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CRITICAL GAUSSIAN MULTIPLICATIVE CHAOS:
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In this paper, we study Gaussian multiplicative chaos in the critical case.
We show that the so-called derivative martingale, introduced in the context of
branching Brownian motions and branching random walks, converges almost
surely (in all dimensions) to a random measure with full support. We also
show that the limiting measure has no atom. In connection with the deriva-
tive martingale, we write explicit conjectures about the glassy phase of log-
correlated Gaussian potentials and the relation with the asymptotic expansion
of the maximum of log-correlated Gaussian random variables.

1. Introduction.

1.1. Overview. In the 1980s, Kahane [45] developed a continuous parameter
theory of multifractal random measures, called Gaussian multiplicative chaos; this
theory emerged from the need to define rigorously the limit lognormal model intro-
duced by Mandelbrot [59] in the context of turbulence. His efforts were followed
by several authors [3, 7, 11, 35, 67–69] coming up with various generalizations
at different scales. This family of random fields has found many applications
in various fields of science, especially in turbulence and in mathematical fi-
nance. Recently, the authors in [30] constructed a probabilistic and geometrical
framework for Liouville quantum gravity and the so-called Knizhnik–Polyakov–
Zamolodchikov (KPZ) equation [51], based on the two-dimensional Gaussian free
field (GFF); see [23, 25, 26, 30, 38, 51, 61] and references therein. In this context,
the KPZ formula has been proved rigorously [30], as well as in the general context
of Gaussian multiplicative chaos [69]; see also [13] in the context of Mandelbrot’s
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multiplicative cascades. This was done in the standard case of Liouville quantum
gravity, namely strictly below the critical value of the GFF coupling constant γ in
the Liouville conformal factor, that is, for γ < 2 (in a chosen normalization). Be-
yond this threshold, the standard construction yields vanishing random measures
[29, 45]. The issue of mathematically constructing singular Liouville measures
beyond the phase transition (i.e., for γ > 2) and deriving the corresponding (non-
standard dual) KPZ formula has been investigated in [9, 28, 29], giving the first
mathematical understanding of the so-called duality in Liouville quantum gravity;
see [4, 5, 21, 27, 32, 44, 48–50, 54] for an account of physical motivations. How-
ever, the rigorous construction of random measures at criticality, that is, for γ = 2,
does not seem to ever have been carried out.

As stated above, once the Gaussian randomness is fixed, the standard Gaus-
sian multiplicative chaos describes a random positive measure for each γ < 2 but
yields 0 when γ = 2. Naively, one might therefore guess that −1 times the deriva-
tive at γ = 2 would be a random positive measure. This intuition leads one to
consider the so-called derivative martingale, formally obtained by differentiating
the standard measure w.r.t. γ at γ = 2, as explained below. In the case of branching
Brownian motions [62], or of branching random walks [15, 56] (see also [2] for
a recent different but equivalent construction), the construction of such an object
has already been carried out mathematically. In the context of branching random
walks, the derivative martingale was introduced in the study of the fixed points of
the smoothing transform at criticality (the smoothing transform is a generalization
of Mandelbrot’s �-equation for discrete multiplicative cascades; see also [16]). Our
construction will therefore appear as a continuous analogue of those works in the
context of Gaussian multiplicative chaos.

Besides the 2D-Liouville Quantum Gravity framework (and the KPZ formula),
many other important models or questions involve Gaussian multiplicative chaos
of log-correlated Gaussian fields in all dimensions. Let us mention the glassy phase
of log-correlated random potentials (see [6, 19, 36, 37]) or the asymptotic expan-
sion of the maximum of log-correlated random variables; see [17, 24]. In all these
problems, one of the key tools is the derivative martingale at the critical point
γ 2 = 2d (where d is the dimension), whose construction is precisely the purpose
of this paper.

In dimension d , a standard Gaussian multiplicative chaos is a random measure
that can be written formally, for any Borelian set A ⊂R

d , as

Mγ (A) =
∫
A

eγX(x)−(γ 2/2)E[X2(x)] dx,(1)

where X is a centered log-correlated Gaussian field

E
[
X(x)X(y)

]= ln+
1

|x − y| + g(x, y)

with ln+(x) = max(lnx,0) and g a continuous bounded function over Rd × R
d .

Although such an X cannot be defined as a random function (and may be a random
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distribution, like the GFF), the measures can be rigorously defined all for γ 2 < 2d

using a straightforward limiting procedure involving a time-indexed family of im-
proving approximations to X [45], as we will review in Section 2. By contrast,
it is well known that for γ 2 ≥ 2d the measures constructed by this procedure are
identically zero [45]. Other techniques are thus required to create similar measures
beyond the critical value γ 2 = 2d [9, 28, 29].

Roughly speaking, the derivative martingale is defined as (recall that γ = √
2d

is the critical value)

M ′(A) := − ∂

∂γ

[
Mγ (A)

]
γ=√

2d

(2)

=
[∫

A

(
γE
[
X2(x)

]− X(x)
)
eγX(x)−(γ 2/2)E[X2(x)] dx

]
γ=√

2d

.

Here we have differentiated the measure Mγ in (1) with respect to the parameter γ

to obtain the above expression (2). Note that this is the same as (1) except for the
factor (γE[X2(x)] − X(x)). To give the reader some intuition, we remark that
we will ultimately see that the main contributions to M ′(A) come from locations x

where this factor is positive but relatively close to zero (on the order of
√
E[X2(x)])

which correspond to locations x where X(x) is nearly maximal. Indeed, in what
follows, the reader may occasionally wish to forget the derivative interpretation
of (2) and simply view (γE[X2(x)]−X(x)) as the factor by which one rescales (1)
in order to ensure that one obtains a nontrivial measure (instead of zero) when
using the standard limiting procedure.

In a sense, the measures Mγ in (1) become more concentrated as γ 2 ap-
proaches 2d . (They assign full measure to a set of Hausdorff dimension d − γ 2/2,
which tends to zero as γ 2 → 2d .) It is therefore natural to wonder how concen-
trated the γ 2 = 2d measure will be (see Figure 1 for a simulation of the landscape).
In particular, it is natural to wonder whether it possesses atoms (in which case it
could in principle assign full measure to a countable set). In our context, we will
answer in the negative. At the time we posted the first version of this manuscript
online, this question was open in the context of discrete models as well as continu-
ous models. However, a proof of the nonatomicity of the discrete cascade measures
was posted very shortly afterward in [10], which uses a method independent of our
proof. Since our proof is based on a continuous version of the spine decomposi-
tion, as developed in the context of branching random walks, we expect that it can
be adapted to these other models as well.

Roughly speaking, the reason that establishing nonatomicity in critical models
is nontrivial is that proofs of nonatomicity for (noncritical) multiplicative chaos
usually rely on the existence of moments higher than 1 (see [20]) and the scaling
relations of multifractal random measures; see, for example, [3]. At criticality,
the random measures involved (cascades, branching random walks, or Gaussian
multiplicative chaos) no longer possess finite moments of order 1, and the scaling
relations become useless.
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FIG. 1. Height landscape of the derivative martingale measure plotted with a logarithmic scale
color-bar, showing that the measure is very “peaked” (for t = 12, a multiplicative factor of about
108 stands between extreme values, i.e., between warm and cold colors).

To explain this issue in more detail, we recall that it is proved in [20] that a
stationary random measure M over R

d is almost surely nonatomic if (C stands
here for the unit cube of Rd )

∀δ > 0 nd
P
(
M
(
n−1C

)
> δ

)→ 0 as n → ∞.(3)

When M = Mγ for 0 < γ 2 < 2d , a computable property of Mγ is its power-law
spectrum ξ characterized by

E
[(

Mγ (n−1C
))q]	 Dqn

−ξ(q) as n → ∞(4)

for all those q making the above expectation finite, that is, q ∈ [0, 2d
γ 2 [. It matches

ξ(q) =
(
d + γ 2

2

)
q − γ 2

2
q2.(5)

Using the Markov inequality in (3), (4) obviously yields for q ∈ [0, 2d
γ 2 [

nd
P
(
Mγ (n−1C

)
> δ

)
� Dq

δq
nd−ξ(q).

