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The fluctuation of the order parameter in a superconductor in the temperature slightly 
above the transition temperature is studied in the framework of the current microscopic 
theory. It is convenient to divide the temperature region where the fluctuation of the order 
parameter becomes important into two regions; the classical and the' critical region. In the 
classical region the spatial correlation of the fluctuation is of the Ornstein-Zernike type, while 
in the critical region it depends on the relative distance like r- 3/2. We show that the elec­
trical resistivity, the nuclear spin lattice relaxation time and the ultrasonic attenuation co­
efficient decrease like 1-ai1li-1I2 and 1-a'i1li-1I3 in the classical and in the critical region 

. respectively, where 1l= (TITe) -1 and a and a' are constants of the order (Telp.) 1/2 (lPo)-3/2 
and (Tel p.) 1/3 (lpo) -1 respectively. Here p. is the chemical potential, l is the electronic mean 
free path and Po is the fermi momentum. 

It is also shown that the thermal conductivity has no singular term at the transition 
temperature. 

§ I. Introduction 

The fluctuation of the order parameter in a superconductor has been studied 

intensely in recent years. The fluctuation has been considered either in ref­

erence to the dynamical properties of a type II superconductor in high field 

region1
) or in connection with the critical behavior in various thermodynamical 

properties at the transition point.2
)-4) 

Weare concerned with the latter problem only in the present series of 

papers. It is well known2
) that the random phase approximation to the propa­

ga tor of the Huctua tion field (of the order parameter) ends up with an inverse 

square root singularity in the specific heat at the transItIon point. However, 

the numerical coefficient of this singular term is so small that this singular 

behavior is believed to be of no practical interest. Later noticing the formal 

analogy between the Dyson equation describing the fluctuation field in a super­

conductor and the one in HeIr, Baytev et al. 3
) concluded that the specific heat 

in a superconductor has a iogarithmic singularity at the transition point. 
More recently in analogy with their treatment of dynamical properties in 

HeIr, Ferrell and Schmidt6
) have suggested that in a dirty superconductor the 

fluctuation of the order parameter gives rise to observable effects. Making use 

of a semi-phenomenological assumption as to the spatial correlation of the fluc-
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194 K. Maki 

tuation field,· they were able to explain qualitatively the critical behavior of the 
electrical resistivity found experimentally by Glover.6

) 

In the present paper we would like to study -in the framework of the cur­

rent microscopic theory, the fluctuation field (of the order parameter) and its 

effects on the electronic transport properties in the vicinity of the transition 
temperature. We limit here (i.e. in part I) our consideration in the temper­

ature region above Te. 
Following Ferrell and Schmidt,5) we divide the tempe1;"ature region where 

the effect of the fluctuation is important iJ)to two different temperature regions; 

the classical region and the critical region. In the classical region the' disper­
sion of the fluctuation field is obtained essentially in the random phase approxi­

mation. The spatial correlation of the fluctuation field in this region is of the 

classical type as in the theory of Ornstein and Zernike. In the critical region 

(which occupies the immediate vicinity of the transition temperature) on the 

other hand the nonlinear interaction between the fluctuation fields is no longer 

negligible. The self-consistent solution of the nonlinear equation results in 

the correlation funct,ion with a spatial dependence like r- 3
/

2 where r is the dis­

tance . 
. We shall discuss briefly the correlation function (or Green's function) of 

the fluctuation field in the next section. Section 3 is devoted to calculation of 

the electrical conductivity in the presence of the fluctuation field. It is shown 

that the electrical resistivity decreases like (I-al'7I-1
/
2) and like (I-a'I'7I- 1

/
S

) 

in the classical and in the critical regIon respectively, where 1'71 = IT/Tv-II, a 

and a' ~re numerical constants. It is easy to show generally that the nuclear 

spin lattice relaxation time and the ultrasonic attenuation coefficient decrease 

precisely the same way as the electrical resistivity, while the thermal conduc­

tivity does not show any singular behavior at the transition point.· 

We do not consider here the fluctuation of the order parameter below Tv, 
which will be the subject of the second part of this work. 

§ 2.. Spatial correlation of the fluctuation field 

The fluctuation of the order parameter in the vicinity of the transition point 
has been considered first by Thbuless,2) who shows that ,the specific heat con­
tains a term diverging like IT - T v l- 1

/
2

• Although his treatment is limited to a 

pure superconductor, an extension to an· impure superconductor is essentially 

carried out by, Gor'kov. 7
) In our terminology these calculations are concerned 

with the classical behavior of the fluctuation. The same problem in the critical 

l-egion has been formulated recently by Baytev et a1.3
) In this section we pre­

sent nothing new, but rather we content ourselves with rearranging known 

results in a convenient form for later disussions. 
We start with a pairing hamiltonian given by 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/40/2/193/1876087 by guest on 21 August 2022



where' 

Critical Fluctuation of the Order Parameter 

c!f£ g = - I y I) cP t (r) cP t (r) cP t (r) CPt (r ) d 3 r, 

= -IYI) 711+ (r)?Jf (r) d 3r, 

?Jf+ (r) = CPt (r) CPt (r), 

?Jf (r) = cP t (r) CPt (r) 
and CPa (r) and cP~ (r) are electron field operators. 

