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Electron spin resonance (ESR) relaxation studies at nematic-isotropic (N-I), and nematic- 
smecticd (N-S, ) phase transitions in two liquid crystals, 40,6 and 60CB-SOCB, using the 
three spin probes, PD-tempone, MOTA, and P are described. In general, one finds that (i) at 
the N-1 transition, as T,, is approached, the linewidths diverge with a critical exponent of l/2; 
(ii) at the NS, transition, the linewidths diverge with a l/3 power law as the transition is 
approached from the nematic side. The nature of the critical divergences in the relaxation 
parameters is interpreted and analyzed in terms of fluctuations in the nematic and smectic 
order parameters at the respective transitions and the coupling of the orientational dynamics of 
the probe to these modes. Good quantitative agreement with theory for the N-I transition 
required the inclusion of the effects of asymmetric probe ordering. The theory developed in 
detail in paper I is applied to interpret the results at the NS, transition. This theory is 
extended to include the effects of the measured anisotropies in (a) translational diffusion of the 
probe, (b) smectic correlation lengths, and (c) dynamic scaling exponents. In general, the 
magnitudes of the observed effects as well as their critical exponents are of the order expected, 
provided the averaging of the effects of density fluctuations within a smectic layer by probe 
diffusion is incomplete as a result of hindered diffusion. 

I. INTRODUCTION 

Liquid crystals exhibit a wide variety of ordered 
phases,‘,’ including transitions between phases differing 
from each other in their degree of order and symmetry.3 
Several experimental methods, which include light scatter- 
ing,4V5 NMR,“8 x-ray diffraction,9-‘2 and adiabatic calori- 
metry 3,10,13-‘5 (each of which is sensitive to some character- 
istic property of the liquid crystal), have been used to study 
mesomorphic transitions. Such transitions are typically her- 
alded by characteristic pretransitional effects (e.g., diver- 
gences in heat capacities, viscosities, elastic constants, corre- 
lation lengths) that can often provide insight into the nature 
of the transition. 

Pretransitional effects which are manifested as “critical 
anomalies” in magnetic-resonance relaxation measure- 
ments, are caused by fluctuations in the order parameter 
appropriate to the particular transition.‘“” Thus, for exam- 
ple, although the long-range order vanishes abruptly when 
warming to the nematic-isotropic (N-I) transition, there is 
considerable evidence to indicate that a short-range order 
analogous to the nematic order persists in the isotropic phase 
just above the transition.4 Similarly, in liquid crystals exhi- 
biting an underlying smecticd (S, ) phase, at temperatures 
just above TNA , the N-S, transition, there are small domains 
of cybotactic clusters, i.e., regions with local smectic order, 
and as T-T,, approaches zero (with T> T,, ), the regions 
of local smectic order grow.2*‘9 Also, since the symmetry of 
the smectic phase requires twist and bend deformations to 
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become forbidden, the associated elastic constants must di- 
verge as the S, phase is approached from above. 

The fluctuations in the order parameter( s) that occur at 
the phase transitions can result in a slowly fluctuating orien- 
tational potential at the site of the probe molecule, thus mo- 
dulating the rotational reorientation of the probe. Such mod- 
ulations have been shown to lead to anomalous effects in spin 
relaxation, manifested as critical-type divergences for the 
hyperiine lines.‘6’20 Detailed studies of electron-spin relaxa- 
tion and orientational ordering at liquid-crystalline phase 
transitions using a variety of spin probes therefore provides 
important complementary information to that obtained us- 
ing the more traditional techniques, shedding light on the 
subtle molecular features that characterize these transitions, 
which are typically second order or weakly first order. The 
nature of the linewidth divergences at these transitions can 
also be useful in addressing how the molecular dynamics of 
the spin probe couples to the collective modes. The critical 
exponents describing the divergence in the relaxation rates 
provide a useful indication of the nature of this coupling.‘772’ 

In this work, we describe electron-spin-relaxation stud- 
ies of the N-I, N-S,, and S, -RN (reentrant nematic) phase 
transitions, and analyze them in the context of the models 
developed in paper I (Ref. 2 1) and previously.‘7 These stud- 
ies were performed using three nitroxide spin probes, per- 
deuterated 2,2’,6,6’ tetramethyl 4-piperidine 1-oxyl (PD- 
tempone), partially deuterated 4-methyl amino 2,2’,6,6’ 
tetramethyl piperidine I-oxyl (MOTA), and partially deu- 
terated 2,2’,6,6’ tetramethyl 4-(butyloxy) benzylamino pi- 
peridine 1-oxyl (P-probe) (Fig. 1)) dissolved in two liquid 
crystals. These are (i) 4 n-butoxy benzylidene 4’ n-hexyl 
aniline (40,6), which exhibits the transitions I-NS, -S,- 
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Acronym Name structure 

‘D-Tempone 
2,2’,6,6’-tetramethyl- 
4-pip&dine N-oxide 

(perdeuterated) 

0 
i: 

N-O 

4-methylamino-2,2’, 6,6’- HC 
3 \c/N 

MOTA tetrunethyl-piperidinyl- 
N-oxide (pudeuterated ring) 8 < 

N-0 

2,2’, 6,6’.tetramethyl-4. 
(butyloxy)-benzoylamino- 

‘$h”-b+,N N-O 
P 

piperidine N-oxide (perdeuterated 
piperidine ring) 

CSL 
3’,3’-dimethyloxazolidinyl- 
N-oxy 2’, 3 - 5a-cholutane 

FIG. 1. Structures of some nitrox- 
ide spin probes. 

K, and (ii) a binary mixture containing 27% n-hexyloxy 
cyanobiphenyl (60CB) in n-octyloxy cyanobiphenyl 
(80CB), a system that exhibits a reentrant nematic phase 
(I-N-S, -N) . 22*23 The structures of these liquid crystals are 

NAME FORMULA 

4.cymo 4’.n-hexyloxybiphenyl NC-O-#-OC,~HIJ 

NC-IP-@-OCsH,, 

N-(p-butoxybenzyliclene)- 
p-n-hexylaniline 

shown in Fig. 2 along with their phase-transition tempera- 
tures. 

The linewidth parameters related to spin relaxation 
were studied as a function of temperature, placing special 
emphasis on the regions at the vicinity of the phase transi- 
tions. For this purpose, a temperature controller with milli- 
kelvin resolution was employed, and data were collected at 
10-20 mK intervals near the transition. The critical contri- 
butions to the relaxation parameters are analyzed in terms of 
a power law in temperature, k( T - T * ) y, where T * denotes 
the transition temperature and y is a critical exponent de- 
scribing the divergence of the linewidths. The latter is dis- 
cussed in the context of the proposed models of molecular 
dynamics at the mesomorphic transitions. 

N-(p-butoxyhenzylidene)- 
p-n-heptylaniline 

4-cywo 4’-n-octylbiphenyl 

Transition temperatures of some liqttid crystals’ 

H&O-e-C&N-@-C&e 

H&,0-a-C&N-9-C,& 

NC-+&CeH,, 

The experimental details are given in Sec. II. Section III 
reviews the theoretical background, and provides a discus- 
sion of current models relevant to our results, while Sec. IV 
describes the methods of data treatment and analysis. The 
results and interpretation are given in Sec. V. The conclu- 
sions appear in Sec. VI. Finally, Appendix A describes the 
effects of anisotropy of ordering of the probe molecule on the 
spectral densities associated with the N-I transition; Appen- 
dixes B and C provide a more general formulation of the 
spectral density for the N-S, transition, allowing for anisot- 

a) 27% 60CB - 73% 80CB K (24OC) N (31°C) S4 (4YC) N (79’C) I ropy in the coherence lengths describing the N-S,, transi- 

b) 8CB K (21°C) S,, (34-C) N (41-C) I 
tion; and Appendix D presents a simple analysis of the ef- 
fects of nematic order-parameter fluctuations at the N-S, 

c) 40,6 I< (iaoc) s6 (4aq sA (55q N (7aoc) I transition. 

d) 40,7 K (49’C) So (5O’C) SA (56’C) N (81’C) I 

II. EXPERIMENT 
‘Rcferencee: 6) Ref. 23; b) G.W. Gray, 3. Phys. (Paris) C-36, 337 (1975); 
c) G.W. Smith and Z.G. Gardlund, .I. Chcm. Phys. 59,3214 (1973); d) Ref. 
10. 

FIG. 2. Structures of some liquid crystals. 

A. Preparation of samples 

The liquid crystals 4-n-hexyloxy 4’ cyano biphenyl 

(60CB) and 4-n-octyloxy-4’-cyano biphenyl (8OCB) were 
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purchased from BDH Chemicals Ltd. Since their phase- 
transition temperatures agreed with the published values, 
these compounds were used without further purification. 
The eutectic mixture of 27 wt. % 60CB in 80CB was pre- 
pared by weighing the two components ( + 0.1% precision) 
and heating them together till the clearing point, followed by 
rapid stirring to ensure uniform mixing. The composition of 
this mixture was also verified by comparing its phase-transi- 
tion temperatures with the phase diagram for the 6OCE 
80CB system.23 N-(4-butoxy benzylidene) 4’ n-hexyl ani- 
line (40,6) was prepared by Dr. E. Igner by condensing 
equimolar quantities of 4-n-butoxybenzaldehyde (obtained 
from Eastman Kodak Chemicals) and 4-n-hexylaniline 
(from Frinton Laboratories) in absolute ethanol followed 
by recrystallization from the same solvent. The transition 
temperatures of these liquid crystals are shown in Fig. 2. 

C. Temperature measurements 

The three nitroxide spin probes used in this study, PD- 
tempone, MOTA, and P-probe all contained a deuterated 
piperidine ring in order to minimize line broadening due to 
proton superhyperfine structure. PD-tempone was prepared 
by Dr. Eva Igner, while MOTA and P-probe were synthe- 
sized by Professor J. Pilar and Dr. Sidney Wolfe, respective- 
ly. The structures of these radicals are shown in Fig. 1. 

The fine temperature resolution (5-10 mK) was ob- 
tained using a 122 Precision Temperature controller in con- 
junction with a Tamson unit; the details are provided else- 
where.2s The temperatures at the sample were measured in 
terms of the resistance of platinum, whose resistance as a 
function of temperature is accurately known. A Keithley 
Digital Multimeter, which could record changes in resis- 
tance of f 1 mR (or temperature changes of &- 2.5 mK), 
was used for measuring resistances. In order to detect and 
determine any gradients in temperature along the length of 
the sample, two platinum resistors were used, and were 
placed at the top and at the bottom of the sample. Longitudi- 
nal gradients thus measured were on the order of 10 mK. 
Furthermore, any drifts in the temperature with time could 
also be recorded directly by the multimeter. A period of 1 h 
was usually sufficient to allow for temperature equilibration; 
temperature drifts during this period were typically 5 to 10 
mK at temperatures higher than 60 “C, but increased to 
about 20 to 30 mK at ambient temperatures. 

Solutions of spin probe in the liquid-crystal solvents 
were typically 0.4 to 0.5 mM in concentration. Once pre- 
pared, these solutions were transferred to a Pyrex sample 
holder containing sidearms, which were glass capillaries 
about 0.9 mm in diameter. Following freeze-pump-thaw de- 
gassing on a vacuum line, the solutions were transferred to 
the capillary sidearms, where they were sealed under a pres- 
sure below 0.1 mTorr. 

D. Director alignment 

B. ESR spectrometer and helix system 

All data were recorded at X-band frequencies on a Var- 
ian E-12 spectrometer using 25 kHz field modulation. In 
order to minimize line-shape distortions, the modulation 
amplitude was maintained at a value below one-tenth the 
linewidth, and the microwave power well below the satura- 
tion limit. The on-line collection and analysis of data was 
achieved through an interface to a Prime 850 time-shared 
computer, for which interactive software was developed. 

The experiments described here were carried out in a 
thermostated Be-Cu vessel containing a slow-wave he- 
lix 24,25 whose width was chosen in a way such that the capil- 
la; containing the sample fits snugly into it. The helix, thus 
also serving as the “sample holder,” was surrounded by a 
pair of modulation coils mounted on a Teflon modulation 
capsule. Owing to the difficulty in tuning the helix (the line 
shapes were often asymmetric), the helix system required 
tuning at each temperature. Such tuning was achieved using 
a slide-screw tuner that controlled the coupling of the 
microwaves to the helix, and by adjusting the phase on the 
reference arm. The criterion for acceptable tuning was cho- 
sen to be one that symmetrized the central electron-spin- 
resonance (ESR) line, since it is usually the outer two lines 
that are most sensitive to asymmetry changes near the phase 
transitions (see later). 

Measurements in the smectic phases of the liquid crys- 
tals required alignment of the director. In the nematic phase, 
the nematic director follows the magnetic field ( - 3.3 kG), 
whereas in the smectic state a magnetic field of 3.3 kG is 
insufficient to align the director owing to the weaker anchor- 
ing in the S,, phase. 2,26 Proper alignment in the S, phase 
therefore required the use of increased magnetic fields ( 12 
kG). Alignment was achieved by slowly cooling and heating 
(a few times) about TNA at the rate of about 1 “C per hour, 
and finally cooling into the well-formed S, phase (4 to 5 “C 
below TN,, ) .26*27 Linewidth data at the N side of T,, were 
collected upon cooling, whereas those at the S, side were 
collected upon heating from the well-formed S, phase. As 
TNA is approached, the hypertine line shapes become asym- 
metric because of critical effects on the director alignment, a 
matter discussed in Sec. V B 5. Thus, in order to avoid such 
problems from corrupting the measured linewidths, we only 
used data over the temperature ranges where the lines were 
very nearly symmetric. Typical values (e.g., PD-tempone in 
60CB-8OCB) were T - T,, > 0.1 “C [corresponding to t 

=(T- TNA)/TNA =3 X10-‘]aboveT,,,andT -T,, 

< -0.3”C (t=9X10e4) below T,,. 

By first rotating the director to be perpendicular to the 
magnetic field deep into the S, phase, and then raising the 
temperature to be near T,, , the line-shape distortions are 
dramatically enhanced. This was the method whereby we 
located T,, approximately, before initiating a detailed study 
on a given sample. 

E. Spectral measurements 

The hyperfine splittings were measured with respect to 
those from PD-tempone in toluene-d, , taken as the primary 
standard for calibration. The linewidths were calibrated 
with respect to spectra from potassium tetracyanoethylene 

[K + (TCNE) - ] in dimethylethylene (DME). In both 
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cases, computer software written by Dr. S. A. Zager was 
used to control the rate of data acquisition and then convert 
the (amplified) recorded signal voltages to digital form.” 

The intrinsic linewidths for each of the three hypexfine 
lines were obtained by fitting each line to a superposition of 
Lorentzian lines separated by a,, the deuterium coupling 

constant. Thus, each 14N hyperfine line was simulated by 
calculating the envelope of superhyperfine lines due to the 
dipolar coupling of the electron spin to the neighboring 12 
methyl deuterons, all assumed to possess the same coupling 
constant a,. 27*28 The coupling of the electron spin to the ring 
deuterons is known to be much smaller and was therefore 
neglected. The computer program used for these calcula- 
tions also had the feature of taking into account the asymme- 
try of the lines. Asymmetric lines were treated as linear com- 
binations of absorption and dispersion components,29 and 
the program generated the proper admixture of each of these 

for each intrinsic width. 

III. TREATMENT OF DATA 

The experimental ESR derivative linewidths S (in G) 
were corrected for deuterium inhomogeneous broadening as 
described above, and were then fitted to the expression 

&M,) = A + BM, + CM;, (1) 

where M1 is the z component of the 14N nuclear-spin quan- 
tum number. 30 The parameter s A, B, and C are directly re- 
lated to the tumbling motion of the spin probe. Our results 
for B and C with temperature are shown in Figs. 3(a) and 
3(b) for 40,6 and 60CE80CB, respectively. It is clear 
from these figures that the values of B and C at the phase 
transitions are anomalous in the sense that they appear to 
diverge as T *, the phase-transition temperature, is ap- 
proached from either one or both sides of the transition. 