Therefore, the nonatomicity of the measure boils down to finding a q such that the
power-law spectrum is strictly larger than d:
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• In the subcritical situation γ 2 < 2d , the function ξ increases on [0,1] from 0
to d . Such a q is necessarily larger than 1, and a straightforward computation
shows that any q ∈]1, 2d

γ 2 [ suffices.

• For γ 2 = 2d , relations (4) and (5) should remain valid only for q < 1. There-
fore, the subcritical strategy fails because the power-law spectrum achieves its
maximum d at q = 1. It is tempting to try to replace the gauge function x �→ xq

by something that could be more appropriate at criticality like x �→ x ln(1+x)q ,
etc. However, the fact that the measure does not possess a moment of order 1
(see Proposition 5 below) shows that there is no way of changing the gauge so
as to make ξ go beyond d .

More sophisticated machinery is thus necessary to investigate nonatomicity at crit-
icality. Indeed, we expect the derivative martingale to assign full measure to a (ran-
dom) Hausdorff set of dimension 0, indicating that the measure is in some sense
just “barely” nonatomic.

Let us finally mention the interesting work of [73] where the author constructs
on the unit circle (d = 1) a classical Gaussian multiplicative Chaos given by the
exponential of a field X such that for each ε the covariance of X at points x and y

lies strictly between (2 − ε) ln+ 1
|x−y| and 2 ln+ 1

|x−y| when |x − y| is sufficiently
small. In some sense, his construction is a near critical construction, different from
the measures constructed here. This is illustrated by the fact that the measures
in [73] possess moments of order 1 (and even belong to L logL), which is atypical
for the critical multiplicative chaos associated to log-correlated random variables.

In this paper, we tackle the problem of constructing random measures at critical-
ity for a large class of log-correlated Gaussian fields in any dimension, the covari-
ance kernels of which are called �-scale invariant kernels. This approach allows us
to link the measures under consideration to a functional equation, the �-equation,
giving rise to several conjectures about the glassy phase of log-correlated Gaussian
potentials and about the three-terms expansion of the maximum of log-correlated
Gaussian variables.

Another important family of random measures is the class defined by taking X

to be the Gaussian Free Field (GFF) with free or Dirichlet boundary conditions on
a planar domain, as in [30]; see also [71] for an introduction to the GFF. The mea-
sures defined in this way are also known as the (critical) Liouville quantum grav-
ity measures, and are closely related to conformal field theory, as well as various
2-dimensional discrete random surface models and their scaling limits. Although
the Gaussian free field is in some sense a log-correlated random field, it does not
fall exactly into the framework of this paper, which deals with translation invariant
random measures (defined on all of R2 or Rd ) that can be approximated in a par-
ticular way (via the �-equation). Although some of the arguments of this paper can
be easily extended to settings where the strict translation invariance requirement
for X is relaxed (e.g., X is the Gaussian free field on a disk), we will still need
additional arguments to show that the derivative martingale associates a unique
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nonatomic random positive measure to a given instance of the GFF almost surely,
that this measure is independent of the particular approximation scheme used, and
that this measure transforms under conformal maps in the same way as the γ < 2
measures constructed in [30]. For the sake of pedagogy, this other part of our work
will appear in a companion paper. For the time being, we just announce that all the
results of this paper are valid for the GFF construction.

1.2. Physics literature: History and motivation. It is interesting to pause for
a moment and consider the physics literature on Liouville quantum gravity. We
first remark that the noncritical case, with d = 2 and γ < 2, was treated in [30],
which contains an extensive overview of the physics literature and an explanation
of the relationships (some proved, some conjectural) between random measures
and discrete and continuum random surfaces. Roughly speaking, when one takes
a random two-dimensional manifold and conformally maps it to a disk, the image
of the area measure is a random measure on the disk that should correspond to
an exponential of a log-correlated Gaussian random variable (some form of the
GFF). From this point of view, many of the physics results about discrete and
continuum random surfaces can be interpreted as predictions about the behavior
of these random measures, where the value of γ < 2 depends on the particular
physical model in question.

There is also a physics literature focusing on the critical case γ = 2, which we
expect to be related to the measure constructed in this paper. This section contains
a brief overview of the results from this literature, as appearing in, for example,
[18, 38–42, 47, 49, 52, 53, 55, 64, 65, 72]. Most of the results surveyed in this
section have not yet been established or understood in a mathematical sense.

The critical case γ = 2 corresponds to the value c = 1 of the so-called central
charge c of the conformal field theory coupled to gravity, via the famous KPZ
result [51],

γ = 1√
6
(
√

25 − c − √
1 − c).

Discrete critical statistical physical models having c = 1 then include one-
dimensional matrix models [also called “matrix quantum mechanics” (MQM)]
[18, 38–40, 42, 47, 49, 64, 65, 72], the so-called O(n) loop model on a random
planar lattice for n = 2 [52–55] and the Q-state Potts model on a random lattice
for Q = 4 [14, 22, 34]. For an introduction to the above mentioned 2D statistical
models, see, for example, [63].

In the continuum, a natural coupling also exists between Liouville quantum
gravity and the Schramm–Loewner evolution SLEκ for γ = √

κ , rigorously estab-
lished for κ < 4 [31, 70]. Thus the critical value γ = 2 corresponds to the special
SLE parameter value κ = 4, above which the SLEκ curve no longer is a simple
curve, but develops double points at all scales.
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The standard c = 1, γ = 2 Liouville field theory [18, 38–40, 47, 49, 64, 65]
involves violations of scaling by logarithmic factors. For example, the partition
function (number) of genus 0 random surfaces of area A grows as [40, 47]

Z ∝ exp(μA)A−3(logA)−2,

where μ is a nonuniversal growth constant depending on the (planar lattice) regu-
larization. The area exponent (−3) is universal for a c = 1 central charge, while the
subleading logarithmic factor is attributed to the unusual dependence on the Liou-
ville field ϕ (equivalent to X here) of the so-called “tachyon field” T (ϕ) ∝ ϕe2ϕ

[47, 49, 65]. Its integral over a “background” Borelian set A generates the quantum
area A = ∫

A T (ϕ)dx, that we can recognize as the formal heuristic expression for
the derivative measure (2) introduced above.

At c = 1, a proliferation of large “bubbles” (the so-called “baby universes”
which are relatively large amounts of area cut off by relatively small bottlenecks) is
generally anticipated in the bulk of the random surface [40, 44, 52], or at its bound-
ary in the case of a disk topology [53, 55]. We believe that this should correspond
to the fact that the measure we construct is concentrated on a set of Hausdorff
dimension zero.

However, the introduction of higher trace terms [42, 49, 72] in the action of
the c = 1 matrix model of two-dimensional quantum gravity is known to gener-
ate a “nonstandard” random surface model with an even stronger concentration
of bottlenecks. (See also the related detailed study of a MQM model for a c = 1
string theory with vortices in [47].) As we shall see shortly, these nonstandard
constructions do not seem to correspond to our model, at least not so directly. In
these constructions, one encounters a new critical behavior of the random surface,
with a critical proliferation of spherical bubbles connected one to another by mi-
croscopic “wormholes.” This is reminiscent of the construction for c < 1, γ < 2
of the dual phase of Liouville quantum gravity [4, 5, 21, 32, 48–50], where the
associated random measure develops atoms [9, 28, 29].

