2}^{*}(0) \simeq 0.69 B_{c2}^{'}$ $\times T_c \simeq 2.6$ T. This is about 50% higher than $B_{c2}(0)$ as measured, pointing to the presence of other pair-breaking mechanisms like Pauli paramagnetic limiting or exchange scattering from paramagnetic impurities. Now we can estimate the thermodynamic critical field (as $T \rightarrow 0$) from (i) $B_{c2}^{*}(0)$ and (ii) the specific-heat coefficient γ [assuming a parabolic $B_{cth}(T)$ dependence]. We find almost the same values, namely (i) $B_{cth}(0)$ $=B_{c2}^{*}(0)/\sqrt{2} \kappa_{1}(0) \simeq 66 \text{ mT} [\text{with } \kappa_{1}(0) \simeq 1.26\kappa \text{ (Ref.)}$ 15)] and (ii) $B_{cth}(0) = [7.65 \times 10^{-4} (\text{m}^3/\text{J})^{1/2}] \gamma^{1/2} T_c$ $\simeq 69 \text{ mT}$ (Ref. 16). This is much higher than $B_{\rm cth}(0) \simeq 3 \, {\rm mT}$ of the conventional superconductor Cd with comparable T_c . Since $B_{cth}(0)$ determines the "condensation energy" of a superconductor, we find the superconducting state of CeCu₂Si₂ to be of much higher thermodynamic stability than its conventional counterpart. This is caused by the extremely high density of Cooper-pair states,

which tracks the giant γ coefficient, in the former material.

With $B_{cth}(0)$ and κ we can also estimate the lower critical field through $B_{cI}(0) = B_{cth}(0) \ln \kappa_3(0) / \sqrt{2} \kappa_3(0) \simeq 6$ mT, where $\kappa_3(0) = 1.15\kappa$ was used.¹⁵ $B_{c1}(0)$ agrees within an order of magnitude with the measured value ($\simeq 2.3$ mT), which may be considered to be satisfying enough, especially if one keeps in mind the difficulties in measuring $B_{c1}(0)$.

Finally, we are able to estimate the size of the specific-heat jump at T_c , namely $\Delta C \simeq (6.86 \times 10^5 \text{ J T}^{-2} \text{ m}^{-3})(2\kappa^2 - 1)^{-1}T_c B_{c2}{}'^2 \simeq 1.53 \times 10^4 \text{ J K}^{-1} \text{ m}^{-3}$, which is very close to the experimental value, $\Delta C = 1.59 \times 10^4 \text{ J K}^{-1} \text{ m}^{-3}$ (Ref. 7). These thermodynamic relations give strong evidence that the Fermi-liquid phase of CeCu₂Si₂ is formed by renormalized conduction-electron states in the vicinity of $\overline{k}_{\rm F} = (1.6 - 1.7) \times 10^{10} \text{ m}^{-1}$, and they disprove, again, the picture of one 4f-derived heavy fermion per Ce ion¹⁴; for in this case $\overline{k}_{\rm F} \simeq 0.7 \times 10^{10} \text{ m}^{-1}$ results in $\xi_0 \simeq 3 \times 10^{-9} \text{ m}$, $\lambda \simeq 3 \times 10^{-7} \text{ m}$, and $\kappa \simeq 100$, which is much too large a value.

Having found consistency in the various results for the pure sample No. 7, we now turn to the B_{c2} data of sample No. 4. As is shown in Fig. 2, the initial slope of $B_{c2}(T)$ is 16.8 T/K for this sample, the highest value observed for any superconductor. From the residual resistivity, ρ_0 $\leq 4 \times 10^{-7} \Omega$ m (Ref. 17), the mean free path of sample No. 4 is estimated to be much smaller than the coherence length, i.e., sample No. 4 clearly represents the "dirty limit." Using the expression for B_{c2} ' in the "dirty limit,"¹¹ B_{c2} ' $= (4.48 \times 10^3 \text{ T K m}^2 \text{ J}^{-1} \Omega^{-1}) \gamma \rho_0$, with $\gamma = 1.4 \times 10^4$ J K⁻² m⁻³ (Ref. 10), we estimate B_{c2} ' $\leq 25 \text{ T/K}$. Again, there is satisfactory agreement with the experimental result.¹⁸