The anomalous contributions to B and C (B,,,, and 
C lllOm ) must be obtained by subtracting out the main contri- 
butions to B and C (B. and C,, ), i.e., those that arise due to 
rotational motions which constitute the only contribution 
away from T *. In those cases, where the order parameter did 
not change much with temperature (e.g., near the NS, 
transition, or at the isotropic side of the N-I transition) a 
five-parameter fit was performed, using a nonlinear least- 
squares routine based on the Marquardt algorithm,3’*32 to 
yield values of k, T *, and u. We employed an expression of 
the form 

B,C= k(T- T*)O+ cexp( -b/T), (2) 

where the second term on the right models the temperature 
variation of the secular spectral densities arising from simple 
rotational diffusion which dominate B,, and C,, , and the first 
term models B,,,, or C,,,, (cf. Sec. IV). That is, 

&mm Gnom = k( T- T*)O. (3) 

On the nematic side of the N-I transition, the probe order 
parameter is a significant function of temperature, so B. and 
C, have a more complicated temperature dependence than 
given in Eq. (2). Thus we first estimated B, and C, as fol- 
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lows, and then used Eq. (3) to fit the residual B. and C,, . In 
regions away from T *, where B,,,, and C,,, are negligible, 
the linewidth parameters B and C were compared to values 
of B, and C, that were calculated using a range of values of 
G and N [given that R, and R,, are the perpendicular and 
parallel components of the rotational diffusion tensor, then 

rg ‘=6(R4 )*‘2 and N= RI1 /R, 1. The probe order pa- 

rameter S (S= (3 cos2 19 - 1)/2, where 8 is the angle that 
the ordering axis of the spin probe makes with the mean 
director), which was also needed for the calculation, was 
obtained in the standard fashion from the observed hyper- 
fine splittings. 22,27 The magnetic parameters for the differ- 
ent systems studied here are shown in Table I. From such 
comparisons, the values of r~ and N that best represented 
the experimental data were selected. In order to obtain 7~ at 
the critical regions, a linear extrapolation of in rx vs l/Twas 

performed. From a knowledge of the order parameters near 
T* obtained from the hypertine splittings,22*27 and the ex- 
trapolated values of rz and N, B, and C, were calculated. 
B anOm and Can,, were obtained by subtracting B, and C, 
from the experimental values of B and C, respectively. 

The analysis also provided the uncertainties in the val- 
ues of the parameters associated with the fits to the data, as 
shown in Tables I and II. 

In the case of MOTA in 60CE80CB, the linewidth 
data near both the N-land NS, transitions showed little, if 
any, signs of critical divergence when compared with similar 
data for PD-tempone in 60C!E80CB, even though a five- 
parameter fit to these data successfully gave exponents and 
transition temperatures that were compatible with the latter. 
A more objective criterion (than visual comparison) was 
thus needed in order to better discern whether a five-param- 
eter fit, i.e., Eq. (2) [or Eq. (3) when appropriate] was 
warranted rather than a two-parameter fit that represented 
the Arrhenius contribution alone, i.e., the second term in Eq. 
(2). This was also desirable in discerning critical effects at 
transitions where they were weak, e.g., the N-S,, transitions. 
For this purpose of comparing the two nested models, the F 

ratio of the partial (two-parameter) to the full (five-param- 
eter) model was used to calculate the probability for the 
Fisher F function P(ve,vf;F) (where v, = P, - P,, 

v,=N - Pf, and F is the F ratio defined as the ratio 

of the reduced x2’s for the two models: F 

= [ ($, -~F)/v~]l/(;1c2F/vF); here Nis the number of data 
points to be fitted, Pf and P, are the number of parameters 
for the full and partial models (five and two in our case), and 

yp, & are the values ofX2 for the partial and full parameter 
fits, respectively).31*32 P( v,,v/;F) provides a quantitative 
statistical measure of the necessity for performing a five- 
parameter as compared to a two-parameter fit. In some 
cases, we also compared the two- and five-parameter fits 
with a three-parameter fit wherein we fixed T * and (T at the 
values from the five-parameter fit, allowing only b, c, and k 

to vary, in order to satisfy ourselves that the full model was 
not, in fact, redundant. 

The results of comparing the two- vs five-parameter fits 
are also summarized in Tables II and III, which show the 
P( v,,v,;r;? as percent confidence level for the five-parameter 
fits that were obtained in the various cases for the nonlinear 
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least-squares fits to the B and C data. In those cases where creasing probe size. In the one case of MOTA in 60CB- 
the critical divergence was dramatic enough (typically the 80CB the differences between the two- vs five-parameter 
N-I transitions), the F test became redundant, since the two- models were not unequivocally in favor of the latter (i.e., 
parameter fit did not even converge for the data. The results 86% on the isotropic side of the N-I transition and no ob- 
showed that, at the N-I transition, all cases but one were served divergence on the nematic side). The results for the 
significantly in favor of the five-parameter model (which we N-S” transition also showed that the five-parameter model 
took as a 96% confidence level or better), with the probabili- was favored by a 96% probability or better, except for the B 
ty being highest for PD-tempone and decreasing with in- data at the S, side of the S, -RN transition for PD-tempone 

PD-Tempone in 6OCB-80CB 

OL I I I I I I I I 
20 30 40 50 60 70 80 90 100 

(d) T PC) 

IOOO-b 

s 800- ’ 

-5 F 
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m 
’ 400- o 0 

00 
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FIG. 3. Temperature variation of linewidth parameters B and C for (a) 
PD-tempone, (b) MOTA, and (c) P in 40,6, and (d) PD-tempone and 
(e) MOTA in 60CE8OCB. 
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TABLE I. Magnetic parameters for spin probes in 40,6 and 6OCE80CB. 

Probe Solvent gx- gr gz” A, ((3 A,(G) A,(G) 

PD-tempone 6OCBSOCB 2.0099 2.0062 2.00215 5.60 5.00 33.65 
MOTA 6OCBSOCB 2.0099 2.0064 2.0023 5.92 5.29 35.60 

PD-tempone 4096 2.0099 2.0062 2.00215 5.57 4.98 33.49 
MOTA 4036 2.0099 2.0064 2.0023 5.89 5.26 35.41 
P-probe 4096 2.0094 2.0058 2.0026 1.32 7.82 31.50 

TABLE II. Nonlinear least-squares analysis of FSR linewidth parameters B,C (mG) = k( T- T*)“+ ce- b”at N-1 transition.’ 

in 60CB-80CB ( 7 1% ) (and again for the anomalous case 
of MOTA in 60CB-80CB). This provides the clear justifi- 
cation for including the critical term in the analysis. 

IV. THEORETICAL BACKGROUND 

In liquid-crystalline systems, Freed” has shown that 
the molecular dynamics of spin-bearing probe molecules can 
be described in terms of a composite Markov process consist- 
ing of the (faster) rotational reorientational motion of the 
radicals and the (slower) director or order-parameter fluc- 
tuations. When the fluctuations are included in lowest order, 
the analysis leads to the result that the spectral densities for 
spin relaxation can be decomposed into a sum of three terms: 
(i) rotational reorientation of the molecule in the equilibri- 
um potential of mean torque, (ii) the effect of order-director 
and/or order-parameter fluctuations, and (iii) a small nega- 
tive cross term between processes (i) and (ii) (in the case of 
the N-I transition) which bears a simple relation to (ii). In 
regions away from criticality, the contribution from (ii), 

which involves the coupling of the molecular dynamics to 
the collective modes (which occur on a longer time scale 
than the probe reorientational motions), is often small com- 
pared to (i). However, (ii) plays a significant role in influ- 
encing spin relaxation at the vicinity of mesophase transi- 
tions. The increased contribution from (ii) is caused by 
divergences in correlation lengths accompanying the build- 
up of the appropriate order parameter for the given transi- 
tion as well as the associated critical slowing down of the 
relaxation of these collective modes. Thus, at the I-N transi- 
tion, which is accompanied by a growth in orientational or- 
der, fluctuations in the orientational order parameter cause 
divergences in the correlation lengths as the transition is ap- 
proached. Similarly, at the N-S” transition, the growth of 
positional order causes fluctuations in the mass density 
which also cause the correlation lengths to diverge (but at a 
different rate with temperature than for N-lbecause of fluc- 
tuations in a different kind of order parameter and phase 
transition). It is the nature of the temperature variations of 
the correlation lengths and the slowing down of the collec- 

System Phase Bar C k T* (“C) L7 c (mG) b W 

PDT/KXB-BOCB I B 14.2 f 1.9 79.43 f 0.09 - 0.43 f 0.09 (1.6fO.l)xlO-’ 3425*27 >99.99 
c 46.4 f 2.2 79.27 f 0.05 - 0.40 * 0.03 (1.5f0.3)XlO-' 3064*89 b 

Iv B 16.20 f 0.03 79.93 f 0.02 - 0.50 0.01 f . . . . . . b 
c 29.90 f 0.03 80.02 f 0.01 -0.56 + 0.01 . . . . . . b 

PDT/40,6CVd I B 7.6 f 1.7 76.7 f 0.2 -0.49*0.11 . . . . . . >99.99 
C 17.4 f 2.1 77.0 0.2 f - 0.45 0.09 f . . . . . . ,99.99 

N B 4.46 f 0.05 77.17 f0.02 - 0.48 f 0.01 1.. . . . b 

C 9.7 f 0.2 77.24 f 0.01 - 0.54 *0.02 . . . . . . >99.99 
MOTA/6OCE8OCB Z B 42.0 f 4.9 78.5 f 0.5 -0.48 *to.08 (4.1~0.2)~10-~ 4375*15 85.99 

C 39.0 15.7 f 78.3 1.0 f - 0.48 kO.04 (1.6f0.3)x10-4 4564*663 87.00 
iv . . . . . . . . . . . . . . . . . . 

MOTA/40,6 I B 58.4 f 5.4 77.2 f 0.1 - 0.47 f 0.02 (3.2fO.l)xlO-' 3755f14 b.99.99 
C 68.3 f 5.7 77.2 0.1 f - 0.50 0.02 f (2.5 0.2) X lo-’ f 3688 23 f >99.99 

w B 43.0 f 0.2 77.90 0.02 f -0.48 fO.O1 . . . . . . b 
C 44.0 f 0.2 77.93 f 0.03 - 0.50 fO.O1 . . . . . . b 

P/40,6 Z B 160.7 f 49.1 76.6 f 0.2 - 0.49 f 0.12 (3.2 f0.4) x lo-’ 4126 f 41 99.98 
C 66.3 f 37.3 76.9 f 0.1 - 0.50 *0.15 (5.3 0.9) x lo- 3 f 3763 62 f 20.0 

M B 209.8 f 1.0 77.71 0.01 f - 0.51 0.01 f . . . . . . b 
C 125.4 1.5 f 77.77 f 0.03 - 0.49 0.02 f . . . . . . b 

‘B,C (mG) = k( T- T*)“in the nematic phase. 
bLarge critical effect at N-Z transition; two-parameter fit does not converge. 
‘Three-parameter fit after subtracting nondivergent contributions. 
d Original data from Ref. 20. 
‘No divergence in B or C observed. 
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TABLE III. Nonlinear least-squares analysis of ESR linewidth parameters B,C (mG) = k( T - T*)” + ce- b’Tat NttS, transition. 

System Phase Bor C k T* (“2) (T c (mG) b(K) P,(v, ,v2;n 

PDT/60CB-BOCB” N B 16.8 * 2.7 
C 12.5 f 1.2 

S,” B 19.2 f 2.7 

C 32.4 f 3.0 

PDT/40,6”.’ N B 
C 

MOTA/60CEBOCB” N B 
C 

SAb B 

C 

4.1 f 1.7 
6.0 f 0.8 

74.6 f 8.5 
76.8 + 6.3 

207.3 + 9.6 

262.3 * 32.7 

MOTA/40,6” N B 
C 

P/40,6’ S.4 B 

8.0 f 0.2 
5.2 f 0.4 

713.3 f. 2.9 

702.8 f 0.1 

43.93 * 0.03 
44.97 f 0.01 
32.75 f 0.01 

32.74 f 0.01 

55.21 f 0.03 
55.15 f 0.04 
45.4 f 0.5 
44.7 f 0.3 

30.45 * 0.01 

30.49 f 0.01 

55.89 f 0.01 
55.91 f 0.02 

56.84 f 0.40 

56.96 f 0.01 

- 0.30 f 0.02 
- 0.36 * 0.03 
- 0.33 * 0.02 

- 0.38 f 0.02 

- 0.33 f 0.07 
- 0.38 f 0.06 
- 0.37 f 0.02 
- 0.35 f 0.02 
- 0.13 f 0.01 

- 0.13 f 0.02 

- 0.32 f 0.01 
- 0.33 f 0.02 

- 0.21 * 0.03 

- 0.23 f. 0.02 

(3.3 f 0.2) x 10 -’ 3847 * 14 
(1.8f0.2)x10-4 4079*38 
(2.5*0.1)x10-3 3281*8 

(2.5*0.1)x10-’ 3289$-B 

(7.0 f 0.6) x 10 -’ 3448 * 28 
(9.9*0.3)x10-4 3428 + 9 
(7.1*O.2)x1O-4 4186*7 

(18.2*0.6)x10-4 3676* 10 
(1.2*0.1)X10-3 3977*45 

(1.1*0.2)x10-’ 3727*61 

> 99.99 
> 99.99 

70.95 

99.99 

> 99.99 

(1.33*0.O4)X10-2 3225*9 99.89 
(4.6 f 0.2) x 10 - 3 3379 * 2 99.27 

(1.1*0.2)X10~3 3856*6 99.97 

- (3.0 f. 0.4) X lo-’ 3858 f 10 > 99.99 

’ No critical divergence at S, -N transition. 

bSA-RN transition. 

c Original data from Ref. 20. 
d The y values were comparable for the two- and five-parameter fits. 
‘No critical divergence at N-S, transition. 

tive modes of reorientation that determine the “anomalous” 
behavior of spin relaxation at the vicinity of the phase transi- 
tions. 

The temperature dependence of the spectral densities 
J(o) for the linewidth parameters B and Cis therefore treat- 
ed as the sum of two terms: 

J(w) = JRR(a) + JoPF(m). (4) 

The first, JRR(a), describes the rotational reorientational 
contribution to linewidth. In the isotropic phase, it is propor- 
tional to rR / ( 1 + o*r i ), where rR is the rotational correla- 
tion time of the spin probe.33 rR is assumed to obey an Arr- 
henius-like temperature law, rR a exp ( - E, /R T) , where 
E, is the activation energy for reorientation. The second 
term, JoPF(o), denotes the contribution due to order- 
parameter fluctuations as discussed above. It has been not- 
ed16 that the main contributions to B and C come from the 
secular and pseudosecular spectral densities, J(0) and 
J( w, ) [only J( 0) in the case of B] . JoPF( 0) can be shown to 
be related to some power of the correlation length (Q for 
order fluctuations, the exponent depending on the nature of 
the transition and the precise model for the coupling of the 
molecular dynamics. The temperature dependence of 
JoPF(0) therefore depends on how G$ varies with tempera- 
ture. Since this latter temperature dependence is also empiri- 
cally noted to be a power law, it follows that 
JoPF(0) - (T - T*)q where ois a critical exponent. From 
these considerations we have 

JRR(0) -c exp( - E,/RTl (5) 

and 

JoPF(0) -k( T- T*)4 

Combining Eqs. (4)-( 6) gives 

J(0) -c exp( - E,/RT) + k(T- T*)-, 

(6) 

(7) 

which is a relatively simple expression that was used in the 
previous section [cf. Eq. (2) ] to simulate the linewidth be- 
havior as a function of temperature. 

In summary, the first term on the right-hand side of Eq. 
(7) depends on temperature, and (in the case of meso- 
phases) the order parameter, which varies with tempera- 
ture. It describes the “background” contribution to spin re- 
laxation at the phase transitions, and it arises from 
reorientational motion of the spin probe in the ordering po- 
tential of the liquid-crystal molecules. The second term, 
k( T - T *) “, describes the coupling of the molecular dy- 
namics of the probe to the hydrodynamic modes in the liquid 
crystal.‘7*34 The exponent cr depends on the nature of the 
transition (first or second order, N-I, or N-S, ). We discuss 
below the models for the N-Iand NS, transitions that pro- 
vide an interpretation for 0. 