The partition function of the nonstandard c = 1 (genus zero) random surface
then scales as a function of the area A as [42, 47, 49, 72]

Z ∝ exp
(
μ′A

)
A−3

with an apparent suppression of logarithmic terms. This has been attributed to
the appearance for c = 1 of a tachyon field of the atypical form T (ϕ) ∝ e2ϕ

[42, 47, 50]. Heuristically, this would seem to correspond to a measure of type (1),
but we know that the latter vanishes for γ = 2. (See Proposition 19 below.) The
literature about the analogous problem of branching random walks [2, 43] also
suggests for γ = 2 a logarithmically renormalized measure obtained by multiply-
ing by

√
log(1/ε) = √

t the object [see (7) below] whose limit is taken in (1),
but we expect this to converge (up to constant factor) to the same measure as the
derivative martingale (2). In order to model the nonstandard theory, it might be nec-
essary to modify the measures introduced here by explicitly introducing “atoms”
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on top of them, using the procedure described in [9, 28, 29] for adding atoms
to γ < 2 random measures. In the approach of [9, 28, 29], the “dual Liouville
measure” corresponding to γ < 2 involves choosing a Poisson point process from
η−α−1 dηMγ (dx), where α = γ 2/4 ∈ (0,1), and letting each point (η, x) in this
process indicate an atom of size η at location x. When γ = 2 and α = 1, we can
replace Mγ with the M ′ of (2) and use the same construction; in this case (since
α = 1) the measure a.s. assigns infinite mass to each positive-Lebesgue-measure
A ∈ B(Rd). However, one may use standard Lévy compensation to produce a ran-
dom distribution, assigning a finite value a.s. to each fixed A ∈ B(Rd) with a pos-
itive atom of size η at location x corresponding to each (η, x) in the Poisson point
process. We suspect that that this construction is somehow equivalent to the con-
tinuum random measure associated with the nonstandard c = 1, γ = 2 Liouville
random surface with enhanced bottlenecks, as described in [42, 47, 72].

Finally, we note that the boundary critical Liouville quantum gravity poses sim-
ilar challenges. A subtle difference in logarithmic boundary behavior is predicted
between the so-called dilute and dense phases of the O(2) model on a random disk
[53, 55], which thus may differ in their boundary bubble structure. It also remains
an open question whether the results about the conformal welding of two boundary
arcs of random surfaces to produce SLE, as described in [70], can be extended to
the case γ = 2.

2. Setup.

2.1. Notation. For a Borelian set A ⊂R
d , B(A) stands for the Borelian sigma-

algebra on A. All the considered fields are constructed on the same probability
space (�,F,P). We denote by E the corresponding expectation.

2.2. �-scale invariant kernels. Here we introduce the Gaussian fields that we
will use throughout the papers. We consider a family of centered stationary Gaus-
sian processes ((Xt(x))x∈Rd )t≥0 where, for each t ≥ 0, the process (Xt(x))x∈Rd

has covariance given by

Kt(x) = E
[
Xt(0)Xt(x)

]= ∫ et

1

k(ux)

u
du(6)

for some covariance kernel k satisfying k(0) = 1, of class C1 and vanishing out-
side a compact set (actually this latter condition is not necessary but it simpli-
fies the presentation). The C1 condition is technical and ensures that for x = y

we have a nice description of the joint law of the couple (Xt(x),Xt(y))t≥0; see
Lemma 16 below (this condition could also be relaxed to some extent). We also
assume that the process (Xt(x) − Xs(x))x∈Rd is independent of the processes
((Xu(x))x∈Rd )u≤s for all s < t . Put in other words, the mapping t �→ Xt(·) has
independent increments. Such a construction of Gaussian processes is carried out
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in [3]. For γ ≥ 0, we consider the approximate Gaussian multiplicative chaos
M

γ
t (dx) on R

d ,

M
γ
t (dx) = eγXt (x)−(γ 2/2)E[Xt (x)2] dx.(7)

It is well known [3, 45] that, almost surely, the family of random measures
(M

γ
t )t>0 weakly converges as t → ∞ toward a random measure Mγ , which is

nontrivial if and only if γ 2 < 2d . The purpose of this paper is to investigate the
phase transition, that is, γ 2 = 2d . Recall that we have:

PROPOSITION 1. For γ 2 = 2d , the standard construction (7) yields a vanish-
ing limiting measure

lim
t→∞M

√
2d

t (dx) = 0 almost surely.(8)

Let us also mention that the authors in [3] have proved that, for γ 2 < 2d , the
measure Mγ satisfies the following scale invariance relation, called �-equation:

DEFINITION 2 (Log-normal �-scale invariance). The random Radon measure
Mγ is lognormal �-scale invariant: for all 0 < ε ≤ 1, Mγ obeys the cascading rule(

Mγ (A)
)
A∈B(Rd )

(9)
law=
(∫

A
eγXln(1/ε)(r)−(γ 2/2)E[Xln(1/ε)(r)

2]εdMγ,ε(dr)

)
A∈B(Rd )

,

where Xln(1/ε) is the Gaussian process introduced in (6), and Mγ,ε is a random
measure independent from Xln(1/ε) satisfying the scaling relation(

Mγ,ε(A)
)
A∈B(Rd )

law=
(
Mγ

(
A

ε

))
A∈B(Rd )

.(10)

Intuitively, this relation means that when zooming in the measure M , one
should observe the same behavior up to an independent Gaussian factor. It has
some canonical meaning since it is the exact continuous analog of the smoothing
transformation intensively studied in the context of Mandelbrot’s multiplicative
cascades [33] or branching random walks [16, 57].

Observe that this equation perfectly makes sense for the value γ 2 = 2d . There-
fore, to define a natural Gaussian multiplicative chaos at the value γ 2 = 2d , one
has to look for a solution to this equation when γ 2 = 2d and conversely, each
random measure candidate for being a Gaussian multiplicative chaos at the value
γ 2 = 2d must satisfy this equation.

REMARK 3. The main motivation for considering �-scale invariant kernels
is the connection between the associated random measures and the �-equation.
Nevertheless, we stress that our proofs can be easily adapted to other Gaussian
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multiplicative chaos associated to log-correlated Gaussian fields “à la Kahane”
[45]: in particular, we can construct the derivative martingale associated to exact
scale invariant kernels [7, 68] or the Gaussian Free Field in a bounded domain.

3. Derivative martingale. One way to construct a solution to the �-equation
at the critical value γ 2 = 2d is to introduce the derivative martingale M ′

t (dx) de-
fined by

M ′
t (dx) := (√

2dt − Xt(x)
)
e
√

2dXt (x)−dE[Xt(x)2] dx.

It is plain to see that, for each open bounded set A ⊂ R
d , the family (M ′

t (A))t is
a martingale. Nevertheless, it is not nonnegative. It is therefore not obvious that
such a family converges toward a (nontrivial) positive limiting random variable.
The following theorem is the main result of this section:

THEOREM 4. For each bounded open set A ⊂R
d , the martingale (M ′

t (A))t≥0
converges almost surely toward a positive random variable denoted by M ′(A),
such that M ′(A) > 0 almost surely. Consequently, almost surely, the (locally
signed) random measures (M ′

t (dx))t≥0 converge weakly as t → ∞ toward a pos-
itive random measure M ′(dx). This limiting measure has full support and is
atomless. Furthermore, the measure M ′ is a solution to the �-equation (9) with
γ = √

2d .

Since M ′
t (dx) is not uniformly nonnegative when t < ∞, there are several com-

plications involved in establishing its convergence to a nonnegative limit (let alone
the nontriviality of the limit). We have to introduce some further tools to study
its convergence. These tools have already been introduced in the context of dis-
crete multiplicative cascade models in order to study the corresponding derivative
martingale; see [15].

We denote by Ft the sigma algebra generated by {Xs(x); s ≤ t, x ∈ R
d}. Given

a Borelian set A ⊂ R
d and parameters t, β > 0, we introduce the random variables

Z
β
t (A) =

∫
A

(√
2dt − Xt(x) + β

)
1{τβ>t}e

√
2dXt (x)−dE[Xt(x)2] dx,

Z̃
β
t (A) =

∫
A

(√
2dt − Xt(x)

)
1{τβ>t}e

√
2dXt (x)−dE[Xt(x)2] dx,

where, for each x ∈ A, τβ(x) is the (Ft )t -stopping time defined by

τβ(x) = inf
{
u > 0,Xu(x) − √

2du > β
}
.