195 

(1) 

(2) 

Green's function which describes the spatio-temporal behavior of the fluctua­

tion field is formally given by 

(3) 

where «[ J» denotes the retarded product taken in Gibb's ensemble with the 
total Hamiltonian c!f£ = c!f£o + c!f£g. Here c!f£o is the free hamiltonian describing free 

motion of electrons and holes in the fermi sea. We include the ,coupling con­

stant lyl in the definition of Green's function for later convenience'. 

A. Classical region 
In the classical region we can make use of the random phase a pproxima­

tion in the calculation of Green's function1
) for the fluctuation, and (3) reduces 

to 

(4) 

where < > is an average over Gibb's ensemble in the absence of the fluctua­
tion field; in a temperature above Ta the aV,erage has to be taken in the normal 

state, while in a temperature below Tc it has to be taken in the equilibrium 

BCS state. 
In the following we restrict our consideration to the dirty limit unless 

otherwise stated explicitly, since the effects of the fluctuation field are only 
accessible in dirty superconductors.S

) Making use of the standard technique 111 

the theory of metals we have1
) 

ID(w, q) =N(O)-1{lnCT-) +cp(_~_+ -iw+ Dq 2) _cp(_~)}-l 
Ta .2 4nT 2 

~ N(O) -1 (1'71 + Aq2)-I, 

with 

(5) 

where N(O) is the density of states at the fermi level (for electrons with a 

single spin direction), cP is the di-gamma function, D = (Iv /3) the diffusion con­
stant 1'7 I = IT / Ta - 11 and v is the fermi velocity. We put w = 0 in the final 
expression, since only f1) (w, q) with w = 0 is important in the critical fluctuation. 
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196 K. Maki 

B. Critical region 

In. the critical region t?e effect of the fluctuation field becomes so important 
that the spectrum of the fluctuation field has to be determined self-consistently. 

In particular in the limit T= T() (i.e. 1'171 = 0) we assume 

g)-I (U), q) = ([J (q) . (6) 

Following the scheme considered by Baytev et al.,3) we construct the self-consis­

tency equation for ([J (q), which runs as follows: 

Fig. 1. The lowest order box vertex which 
describes the interaction between the 
fluctuation field is given. The wavy 
line describes the propagation of the 
fluctuation field while the bold line is 
that of electrons. 

1 ] ' 
([J (ql) ([J (q2) ([J ( - ql - q2) 

(7) 

where we approximate the complete box 

diagram by the lowest order' diagram . 

. We calculate To from the diagram given 

in Fig. 1 and we have*) 

To = 8 ~C!i) 2 (7( (3)). (8) 

It is worth while to note that To does 

not depend on the electronic mean free 

path or the coupling constant Igl. There-

fore. the critical region considered here exists universally in a superconductor, 
although its observability crucially depends on the electronic mean free path 

of the system. It is easy to show that (7) has a solution 

and 

B' = (j 8n:_ T()T~) 1/2 

15 2n:2 
(9) 

In the immediate vicinity of the transition point it IS natural to assume**) 

(10) 

where 

*) In dirty superconductors we have to sum on other diagrams which contain corrections due 
to the impurity scattering as in reference 7). However, the final result (i.e. Eq. (8)) is unaffected. 

**) A more complicate form of 9J() has been considered in reference 9). We believe that the 
general behavior is not affected by this simplification. Perhaps the use of Eq. (7) will be more 
questionable, although a more complete treatment 6f the self-consistency equation appears almost 
unpractical. 
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B=B'/N(O) =~(_8n)1/4( 7((3) )
1/2

rJ(L)1/2pO_3/2, 
4n 15 N(O) Tc Tc 

(11) 

/1 = po2/2m the chemical potential and Po is the fermi momentum. 
In the following discussion of the electronic transport properties we refer 

to Eq. (10) as Green's function in the critical region. 

§ 3. Transport properties 

We shall consider here the modification of the electronic transport proper­

ties due to the fluctuation field. We can illustrate the general method most 

easily by calculating the electronic conductivity in the presence of the fluctua­

tion field as an example. We assume here that the fluctuation field gives rise 

to a small correction to the response functions in the normal state, so that we 

can treat the effect as a perturbation. The electric conductivity is expressed 

in terms of the retarded product of the current operat?rs: 

where 

and the current operator IS given by 

e (J) V 
(0) (b) (c) 

Fig. 2. Th~ lowest order corrections in the pres­
ence of the fluctuation field are given. Only 
the diagram a) contributes to the critical sin­
gularity. 

Q (w) = 0 r5 {- iw +..:!_ \ d 3q !J) (0, q) 
ltv ltv (2n) 3 J 2nT 

(12) 

(13) 

The lowest order corrections 

due to the fluctuation are given in 

the diagrams (Fig. 2), where the 

wavy line represents the propaga­

tion of the fluctuation fleld. Since 

the evaluation of each term corres­

ponding to each diagram is similar 

to those in dirty type II supercon­
ductors,9) we can immediately write 

down the results 

X[cjJ(1)(~_~+pq)_(2~T + . 2nT )(cjJ(~_~+pq) 
2 2nT zw zw - Dq2 2 2nT 

(14) 

where pq =Dq2/4nT, r5=re2N/m the conductivity 111 the normal state, cjJ(z) and 
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. 1/1) (z) are _ the di-gamma and the tri-gamma function respectively. 