A. N-1 transition 

The orientation-dependent part of the spin Hamiltonian 
3Y, (a) can be written as 

9, (cl) =c 2 ( - l)KF;!L.--)~~,_K(n,A:~“‘, 
p’.i L,M.K 

(8) 

where n specifies the orientation of the molecular axis sys- 
tem relative to the lab frame defined by the static magnetic 

field. S& _ K (a) are the Wigner rotation matrix elements; 
the irreducible spin and molecular tensor elements, A 2:“’ 

and F ‘(5 - K, respectively, are defined elsewhere. ‘7V27V28 The 
typica!‘lerms in Eq. (8) require L = 2. The introduction of a 
director frame into the Hamiltonian requires the use of two 
further transformations with the following sets of Euler an- 
gles:” (i) the angles \v, specifying the orientation of the 
mean director $ (r) with respect to the lab frame; (ii) the 
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angles E, specifying the instantaneous orientation of the di- 
rector [ fi( r, t) ] relative to the mean director. As a result of 
the combined reorientational motion and the fluctuating di- 
rector (which influences the reorientational motion) 
&“, (0) will be partially averaged, and its average value is 
given by 

<%, (3) = ccc ( - l,K(~~,-,(n,>F~2~KA~M, 
P K M 

(9) 

where 

tgkKtR)) = I cm P, (R,E)S&(R). (10) 

In Eq. (lo), Pq (n,E) is the joint equilibrium probability 
distribution function in orientations fl and H. We shall in- 
voke the assumption, based on the hypothesis that the collec- 
tive motions associated with director fluctuations and those 
associated with single-particle reorientations have different 
characteristic time scales (i.e., a molecule reorients many 
times before the director fluctuates significantly), that 
P, (fi,Z) can be factored into the equilibrium distributions 
P,,?(n) and&(E), so that” 

P, (n,z) zPeq,= u-l,& (El. (11) 

Note that Poq,E (a) is the equilibrium distribution in R for 
arbitrary values of E. [Equation (11) is analogous to a 
Born-Oppenheimer approximation in quantum mechan- 
ics.] When substituted into Eq. (lo), this leads to 

(%‘(n,b,-~zf~ca, ,-dslpq,~~~)g~K~n)* (12) 

The spin relaxation in the motional-narrowing regime is 
determined by the correlation function for the Hamgtonian 
in Eq. (8). But since the entire time dependence in F1 (a) 
is contained in 9’ M, _ K (a), it is sufficient to study the cor- 
relation functions for the latter, i.e., 

The calculation of these correlation functions is per- 
formed using Eq. (12), and leads to the result that 
CM, _ K,MS, _ KS (t) in Eq. ( 13) can be written as the sum of 
three terms” as noted above: (i) C”‘- KM’ _ K, (t), which 
describes molecular reorientation un$r the iotential U(n); 
(ii) C $,‘- K,M ,, _ K I ( f), which is due to relaxation that arises 
from fluctuations in E (e.g., director fluctuations); and (iii) 
C $,I- K,M ., _ K, ( t), which represents a (negative) cross term 
between these two processes, but which bears a simple rela- 
tion to (ii).” 

The spectral density terms relevant to the present dis- 
cussion arise from (ii) and (iii). If one includes order-pa- 

rameter fluctuations in lowest order, it can be shown that 
only terms with K = K’ = 0 will enter the expression for 

C$- K,M’, _ K’ (t) and C$,‘- K,M’, _ K’ (t) . The analysis of 
the fluctuations in the order parameter leads to the result 
that the correlation function describing such fluctuations 
(when they are small) near the N-1 transition are given by 

= g(X(t = 0)9~2$ (YC, ,%t,-@&, (*,)&,,&,,Kp 

(14) 

above the phase transition, and below the phase transition it 
is only necessary to replace l/25 by K(M,O)K(M’,O).~~ In 
Eq. ( 14)) 2 (t) is the (time-dependent) ordering potential, 
and VI denotes the instantaneous orientation of the local di- 
rector in a lab-fixed frame (e.g., the mean director). In the 
case of a weakly ordered probe molecule with order param- 

eter S @) and ordering potential 2 @I, the approximate sub- 

stitution 1 @)/S’(P) & /S’, which holds when 1 is small, 
leads to 

(15) 

The ratio (S $jlypr)/SN1 ) in Eq. ( 15) can be estimated from the 
measured order parameters for the probe and the liquid crys- 
tal just below the N-1 transition. The fluctuations in QM (q) 
(the nematic order tensor) appearing in Eq. ( 15) are de- 
scribed by Landau-de Gennes mean-field theory, leading to 
the result that the spectral densities for the order-parameter 
fluctuations are given by” 

with 

1 

I 

l/2 

X 
1 + [ 1 + (w/w$]1’2 

x sK,O sK ‘.O 6,.W’ (16) 

WC = L /(lg2). (17) 

In Eq. ( 16), L is a force constant for distortions, Y is the 
solvent viscosity, and { is a coherence length for order fluc- 
tuations. (Note that we have used k, for Boltzmann’s con- 

stant.) For small order fluctuations, 6 2 is inversely propor- 
tional to ( T - T *), since according to Landau-de Gennes 
theory, 6 ’ = L /a ( T - T * ) . Equation ( 16), which applies 
above the N-I transition, may be used for below the transi- 
tion by multiplying by [ 5~(0,M) 1’ (cf. Appendix A) and 
letting Y+v~, L-+L,, and 6-t. 

The effects of finite translational diffusion can be incor- 
porated into Eq. ( 16) by procedures described in detail in 
Appendix B in Ref. 17. One then has the result 

x D(l- (l/v+Z){[x2+ (o/w;)2]1’2+x)1’2)+ (wl$“/vZ>{[x’+ (0/w;)2]1’2-x}1’2 

C02~“+ DZ I 

J. Chem. Phys., Vol. 96, No. 5,1 March 1992 
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with wi = L ‘/vl 2, L ’ = L + vD, and x= L /L I. Note that 

the secular spectral densities are given by 

J$,(o)+-)($)‘y(l-$) 

=k,(g%(l-\/i&)* 
(19) 

parameters for N- (P-methoxybenzylidene) -p-n-butylani- 

line (MBBA), i.e., L=: 10m6 dyn, UZ~X lo5 ergs/cm3 “C, 
v = 0.3 P.37*16 We estimate the quantity within the second 
set of square brackets in Eqs. (24) and (25) to be ca. 

l.05x10-9at TN,=: 78 “C, which is the N-I transition tem- 
perature for 4G,6 ( TN, for 60CB-BOCB is 79 “C at the com- 
position studied). k, and k, can thus be estimated from a 
knowledge of the probe ordering and the magnetic tensors. 
Note, however, that when the more general expression, i.e., 
Eq. ( 19)) is used, one finds that the secular spectral densities 

including translational diffusion are 2x/( 1 + 6) times 
those calculated neglecting the effects of D. 

Equations ( 16) and ( 18 ) show that J (2) (w ) is largest at 
zero frequency; therefore, the secular spectral densities for 
order fluctuations are the dominant contributors to the 
anomalous part of spin relaxation. The anomalous contribu- 
tions to the linewidth parameters B and C (cf. Sec. III), i.e., 
B anOm and Can,, , are given by (in G) :28*‘7 

B 
- ~2% 

anom = ~ (A, + A, 
9 

and 

-%z)(kz -g, -g,,)J,(O) (20) 

We note that CanOm/B,nom lies between the limits 
( B/5 ) ( C, /B, ) and ( C, /B,, ) depending on the value of Nc . 
Equations (20) and (2 1) also show that for isotropic diffu- 
sion in isotropic liquids (or in ordered phases when the or- 
dering of the spin probe is low) the temperature dependence 

of Lo, and Go, can alternatively be described by the 
equations 

B C anom anom -=-=k’(T- T*)-“2, 

5Bo N&o 
C B”ClIll =+ (A, +A, - U,)2[8J,(0) - ~J,,(w,)], 

(21) where 

where the spectral densities in Eqs. (20) and (21) are given 
by Eq. ( 18) ; A, and gii are the Cartesian components of the 
hypertine and g tensors, respectively; B,, is the dc magnetic 
field; and o, is the frequency of nuclear spin flips. These 
substitutions lead to 

B BnOm =k,(T- T*)-“2 (22) 

and 

C anom = k,(T- T*) --‘2, (231 

where k, and k, are given by (neglecting translational dif- 
fusion and the cross term J gk ) : 

k can be calculated from the order parameters Scp) and S 
(i.e., for the probe and liquid crystal solvent, respectively) at 
the N-l transition, the physical properties of the liquid crys- 
tal, and the rotational correlation times of the spin probe 
near T,,. The modifications required when the probe orders 
with an asymmetric potential are described in Appendix A. 
They are the forms utilized to analyze the experiments on 
PD-tempone. 

fb= -?(A,+A,-ZA,) 
[ 

X(2&z -&.x -gjy) ($y]( 8$&2) (24) 

and 

x( ,T;J;,,2) - (25) 

In Eq. (25)) Nc is a factor which takes on values between 8 
and 5*36 the former limit corresponds to the case when 
J,, (~1) Q J, (0) (which is the case for slow fluctuations 
and/or molecular diffusion), whereas the latter limit corre- 
sponds to J,, (w, ) z J, (0) (which occurs in the case of rap- 
id fluctuations). The quantities appearing within the first set 
of braces in these equations for k, and k, depend solely 
upon the properties of the spin probe, while the second set 
contains parameters characteristic of the liquid crystal. In 
order to provide order-of-magnitude estimates, we use the 

k,T 

47rL 1’2a”2D 

1 -1 
rR * 

1 +vD/L 

(27) 

6. N-S* transition 

While the weakly first-order transition is satisfactorily 
understood in terms of mean-field theory, this is not the case 
for the N-S, transition which is often second order3* and to 
which dynamic scaling laws analogous to the L transition in 
He have been applied. ‘9*39 Models based on dynamic scaling 
show that as the NS, transition is approached, the elastic 
constants for twist and bend deformations K2 and K3 di- 
verge as (T- T*) - 2’3.39*40 This implies that the spectral 
density contribution due to order-director fluctuations, 
which are proportional to K - 3’2 (Ref. 17) (where K is the 
average elastic constant of the liquid crystal), must be sup- 

pressed as the transition is approached. That is, as T * is ap- 
proached from the nematic phase, the linewidth parameters 
[see Eq. ( 1) j’ would be affected as follows: A would de- 
crease, B would be unaffected, and C would increase. How- 
ever, the experimental fact that all three parameters are not- 
ed to increase (see Sec. V) demonstrates that director 
fluctuations and their suppression near the phase transition 
do not play a major role in influencing relaxation near the N- 
S, transition. 
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The model we use for interpreting our relaxation results 
at the N-S, transition was proposed by Zager and Freed,” 
and is presented in detail in paper I. As T * is approached 
from the nematic phase, smectic layers begin to form as a 
pretransitional effect. The formation of such layers (cybo- 
tactic clusters) is described by fluctuations in the smectic 
order parameter, which leads to density fluctuations p (r,t). 
During the formation of cybotactic clusters, the movement 
of probe molecules from the aromatic core regions in the 
liquid crystals to the (lower density) chain regions22*27 af- 
fects the order parameter S and/or rotational correlation 
time r, of the probe. Thus density fluctuations which cause 
the cybotactic clusters to form and break up in different spa- 
tial regions, modulate the molecular dynamics and therefore 
the spin relaxation of the probe directly. 

The description of fluctuations in the smectic order pa- 
rameter requires the use of two correlation lengths c1 and c,, 
which diverge with different power-law exponents vl and 

vI, , I.e., as ( T - T, ) -y’ and (T - T,) -y”, respectively. In 

the Landau description one has critical exponents 
vl = v,, = l/2. From the superfluid analogy, one still ex- 
pects v* = v,, , but with a higher numerical value, i.e., 2/3. 
Experimentally, however, these exponents are noted to vary 
between 0.9 and 0.5; an observation which, as yet, has only 
partially been explained by the renormalization-group cal- 
culations which predict a crossover in critical exponents 
near the tricritical point.‘0*4’*42 

The relaxation of the S, order parameter \I’( r,t) is de- 
scribed by the following rate law for the qth mode of fluctu- 
ation [cf. Eqs. (9)-( 11) of paper I as well as Ref. 21 of paper 
I]: 

W(WW(s,o)) = (lyCs)l’> exp( - t/rq), (28) 

where Y (q,t) is the Fourier transform of Y (r,t), and above 
the N-S” transition it denotes the mean-square displace- 
ment in the order parameter: 

(IY(q)l2)Ea,‘=kb 
1 

~w+&:-t41;~;) 
(29) 

and rq is the q-dependent relaxation time of the smectic or- 
der parameter given by 

7, 
rq = (1 +!?gf +&:Y’ 

Nayeem et&: Liquid-crystalline phase transitions. II 3921 

large q{, which defines the dynamic scaling for isotropic sys- 

tems. At T= T,,, r, diverges as 6: i.e., the q = 0 mode 

becomes infinitely slow; this is the so-called critical slowing 
down of the order parameter. For larger values of q, how- 
ever, rq does not diverge as T--+ T,, . From Brochard’s argu- 
ment, 

rq =~~~,J4*~)=:7,&4~) a [l/CT- T,,)]f(&), (31) 

i.e., r, a{’ with z = 3/2; and therefore, in order to have a 
nondivergent rq for q,$- CO near the NA transition, we esti- 
mate x as follows [cf. Eqs. (30) and (3 1) ] : 

7qzr,/(qg)2xa(T- TNAI-1f2xv/q2x as q--+m. (31a) 

Hence, we must have 2xv = 1. If v = 2/3 (from the super- 
fluid analogy) one has x = 3/4; or if v = l/2 (Landau theo- 
ry) then x = 1. Dynamic scaling, as well as its anisotropy for 
the N-S,, transition, is further discussed in Appendixes B 
and C. Having determined both the amplitude as well as the 
decay rates of Y, we now proceed to consider how the fluctu- 
ations in Y affect the relevant molecular spectral densities 
associated with z, (E ) . 

The formalism for the treatment of the correlation func- 
tions for spin relaxation at the N-S, transition has been dis- 
cussed elsewhere20V2’ but is briefly summarized here. The 
time-dependent fluctuations in the relaxation parameter(s) 
Q (where Q could, for example, be S or rR ) are proportional 
to fluctuations in the density: 

(AQ(rB,t)AQ(rB,O)) a Gp(rB,Ohp(rB,O)), (32) 

where ( re,t) refers to the position of the Brownian particle 
at time t, and Ap = (p - p. ) denotes the deviation of the 
density p from its mean valuep, . The translational diffusion 
of the probe is taken to obey a Smoluchowski equation with a 
time-dependent potential of mean force (acting on the 
probe), which is a functional of the density fluctuations (i.e., 
U(r,t) = U[hp(r,t)]). Then hp(r,t> is related to the com- 
plex smectic order parameter Y (r,t) in the usual manner.39 

In the spirit of a Landau expansion, only the lowest or- 
der terms in hp(r) are considered in the time-dependent 
fluctuations in spin-relaxation parameters. The method of 
approach for calculating the relevant correlation functions 
and spectral densities including the critical hydrodynamics 
of the phase transition and the translational diffusion of the 
probe is based upon methods previously developed” and is 
discussed in paper I (Ref. 2 1). One obtains the result [cf. 
Eqs. (28)-(30) ofpaper I] 

which is a simple interpolation form that satisfies dynamic 
scaling as discussed below. In these equations, lL and {,, are 
the coherence lengths parallel and perpendicular to the 
mean director (the z axis), respectively, and q,, and qL are 
the respective components of q. Also, V is the sample vol- 
ume, and A is the coefficient in the term quadratic in the 
Landau expansion of the smectic free energy (see Appendix 
B). 7, is a relaxation time that is independent of q and is 
expected to vary as I T - TNA I - ‘.39 The exponent x is deter- 
mined from dynamic scaling arguments. The argument due 
to Brochard goes as follows. 7q is considered to be a homoge- 

neous function of 7, and (q$), i.e., 79 = 4 ‘f qg) (assum- 

ing isotropic correlation lengths) with f(qg> a (q[) --I at 

m 
J(w) = Re C(t)e-‘*‘dt, (33) 

where 

C(f) =--c s ” 
4(2~)~ o 

d 3q c~,--’ 9r 

X exp [ ( - r ;Lq, +D,,si +D,q:WJ. (34) 

In Eq. (34)) rq _ qs and o&‘, are as defined by Eqs. (30) and 

(29 ), respectively, but with q,, replaced by (q,, - qs ), where 
q, is the wave vector corresponding to the interlayer spacing 
in the S, phase (i.e., q, = 2r/d, where d is the thickness of a 
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smectic layer), and it lies along the director (thus along q,, ). 