In the sequel, when the context is clear, we will drop the x dependence in τβ(x).
What is the relation between Z

β
t (A) and M ′

t (A)? Roughly speaking, we will show
that the convergence of M ′

t (A) as t → ∞ toward a nontrivial object boils down to
proving the convergence of Z

β
t (A) toward a nontrivial object: we will prove that
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the difference Z
β
t (A) − Z̃

β
t (A) almost surely goes to 0 as t → ∞ and that Z̃

β
t (A)

coincides with M ′
t (A) for β large enough. In particular, we will prove that Z

β
t (A)

converges toward a random variable Zβ(A) which itself converges as β → ∞ to
the limit of M ′

t (A) (as t → ∞). The details and proofs are gathered in the Ap-
pendix.

As a direct consequence of our method of proof, we get the following properties
of M ′(dx):

PROPOSITION 5. The positive random measure M ′(dx) possesses moments
of order q for all q ≤ 0. It does not possess moments of order 1.

PROOF. As a direct consequence of the fact that the measure M ′ satisfies the
�-equation, it possesses moments of order q for all q ≤ 0. This is a straightfor-
ward adaptation of the corresponding theorem in [8]; see also [13] for a proof
in English. Since Zβ(dx) increases toward M ′ as β goes to infinity, we have
M ′(dx) ≥ Zβ(dx) for any β . Since Z

β
t is a uniformly integrable martingale, we

have E[Zβ(A)] = E[Zβ
0 (A)] = β|A|, we deduce that E[M ′(A)] = +∞ for every

bounded open set A. �

4. Conjectures. In this section, we present a few results we can prove about
the �-equation and some conjectures related to these results.

4.1. About the �-equation. Consider the �-equation in great generality, that is:

DEFINITION 6 (Log-normal �-scale invariance). A random Radon mea-
sure M is lognormal �-scale invariant if for all 0 < ε ≤ 1, M obeys the cascading
rule (

M(A)
)
A∈B(Rd )

law=
(∫

A
eωε(r)Mε(dr)

)
A∈B(Rd )

,(11)

where ωε is a stationary stochastically continuous Gaussian process, and Mε is a
random measure independent from ωε satisfying the scaling relation(

Mε(A)
)
A∈B(Rd )

law=
(
M

(
A

ε

))
A∈B(Rd )

.(12)

Observe that, in comparison with (9) and (10), we do not require the scaling
factor to be εd . As stated in (11) and (12), it is proved in [3] that E[eωε(r)] = εd as
soon as the measure possesses a moment of order 1 + δ for some δ > 0. Roughly
speaking, it remains to investigate situations when the measure does not possess a
moment of order 1, and we will see that the scaling factor is then not necessarily εd .

Inspired by the discrete multiplicative cascade case (see [33]), our conjecture is
that all the nontrivial short ranged solutions [i.e., there exists R > 0 such that M(A)
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and M(B) are independent when d(A,B) ≥ R where d is the standard distance
between sets] to this equation belong to one of the families we will describe below.

First we conjecture that there exists a α ∈]0,1] such that

E
[
eαωε(r)

]= εd.

Assuming this, it is proved in [3, 67] that the Gaussian process αωe−t has a covari-
ance structure given by (6). More precisely, there exists some compactly supported
continuous covariance kernel k with k(0) = 1 and γ 2 ≤ 2d such that

Cov
(
αωe−t (0), αωe−t (x)

)= γ 2
∫ et

1

k(ux)

u
du.

We can then rewrite the process ω as

ωe−t (x) = γ

α
Xt(x) − γ 2

2α
t − d

α
t,

where (Xt)t is the family of Gaussian fields introduced in Section 2. We now
consider four cases, depending on the values of α and γ [cases (2), (3), (4) are
conjectures]:

(1) If α = 1 and γ 2 < 2d , then the law of the solution M is the standard Gaus-
sian multiplicative chaos Mγ [see (7)] up to a multiplicative constant. This case
has been treated in [3].

(2) If α = 1 and γ 2 = 2d , then the law of the solution M is that of the derivative
martingale that we have constructed in this paper (Theorem 4), up to a multiplica-
tive constant.

(3) If α < 1 and γ 2 < 2d , then M is an atomic Gaussian multiplicative chaos
as constructed in [9] up to a multiplicative constant. More precisely, the law can
be constructed as follows:

(a) Sample a standard Gaussian multiplicative chaos

�M(dx) = eγX(x)−(γ 2/2)E[X(x)2] dx.

The measure �M is perfectly defined since γ 2 < 2d .
(b) Sample an independently scattered random measure N whose law, conditioned

on �M , is characterized by

∀q ≥ 0 E
[
e−qN(A)| �M]= e−qα �M(A).

Then the law of M is that of N up to a multiplicative constant.

(4) If α < 1 and γ 2 = 2d , then M is an atomic Gaussian multiplicative chaos
of a new type. More precisely, the law can be constructed as follows:

(a) Sample the derivative Gaussian multiplicative chaos

M ′(dx) = (√
2dE

[
X(x)2]− X(x)

)
e
√

2dX(x)−dE[X(x)2] dx.

The measure M ′ is constructed as prescribed by Theorem 4.
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(b) Sample an independently scattered random measure N whose law, conditioned
on M ′, is characterized by

∀A ∈ B
(
R

d), ∀q ≥ 0 E
[
e−qN(A)|M ′]= e−qαM ′(A).

Then the law of M is that of N up to a multiplicative constant.

Notice that the results of our paper together with [3, 9] allow us to prove existence
of all the random measures described above. Therefore, it remains to complete the
uniqueness part of this statement.

REMARK 7. The α < 1, γ 2 < 2d case above has been used in [9, 28, 29] to
give a mathematical understanding of the duality in Liouville quantum gravity:
this corresponds to taking special values of the couple (α, γ ). More precisely, we
choose some parameter γ̄ 2 > 2d . If the measure Mγ̄ was well defined, it would
satisfy the scaling relation(

Mγ̄ (A)
)
A∈B(Rd )

(13)
law=
(∫

A
eγ̄Xln(1/ε)(r)−(γ̄ 2/2)E[Xln(1/ε)(r)

2]εdMγ̄ ,ε(dr)

)
A∈B(Rd )

,

where Mγ̄ ,ε is a random measure independent from Xε satisfying the scaling rela-
tion (

Mγ̄ ,ε(A)
)
A∈B(Rd )

law=
(
Mγ̄

(
A

ε

))
A∈B(Rd )

.(14)

Nevertheless, we know that Mγ̄ yields a vanishing measure. The idea is thus to
use the �-equation to determine what the unique solution of this scaling relation is.
Writing γ = 2d

γ̄
< 2d and α = 2d

γ̄ 2 , it is plain to see that

E
[(

eγ̄Xln(1/ε)(r)−(γ̄ 2/2)E[Xln(1/ε)(r)
2]εd)α]= εd.

Therefore, we are in situation 3, which yields a natural candidate for Liouville
duality [9, 28, 29].

4.2. Another construction of solutions to the critical �-equation. Recall that
the measures Mγ for γ < 2 are obtained as limits of (1) as X varies along ap-
proximations to a limit field. The measure constructed in Theorem 4 is defined
analogously except that one replaces (1) with (2), which is minus the derivative
of (1) at γ = √

2d . If we could exchange the order of the differentiation and the
limit-taking, we would conclude that the measure constructed in Theorem 4 is
equal to

− ∂

∂γ

[
Mγ ]

γ=√
2d = lim

γ→√
2d

1√
2d − γ

Mγ .
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We will not fully justify this order exchange here, but we will establish a some-
what weaker result. Namely, we show that one can at least obtain some solution
to the �-equation as a limit of this general type. This construction is inspired by
a similar construction for discrete multiplicative cascades in [33]. More precisely,
we have the following (proved in Section A.2):

PROPOSITION 8. There exist two increasing sequence (λn)n and (γn)n, with
γ 2
n < 2d and γ 2

n → 2d as n → ∞, such that

λnM
γn(dx)

law→ Mc(dx),

where Mc is a positive random measure satisfying (9).