To conclude, we have found that (i) the purer CeCu₂Si₂ sample shows an initial slope of the upper critical field $B_{c2}(T)$ of the same size ($\simeq 6$ T/K) as B_{c2} of the best high-field superconductors (with much higher transition temperatures) known so far; this is caused by the very small Fermi velocity of the heavy fermions forming the Cooper pairs in CeCu₂Si₂ [in the "pure limit" $B_{c2}' \sim T_c / v_F^2$, first term in Eq. (1); (ii) a decrease of the quasiparticle mean free path results in a further increase of B_{c2} ' to the record value of $\simeq 17 \text{ T/K}$, which is due to an additional contribution [second term in Eq. (1), $\sim (lv_F)^{-1}$]; (iii) surprisingly enough, possible anisotropy effects,¹⁹ which might originate from the quasi two-dimensional structure of CeCu₂Si₂, do not

dominate $B_{c2}(T)$ in the *polycrystalline* samples studied, for the reduced specific-heat-jump height is of the order of the BCS value in either case^{7,10} and, in addition, the "dirtier," i.e., more isotropic, sample shows the higher B_{c2} value [providing an *a posteriori* justification of the assumption of a spherical Fermi surface made when using Eq. (1)]; (iv) the low-temperature Fermiliquid phase of CeCu₂Si₂ is described by a Fermi wave number close to that of the ordinary conduction-electron gas.

The physical origin of both the formation of the extremely heavy fermions and the attractive interaction between the fermions, which constitutes the novel superconducting state of $CeCu_2Si_2$, remains unknown.

One of us (F.S.) should like to acknowledge stimulating discussions with D. Rainer, R. A. Klemm, \emptyset . Fischer, E. Müller-Hartmann and P. Entel, and one of us (A.C.M.) with K. Kwasnitza and D. Wohlleben. This work was supported by Sonderforschungsbereiche 65 and 125 of the Deutsche Forschungsgemeinschaft.

^(a)Present address: Natuurkundig Laboratorium, Universiteit van Amsterdam, NL-1018 XE Amsterdam, The Netherlands.

^(b)Present address: Laboratorium für Festkörperphysik, Eidgenössiche Technische Hochschule, CH-8093 Zürich, Switzerland.

¹For a review, see \emptyset . Fischer, Appl. Phys. <u>16</u>, 1 (1978).

²See, e.g., A. W. Sleight, J. L. Gillson, and P. E. Bierstedt, Solid State Commun. <u>17</u>, 27 (1975).

³D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phys. (Paris), Lett. 41, L95 (1980).

⁴S. Horn, M. Loewenhaupt, E. Holland-Moritz,

F. Steglich, H. Scheuer, A. Benoit, and J. Flouquet, Phys. Rev. B 23, 3171 (1981).

⁵F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979).

⁶G. W. Hull, J. H. Wernick, T. H. Geballe, J. V. Waszczak, and J. E. Bernardini, Phys. Rev. B <u>24</u>, 6715 (1981).

⁷W. Lieke, U. Rauchschwalbe, C. D. Bredl, F. Steglich, J. Aarts, and F. R. de Boer, J. Appl. Phys. <u>53</u>, 2111 (1982).

⁸C. D. Bredl, H. Spille, U. Rauchschwalbe, W. Lieke, F. Steglich, G. Cordier, W. Assmus, M. Herrmann, and J. Aarts, in Proceedings of the International Conference on Magnetism, Kyoto, 1982 (to be published).

⁹F. G. Aliev, N. B. Brandt, R. B. Wociev, V. V. Moshtaukov, and S. M. Chubinov, Pis'ma Zh. Eksp. Teor. Fiz. <u>35</u>, 435 (1982).

¹⁰F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, J. Magn. Magn. Mater. 15-18, 889 (1980).

¹¹T. P. Orlando, E. J. McNiff, Jr., S. Foner, and M. R. Beasley, Phys. Rev. B <u>19</u>, 4545 (1979).

¹²W. Franz, A. Griessel, F. Steglich, and D. Wohlleben, Z. Phys. B 31, 7 (1978).

¹³P. Nozières, *Theory of Interacting Fermi Systems* (Benjamin, New York, 1964).

¹⁴K. Andres, J. E. Graebner, and H. R. Ott, Phys. Rev. Lett. 35, 1779 (1975).

¹⁵B. Serin, in *Superconductivity*, edited by R. D.

Parks (Marcel Dekker, New York, 1969), Vol. 2, p. 9. 16 R. R. Hake, Phys. Rev. <u>158</u>, 356 (1966).

¹⁷Whereas $B_{c2}(T)$ of sample No. 4 was determined after annealing at 900 °C, the resistivity was measured in the unannealed state only and, therefore, can be taken only as an upper bound of ρ_0 for the annealed sample.

 $^{18}{\rm From}~B_{c\,2}'=16.8~{\rm T/K}$ we would expect the residual resistivity of the (900 °C) annealed sample No. 4 to be $\rho_0\simeq 2.7\times 10^{-7}~\Omega$ m, quite a reasonable value. $^{19}{\rm See}$, e.g., M. Ikebe, K. Katagiri, N. Noto, and

¹⁹See, e.g., M. Ikebe, K. Katagiri, N. Noto, and Y. Muto, Physica (Utrecht) <u>99B</u>, 209 (1980); P. Entel and M. Peter, J. Low Temp. Phys. 22, 613 (1976).