The solutions of Eqs. (33 ) and (34) require, in general, nu- 
merical computations. One can, however, obtain some phys- 
ical insight by considering special limiting cases which admit 
of analytical solutions.” 

Let us first ignore anisotropies by setting ,$,, = &, 
D,, = D,, and take the dynamic critical exponent as x = 1. 
We obtain a simple analytic form in the limits that 
D,, dr,,, -+O (by simply letting qs -0) and qc + 03. This ig- 
nores the effect of diffusion of the probe through the smectic 
layer. One obtains for Jo’ 

4J(o) = J$+(l -&z)” 

X[(l +wzr;)“z + l]i”) 

X 
1 

w~~$~+D~’ 

whereM(2Ac2)-‘, andz=(l +Dr,,,/{*)-‘measures 
the relative importance of translational diffusion over the 
correlation length 6, vs relaxation of the smectic ordering in 
providing averaging of the fluctuations in Q. For z< 1 the 
former dominates, whereas for zz 1 the latter dominates. 
The spectral density at zero frequency makes the dominant 
contribution to the ESR linewidth near the critical region, 
and from Eq. (35) it is 

Mk,T zr,,, 
4J(O) = - 

477 I$( 1 + z1’2) 

==I iUk,T r,,, 
+ --,(1/2 

t-h !c 
a (T- T,,) - 1’3 

+ Fala (T- T,,) --I). (36) 

Baaed upon measurements of l,, (Refs. 10 and 42) and 
D (Refs. 44,45, and 46) in somewhat related materials, and 
estimates of 7, (Ref. 20) (cf. Tables IV and V), 

D,, 7,/.g2Z 10m2 to low3 (for T- T,zO.l “C), while 
D,, rmd z lo3 to 102. Thus, while it may be reasonable to 
ignore the averaging effects of translational diffusion over 
the distances of c,, , it would appear questionable to let 

D,, r,,, 4: -0, i.e., ignoring diffusional averaging over a single 
smectic layer of thickness d. However, it is pointed out in 
paper I and by Zager and Freed that Eq. (35) is the appro- 
priate solution to the model wherein the probe is expelled to 
the alkyl regions upon forming smectic clusters; i.e., there is 
a nonequilibrium distribution of probe relative to position in 
a smectic layer, and the probes rapidly adjust their position 
relative to the liquid-crystal molecules as the smectic clus- 
ters form and break up. Thus, even with a substantial diffu- 
sion coefficient D,, , it would not average out the effect. This 
point of view is supported by recent ESR studies within the 
smectic phase which were interpreted in terms of a nonuni- 
form probability distribution for different heights within the 
bilayer.” 

We can also consider Eq. (34) in the case where 

qs = 2n-/d is finite and let D,, r,,, /,$ f , Dl r,,, /c: approach 

TABLE IV. Linear least-squares analysis of fits to theoretical spectral density for the N-S, transition of 40,7: 

InJ(0) =Ink+aln(T- T,),whereJ(O) isgivenbyEq. (88).‘*b 

No. D, In(k)’ rms dev. 

1 0 0 1.6 0 - 0.360 - 17.135 8.59x lo-’ 
2 ( - 0.370) ( - 17.813) 1.16x10-* 
3 2 2 1.6 0 - 0.480 - 18.245 1.44x10-2 
4 ( - 0.426) ( - 18.222) 1.56~ lo--’ 
5 0 0 1.6 0.234 - 0.359 - 17.354 8.22x lo-’ 
6 ( - 0.367) ( - 18.494) 1.08x10-* 
7 2 2 1.6 0.234 - 0.048 - 20.763 6.85~10-~ 
8 ( - 0.007) ( - 20.891) 3.98x10-’ 
9 5.9 4.7 1.6 0 - 0.542 - 18.699 1.44x 1o-2 

10 ( - 0.471) ( - 18.614) 1*73x10-* 
11 5.9 4.7 0.16 0 - 0.448 - 19.729 1.40x 10-Z 
12 ( - 0.391) ( - 20.259) 1.28x10-’ 

‘Units of the quantities shown in the table are as follows: D,, D,, in 10 - ’ cm’/s; r “, in 10 - * s; q, in lO* cm - I. 

bParameters not shown in the table are as follows (however, see footnote c below): 
M, = (2A$f, ) - ’ = 5.38x 10’ cm/ergs; T, = 55 ‘C; Ey = 1.07 A, Cfl = 6.63 A; V, = 0.65, v,, = 0.78; 

y= 1.46;5= -00.94;~~ =0.72,x,, =0.60&q,,, =0.2337A-‘,q,,,c = 1.4022A-‘. 

‘The values of o and In(k) shown in parentheses were calculated using the same parameters as in the preceding 
case with the following exceptions: gy = .$fl = 2.9 A; v, = v,, = 2/3; 

q,,, = q,,,c = 0.2337 A - ‘. 

y = 4/3; g = - 1.0; x, = x,, = 3/4; 
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TABLE V. Linear least-squares analysis of fits to theoretical spectral 
density for the NS, transition of 6OCB80CB: lnJ(0) = Ink 

+crln(T- T*),whereJ(O) isgivenbyEq. (88).“*b 

No. D, 0 
4, 7 m 4s UC ln( k)’ nns dev. 

10 0 2.0 0 - 0.425 - 18.591 3.38~10~~ 

2 ( -0.348) ( - 19.633) 6.73x10-’ 
32 2 2.0 0 - 0.453 - 18.807 6.14x10W3 

4 (-0.354) (-19.671) 7.58x1O-3 
50 0 2.0 0.206 - 0.424 - 19.279 2.94x lo-’ 

6 ( -0.347) ( -20.320) 6.43x lo-’ 
72 2 2.0 0.206 -0.116 - 21.302 3.19x10-3 

8 ( -0.002) ( - 22.135) 2.37~ 1O-3 
9 5.9 4.7 2.0 0 - 0.481 - 19.048 8.05x10-’ 

10 ( -0.364) ( - 19.733) 7.07x lo-’ 
11 5.9 4.7 0.20 0 - 0.435 - 20.972 4.49x10-3 

12 (-0.350) (-21.946) 6.97~10-~ 

notes that as the phase transitions are approached, the relax- 
ation parameters exhibit anomalous behavior in that they 
appear to diverge. A closer look at these effects is presented 
in Figs. 4-6, where we show B and C for the transitions 
occuring in PD-tempone in 60CB-80CB as an example, 
along with the error bars associated with the linewidth mea- 
surements. The curves shown through the data points repre- 
sent nonlinear least-squares fits using Eq. (2)) as discussed 
in Sec. III. The results, shown in Tables II and III, together 
with the standard deviations, are discussed first for the N-I 
transition. 

A. IV-/ transition 

l Units of the quantities shown in the table are as follows: DL ,D,, in 10 - ’ 

cm*/s;rO,inlO-‘s;q,inlO”cm-‘. 

b Parameters not shown in the table are as follows (however, see footnote c 
below): M, = (2@: ) - ’ = 4.94~ lo5 cm/ergs; T, = 45 “C; Ey = 7.3 A, 

5; =24.0 A; v, =0.60, Y,, =0.78; y= 1.48; c= -0.91; x, =0.76, 

x,, =0.58;q,+, =0.206A-‘,q,,,, = 1.236A-‘. 

c The values of Q and ln( k) shown in parentheses were calculated using the 
same parameters as in the preceding case with the following exceptions: 
g~=5~=12.9A;y,=q,=2/3;y=4/3;5=-l.0;x,=xl,=3/4; 

41.c = 4ll.C = 0.206 A- ‘. 

The results of the analysis at the N-I transition (cf. Ta- 
ble II) indicate that (i) in all cases, a = - l/2; (ii) at a 
given transition, the value of T * is higher at the lower-tem- 
perature phase than that obtained from the analysis at the 
higher-temperature phase; and (iii) for a given liquid-crys- 
tal solvent, the values of k, and their ratios obtained from the 
Band Canalyses, depend on the spin probe. The exponent of 

zero (which they do as ,$ - 1’2). Then, we obtain for the zero- 
frequency spectral density” 

iUk,T r, G-1 
J(O)%~ - 

l = * 

- l/2 is rationalized in terms of the fact that it is the secular 
spectral density that contributes most to relaxation, and for 
nematic order fluctuations, it diverges as <. The observed 
divergence in the linewidth parameters is explained by in- 
voking the result that for the coherence length of the order 

fluctuations, c * - 1 T - T * I- ‘. The observation that T * ap- 
pears to be higher for the analysis from the nematic than the 
isotropic side is consistent with previous studies of critical 
effects at the N-I transition seen with PD-tempone in 
MBBA.“j For T, as the actual N-I phase-transition tem- 

perature, Rao, Hwang, and Freed”j showed that if Tt and 
(37) T * denote the transition temperatures when the analysis at 

the N-I transition is performed from the N and I phases, 
respectively, then T*z T, + ( T, - T *)/2. Thus, when 

T, - T *Z 1 “C, we expect Ttr T, + 0.5, which is on the 
order of the observed difference. 

In Eq. (37), c = qfD,,r,. It measures the relative im- 

portance of averaging out the effects of density fluctuations 
b(r) in a single smecticlike layer through diffusion of the 
probe in the direction normal to the layer vs the relaxation of 
the smectic layers. As c-+0, corresponding to probe 
diffusion being unimportant, one has J(O) 

arm/ga[1’2al(T- Tc)l-1’3. This is equivalent to the 
result of Eq. (36) in the limit z+ 1. For c> 1, 
J(0) arF/<ag -1’4, and it does not diverge, but rather 

goes to zero. This model does not include the expulsion effect 
referred to in the previous paragraph. 

For actual comparisons with experimental results we 
found it necessary to obtain numerical solutions to Eqs. (33) 
and (34). In those solutions, we could take account of the 
asymmetric critical exponents for g,, and gL as well as asym- 
metric dynamic scaling discussed in Appendix B. These nu- 
merical solutions are summarized in Appendix C, and they 
illustrate how the critical exponents for J(0) are sensitive 
functions of these parameters as well as of D,, and DL, al- 

though key qualitative features summarized by Eqs. (36) 
and (37) persist. 

V. RESULTS AND DISCUSSION 

The variation of B and C with temperature is shown in 
Figs. 3(a)-3(c) and 3(d)-3(e) for the various probes in 

40,6 and 6OCE8OCB, respectively. Here, one clearly 
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The relative contributions of the critical effects to spin 
relaxation are, as noted in Eq. (26)) measured by the param- 
eters k, and k,. Though the absolute values of k, and k, 

depend on the properties of the liquid crystal, the ratio 
B BllOlll &IO, (or equivalently k,/k, ) is independent of the 
properties of the solvent (except for the small dependence on 
the solvent of the magnetic tensors for a given probe) as well 
as the extent of probe ordering [see Eqs. (24) and (25) 1, 
and it depends only on the ratio of the anisotropy of theg and 
A tensors and the parameter Nc, i.e., 

B anom k, 8Bo [gzz - (g,, + gyy l/2] C-C 
C mom kc NC [A, - (A, + A,)/21 - 

(38) 

This ratio therefore provides a useful means of assessing the 
experimental results in cases where the relevant liquid-crys- 
tal data are unavailable. In the isotropic phase, one expects 
this ratio to remain constant with temperature for motions 
for which wir ‘c ( 1 (i.e., when secular and pseudosecular 
spectral densities make equal contributions to relaxation), 
and for which Nc = 5. This is typically the case with PD- 

tempone. On the other hand, when w;r $2 1, the pseudose- 

cular terms are smaller, and Nc = 8. 
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FIG. 4. Temperature variation of linewidth parameters Band C for PD- 
tempone in 6OCB80CB at (a) Z-N transition, and (b) N-Z transition. The 
curve through the data points represents the fit based on the critical terms 
(see text). The parameters used for the fits are tabulated in Table II. 

84 
PDTl60CB +BOCB 

76 

Nematic 

B(mG1 1 q 
60 ' 

52 

36 :“,u 28 L 
45 45 50 55 60 65 70 50 55 60 65 70 

T(‘C) 

94 PDT/GOCB+BOCB 

84 

Nematic 

C(mGj 
64- 

24 
45 50 55 60 65 70 

Tt°C) 

FIG. 5. Temperature variation of linewidth parameters B and C for PD- 
tempone in fKXB-80CB at NS, transition. Parameters used in the fits are 

shown in Table III. 

Using the magnetic tensors for the three spin probes in 
Table I, the order parameters for spin probes in 6OCE 
80CB and 40,6 (Refs. 22,27, and 47) relative to the liquid- 
crystal ordering [as measured using CSL (defined in Fig. 1) , 
S~0.4], and the parameters for MBBA in Eqs. (26) and 
(27), the values of k, and k, were estimated for the cases 
corresponding to x and y ordering, i.e., for those cases for 
which the x or y axis of the magnetic tensor frame lies along 
the ordering axis (usually assumed to be coincident with the 
principal axis of diffusion) of the spin probe. The results of 
such calculations are now summarized. 

1. PD-Tempone in 6OCB-8ocB 

As the N-I transition is approached from above (1 

ph=), Can,, /k,,, changes from near unity to about 1.5. 
This implies that away from the transition, the pseudosecu- 
lar and secular terms are comparable, but near T,, the pseu- 
dosecular spectral densities become smaller compared to the 
secular spectral densities [cf. Eqs. (20) and (2 1) 1. The ratio 
of these two terms is given by [see Eq. ( 16) 1. 

J(O) - (1 + [ 1 + (@Jug )“I “2Y’2 

Jb, > VT 
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FIG. 6. Temperature variation of linewidth parameters B and C for PD- 
tempone in 6OCB8OCB at S,-RN transition. Parameters used in the fits 

are shown in Table III. 

Using parameters for MBBA, we estimate 
J(O)/J(o,) = 2.8 at (T- T*) = 1 “C. As the transition is 
approached, this ratio increases, causing C.,,, /Ban,, to ap- 
proach 1.6, thus reasonably consistent with the observed re- 
sult. In the analysis discussed in the next paragraph we 
therefore used Nc = 8. 

Previous studies of spin relaxation using PD-tempone in 
liquid-crystal solvents have shown that PD-tempone aligns 
with its magnetic y axis along the principal ordering axis, a 
phenomenon referred to as “y ordering”,27*22 and further- 
more, that its ordering exhibits a significant nonaxially sym- 
metric component. The relaxation expressions for order-pa- 
rameter fluctuations developed earlier (see above, and Ref. 
17)) which assumed a cylindrically symmetric ordering po- 
tential, are, in fact, found to be inadequate (cf. below). More 
general expressions than Eqs. (24) and (25) for k, and k,, 

which take into account the anisotropic nature of the order- 
ing, are developed in Appendix A, and the results are used 
here. Using solvent parameters for MBBA [i.e., Y and L; cf. 
discussion below Eq. (25) 1, S ‘p’/Sz0.25, and using y or- 
dering for PD-tempone in 60CB-80CB, we calculate [us- 
ing Eqs. (A26) and (A27) in Appendix A, with R = 0.42 
and p = 0.0421 k, = 3 1 mG, and k, = 73 mG, and there- 
fore kc/k, = 2.35. The calculated values of kB and kc can- 
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not be directly compared with the experimental values ( 14.2 

and 46.4 mG, respectively), because the solvent parameters 
for MBBA have been used, since those for 60CE80CB are 
not known. Nevertheless, given that uncertainty, they ap- 
pear to agree well within factors of 2. The solvent-indepen- 
dent ratio, kc/k, is 3.3 f 0.6, and is in reasonable agree- 
ment with the theoretical value of 2.4. The importance of 
using the full asymmetric formulas is illustrated by treating 
PD-tempone as a probe whose ordering potential is cylindri- 
cally symmetric; then kc/k, is calculated to be abnormally 

high (21.7). 