The following conjecture is a consequence of the uniqueness conjecture for the
�-equation exposed in Section 4.1 above:

CONJECTURE 9. The construction of Proposition 8 gives the same measure
as the one described in Section 3 (up to some multiplicative constant). Moreover,
the sequence (λn)n can be chosen as λn = 1√

2d−γn
(in dimension d).

4.3. Glassy phase of log-correlated Gaussian potentials. The glassy phase of
log-correlated Gaussian potentials is concerned with the behavior of measures be-
yond the critical value γ 2 > 2d . More precisely, for γ 2 > 2d , consider the measure

M
γ
t (dx) = eγXt (x)−(γ 2/2)E[Xt (x)2] dx.

The limiting measure, as t → ∞, vanishes as proved in [45]. Therefore, it is natural
to look for a suitable family of normalizing factors to make this measure converge.
With the arguments used in Section B.1 to compare with the results obtained in
[12, 58], we can rigorously prove:

PROPOSITION 10. The renormalized family(
t (3γ )/(2

√
2d)et ((γ /

√
2)−√

d)2
M

γ
t (dx)

)
t≥0

is tight. Furthermore, every converging subsequence is nontrivial.

The above proposition can be obtained using the results in [12, 58] and Sec-
tion B.1 (tightness statement). The main result in [17] about the behavior of the
maximum of the discrete GFF implies that every converging subsequence is non-
trivial.

We now formulate a conjecture about the limiting law of this family. Assuming
that the above renormalized family converges in law (so we strengthen tightness
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into convergence), it turns out that the limit Mγ of this renormalized family nec-
essarily satisfies the following �-equation:

Mγ (dx) = eγXln(1/ε)(x)−√
(d/2)γE[Xln(1/ε)(x)2]ε

√
(d/2)γ �Mγ

(
dx

ε

)
,

where �Mγ is a random measure with the same law as Mγ and independent of the

process (Xt(x))x∈Rd . Setting α =
√

2d
γ

∈]0,1[, this equation can be rewritten as

Mγ (dx) = e(
√

2d/α)Xln(1/ε)(x)−(d/α)E[Xln(1/ε)(x)2]εd/α �Mγ

(
dx

ε

)
.

Therefore, assuming that the conjectures about uniqueness of the �-equation are
true, we have the following:

CONJECTURE 11.

t (3γ )/(2
√

2d)et ((γ /
√

2)−√
d)2

M
γ
t (dx)

law→ cγ Nα(dx) as t → ∞,(15)

where cγ is a positive constant depending on γ and the law of Nα is given, con-
ditioned on the derivative martingale M ′, by an independently scattered random
measure the law of which is characterized by

∀A ∈ B
(
R

d), ∀q ≥ 0 E
[
e−qNα(A)|M ′]= e−qαM ′(A).

In particular, physicists are interested in the behavior of the Gibbs measure as-
sociated to M

γ
t (dx) on a ball B . It is the measure renormalized by its total mass,

G
γ
t (dx) = M

γ
t (dx)

M
γ
t (B)

.

From (15), we deduce

G
γ
t (dx)

law→ Nα(dx)

Nα(B)
as t → ∞.(16)

The size reordered atoms of the latter object form a Poisson–Dirichlet process as
conjectured by physicists [19] and proved rigorously in [6]. Nevertheless, we point
out that this conjecture is more powerful than the Poisson–Dirichlet result since it
also makes precise the spatial localization of the atoms. We stress that this result
has been proved in the case of branching random walks [12], built on the work of
Madaule [58].

4.4. About the maximum of the log-correlated Gaussian random variables.
It is proved in [17] (in fact d = 2 in [17] but this is general) that the family(

sup
x∈[0,1]d

Xt (x) − √
2dt + 3

2
√

2d
ln t

)
t≥0

is tight. One can thus conjecture by analogy with the branching random walk
case [1]:
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CONJECTURE 12.

sup
x∈[0,1]d

Xt (x) − √
2dt + 3

2
√

2d
ln t → Gd in law as t → ∞,

where the distribution of Gd is given in terms of the distribution of the limit
M ′([0,1]d) of the derivative martingale. More precisely, there exists some con-
stant c > 0 such that

E
[
e−qGd

]= 1

cq
�

(
1 + q√

2d

)
E
[(

M ′([0,1]d))−q/
√

2d]
.(17)

Here we give a heuristic derivation of identity (17) using the conjectures of the
above subsections. By performing an inversion of limits: (γ ↔ t and conjecturing
ln cγ

γ
→ ln c as γ → ∞),

E
[
e−qGd

]
= lim

γ→+∞ lim
t→+∞E

[
exp

[−qγ −1 ln
[
t (3γ )/(2

√
2d)et ((γ /

√
2)−√

d)2
M

γ
t

([0,1]d)]]]
= lim

γ→+∞E
[(

cγ Nα=√
2d/γ

([0,1]d))−q/γ ]
= 1

cq
�

(
1 + q√

2d

)
E
[(

M ′([0,1]d))−q/
√

2d]
,

where, for x > 0, �(x) = ∫∞
0 tx−1e−t dt is the standard Gamma function. There-

fore, Gd can be viewed as a modified Gumbel law. Otherwise stated, we conjecture

lim
t→∞P

(
sup

x∈[0,1]d
Xt (x) − √

2dt + 3

2
√

2d
ln t ≤ u

)

= E
[
exp

[−c
√

2de−√
2duM ′([0,1]d)]].

We point out that we recover in a heuristic and alternative way the result proved
rigorously in [1] for branching random walks.

APPENDIX A: PROOFS

A.1. Proofs of results from Section 3. We follow the notation of Section 3.
We first investigate the convergence of (Z

β
t (A))t≥0:

PROPOSITION 13. The process (Z
β
t (A))t≥0 is a continuous positive Ft -mar-

tingale and thus converges almost surely toward a positive random variable de-
noted by Zβ(A).
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PROOF. Proving that (Z
β
t (A))t≥0 is a martingale boils down to proving, for

each x ∈ A, that

E
[(√

2dt − Xt(x) + β
)
1{τβ>t}e

√
2dXt (x)−dE[Xt (x)2]|Fs

]
= (√

2ds − Xs(x) + β
)
1{τβ>s}e

√
2dXs(x)−dE[Xs(x)2].

Let us first stress that, for each x ∈ A, the process (Xt(x))t≥0 is a Brownian mo-
tion. Furthermore, we can use the (weak) Markov property of the Brownian motion
to get

E
[(√

2dt − Xt(x) + β
)
1{τβ>t}e

√
2dXt (x)−dE[Xt (x)2]|Fs

]
= 1{τβ>s}e

√
2dXs(x)−dE[Xs(x)2]F

(√
2ds − Xs(x) + β

)
,

where

F(y) = E
[(√

2d(t − s) − Xt−s(x) + y
)

× 1{τ(X·(x)−√
2d·−y)>t−s}e

√
2dXt−s (x)−dE[Xt−s (x)2]]

and, for a stochastic process Y , τ(Y ) is defined by

τ(Y ) = inf{u > 0;Yu > 0}.
Using the Girsanov transform yields

F(y) = E
[(−Xt−s(x) + y

)
1{τ(X·(x)−y)>t−s}

]
.

Hence we get

F(y) = E
[(−Xt−s(x) + y

)
1{τ(X·(x)−y)>t−s}

]
= E

[(−X(t−s)∧τ(X·(x)−y)(x) + y
)]= y

by the optional stopping theorem. This completes the proof. �

PROPOSITION 14. Assume that A is a bounded open set. Then the martingale
(Z

β
t (A))t≥0 is regular.

PROOF. Without loss of generality, we may assume k(u) = 0 for |u| > 1 since
k has a compact support (so we just assume that the smallest ball centered at 0
containing the support of k has radius 1 instead of R for some R > 0). We may
also assume that A ⊂ B(0,1/2): indeed, any bigger bounded set can be recovered
with finitely many balls with radius less than 1

2 . Finally, we will also assume that
x · ∇k(x) ≤ 0. This condition need not be true over the whole R

d . Nevertheless, it
must be valid in a neighborhood of 0 [and even x ·∇k(x) < 0 if x = 0] in order not
to contradict the fact that k is positive definite and nonconstant. Therefore, even if
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it means considering a smaller set A, we may (and will) assume that this condition
holds.