In the low frequency limit the above expression reduces to 

where [a(q)] = T/(2n)3Jd3q9) (0, q)a(q). We consider two separate regions 

here. 

A. Classical region 

Green's function in the classical region is gIven by Eq. (5) and we have 

~ =(J (1 + 1 1 ) 
e 16N(0)DA1/2 /17/1/2 ' 

(16) 

where we have made use of the relations. 

T\ d
3
q 9) (0 q) =~ _1_ {~ ___ ~~(J171)1/2} 

) (2n)3.' 2n2 N(O) A 2 A 3 ' 

T\ d
3
q9)(0, q) = T _1_ ~(A/17/)-1/2, 

) (2n)3 Dq2 2n2N(0) D 2 . 
(17) 

and qo IS the cutoff momentum. Equation (16) is rewritten as 

Re = R (1- a /17 /-1/2) , 

where 

a= 1 ~4.18 (lp) -3/2 (~ p) -1/2~ (.I.e._) 1/2 (lp) -3/2. (18) 
16N(0) DA1/2 0 0 0 /1 0 

Therefore the resistivity. drops like a /17 /-1/2 in the classical region. 

B. Critical region 

Here we, substitute Green's function given in Eq. (10) III Eq. (15) and find 

Here we have made use of the relations 

T\ d
3

q If) (0 ') - T {_I ( )3/2_m In(~f!...)} 
J (2nf ,q - 3n2N(0) B qo B2 /17/ ' 

and 

(20) 
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The electrical resistivity in the critical region is given by 

Re = R (1 - a' I r; 1-1
/

3
) , (21) 

where 

a' = (6J3 N(O) DB2/3)-1 '(' T )1/3 r'J JLe_- (lPO) -1 • (22) 

We note that III both cases only the diagram a) in Fig. 2 contributes to the 
singular term. 

It is quite easy to discuss the modifications of various response functions 10
) 

III terms of the similar diagrams. We find exactly the same behavior for the 
nuclear spin lattice relaxation time r and the ultrasonic attenuation coefficient a: 

and 

r e = r n (1 - a I r; 1-1
/

2
) , 

ae = an (1 -- a I r; 1-1
/

2
) , 

r e = r n (1- a'i r; 1-1
/

3
) , 

ae = an (1 - a' I r; 1-1
/

3
) , 

III the classical regIOn (23) 

III the critical regIOn (24) 

where the suffix n refers to the quantities in the normal state. Also we can 

show that the thermal conductivity K has no critical singularity (i.e. only the 

higher derivatives of K in the temperature shows the singularity). 

, § 4. Concluding remarks 

We have seen from the microscopic calculation that the electric resistivity 

shows a singular behavior. This partly justifies a number of premises used by 

Ferrell et a1.5
) i~ their discussion of the critical phenomena. 

The present calculation introduces no arbitrary phenomenological parameter 

so that we have a definite prediction about the extension of both the critical 
and the classical regions. Dropping numerical coefficients of the order of 1, we 

see that the classical behavior is seen in the temperature region' JT1 r'J Te (Tel JL) 
X (lPo) -3. This classical behavior is talk:en over by the critical behavior in the 

immediate vicinity of Te; JT2r'J5- 1 JT1• As is easily seen from the above esti­
mate of JT1 , it is essential to have a short electronic mean free path l in order 

to make these effects. of fluctuation experimentally accessible. 

Far inside the critical region the above perturbation series apparently 
diverges. There may exist another sub-critical region where the dynamical prop­
erties are governed by another law in the temperature ,region, say, IO-8Te or 

IO- l OTe immediately above Te. This kind of problem does not arise in Hell, 

where the transport properties are directly described in terms of the fluctuation 

field, while in a superconductor the electron plays the primary role in the trans-
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200 K. Maki 

port phenomena . 

. Another interesting byproduct of the present study is that we expect the 

similar critical behavior in the nuclear spin lattice relaxation time and in the 

ultrasonic attenuation coefficient but not in the thermal conductivity. In this 

respect the experimental study of the corresponding quantities in the critical 
region is of particular interest. 
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Note added in proof: 
Since this work was completed we became aware of the fact that the diagram co'utaining two 

propagators of the fluctuation field also contributes significantly to the singular term in the electric 
conductivity [L. G. Aslamazov and A. I. Larkin, Phys. Letters 26A, 238 (1968)]. Taking this new 
term into account the expression for the electric conductivity in the classical "region has to be modified 
(i.e. the singular term has to be multiplied by a factor 7/4). On the other hand this new term does 
not affect the calculation of the other transport coefficients such as the ultrasonic attenuation coefficient 
and nuclear spin lattice relaxation time so that the present results still hold for these quantities. 
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