The values of k, and k, at the nematic side of the transi- 
tion are similarly calculated using Eqs. (A28) and (A29) in 
Appendix A. For 60CB-80CB, we obtain k, = 16.9 and 
k, = 39.8, and hence kc/k, = 2.36. Experimentally, 
kc/k, is about 1.84, which is in fairly good agreement with 
the calculated value. However, whereas the values of k, and 
k, are predicted to decrease by a factor of 1.8 from those of 
the isotropic side, in reality they are observed to remain at 
roughly the same the same level. (More precisely, B is ob- 
served to remain constant, whereas C does decrease by a 
factor of 1.55.) 

2. MOTA in GOC&BOCB 

MOTA in 60CE80CB shows very low ordering, and 
one therefore expects that the critical contributions to relax- 
ation (which are proportional to the square of the order pa- 
rameter) will be small. Indeed, no critical divergence is ob- 
served at the N side of the N-I transition. On the I side, 
however, a five-parameter fit gave a critical exponent of 
- l/2; but when the F test (see above) was used to compare 

the results of a five-parameter vs a (nested) two-parameter 
fit representing the Arrhenius term alone, the value of 
PF( Y, ,v2;F) was 86%, which is not convincing evidence in 
favor of the five-parameter fit. A probable reason for a small 
critical contribution to relaxation is that MOTA resides 
mainly among the chain regions in this solvent yielding the 
low ordering, and is thus insensitive to the order fluctuations 
that drive the N-I transition. 

The values dfk, and k, were calculated in the isotropic 
phase using the magnetic tensors in Table I, and, as before, 
the parameters for MBBA. The order parameter just below 
the N-I transition was O.O48.22 From Eqs. (24) and (25)) 
we calculate (using NC = 8 for k,) k, = 29.1 and 
k, = 23.1, or kc/k, = 0.79 (note that x ordering was as- 
sumed for MOTA). The absolute values of k, and k, thus 
calculated agree within a factor of 1.7 of the experimental 
values ( kB = 42.0 and k, = 39.0), and kc/k, lies well 
within the experimental uncertainty associated with the ab- 
solute values of k, and k, that were measured 
(0.98 f 0.48). 

3. PD-Tempone, MOTA, and P in 446 

The order parameters for the three probes in 40,6 in- 
crease in the order PD-tempone < MOTA < P, and at the N- 
I transition are roughly 0.03,0.07, and 0. 15.27*22*47 Thus, k, 

and k, increase in this order. This is predicted theoretically 
and observed experimentally (cf. Table II). 
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Once again kc/k, calculated for PD-tempone using the 
assumption of cylindrical symmetry for the ordering poten- 
tial (0.73) is much lower than the experimental value of 
2.29. As before, using the anisotropic ordering potential 
(Appendix A), y ordering [with il = 0.23 and p = 0.085 
(Ref. 27)], and S ‘p’/S~O.l for 40,6, we find that, at the 
isotropic side, k, = 4.25, k, = 10.21, and that 

kc/k, = 2.40, which is very good agreement with experi- 
ment. (The experimental k ‘s, 7.6 and 17.4, lie within a factor 
of 2 of the calculated values based on the parameters for 
MBBA). At the nematic side of the N-Z transition, we calcu- 
late k, = 2.1 and k, = 5.04, or kc/k, = 2.40, which com- 
pares well with the observed value of 2.17, but again the 
predicted absolute values of k, and k, are about a factor of 2 
smaller than those observed. 

tems,16 and for P in 40,6, they are actually higher in the N 
phase. It is possible that at the weakly first order N-Z transi- 

tion, the changes in v/L 3’2 [cf. Eqs. (22) and (23)] with 
temperature may occur in a way such as to offset the de- 
crease in k ’ by the factor of v”X In fact, it may be reasonable to 
suppose that v becomes greater in the nematic phase. How- 

ever, we suspect that the use of a simple factor (S (p)/S) 2 [as 
well as the factor K(K,M) calculated for the nematic side] do 
not adequately represent the manner in which the probe 
molecules couple to the order fluctuations. If the probe mol- 
ecules preferentially relocate relative to the liquid-crystal 
molecules (e.g., to be preferentially located near the cores 
rather than the chain regions) on the nematic side of the 
transition, then one would expect trends more consistent 
with what is observed experimentally. 

In the case of MOTA we predict on the isotropic side, 
k, = 40.8, k, = 28.1, or kc/k, = 0.689, whereas experi- 
mentally we observe k, = 58.4 and k, = 68.3 or 
kc/k, = 1.17. On the nematic side, we predict k, = 27.1, 
k, = 18.6 or kc/k, = 0.686, and this compares with the 
experimental values of k, = 43, k, = 44 or kc/k, = 1.02. 
In the case of P-probe, we predict on the isotropic side 
k, = 56.9, k, = 41 .O, or kc/k, = 0.72 vs the experimental 
results of k, = 161, k, = 76.6, or kc/k, = 0.475. For the 
nematic side we predict k, = 37.8, k, = 27.3, or 
kc/k, = 0.723 vs the observed values of k, = 210, 
k, = 125, or kc/k, = 0.595. In the cases of MOTA and P- 
probe we have not corrected our predictions for any asym- 
metry in the ordering tensor, because the asymmetry was 
found to be small in the nematic phase. However, correc- 
tions for any small asymmetry might lead to improvement in 
the comparison between the k,/k, predicted and that actu- 
ally observed. Another question is the precise value of S, to 
use in the nematic phase. We used the value of 0.053 for 
MOTA and 0.070 for P-probe measured < 1 “C below the 
transition. However, just a few degrees below the transition, 
one observes Sp increases to 0.0 15 for MOTA and 0.260 for 
P-probe, whereas the value for CSL monitoring S, does not 
change as much with temperature. 

B. MA transition 

Unlike the N-Z transition which is weakly first order, 
the N-S” transition is believed to be second order for 40,6 
(Refs. 9-l 1) and 60CB-80CB.‘2,‘3 Consistent with this, 
continuous changes in hyperfine splittings and g shifts, 
which measure the ordering of the spin probes, are observed. 
There are no discontinuous changes in the line positions 
(unlike the N-Z transition) to provide an indication of a 
transition. On the other hand, the fact that density fluctu- 
ations which occur as smectic layers begin to form near T * 

modulate the spin relaxation of the probe molecule provides 
a signature of the N-S” transition. The linewidth parameters 
B and Care noted to diverge as the transition is approached. 

Our analysis of the linewidth results at the N-S” transi- 
tion proceeds along the same lines as that for the N-Z transi- 
tion; the results are summarized in Table III. 

1. Above the N-S* transition 

4. General comments 

The values of k, and k, at the nematic side of TN1 are 

obtained by replacing g [gzzL /a( T - T *) ] by 
~[~*zL/~~(T* - T)] in Pq. (18). Since the spectral 
densities are proportional to g [cf. Eq. ( 18) ] this substitu- 
tion implies a reduction in the k values in the nematic phase 
by a factor of ~‘3.‘~ The other factors that can cause changes 
in k during phase transformation are rR and D [cf. Eq. 
(27) 1. However, rR does not change very much upon pass- 
ing from Z to N,27 and for 10 - ’ < D < 10 - 6 cm2/s and typi- 
cal values of y (0.3 P) and L ( 10e6 dyn), vD/LzO.O3 to 
0.30 and one finds from Eq. (27) that 

k ‘=: (SP/S)2*k, Tv/8?rL 3’2a”2T; ‘, 

i.e., k ’ is independent of D to a good approximation. Al- 
though we note that for PD-tempone in 40,6, k ’ in the nema- 
tic phase is lower than in the isotropic phase, the values of k ’ 

seem to be comparable in the two phases in the other sys- 

It is noted that D = - l/3 in nearly all cases when the 
transition is approached from above. This includes the ne- 
matic side of the N-S, transition as well as the smectic side 
of the S, -RN transition. The - l/3 value for the exponent 
is rationalized in terms of the model (as discussed above) 
which treats fluctuations in spin-relaxation parameters as 
being coupled to density fluctuations which occur as the 
transition is approached from above. In Appendix C, calcu- 
lations of the secular (and pseudosecular) spectral density 
are shown using experimental data (e.g., coherence lengths) 
appropriate to 60CE80CB and 40,7, the latter being taken 
as an approximation to 40,6 (which like 40,7 also exhibits a 
second-order NS, phase transition). It is clearly noted that 
for both liquid crystals J(0) diverges as Tapproaches T, [cf. 

Tables IV and V and Figs. 7(a) and 7(b) 1, whereas J(w, ) 
does not diverge (e.g., see Fig. 8). However, for finite diffu- 
sion rates, the divergence in J( 0) is suppressed if we adopt 
model I, which allows for uniform averaging through a 
smectic layer (i.e., qs # 0). (Thus critical exponents are very 
small, approaching zero.) On the other hand, in the other 
limit (model II) where probe diffusion through the smectic 
layer is significantly hindered (i.e., qs = 0), but overall dif- 
fusion is not, then a substantial critical exponent ais predict- 
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respond to the following cases in Tables IV and V: (i) solid squares, case 3; 
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circles: similar to (ii), but with x, = x,, = 1.0. 

ed. Typical values (case 9 in Tables IV and V) are - 0.54 for 
40,7 and - 0.48 for 60CR80CB utilizing the anisotropic 
exponents discussed in Appendixes B and C (but lowered 
values of - 0.47 and - 0.364, respectively, with Brochard’s 
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[Note that (i) and (ii) are rather insensitive to values of q,, whereas case 

(iii) is very sensitive to qc. For case (iii) only we show here the result 

qc = 00, since this provides the upper limit; finite 4, values lead to even 

smaller nonsecular J( 0). ] 

isotropic scaling, i.e., case 10). The experimental values of 
close to - l/3 would have to be rationalized in terms of 
some intermediate case between models I and II (but lying 
closer to model II) in which probe diffusion through the 
smectic layer is only partially hindered. This is perhaps clos- 
er to the situation studied deep in the smectic phase.48 

2. Below the N-S,,, transition 

In most cases, no critical divergence is noted to occur 
when the NS, transition is approached from the S, phase 
(except for P in 40,6, as discussed below). The lack of a 
divergence from the S, side of the transition is rationalized 
as likely due to the fact that only data significantly below 
T,, (by at least 0.3 “C) could be utilized (cf. Sec. II D). 
Thus there would already be a finite Y0 (cf. Appendix D), 
i.e., well-formed smectic layering, inducing the expulsion of 
the spin probe into the chain regions, so that the probe is no 
longer very sensitive to the fluctuations in Y. This is support- 
ed by the fact that the diverging linewidths in the nematic 
phase are approaching the smecticd values. In the S, phase, 
we have the full expulsion effect operative: i.e., the probe 
traverses the smectic layer, sampling the nonuniform distri- 
butions along the smectic layer which fully provides this new 

relaxation process.48 
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However, a divergence in B and Cat the S, side of the 
N.4 transition for P in 40,6 is observed. Similar, but qualita- 
tive divergences have been seen in the S, phases of 40,7, 
60,4, 70,5.49 Unlike PD-tempone and MOTA, the B and C 
values associated with P-probe do not exhibit a critical diver- 
gence as the NA transition is approached from the high-tem- 
perature phase. 

3. Magnitude of the critical effects 

One mechanism that could be involved in the diver- 
gences observed for P-probe would be fluctuations in S, the 
nematic order parameter, at the N-S, transition. 

We now wish to consider the order of magnitude of the 
critical effects at the NS, transition. The actual anomalous 
portion of the linewidth depends on ( AQ)‘J(O) [cf. Eq. 
(32) and Refs. 20 and 2 11. If we consider typical results for 
PD-tempone at the N-S, transition given in Table III, we 
find that the linewidth contribution of ( AQ)2J(0) is of the 
order of 10 mG at (T - T,) = 1 “C corresponding to 

1.76 x lo5 s - ’ in angular frequency units. 

Unlike PD-tempone and MOTA, the P-probe in 40,6 
does not undergo expulsion at the NA transition, possibly 
due to its liquid-crystal-like structure.26*47 This could ex- 
plain why it does not exhibit any divergence on the nematic 
side of the transition. On the other hand, it could lead to this 
probe being sensitive to the fluctuations in smectic order as 
the NA transition is approached from below. (It would be of 
interest to study P-probe in 60CB-80CB since this spin 
probe is not well incorporated into the bilayers in this case.) 
The simple Landau-deGennes theory predicts that for an 
NA transition the magnitude of S is enhanced in the smectic 
phase, and it is related to V, as2 

AS= ;CXIY12, (39) 

where S, \Y, and C are, respectively, the nematic order pa- 
rameter, the smectic order parameter, and the coupling coef- 
ficient between the two order parameters. x is the nematic 
susceptibility. Thus, time-dependent critical fluctuations in 
1 Y I2 will cause fluctuations in S which may lead to a critical 
divergence in the B and C parameters for the probes that are 
not expelled into the hydrocarbon regions. Fluctuations in S 
are usually ignored in theories of dynamics at the N-S, tran- 
sition, since it is regarded as largely saturated, but experi- 
ments49*50 make clear that this is not so. However, it is easy 
to show that in the standard linearized theory, such coupling 
effects do not appear (cf. Appendix D) . Nevertheless, such 
couplings may be expected to be important, but their analy- 
sis would require a more sophisticated theory which would 
allow for higher-order effects (see also Ref. 5 1). 

A fluctuation AQ in the ESR frequencies of the order of 
1.76~ 10’s ’ (i.e., 1 G) seems entirely reasonable to us. For 
example, for PD-tempone, this corresponds to a change of 
order parameter S (p) by an amount SS (p) -0.05 (i.e., the 
hyperfine shift as well as theg shift are of the order of a gauss 
when Scp’ changes by this amount27,28 ). In fact, in the re- 
cent study of Gorcester, Rananavare, and Freed,48 it was 

suggested that deep in the smectic phase SS’p’-0.85 for 
PD-tempone as it translates in the parallel direction through 
a single bilayer (this corresponds to a minimum value of 

S (p) - 0.0 in the middle of the chain region and a maximum 

S (p) -0.85 with PD-tempone in the middle of the headgroup 
region). Thus, in the spirit of an order-of-magnitude esti- 

mate, J(0) -0.57~ 10m9 s at T- T, = 1 “C would be con- 
sistent with experiment and with this estimate of AQ. Exami- 
nation of Tables IV and V [see also Figs. 7(a) and 7 (b) ] 
show that for model II (qs = 0), typical values of J(0) at 
T - T, = 1 “C are of the order of 10 - ’ s, and even for model 
I ( qs # 0), are of the order of 10 - 9 s. These values are even 
greater than would appear to be needed to agree with experi- 
ment, i.e., even smaller fluctuations in AQ than estimated 
above could be consistent with the experimental results. 