Write for x ∈ R
d

f
β
t (x) = (√

2dt − Xt(x) + β
)
1{τβ>t}e

√
2dXt (x)−dE[Xt (x)2].

Define then the analog of the rooted random measure in [30] (also called the
“Peyrière probability measure” in this context [45]),

�
β
t = 1

|A|β f
β
t (x) dx dP.

It is a probability measure on B(A) ⊗ Ft . We denote by �
β
t (·|G) the conditional

expectation of �
β
t given some sub-σ -algebra G of B(A) ⊗ Ft . If y is a B(A) ⊗

Ft -measurable random variable on A × �, we denote by �
β
t (·|y) the conditional

expectation of �
β
t given the σ -algebra generated by y.

We first observe that

�
β
t (·|x) = 1

β
f

β
t (x) dP.

Therefore, under �
β
t (·|x), the process (Xs(x) − √

2ds − β)s≤t has the law of
(−βs)s≤t where (βs)s≤t is a 3d-Bessel process starting from β . Let us now re-
call the following result (see [60]):

THEOREM 15. Let X be a 3d-Bessel process on R+ started from β ≥ 0 with
respect to the law Pβ .

(1) Suppose that φ ↑ ∞ such that
∫∞

1
φ(t)3

t
e−(1/2)φ(t)2

dt < +∞. Then

Pβ

(
Xt >

√
tφ(t) i.o. as t ↑ +∞)= 0.

(2) Suppose that ψ ↓ 0 such that
∫∞

1
ψ(t)

t
dt < +∞. Then

Pβ

(
Xt <

√
tψ(t) i.o. as t ↑ +∞)= 0.

In view of the above theorem, we can choose R large enough such that for all x

the set

Bt(x) =
{
∀s ∈ [0, t];

√
s

R(ln(2 + s))2 ≤ β +√
2ds −Xs(x) ≤ R

(
1+√s ln(1 + s)

)}
has a probability arbitrarily close to 1, say 1 − ε, for all t :�β

t (Bt (x)|x) ≥ 1 − ε.
We can now prove the uniform integrability of (Z

β
t (A))t , that is,

lim
δ→∞ lim sup

t→∞
E
[
Z

β
t (A)1{Zβ

t (A)>δ}
]= 0.
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Observe that

E
[
Z

β
t (A)1{Zβ

t (A)>δ}
]= β|A|�β

t

(
Z

β
t (A) > δ

)
.

Therefore, it suffices to prove that

lim
δ→∞ lim sup

t→∞
�

β
t

(
Z

β
t (A) > δ

)= 0.

We have

�
β
t

(
Z

β
t (A) > δ

)
= 1

|A|
∫
A

�
β
t

(
Z

β
t (A) > δ|x)dx

= 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t (A) > δ|x,

(
Xs(x)

)
s≤t

)|x)dx

≤ ε + 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t (A) > δ|x,

(
Xs(x)

)
s≤t ,Bt (x)

)|x)dx

≤ ε + 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t

(
B
(
x, e−t ))> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)∣∣∣∣x)dx

+ 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t

(
B
(
x, e−t )c)> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)∣∣∣∣x)dx

def= ε + �1 + �2.

We are now going to estimate �1,�2. Observe that the two quantities roughly
reduce to expressions like (K is a ball or its complementary)

�
β
t

(
H

(∫
K

f
β
t (w)dw

)∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)
for H a nonnegative function (here an indicator function). To carry out our com-
putations, we thus have to compute the law of the process (Xs(w))s≤t knowing
that of the process (Xs(x))s≤t . To that purpose, we will use the following lemma
whose proof is left to the reader since it follows from a standard (though not quite
direct) computation of covariances for Gaussian processes:

LEMMA 16. For w = x and all s0, the law of the process (Xs(w))s≤s0 can be
decomposed as

Xs(w) = P x,w
s + Zx,w

s ,

where:

– P x,w
s = − ∫ s

0 gx,w(u)Xu(x) du+K ′
s(x−w)Xs(x) is measurable with respect

to the σ -algebra generated by (Xs(x))s≤s0 and gx,w(u) = K ′′
u(x − w);
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– the process (Zx,w
s )0≤s≤s0 is a centered Gaussian process independent of

(Xs(x))0≤s≤s0 with covariance kernel

qx,w

(
s, s′) def= E

[
Z

x,w
s′ Zx,w

s

]= s ∧ s′ −
∫ s∧s′

0

(
K ′

u(x − w)
)2

du.

The above decomposition lemma roughly implies the following: the two pro-
cesses (Xs(w))s≥0 and (Xs(x))s≥0 are the same until s0 = ln 1

|x−w| and then the
two processes (Xs(w) − Xs0(w))s≥s0 and (Xs(x) − Xs0(x))s≥s0 are independent.

We first estimate �2 with the above lemma. It is enough to estimate properly
the quantity

�̃2 = �
β
t

(
Z

β
t

(
B
(
x, e−t )c)> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)
.(18)

Notice that

�̃2 ≤ 2

δ

∫
B(x,e−t )c

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t ,Bt (x)

)
dw.(19)

For each w ∈ B(x, e−t )c, that is, such that |w − x| > e−t , let us define
s0 = ln 1

|x−w| . Notice that s0 is the time at which the evolution of (Xs(w) −
Xs0(w))s0≤s≤t becomes independent of the process (Xs(x))0≤s≤t . Under �

β
t , the

process (Xs(w))s0≤s≤t can be rewritten as

Xs(w) = Xs0(w) + Ws−s0,

where W is a standard Brownian motion independent of the processes
(Xs(x))0≤s≤t and (Xs(w))0≤s≤s0 . This can be checked by a straightforward com-
putation of covariance. Therefore, we get

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t

)
= 1

β
E
[(√

2dt − Xt(w) + β
)

×1{sup[0,t] Xu(w)−√
2du≤β}e

√
2dXt (w)−dt |x,

(
Xs(x)

)
s≤t

]
= 1

β
E
[(√

2ds0 + √
2d(t − s0) − Xs0(w) − Wt−s0 + β

)
×1{sup[0,s0] Xu(w)−√

2du≤β}
×1{sup[s0,t] Xs0 (w)+√

2ds0+Wu−s0−√
2d(u−s0)≤β}

×e
√

2dXs0 (w)−ds0e
√

2dWt−s0−d(t−s0)|x,
(
Xs(x)

)
s≤t

]
= 1

β
E
[(√

2ds0 − Xs0(w) + β
)

×1{sup[0,s0] Xu(w)−√
2du≤β}e

√
2dXs0 (w)−ds0 |x,

(
Xs(x)

)
s≤t

]
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by the stopping time theorem. From Lemma 16, we deduce

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t

)
= 1

β
E
[(√

2ds0 − P x,w
s0

− Zx,w
s0

+ β
)

× 1{sup[0,s0] P
x,w
u +Z

x,w
u −√

2du≤β}e
√

2d(P
x,w
s0 +Z

x,w
s0 )−ds0 |x,

(
Xs(x)

)
s≤t

]
≤ 1

β
E
[((√

2ds0 − P x,w
s0

− Zx,w
s0

+ β
)2 + 1

)
(20)

× e
√

2d(P
x,w
s0 +Z

x,w
s0 )−ds0 |x,

(
Xs(x)

)
s≤t

]
= 1

β

((√
2d
(
s0 − qx,w(s0, s0)

)− P x,w
s0

+ β
)2 + qx,w(s0, s0)

)
× e

√
2dP

x,w
s0 −d(s0−qx,w(s0,s0)).