4. Further comments 

One might ask what might be the influence of second 
sound on the dynamics of the spin probe as one decreases the 
temperature below TNs, (cf. Ref. 21 of Paper I). Second 

sound, which is a propagating compression mode of the 
smectic layers, requires well-formed smectic layers to be im- 
portant (i.e., it becomes significant deep in the S, phase). 
We expect that compression effects are much less significant 
for spin probes (like PD-tempone and MOTA) than their 
expulsion with the formation of smectic layers in the first 
place. In fact, as the spin probes are expelled to the alkyl 
chains, they should be less sensitive to second sound, since 
one would expect the effects of second sound to be pro- 
nounced primarily in the hard cores of the liquid-crystal 
molecules. However, it could be that larger spin probes such 
as P or CSL which are (usually) better incorporated into the 
layer structure and couple to the hard-core re- 
gions22,26,27,45.47 would have their dynamics modulated, but 
past ESR studies of rotational dynamics in smectics do not 
appear to manifest such effects.22*26*27,45*47 

When we compare results for PD-tempone in different 
liquid crystals as well as the results with different spin 
probes, we can make the following observations. The effects 
at the N-S, transition are greater for PD-tempone in 
60CB-80CB than in 40,6. This parallels the results at the 
N-l transition, and we may suppose that it is again consis- 
tent with the higher ordering of PD-tempone in the former 
solvent, and also the greater change in ordering of PD-tem- 
pone in the S, phase over its nematic value in 60CB-80CB. 
The results for MOTA also show a substantially greater ef- 
fect in 60CB-80CB than in 40,6, but as discussed in Sec. III 
the results in 60CE80CB are statistically not so reliable. 
We may suppose that in the bilayer-forming liquid crystal 
(60CB-80CB) there is greater opportunity for fluctuations 
of the probes than in the monolayer case (40,6), but this 
warrants further study. These comments, of course, refer to 

the magnitude of ( AQ)‘. [Note that theoretically we predict 
the greater effect in 40,7 for J( 0), but given the great uncer- 
tainty in estimates of r,,, and M,, for which no values are 
known in the two solvents, this is of little significance at 
present. ] 

Most surprising is the absence of any observable critical 
divergence at the S, -N transition. We are inclined to relate 
this to the strong but nonlinear dependence upon the smectic 
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order parameter \I, of probe location within the smecticlike 
layering, plus the fact that we are not able to measure accu- 
rate linewidths to within less than about 0.3 “C (i.e., 

t-9X 10 - 4, due to line-shape distortions (noted in Sec. 
II D and below). At this value of T, - T into the S, phase, 
there is already a significant equilibrium Y = Yo,40 and one 
may suppose that this suppresses fluctuations in probe loca- 
tion due to fluctuations in Y about Y,. 

However, in the specific case of a reentrant nematic we 
do note in the case of PD-tempone a critical divergence on 
the S, side of the S, -RN transition and not on the RN side. 
This is the only statistically significant example of such an 
effect, and one would like to see it confirmed. (A weaker 
effect has been observed for MOTA; cf. Table III.) If it is 
true, then given that the RN-S, transition is basically the 
same sort of transition as is the N-S, transition,12 it would, 
at first, appear surprising. However, given that our ESR 
studies of the probes are directly sensitive to the nematic 
order parameter, S, and only indirectly senstive to smectic 
order parameter Y (via such mechanisms as we have already 
discussed), then it is useful to note that as one crosses the N- 
S, transitions and as one crosses the S, -RN transition (i.e., 
as one reduces the temperature), then the nematic ordering 
consistently increases for PD-tempone.22 One would have to 
suppose a greater sensitivity of the probe to fluctuations 
when it is more weakly ordered, although we have no precise 
mechanism to describe this. 

5. Line-shape asymmetry 

In addition to the behavior of the linewidths, an inde- 
pendent signature of the N-S” transition is the observed 
line-shape distortions as the transition is approached from 
either side (cf. Sec. II D). As the NS, transition is ap- 
proached from the S, side, distortions in the smectic layers 
occur as the elastic constant B for the compression of the 
smectic layers approaches zero. The alignment of our sam- 
ples in the S, phase represents a complex interplay of wall 
alignment, their transmission by smectic layering forces 
(measured by the elastic constant B), and the magnetic 
field.26*27 As the smectic energy for compression decreases, 
the overall alignment is affected, and is manifested as a “stat- 
ic distribution of directors.” The overall line shape is thus 
distorted.27 As the N-S, transition is approached from the 
nematic side, the formation of transient smectic layers with 
an associated finite B may be expected to distort somewhat 
the magnetic-field alignment, thereby leading to line-shape 
distortions. 

A crude but useful quantitative measure of the line- 
shape distortion is obtained from the line-shape asymmetry, 
which for a given hyperfine line is defined as the ratio of the 
first derivative lobe heights. Since the line-shape asymmetry 
depends strongly on the spectrometer tuning, in our experi- 
ments the central line was symmetrized at all temperatures, 
and the asymmetry ratios of the outer lines with respect to 
the central line were considered. The results for the behavior 
of the relative asymmetry of the low-field line, 7, are shown 
in Fig. 9 for PD-tempone in 60CB-80CB, and the curves 

through the data points represent nonlinear least-squares fits 
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FIG. 9. Nonlinear least-squares analysis of the temperature dependence of 
the relative asymmetry of low-field line (with respect to central line) at N- 
S, and S,-R, transitions for PD-tempone in 60CB80CB. 

to a model containing a constant background term Q and a 

divergent term P 1 T - To Iy: 

v=Q+PIT- ToIy, 

where To is associated with the N-S,., transition temperature 
and y is a critical exponent. The usefulness of this fit lies in 
that it provides a measure of To independent from that ob- 
tained from fitting the linewidths. 

The results of our fits to the asymmetry data for PD- 
tempone in 40,6 and 60CB-80CB are summarized in Ta- 
bles VI (A) and VI(B) . Even though the data is limited, our 
results show that while the “critical exponents” vary, the 
estimates of the critical temperature obtained on both sides 
of the transition are (with the exception of the S, -RN tran- 
sition in 60CB-80CB) very close, and are in good agree- 
ment with those determined from our nonlinear least- 
squares fits to the linewidths (see below). A theory of the 
critical behavior of the line-shape asymmetry has not yet 
been developed. 

VI. CONCLUSIONS 

A. The N-l transition 

The quasicritical divergences in the ESR linewidths ob- 
served on both sides of the N-I transition are in all cases 
characterized by a critical exponent (T = - l/2. The results 
are fully consistent with the model of quasicritical fluctu- 
ations in the nematic order parameter which are sensed by 
the different spin probes that exhibit different degrees of 
probe ordering, and, as predicted, the more ordered the 
probe, the larger are the divergent contributions to the 
linewidths. These linewidth contributions are of the magni- 
tude expected, given that key properties of the liquid crystals 
such as the relevant viscosities and force constants are not 
exactly known. The solvent-independent ratios of critical 
contributions to the ESR linewidths do show rather good 
agreement with theory especially in the case of PD-tempone, 
where the analysis has been extended to include the asym- 

metric ordering of this probe. This agreement involving the 
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TABLE VI. Nonlinear least-squares analysis of fits to the line-shape asymmetry parameter 
17 = P 1 T- To 1” + Q at Ntts, transitions.” 

(A) PD-tempone in 60CE80CB 
Transition P G Y Q 

S,-N (1.85 k 0.01) x lo- ’ (45.00 f 0.01) ( - 0.72 f 0.03) (9.84 f 0.05) x 10 - ’ 

N-S, (6.03 of: 0.05) x 10 - * (44.951 f 0.003) ( - 0.55 f 0.01) (1.060 f 0.001) 

RN-S* (7.6f0.7)~10-* (32.47 & 0.01) ( - 0.56 f 0.01) (1.063*0.001) 

S,-RN (5.2+0.5)x10-’ (31.74f 0.71) ( - 6.1 f0.5) (1.14*0.01) 

(B) PD-tempone in 40,6 
Transition P r, Y Q 

N-S.. (6.9*2.1)x10-) (55.210 f 0.005) ( - 0.76 f 0.04) (1.071 f 0.005) 

S,-N (2.9 f 1.8) x 10 - 2 (55.205 f 0X06) ( - 0.99 f 0.01) (1.05 f 0.01) 

’ 77 is defined as the ratio of the line-shape asymmetries of the low-field to middle-field lines. 

sensitivity to such detail of probe ordering is, to our mind, a 
strong confirmation of the essential validity of the model. 
The principal discrepancy between experiment and theory is 
in the relative magnitudes of the quasicritical effects on ei- 
ther side of the N-I transition. Theory predicts a reduction 
by about a factor of t/3 on the nematic side, but experimental- 
ly this is not generally the case. It is suspected that this mat- 
ter may require a better understanding of how the probe 
molecules couple to the nematic order-parameter fluctu- 
ations on both sides of this weakly first-order transition. 

B. The b&S* transition 

The N-S, transition is second order for the liquid crys- 
tals studied as confirmed by the continuous change in ESR 
line positions across this transition. In general, critical diver- 
gences in the linewidths are observed on the nematic side of 
this transition for the weaker ordered probes, with a charac- 
teristic critical exponent u = - l/3. These effects are typi- 
cally weaker than those associated with the N-I transition, 
but have been carefully confirmed by the appropriate statis- 
tical tests. These observations are reasonably consistent with 
our proposed model of the dynamics of the probe molecules 
being coupled to the density fluctuations which exhibit criti- 
cal fluctuations at this phase transition provided probe diffu- 
sion through the smecticlike layer is taken to be hindered. 
Some similar results are obtained on the high-temperature 
side of the S,-RN transition. Detailed numerical calcula- 
tions were performed which show that anisotropic critical 
exponents for the smectic correlation lengths and anisotrop- 
ic diffusion both atfect the predicted value of u for these 
experiments. An analysis of the magnitude of the critical 
effects observed appears consistent with the probe order pa- 
rameter (hence hyperfine shift and g shift) being modulated 
by the density fluctuations. 

Below the N-S, phase transition, such critical diver- 
gences are typically not observed. While this matter is not 
fully understood, it is suspected that the existence of a finite 
smectic order parameter, Y,, acts to suppress any critically 
driven fluctuations in the behavior of the probes. It is be- 

lieved that further understanding of these critical effects in 
the ESR spectra will require a better understanding of ( 1) to 
what extent nonlinear couplings can induce order-param- 
eter fluctuations at the N-5’” transition, and (2) to what 
extent the critical density fluctuations affect translational 
diffusion of the probe molecules through the smectic layer. 
Also, spin-relaxation experiments less sensitive to cw line 
shapes at the phase transition (e.g., spin-echo and other 
time-domain experiments) should enable studies even closer 
to the phase transition. 
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APPENDIX A: ANISOTROPIC ORDER-PARAMETER 
FLUCTUATIONS AT THE NEMATIC-ISOTROPIC 
TRANSITION 

In this section, the spectral densities for order-param- 
eter fluctuations (OPF), which were used previously to cal- 
culate the critical contribution to the linewidth [ Eq. ( 16) 1, 
are generalized to include anisotropic potentials, i.e., when 
the potential function U(n) for orientational order of the 
probe contains two parameters x (p) and p(*), given by 

U(fl)/k,T= -~@“L9&,(f-i)~Z,,( -Y) 
N 

+j+“‘[&(f&@$,( - *) 

+ gz-,N(n,g;O( - *,]h (Al) 

In Eq. (A 1) , fl and Y refer, respectively, to the Euler angles 
of the probe molecule relative to the director, and the Euler 
angles for the director relative to the lab frame. The potential 
U(R) in Eq. (A 1) is an extension of the one-parameter po- 
tential in Ref. 17. Thus, the calculations of the correlation 
functions for OPF at the N-I transition follow methods de- 
veloped previously; ” these are considered below for the iso- 
tropic and nematic sides of the transition. In both cases, it is 
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assumed that the fluctuations are in both the magnitude as 
well as the orientation of the potential. s 

d-l 9;M(Q)[EA”‘] 

1. isotropic phase 

Let Z + Y denote the instantaneous orientation of the 
director in the lab frame, and let E, E Y, denote its equilib- 
rium value. If Peq,,,, (a) denotes the equilibrium distribution 
function for molecular orientation n when the director ori- 
entation in the lab frame is Y, then following the definition of 
Freed , r7 we have 

A(Y,n)rP,,,(n, -Pcq,lYeq(fi,&A(‘)(fi,. (A21 

Following Freed, ” for a two-parameter potential we have 

SA”’ _ 8; X’P’&%N(fi)&,( -9) 

+ljcp, c [-%cn>s;,( - Y) 
N 

+Q22_2N(n,%o( -Yl]). (A3) 

Equation (A3) holds for small 2 w and F(P). E (which is 
here equivalent to Y) specifies the instantaneous orientation 

of the director in the lab frame. One finds for small 2 W) and 

p(P) that 

ppLf;i (P)* (A4) 

In a similar fashion, we let 

fjj(p)abS(P), (A51 

where b is a scaling parameter chosen so that the ratio 
pw/;i (P) is the same as in the nematic phase. Thus, 

A(‘J’,fl,) =~(~%&(n)~;r~( -y) 
N 

+bx [-%N(~)%‘,( - y) 
N 

+--2N(fi2)%,0( -y,]]. 

Then Eqs. (2.33b) and (4.7’) in Ref. 17 require 

I di3 9$&t (i-l) [?A”‘] 

(A61 

= ( - 1,“‘(s’p’/S)Q_M,~L,,2 [b,, + bS,-,*,I, 
(-47) 

where the last equality follows from the definition 

QMe =X9& (Y) =S( - 1)“‘922_M’,0( -Y). (A8) 

Here, S is the order parameter for the liquid-crystal mole- 
cules. Similarly, 
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= ( - 1)K-M 
s 

B?*,-,(a, [QA(‘)l 

= ( - 1 lK(s @)/S) Q.&.,, [ 4c.o + b&, * 2 1. (449) 

From these expressions, the required correlation function 
for OPF becomes [see Eq. (4.7’) in Ref. 171 

c!&-K,M’,-t?(f) 

= ( - 1)“‘(S(p)/S)2(Q-M’(0)QM(t)) 

x[&y +4:*2][&,o +&,,,I, (A101 

where [cf. Fq. C4 in Ref. 171 

(Q-w(O)Q,(t,) = <QXO,Q,(W,,,~. (All) 

This leads to the following expression for the spectral density 
[compare with Eq. ( 16) ] : 

Jg,):.‘- K,M’, - K. (01 cz (Jx?& (LJ2 

i 

1 

1 

l/2 

X 
1 + [ 1 + (w/w{)2]1’2 

x (SK,, + b&c, * 2 ) 

x (S,:, + b&, * 2 #w,,, . t.412) 

Note that S $’ and S,, refer to the ordering of the probe and 
the solvent, respectively, just at the N-I transition. Incorpo- 
ration of the role of translational diffusion is by analogy to 

Eq. (18). 

2. Nematic phase 

The generalization of the expression for the correlation 
function for OPF at the nematic side of the N-I transition in 
Ref. 17 for a two-parameter ordering potential is performed 
similarly. [For convenience, we drop the superscripts on 
1 w andpcP’ below and factor them as, e.g., 2 = 2, + 2, as 
defined below.] Consider, 

A(E,R) =Peq,E (iI> - Peq,B,(fU 

where 

eYcn) + W(R) e 
Y,(n) + w,(n) 

= - 

s 

eY(n) + wcn)(j~ 

s 

erocn) + womdn ’ 

(-413) 

Y,(fl)-;i,Ls&(R), (Al4) 

W,(Q) =po p:,ocw + -e2,o(W], (A151 

Y(R)sY,(fi) +X,&-#l-Y), C-416) 

w(n) = w,(n) +p, [=q.o(fi - Y) +92-2,0cn - Y,]. 

Then, 

(A17) 

J. Chem. Phys., Vol. 96, No. 5,l March 1992 Downloaded 25 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3932 Nayeem et&: Liquid-crystalline phase transitions. II 

=A”’ = 1+ [y(a) - Yd(fl)] + [w(n) - w,(n)] 1 
-- e y,(n) + w,(n) 

Z+ 
s 

[Y(R) - Y,(fl)] + [W(n) - W,(fl)]e’“+~dCl z 
I 

+ww--w +p1 [=@&-LY) +~2-20(n-Y)] 

-~,(~~(~-y))+/5,[(~~,(n-Y,>+(~2_,(n-Y>)]}, (A181 

where Z = Se yocn’ + Kcn’dfi. The last case is obtained by expanding the first denominator to lowest order. Therefore, 

=A”’ = p 
eq.l, (fl)(5S’P’) c (-e,(n) - L%,(Q)>,) 

1 N 

+ b c [(%Ntn) - (-%,(fi,),) + (-@N(n) - (%(~,),)]]%C,( -Y). (A191 
N 

Now consider 

s 
da L& (f-2) [&A”‘] = 5S’P’ 

s 
dfl Pw,,, c (=@,(fi, - (~&)&,,) 

N 

+ b c [@:N(‘) - (9k)sN,c) + (-@‘-2N(n) - (s’,(3)6,,.3)]}9f( - y) 
N 

= 5S’P’C((~~,(Ln)~~-M(~))n - Wxa%AAf,,) 

+b [w~Mcw~;-Mu-m, - wkJMGAl~M,o) 

+(wk4c~)~2-2-Mc~)), - (~~,),(~2-2~),6M,,)]}~2-M.0( -Y) 

= ( - 1)K(s’P’/S)5QM{~(K,0,M) + b [K(K, - 2&f) + K(K,&M) 11, (A201 

where, in the last equality in Eq. (A20), following the definition of Lin and Freed,27 we have let 

K(K,K’,M) =(~;~(~)~;,,(n)), - (=%f), b%%.f>,* 

Similarly, 

s df-k c@f$,e (a) [EA”‘] = ( - 1)“‘(S’P’/S)5QM,{~(K’,0,M’) + b [K(K), - 2,M’) + K(K’,2,M’)]}. 

In order to obtain the results in Eqs. (A20) and (A2 1 ), note that 

K(K,K’,M) = (- l,“-“[(~2-,-,(~,~~,~(~))~ - (~2-,-,>,(~;~,)~]. 

However, from Eq. (B5) in Ref. 27, we have 

K(K,K’,ftf) =K( -K,--‘,-MM), 

(A211 

so that 

K(K,K’,M) = (- 1)“-“[(~~~(~,~~-,,-,(~,) - (~;,),(~“,,L~)~]. 

So the correlation function for OPF for a two-parameter potential [compare with ECq. (4.11) in Ref. 171 becomes 

c$,‘- K, - K’,M’ (t) = ( - 1)K(~(p)/~)225(Q,,o,,~,~,)~,,M~K(~,0,~) + b [K(K, - 244) +K(&2,M)11 

X{K(K’,O,hf’) + b [K(K’, - 2,kf’) + K(K’,2,kf’)]). (A221 

The expression for the OPF spectral density thus becomes [with ws = L,/( vNE 2, ] : 
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J$,)- K.-..-K,(~)~(-~~(~~” ( 1 + [‘+ (&21’,2]“2bM 

X 25{WGO,M) + b [K(K, - 2,M) + K(K,2,M) 1) 

X{K(K’,O,hf’) + b [K(K’, -2,&f’) +K(K’,2,hf’)]). (A231 

In Eq. (A23), S $” and SN, refer to the ordering of the probe sides of the N-I transition, by Eqs. (Al 1) and (A23), re- 
and the solvent, respectively, just below the N-I transition. spectively (with M = M’). The quantities DK andF,, which 
The function K(K,K’,M) is tabulated in Table VII. depend on the anisotropies of the hyperfine and g tensors, are 

Equations (A12) and (A23) are appropriate in the case defined elsewhere.28 The expressions for k, and k, using 
of a noncylindrically symmetric ordering potential, such as these equations are found to be 
is typically noted for PD-tempone in liquid-crystal solvents. 
These equations, rather than those for the one-parameter k, = 

k, TV 

potential shown in the text, were used for analyzing the PD- 
-fy.B,, -!-e----e- 

Bn L 3/2&2 

tempone linewidth data near the N-I transition. 

3. Critical contributions to linewidth at the /V-/transition 

The line broadening due to OPF at the N-I transition, 
neglecting contributions from nonsecular terms, is given by 

x 
i 
-+A,& +$ (&a + &as, lb + 24g2 b 2 1 

(A261 

B -~~~D&J:k,t,(O) 
and 

tnom = (~24) 
k, =.&.e I k,TYN, 

and 24 81r L 3/2a1’2 

c .m,m =$& [8J%,o(O) - 3Ji,$,, (a,)], (A25) 
slyp 2 

+$A,a,b+za:b’ s,, I( > (A27) 

where the spectral densities Jg&t,M (w) appearing in Eqs. for the isotropic phase, which reduce to Eqs. (24) and (25 ) 
(A24) and (A25) are given, at the isotropic and nematic for b = 0. In the nematic phase, k, and k, are given by 

J 

k fl= -+%&L;2~w(~)2 

x 
i 
+- A,go F(O,O,O) + -!- 

& 
(Ad, + A2go ) [F(2,0,0) + F( - 2,0,0) I 

+ + A,g, [F(2,2,0) + F(2, - 24) + F( - 2,2,0) + F( - 2, - 290) 1 

and 

k-%’ k, TV, 
C 

--- 
24 8n L 3/2a1/2fl N 

f&A, [ 8F(O,O,O) - 3F(O,O, 1 Vb, 1 

I (A281 

+& 
-!- A,A, [ 8F(O, - 2,0) - 3F(O, - 2,l )f(w, ) + 8F(0,2,0) - 3F(O,2,l)f(o, ) 

+ W2,W) - 3F(2,O,l)f(q,) + 8F( -2,W) - 3F( - 2,O,l)f(w,)] 

+ +A,A, [8F(2, - 2,0) - 3F(2, - 2,l)f(w,) + 8F(2,2,0) - 3F(2,2,l)flo,) 

+8F( -2,-2,O) -3F( -2,-2,l)f(w,) +8F( -2,-2,0) -3F( - 2, - 2,l)f(o.)]} * (A291 

In the above equations, the following definitions have been used: A,, = (A, + A, - 2A,), A, = (A, - A, >, 

80 = (2&z -Lx -try,.), andg, = (8, - gvv ) . F( K,K ‘,M) is defined as 

F(K,K’,M) =~~{K(K,O,M) + b [K(K, - 2,M) + K(K,~,M)]}{K(K’,O,M’) + b [K(K), - 2,M’) + K(K’,~,M’)]}. (A30) 
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TABLE VII. Mean-square values of the rotation-matrix elements 
9”,(R) including cross terms for anisotropic ordering. 

where y3 is the viscosity associated with the lateral slip of the 
smectic layers, and F is the Landau free energy. Equation 
(Bl > is not rigorous because it neglects propagating effects 
which lead to “second sound” in the smectic phase. We ig- 
nore such effects, since they should not be important for our 
experiments as discussed in Ref. 2 1 of paper I and Sec. V B 2. 
The general form of the free-energy density which takes into 
account nonclassical values for the critical exponents /3, y is 
given by Kortan et al. l2 [note j? is the critical exponent for 
Y-(T- TC)B]: 

K(K,K’,M)= 

K K ‘ M Function of ordering tensor 

0 0 0 & +f(-%)n + Hwn)* - c%3):, 

0 0 1 4 + @J’t)n - !&%0), 

0 0 2 j--5L@J&)n +~h(~&)* 

2 2 cl i-3miJ)” +~~-%J)* - Ic%)n12 

2 2 1 f-)c%l)n -hG%3o)n 

2 2 2 f+:W&)n +mG%o,* 

2 0 0 

2 0 1 

2 -2 

2 -2 1 

2 -2 2 -Geo)n 
d70 

“K(K,K’,M) is defined in Appendix A. Note that K(K,M) EK(K,K,M). 

F( K,K ‘,M) can be calculated using Table VII. The entries 
not listed in Table VII can be obtained using the symmetries 
of the K( K,K ‘,M) :27 

K(K,K’,M) = [K( -K, - K’,M)]* = K(K,K’, -M) 

=K( -K,-K”,-M)=K(K’,K,M). (A31) 

Equations (A26)-(A29) are modified for finite transla- 
tional diffusion exactly as discussed in Sec. IV A [cf. Eqs. 
(16) and (27)]. 

APPENDIX B: DYNAMIC SCALING AT THE Ivs, 
TRANSITION 

Paper I deals with the general formulation of spin relax- 
ation due to order-parameter fluctuations at the NA transi- 
tion based on the Landau model. The main drawback of the 
classical treatment is that the experimentally measured criti- 
cal exponents for the coherence lengths at the NA transition 
are larger than 0.5, the mean-field value. Since the order 
parameters at the NA and the superfluid-normal-fluid tran- 
sition are similar, one may expect a similar power law (2/3) 
for the correlation length for the former. However, not only 
do the measured exponents vl and yIl for c1 and ill often 
exceed the 2/3 value, but they are also found to be anisotrop- 
ic, i.e., yl #Y,~. The implication of these findings is that the 
dynamic scaling exponent x, used in paper I and by Bro- 
chard,39 cannot be uniquely defined. Therefore, we provide 
a simple generalization to account for the anisotropy in vl 
and Y,~ and the associated exponents x, and xl1 . 

(i) Efict of anisotropic critical exponents vI, vll . The 

Landau-Khalatnikov relation for the relaxation of Y, the 
smectic order parameter, can be written as52 

dY SF 
Y3,= -jI$ 031) 

F =F, +$-a(T- TC)YIY12+$b(T- TC)y-28jY14 

lvll*12+~ ’ I(V, +iqon,)y12+F,,, 
T 

032) 

where M, =A/&-;, M*=A/,$:, A= (1/2)a(T- TC)y, 

B = ( l/2) b ( T - T, ) y- 28, and F,, relates to the nematic di- 
rector (cf. Appendix D). Following standard procedures 
one may then obtain the expression for r4; Chen and Lu- 
bensky finds3 

2Y3 

rqEdT-Tc)Y(l+d~~ +dg$) * 
(B3) 

rm, the q-independent decay rate for the smectic order pa- 
rameter in Eq. (30), is then identified as 

ml = 2y,/a(T- T,)Y. U34) 

An important difference in the Landau treatment vs the 
renormalization-group (RG) approach arises from the fact 
that whereas y3 does not exhibit a critical divergence in the 
former, the RG calculation of Hossain et a1.54 shows that 

Y3 all-- 
d/2 - 3(V,, - v,)/2v, 

U35) 

where E = 4 -d. Thus, for the superfluid case one has 
v = vl = q = 2/3, d = 3, y = 2v = 4/3. Hence, 

2Y, 
{, l/2 1 

rm = a 
dT- TC)r a( T- ~=)4’3 a(T-TC)l 

* (B6) 

Thus the power-law behavior of r,,, goes as - t - ’ [where t is 
the reduced temperature, t = ( T - T, )/T, ] for the super- 
fluid case. Brochard’s analysis summarized in Eqs. (3 1) is 
consistent with this result. However, in general, it will de- 
pend on t as 

7, = r:t (3/2v,, - Y, - Y) a t c 
, (B7) 

wherec= (3/2)vll -vl -y. 
(ii) Asymmetric variation of rq with &, gl,. Consider the 

more general expression, based on Eqs. (B3) and (B4), 
which assigns different exponents x, , xl, [not equal to unity, 
in general, by analogy to Eqs. (29) ] to q1 ,$I and ql, gl, , re- 
spectively, in order to satisfy dynamic scaling: 

7, 
rq = 

2 2 XII - 
1 + (4:!5: 1”’ + (4& 1 

(B8) 

Equation (B8) is the generalization of Eq. (31); thus it is 
also to be regarded as a simple interpolation form. Substitu- 
tion of Eq. (B7) in Eq. (B8) leads to 
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1 1 -=- + (QI!s F1 + (4,,&, P 

rq ?;n 7, rl?l 

-1 
=‘+!!p - 2x,v, - (312)~~ + vL + y 

7;, 1 

I RI’, -2-y,,, - (3/2W,, + vL + y 

611 

, 

where 

bi =(5p,‘“, i=l,II, 
7, 

WI 

andgl =cyt -“‘,~,, =cit -“‘I. 
At the second-order NA phase transition only r, di- 

verges, i.e., the q-0 mode undergoes critical slowing down. 
The rq modes for lql> 0 do not diverge, but become solely 
dependent on some power of q as T+ TNA , hence the quanti- 

ties such as 6 F/r, (where i = 11 or I) must be independent 
of reduced temperature t. These conditions may then be used 
to determine the dynamic scaling exponents x,, and X, as 

x, = 
( 

- +,, + Vl + Y 

> 2v, ’ 

and 

XII = ( 
- 3q + Vl + Y 

%I >* 

(BlO) 

(Bll) 

These equations can be further simplified using the scaling 
relation noted by Pershan and co-workers? 

y=q +vl. 0312) 

Although there exists no theoretical explanation of Eq. 
( B 12)) most of the x-ray data on the NA transition are con- 
sistent with Eq. (B12). 

In the case of a superfluid where V* = Y,, = 2/3, and 
y= 1.32,39 we find from Bqs. (BlO) and (Bll) that 

Xl = x,, L 3/4 in accordance with Brochard’s dynamic scal- 
ing rest@ [i.e., the result of Bqs. (3 1) 1. However, it may 
be noted that more generally, xL #xl, ; thus for 40,7 at the N- 
S, transition, where V* = 0.65 and Y,, = 0.78, we obtain 
x, = 0.72 and x,, = 0.60. Given that Y,, # yL, then a knowl- 

edge of Y,, and V~ would allow a more accurate determina- 
tion of the spectral densities in the critical region than that 
based on the assumption that x,, and x1 are 3/4 or 1. Such 
calculations are discussed in Appendix C. 

APPENDIX c: EFFECTS OF ANISOTROPY OF THE 
MEDIUM ON SPIN RELAXATION NEAR CRITICAL 
REGIONS 

The spectral density due to smectic order fluctuations is 
given by” 

J(w) = 
s 

d3q J,(w) 

=--&Re~mdte~i~f$d3qC~(t), (Cl) 

where J, (w) is the spectral density due to the qth mode of 
fluctuation, which is described by the correlation function 
C, ( t). The latter is given by 

C,(t) =L 

[ 

1 
-e 

- c7+-Jq*+ DPZP 

4 a-?--4, l- 
Using the relations [see Bqs. (29) and (30) 1, 

((3) 

-1 k,T 1 
a q-q, =- 

2Ay 1 + q:c: + (411 - qAj 
(C3) 

and 

7, 
r(?-% = 

1+ G723”‘+ [(q,, -qJ”!5;1”” 
(C4) 

and utilizing cylindrical coordinates to represent the axial 
symmetry with respect to the director in the smectic phase, 

i.e., replacing &d ‘q by 2rJ%q,,~cdq,, -f-pqldq,, we obtain 

J(w) = &Rej-~;,,,c4,, Jcup’.cdq,q, 

( 
1 1 

X- 
aq - qr r q-mlq, + Dq2 + iw ) 

, (C5) 

where Dq2 SD, qf + D,, qi . On substituting Eq. (C4) into 

Eq. (C5), we have 

J(w) = Re 

= ;;;A r;,,,<h,, r &,a 

’ 

1 1+ G&w’+ [(q, -qs)‘!cil x”+DLr,d +Dllr,& 
1 +dgT + (411 -4E)2ci o’r”, > +{1+ cq:gy+ [(q,, -qs)2!5~]xI’+D1cnd +Dll~mqi~2 ’ 

((3) 

where 

1 7, 

&n-“=l +q$$: + (q,, -q,)2<i 1+ (q:l$y’+ [(q,, -qs)2gp’+ (ia+D& -tD,,qi)Gl . 
(C7) 
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In these equations, the temperature dependence of A, 

rmp CL, and & are as given in Appendix B, and the other 
symbols have been defined previously. Experimental data 
for the critical exponents vl, Y,, , and yand coherence lengths 

5 y and c i (see Appendix B) are available for 40,7 (Ref. 
10) and 60CB-80CB.‘2*56 Rough estimates from experi- 
ment exist for r, and its temperature dependence,20*a’b’ 

whereas M, = (2Al{ ) - ’ is estimated from an expression 
suggested by Chu and McMillan?’ Mu = 2d/SnkTd 2, 

where n is the number of molecules per unit volume. The 

diffusion rates D, = 5.9 X 10 - ’ cm2/s, D,, = 4.6 X 10 - ’ 
cm2/s are based on those estimated from data for PD-tem- 
pone in S 2 using an ESR dynamic imaging (ESR-DID) 
method.46 

We provide in Tables IV and V (for 40,7 and 6OCR 
SOCB, respectively) the secular spectral densities 
J( 0) = k( T - T, )” by giving the values of k and 0 for the 
two types of models (cf. Sec. IV B and Refs. 20 and 2 1 ), i.e., 
finite qs (cases 5 and 6) and qs = 0 in Eq. (C6) (all other 
cases) for zero and finite diffusion for purposes of compari- 
son. We also compare the results obtained utilizing aniso- 
tropic exponents (cf. Appendix B) with those obtained us- 
ing Brochard’s isotropic scaling and x = 3/4; the latter are 
the even cases in the table and the entries are in parentheses. 
In general, the effect of using x = 3/4 instead of x = 1 as in 
the analytic results summarized in Sec. IV B is to increase 
the exponent 0 slightly (ca. 10%) and to slightly enhance 
the coefficient k. The use of anisotropic exponents leads, in 
general, to increased values of 0 (this is consistently true for 
60CB-80CB parameters). The most important difference 
between the two sets of parameters utilized lies in the much 
larger coherence lengths for the 60CB-80CB mixture than 
for 40,7. This means that diffusional averaging over a smec- 
ticlike cluster would be less effective for the case of 
60CB/SOCB. Overall, while trends are similar for the two 
liquid crystals and consistent with the two analytic expres- 
sions of Sec. IV B, there are systematic differences in expo- 
nents for the two sets. 