We make two observations. First, we point out that the quantity qx,w(s0, s0) is
bounded by a constant only depending on k since

qx,w(s0, s0) = s0 −
∫ s0

0

(
K ′

u(x − w)
)2

du

=
∫ s0

0

[
1 − (k(eu(x − w)

))2]
du

=
∫ 1

|x−w|

(
1 − k

(
y

x − w

|x − w|
)2)1

y
dy

≤ C,

where C can be defined as supz∈B(0,1)
1−k(z)2

|z| . So the quantity qx,w(s0, s0) will not
play a part in the forthcoming computations.

Second, we want to express the random variable P x,w
s0

as a function of the Bessel

process (Xu(x)−√
2du−β)u in order to use the fact that we can control the paths

of this latter process [we will condition by the event Bt(x)]. Therefore, we set

Yx,w
s0

= −
∫ s0

0
gx,w(u)

(
Xu(x) − √

2du − β
)
du

= −
∫ s0

0
gx,w(u)Xu(x) du − √

2dKs0(x − w)

(21)
+ β

(
k
(
es0(x − w)

)− k(x − w)
)

= P x,w
s0

− √
2dKs0(x − w) + β

(
k
(
es0(x − w)

)− k(x − w)
)
.

Therefore, we can write

Yx,w
s0

= P x,w
s0

− √
2ds0 + θx,w(s0)
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for some function θx,w that is bounded independently of x,w, t since k is bounded
over Rd . Plugging these estimates into (20), we obtain

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t

)
= 1

β

((
θx,w(s0) − Yx,w

s0

)2 + qx,w(s0, s0)
)

(22)
× e

√
2dY

x,w
s0 +ds0+dqx,w(s0,s0)−

√
2dθx,w(s0)

≤ C

β

((
Yx,w

s0

)2 + 1
)
e
√

2dY
x,w
s0 +ds0

for some constant C that does not depend on x,w, t . Now we plug the exact ex-
pression of gx,w ,

gx,w(u) =
d∑

i=1

(x − w)ie
u∂ik

(
eu(x − w)

)
into definition (21) of Yx,w

s0
,

Yx,w
s0

=
∫ ln(1/|x−w|)

0

d∑
i=1

(x − w)ie
u∂ik

(
eu(x − w)

)(√
2du + β − Xu(x)

)
du

=
∫ 1

|x−w|
y

x − w

|x − w| · ∇k

(
y

x − w

|x − w|
)

×
(√

2d ln
y

|x − w| + β − Xln(y/|x−w|)(x)

)
dy.

Moreover the constraint for the Bessel process, valid on Bt(x),
√

u

R(ln(2 + u))2 ≤ β − Xu(x) + √
2du ≤ R

(
1 +√u ln(1 + u)

)
(23) ∀u ∈ [0, t]
implies that [here we use the relation x · ∇k(x) ≤ 0]

Yx,w
s0

≥ R

∫ 1

|x−w|
y

x − w

|x − w| · ∇k

(
y

x − w

|x − w|
)

(24)

×
(

1 +
√

ln
y

|x − w| ln
(

1 + ln
y

|x − w|
))

dy,

Y x,w
s0

≤ R

∫ 1

|x−w|
y

x − w

|x − w| · ∇k

(
y

x − w

|x − w|
) √

ln(y/|x − w|)
ln(2 + ln(y/|x − w|))2 dy.(25)
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Using rough estimates yields

−CR

(
1 +

√
ln

1

|x − w| ln
(

1 + ln
1

|x − w|
))

du

(26)

≤ Yx,w
s0

≤ −CR

√
ln(1/|x − w|)

ln(2 + ln(1/|x − w|))2

for some constant CR depending on R and on the function x �→ x ·∇k(x). Plugging
these estimates into (22) yields (the constant C may change, depending on the
value of CR)

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t ,Bt (x)

)≤ eC

β|x − w|d G

(
ln

1

|x − w|
)
,(27)

where

G(y) = (
1 +

√
y ln(1 + y)

)2
e−√

2dC(
√

y/ ln(2+y)2).

Finally, by gathering estimates (18), (19) and (27) and then making successive
changes of variables, we obtain (Vd stands for the area of the unit sphere of Rd )

�2 = 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t

(
B
(
x, e−t )c)> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)∣∣∣∣x)dx

= 1

|A|
∫
A

�
β
t (�̃2|x)dx

≤ 2

|A|δ
∫
A

∫
B(x,e−t )c

eC

β|x − w|d G

(
ln

1

|x − w|
)

dx dw

≤ 2Vd

δ

∫ 1

e−t

eC

βrd
G

(
ln

1

r

)
rd−1 dr

≤ 2VdeC

δβ

∫ t

0
G(u)du.

Since G is integrable, this quantity is obviously bounded by a quantity that goes
to 0 when δ becomes large uniformly with respect to t . This concludes estimat-
ing �2.

We now estimate �1. Once again, it is enough to estimate the quantity

�̃1 = �
β
t

(
Z

β
t

(
B
(
x, e−t ))> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)
,(28)

which is less than

�̃1 ≤ 2

δ

∫
B(x,e−t )

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t ,Bt (x)

)
dw.(29)
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This time, for |w − x| < e−t , there is no need to “cut” the process (Xs(w))s≤t at
level s0 = ln 1

|x−w| . We can directly use Lemma 16 to get

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t ,B

)
= 1

β
E
[(√

2dt − P
x,w
t − Z

x,w
t + β

)
× 1{sup[0,t] P

x,w
u +Z

x,w
u −√

2du≤β}

× e
√

2d(P
x,w
t +Z

x,w
t )−dt |x,

(
Xs(x)

)
s≤t ,Bt (x)

]
≤ 1

β
E
[((√

2dt − P
x,w
t − Z

x,w
t + β

)2 + 1
)

× e
√

2d(P
x,w
t +Z

x,w
t )−dt |x,

(
Xs(x)

)
s≤t ,Bt (x)

]
= 1

β

((√
2d
(
t − qx,w(t, t)

)− P
x,w
t + β

)2 + qx,w(t, t)
)
e
√

2dP
x,w
t −d(t−qx,w(t,t)).

Once again, the quantity qx,w(t, t) is bounded by a constant only depending on k

(not on t). Second, for s ≤ t , we define the process

Y x,w
s = −

∫ s

0
gx,w(u)

(
Xu(x) − √

2du − β
)
du

+ K ′
s(x − w)

(
Xs(x) − √

2ds − β
)
,

which turns out to be equal to

Yx,w
s = P x,w

s − √
2ds + θx,w(s)

for some function θx,w that is bounded independently of x,w, s. We deduce

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t

)
= 1

β

((
θx,w(t) − Y

x,w
t

)2 + qx,w(t, t)
)
e
√

2dY
x,w
t +dt+dqx,w(t,t)−√

2dθx,w(t)(30)

≤ C

β

((
Y

x,w
t

)2 + 1
)
e
√

2dY
x,w
t +dt

for some constant C that does not depend on x,w, t . Once again on Bt(x), the
Bessel process evolves in the strip (23), implying that the process Yx,w is bound
to live in the strip (we stick to the previous notations)

−CR

(
1 +√

t ln(1 + t)
)
du ≤ Y

x,w
t ≤ −CR

√
t

ln(2 + t)2(31)
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for some constant CR . Plugging these estimates into (30) yields (the constant C

may change, depending on the value of CR)

�
β
t

(
f

β
t (w)|x,

(
Xs(x)

)
s≤t ,Bt (x)

)≤ eC

β
G(t)edt ,(32)

where the function G is still defined by

G(t) = (
1 +√t ln(1 + t)

)2
e−√

2dC(
√

t/ ln(2+t)2).

Notice that this estimate differs from that obtained for �̃2 because of the edt factor.
It will be absorbed by the volume of the ball B(x, e−t ) that we will integrate over.
Finally, by using (32), we obtain

�1 = 1

|A|
∫
A

�
β
t

(
�

β
t

(
Z

β
t

(
B
(
x, e−t ))> δ

2

∣∣∣∣x,
(
Xs(x)

)
s≤t ,Bt (x)

)∣∣∣∣x)dx

= 1

|A|
∫
A

�
β
t (�̃2|x)dx

≤ 2

|A|δ
∫
A

∫
B(x,e−t )

eC

β
G(t)edt dx dw

≤ 2

δ

eC

β
G(t).