We show in Figs. 7 (a) and 7 (b) typical graphs of J( 0) 

vs T - T, comparing the results for anisotropic exponents, 
with isotropic exponents and x = 3/4, and with isotropic 
exponents and x = 1, for the two models corresponding to 
q, = 0 (upper figure) and qs finite (lower figure). In Fig. 8, 
results are given for w = 0 (secular), w - 10’ s - ’ (pseudose- 
cular), and w- 10” s - ’ (nonsecular) spectral densities. 
These results clearly indicate that ( 1) in the range 
T - T, < 1 “C, the pseudosecular and nonsecular spectral 
densities are insignificant compared to the secular; and (2) 
near T,, only J( 0) diverges. This emphasizes the importance 
of J(0) in assessing the critical contribution to relaxation 
near the phase transition. 

APPENDIX D: FLUCTUATIONS IN THE NEMATIC 
ORDER PARAMETER AT THE /J&S,, TRANSITION 

Deep in the nematic phase it is usually assumed that the 
nematic order parameter S is saturated, so there are only 
fluctuations in the orientation of the director. Experiments 
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make it clear, however, that the magnitude of S is still not 
saturated even at the second-order N-S” transitions. In fact, 
ESR studies have shed light on the importance ofSin driving 
the N-S, transition.49*50 Here, we modify the usual analysis 
of the N-S, transition38*39*40*53 to include fluctuations in S. 
We necessarily only consider linearized fluctuations.39.40 
Thus, we shall consider nematic ordering deep in the nema- 
tic phase to be described by sii, the product of the magnitude 
and its orientation. Then, fluctuations would be described by 
ii&S’ + S&. For the relevant contributions to the free energy, 
we take Eq. (B2) with 

FN = ;K, (V~fi)~ +x2 (ii.V~ii)~ + x3 (iixVxiQ2, (Dl) 

which is the usual director free energy with bend, splay, and 
twist force constants K, , K2, and K3, and the tilda’s mean 
that these force constants show a critical divergence at the 
N-S” transition. Equation (D 1) will take account of SK 

We now rewrite the terms in F [cf. Eq. (B2) ] that expli- 
citly or implicitly include Sin the absence of fluctuations in 
S: 

FsA =Fo +A(T)I~12+Bo(T)1~14+~01Y16+SS2/2~, 

CD21 

where we have necessarily included the last term20*49*‘0 in- 
volving the nematic susceptibility x, with &S=S - So and 
So is the equilibrium value ofSin the nematic phase neglect- 

ing any coupling between Sand 1 Y I 2. (We have also added a 

term in I Y I6 required for stability in the first-order region, 
and we have let PO = B/2.) To introduce this coupling we 
now recognize that S is a monotonic function of T, i.e., 
S= S( T), and then let T= T(S), so we rewrite A = A(S) 

and PO = PO (S). Now expand A(S) in a Taylor’s series 
around So :49,50 

A(S)=A(So)+A’(So)SS+A”(So)(SS)2+~~-. 

(D3) 

Therefore, 

FsA =Fo +A(So)I~12+~o(So)I~14+~ol~16 

+ css,2/2xGo 1 - as0 Its IY12 

++D(&S)21Y12+ me-, (D4) 

where C(S, ) = - A ‘(So ) and is the nematic-smectic cou- 
pling term usually introduced in an ad hoc fashion. Also, 
D(S, ) = A ” (So ) . Invoking the constraint (G’F/d&!?) = 0 

yields 

as= x(so)aso)I~12 

1 +x(So )D(So 1 Iy12 ’ 
(D5) 

In the limit xD IY I24 1, substitution of Eq. (D5) into Eq. 
(D4) leads to the form 

GA =F, +A(So)Iy12+B(So)1y14+ yl’I’16+ **a, (D6) 

wherep=W - (1/2)C2Xand y= y. + (1/2)Dx2C2. 

Equation (D6), while formally the standard result, has 
been derived from Eq. (D2) to make explicit the important 
role of the nematic ordering, S, in driving the N-S, transi- 
tion as discussed previously.49 
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We now consider fluctuations about the mean. We fol- 
low the standard Landau-de Gennes approach by only keep- 
ing quadratic terms. The only new terms we consider here 
are those due to fluctuations in SS, whereas the fluctuations 
represented by 6ii are given elsewhere,39T40 so we ignore 
them here for simplicity in presentation. Then from Eq. 

0341, 

+ w2~+p~YlJ2)(ss2- W) 

++ d3rL(VW2+---, 
I 

037) 

where the equilibrium values are I Y, I2 = - A /2@ and 

EF=~C21Yo/‘, and we have added a force constant L 

for distortions in SS( P) . After Fourier analysis and consider- 
ing only SS,, we have, for its mean-square fluctuation: 

(pq’) = k,T 
x-'+DIY,12+Lti ’ 

which is nondivergent (even for (I -+ 0) at the N-S, transi- 

tion due tax - ‘, but it would be suppressed somewhat below 

the transition by the finite IY, I 2. Also, the viscosity associat- 
ed with these fluctuations should be regular. However, a 
higher-order theory for the N-S” transition involving mode 

coupling between fluctuations in IY I2 and 6S might be ex- 
pected to lead to a divergent contribution in 6S. 

’ Introduction to Liquid Crystals, edited by E. B. Priestley, P. J. Wojtowicz, 
and P. Sheng (Plenum, New York, 1974); H. Kelker and R. Ham, Hand- 
book ofLiquid Crystars (Verlag Chemie, Weinheim, 1980). 

zS. Chandrasekhar. Liuuid Crwtals (Cambridge University, New York, 
1977); P. G. deGen&, The I;hvsics OfLiquid &ystals (Oxford Universi- 
ty, New York, 1974); M. J. Stephen and J. S. Straley, Rev. Mod. Phys. 46, 
617 (1974). 

‘M. A. Anisimov, Mol. Cryst. Liq. Cryst. 162A, 1 (1988). 
4T. W. Stinson and J. D. Litster, Phys. Rev. Lett. 25, 500 (1970); 30, 688 

(1973). 
‘H. J. Cola and M. S. Sefton, Mol. Cryst. Liq. Cryst. 4, 123 (1987). 
6R. Y. Dong, G. M. Richards, J. S. Lewis, E. Tomchuk, and E. Bock, Mol. 

Cryst. Liq. Cryst. 144, 33 (1987). 
‘C. R. J. Counsell, J. W. Emsley, G. R. Luckhurst, D. L. Turner, and J. 
Charvolin, Mol. Phys. 52,499 ( 1984). 

*T. M. Barbara, R. R. Void, R. L. Vold, and M. E. Neubert, J. Chem. Phys. 
82, 1612 (1985). 

‘R. J. Birgeneau, C. W. Garland, G. B. Kasting, and B. M. Ocko, Phys. 
Rev. A 24,2624 ( 198 1) . 

“C. W. Garland, M. Meichle, B. M. Gcko, A. R. Kortan, C. R. Safinya, L. 
J. Yu, J. D. Litster, and R. J. Birgeneau, Phys. Rev. A 27,3234 (1983). 

” B. M. Gcko, A. R. Kortan, R. J. Birgeneau, and J. W. Goodby, J. Phys. 
(Paris) 4S5, 113 (1984). 

“A. R. Kortan, H. V. Kanel, R. J. Birgeneau, and J. D. Litster, Phys. Rev. 
L&t. 47,1206 (1981); A. R. Kortan, H. V. Kanel, R. J. Birgeneau, and J. 
D. Litster, J. Phys. (Paris) 45, 529 (1984). 

‘>K. J. Lushington, G. B. Kasting, and C. W. Garland, Phys. Rev. B 22, 
2569 (1980). 

“I). Brisbin, R. J. deHoff, T. E. Lockhart, and D. L. Johnson, Phys. Rev. 
L&t. 43, 1171 (1979). 

“J. Thoen, S. Marynssen, and W. van Dael, Phys. Rev. Lett. 52, 204 
(1984). 

16K. V. S. Rao, J. S. Hwang, and J. H. Freed, Phys. Rev. Lett. 37, 515 
(1976). 

“J. H. Freed, J. Chem. Phys. 66,4183 (1977). 

Nayeem eta/.: Liquid-crystalline phase transitions. II 3937 

“B. Cabane and W. G. Clark, Phys. Rev. Lett. 25,91 ( 1970). 
I9 P. G. deGennes, Solid State Commun. 10,753 ( 1972). 
“‘S. A. tiger and J. H. Freed, Chem. Phys. L&t. 109,270 ( 1984). 
“J. H. Freed, preceding article, J. Chem. Phys. 96,390l ( 1992); hereafter 

referred to as paper I. 
*‘A. Nayeem and J. H. Freed, J. Phys. Chem. 93,6539 (1989). 
z3 P. E. Cladis, Mol. Cryst. Liq. Cryst. 67, 177 ( 1981). 
“J. S. Hwang, K. V. S. Rao, and J. H. Freed, J. Phys. Chem. 80, 1490 

(1976). 
z5S. A. Zager, Ph.D. dissertation, Cornell University, 1982 (unpublished). 
z6E. Meirovitch and J. H. Freed, J. Phys. Chem. 84,2459 ( 1980). 
z7W. J. Lin and J. H. Freed, J. Phys. Chem. 83,379 (1979). 
‘xc. F. Polnaszek and J. H. Freed, J. Phys. Chem. 79,2283 (1975). 
29 M. P. Eastman, R. G. Kooser, M. R. Das, and J. H. Freed, J. Chem. Phys. 

51,269O (1969). 
M J. H. Freed, in Spin Labeling: Theory and Applications, edited by L. J. 

Berliner (Academic, New York, 1976), Chap. 3. 
)’ D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and its Appli- 

cations [McGraw-Hill. New York. 1988). 
r2 P. R. Bevington, Erro; Analysis and Da& Reduction in the Physical Sci- 

ences (McGraw-Hill, New York, 1961) . 
33 The rotational correlation times are the inverse of the eigenvalues r ,$ of 

the diffusion operator for axially symmetric diffusion in an isotropic 
phase, and aregiven by TL~=R,L(L+ 1) + (R,, - R,)K’. The pre- 

cise definition of rR thus depends on the values of L and Kassociated with 

the spectra1 density of interest; thus, for L = 2, K = 0, 71 ~7 co’. 

34P. Pincus, Solid State Commun. 7,415 (1969). 

35~(M,K)~.IPoq(n)(19’Mlrl’- (9?,,(~)%%.0&,,,)d~, whereP,(n) 

is the probability distribution function for the molecule (spin probe) in 
the potential field of the liquid-crystal solvent. 

36Nc = 8 - 3J,,(o,)/&,(O). 

37T. W. Stinson, J. D. Litster, and N. A. Clark, J. Phys. (Paris), Colloq. 33, 
Cl-169 (1972). 

“T. C. Lubensky, J. Chim. Phys. 80,31 (1983). 
39F. Brochard, J. Phys. (Paris) 34,411 (1973). 
a (a) F. Jahnig and F. Brochard, J. Phys. (Paris) 35,301 (1974); (b) F. 

Brochard, ibid. 37, C3-85 (1976). 
” A D. Lawrie and S. Sarbach, in Phase Transition and Critical Phenome- 

ndn, edited by C. Domb and M. S. Green (Academic, New York, 1984), 
Vol. 8. 

‘r B. M. Ocko, R. J. Birgeneau, J. D. Litster, and M. E. Neubert, Phys. Rev. 
Lett. 52,208 ( 1984). 

43 Note that this does not mean that the interlayer spacing goes to zero, but it 
is the mathematical limit in which we can obtain a simple analytical form 
for the spectra1 density. 

uJ. P. Homak, J. P. Moscicki, D. J. Schneider, and J. H. Freed, J. Chem. 
Phys. 84, 3387 (1986); J. P. Moscicki, Y. K. Shin, and J. H. Freed, in 
EPR Imaging and In Viva EPR, edited by G. R. Eaton, S. R. Eaton, and 
K. Ohno (CRC, Boca Raton, 1991), Chap. 19. 

“A. Nayeem, S. B. Rananavare, V. S. S. Sastry, and J. H. Freed, J. Chem. 
Phys. 91,6887 (1989). 

*Y. K. Shin, J. Moscicki, and J. H. Freed, Biophys. J. 57,445 ( 1990); and 
(unpublished). 

“E. Meirovitch, D. Igner, E. Igner, G. Moro, and J. H. Freed, J. Chem. 
Phys. 77,3915 (1982). 

‘*J. P. Gorcester, S. B. Rananavare, and J. H. Freed, J. Chem. Phys. 90, 
5764 (1989). 

49 S. B. Rananavare, V. G. K. M. Pisipati, and J. H. Freed, Liq. Cryst. 3,957 
(1988). 

‘OS B Rananavare, V. G. K. M. Pisipati, and J. H. Freed, Chem. Phys. 
Lett: 140,255 (1987). 

” Brochard (Ref. 39) has shown that the spectral density associated with 
director fluctuations diverges with the critical exponent of - l/3 (ne- 
glecting diffusion) as the NA transition is approached from the S, phase 

when wNYgd/2M, ye. However, as already pointed out above and in 

Refs. 17 and 21, a director-fluctuation mechanism is inconsistent with 
observed divergences in both the B and C (as well as A) terms. Another 
feature of the S, phase which should have relevance is the fact that the 

smectic compression elastic constant B tends to zero with exponent 0.4 
[cf. M. Benzekri, J. P. Marcerou, H. T. Nguyen, and J. C. Rouillon, Phys. 
Rev. B 41, 1932 (1990)], but we do not have a mechanism to offer 
whereby this couples to the molecular dynamics or other properties of P- 
probe. 

J. Chem. Phys., Vol. 96, No. 5,i March 1992 
Downloaded 25 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3938 Nayeem eta/: Liquid-crystalline phase transitions. II 

s* L. Landau and I. Khalatnikov, Dokl. Acad. Nauk. SSSR 96,469 ( 1954); 
L. Landau and L. Lifshitz, Physical Kinetics (Pergamon, Oxford, 1983). 

u J. L. Chen and T. C. Lubensky, Phys. Rev. A 14, 1202 ( 1976). 
54 K. A. Hossain, J. Swift, J. H. Chen, and T. C. Lubensky, Phys. Rev. B 19, 

432 (1979). 
SsK K Chan, M. Deutsch, B. M. Ocko, P. S. Pershan, and L. B. Sorensen, 

Phys: Rev. Lett. 54,920 (1985). 
56 Note that the error bars quoted here were not reported in Ref. 12, but are 

based on those reported in the similar liquid crystals 8CB, 8OCB, and 
CBOOA [J. D. Litster, J. Ah-Nielsen, R. J. Birgeneau, S. S. Dana, D. 
Davidov, F. Garcia-Golding, M. Kaplan, C. R. Safinya, and R. Schaetz- 
ing, J. Phys. (Paris) Colloq. 40,339 (1979); D. Davidov, C. R. Safinya, 
M. Kaplan, S. S. Dana, R. Schaetzing, R. J. Birgeneau, and J. D. Litster, 
Phys. Rev. B 19, 1657 (1979)]. 

“K. C. Chu and W. L. McMillan, Phys. Rev. A 11, 1059 ( 1975). 

J. Chem. Phys., Vol. 96, No. 5, 1 March 1992 

Downloaded 25 Jan 2010 to 128.253.229.158. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