Since G is bounded, this quantity is obviously bounded by a quantity that goes to 0
when δ becomes large uniformly with respect to t . This concludes estimating �1.
The proof is complete. �

We are now in position to prove the following:

THEOREM 17. For each bounded open set A ⊂ R
d , the martingale

(M ′
t (A))t≥0 converges almost surely toward a positive random variable denoted

by M ′(A), such that M ′(A) > 0 almost surely. Consequently, almost surely, the
(locally signed) random measures (M ′

t (dx))t≥0 converge weakly as t → ∞ to-
ward a positive random measure M ′(dx), which has full support and is atomless.
Furthermore, the measure M ′ is a solution to the �-equation (9) with γ = √

2d .

PROOF. We first observe that the martingale (Z
β
t (A))t≥0 possesses almost

surely the same limit as the process (Z̃
β
t (A))t≥0 because∣∣Zβ

t (A) − Z̃
β
t (A)

∣∣= β

∫
A

1{τβ>t}e
√

2dXt (x)−dE[Xt(x)2] dx ≤ βM
√

2d
t (A)(33)

and the last quantity converges almost surely toward 0 since M
√

2d
t (dx) almost

surely converges toward 0 as t goes to ∞; see Proposition 19 below. Using Propo-
sition 19, we have almost surely,

sup
t∈R+

max
x∈A

Xt(x) − √
2dt < +∞,
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which obviously implies

∀t M ′
t (A) = Z̃

β
t (A)

for β (random) large enough.
Since the family of random measures (Z

β
t (dx))t≥0 are nonnegative, and

(Z
β
t (A))t≥0 almost surely converges for every bounded open set A, it is plain

to deduce that, almost surely, the random measures (Z
β
t (dx))t≥0 and (Z̃

β
t (dx))t≥0

weakly converge toward a random measure Zβ(dx). Then, almost surely, the fam-
ily (M ′

t (dx))t≥0 weakly converges toward the positive random measure defined
by the increasing limit M ′(dx) := limβ→∞ Zβ(dx). Indeed, consider L > 0. We
want to show that (M ′

t (dx))t≥0 converges weakly on [−L,L]d . If ε > 0, we can
find a β > 0 such that

Eβ(L) := sup
t∈R+

max
x∈[−L,L]d

Xt (x) − √
2dt ≤ β(34)

has probability greater or equal to 1 − ε. On the event Eβ(L), we have for all
β ′ ≥ β the following equality:

M ′
t (A) = Z

β
t (A) − βM

√
2d

t (A), t ≥ 0,A ⊂ [−L,L]d .

Hence, on the event Eβ , the signed measure M ′
t (dx) converges weakly on

[−L,L]d toward M ′(dx) = Zβ(dx).
Let us prove that the support of M ′ is Rd . We first write the relation, for s < t ,

Z
β
t (dx) = (√

2ds − Xs(x) + β
)
1{τβ>t}e

√
2dXt (x)−dE[Xt(x)2] dx

+ (√
2d(t − s) − Xt(x) + Xs(x) + β

)
(35)

× 1{τβ>t}e
√

2dXt (x)−dE[Xt (x)2] dx.

By using the same arguments as throughout this section, we pass to the limit in
this relation as t → ∞ and then β → ∞ to get

M ′(dx) = e
√

2dXs(x)−dE[Xs(x)2]M ′,s(dx),(36)

where M ′,s is defined as

M ′,s(dx) = lim
β→∞ lim

t→∞Z
β,s
t (dx)

and Z
β,s
t (dx) is almost surely defined as the weak limit of

Z
β,s
t (A) =

∫
A

(√
2d(t − s) − Xt(x) + Xs(x) + β

)
× 1{τβ

s >t}e
√

2d(Xt (x)−Xs(x))−d(E[Xt(x)2]−E[Xs(x)2]) dx,
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where

τβ
s = inf

{
u > 0;Xu+s(x) − Xs(x) − √

2du > β
}
.

Let us stress that we have used the fact that the measure(√
2ds − Xs(x) + β

)
1{τβ>t}e

√
2dXt (x)−dE[Xt (x)2] dx

goes to 0 [it is absolutely continuous w.r.t. to M
√

2d
t (dx)] when passing to the

limit in (35). Therefore, M ′ is a solution to the �-equation (9). From (36), it is
plain to deduce that the event {M ′(A) = 0} (A open nonempty set) belongs to the
asymptotic sigma-algebra generated by the field {(Xt(x))x; t ≥ 0}. Therefore, it
has probability 0 or 1 by the 0 − 1 law of Kolmogorov. Since we have already
proved that it is not 0, this proves that P(M ′(A) = 0) = 0 for any nonempty open
set A.

Finally, we prove that the measure is atomless. The proof is based on the compu-
tations made during the proof of Proposition 14. We will explain how to optimize
these computations to obtain the atomless property. Of course, we could have done
that directly in the proof of Proposition 14, but we feel that it is more pedagogical
to separate the arguments. Let us roughly explain how we will proceed. Clearly, it
is sufficient to prove that the positive random measure

Zβ(dx) = lim
t→∞Z

β
t (dx)

does not possess atoms. Indeed, on the event Eβ(L) defined by (34), the measure
M ′(dx) coincides with Zβ(dx) on [−L,L]d .

To that purpose, by stationarity, it is enough to prove that (see [20], Corol-
lary 9.3, Chapter VI)

∀δ > 0 lim
n

nd
P
(
Zβ(In) > δ

)= 0,

where In is the cube [0, 1
n
]d . From now on, we stick to the notations of Proposi-

tion 14. We have to prove that

∀δ > 0 lim
n

lim sup
t

�
β
t

(
Z

β
t (In) > δ

)= 0.

Therefore, let δ > 0 and ε > 0 be two fixed positive real numbers. We choose R

and the associated event B of probability 1 − ε as in Proposition 14. We have

lim sup
t

�
β
t

(
Z

β
t (In) > δ

)≤ ε + lim sup
t

�1 + lim sup
t

�2.

First note that lim supt �1 = 0; we also have the following bound for lim supt �2:

lim sup
t

�2 ≤ 2VdeC

δβ

∫ ∞
n ln 2

G(u)du,

which goes to 0 as n goes to ∞. In conclusion, we get

lim
n

lim sup
t

�
β
t

(
Z

β
t (In) > δ

)≤ ε,

which is the desired result. �
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A.2. Proof of result from Section 4. Here, we prove Proposition 8. For no-
tational simplicity, we further assume that the dimension d is equal to 1 and that
k(u) = 0 for all |u| > 1. Generalization to all other situations is straightforward.

Let C be the interval [0,1]. Let us denote by φ(·, γ ) the Laplace transform
of Mγ (C)

φ(λ, γ ) = E
[
e−λMγ (C)].

Since P(Mγ (C) > 0) = 1 the range of the mapping λ ∈ R+ �→ φ(λ, γ ) is the
whole interval ]0,1]. Choose a strictly increasing sequence (γn)n converging to-
ward

√
2. Choose a sequence (λn)n such that

φ(λn, γn) = 1
2 .(37)

Let us denote by Mc(C) a random variable taking values in [0,+∞] such that
λnM

γn(C) → Mc(C) vaguely as n → ∞ (eventually up to a subsequence). Let us
define the function

ϕ(θ) = E
[
e−θMc(C),Mc(C) < ∞]

for θ > 0 and ϕ(0) = 1. Then φ(θλn, γn) → ϕ(θ) for all θ so that, in particular,
ϕ(1) = 1

2 . Let us choose ε small enough in order to have ln 1
ε

even integer larger
than 4. Because of (9), we have

φ(θλn, γn) = E

[
exp

[
−θλn

∫
C

eγnXln(1/ε)(r)−(γ 2
n /2)E[Xln(1/ε)(r)

2]Mγn,ε(dr)

]]
.

Let us denote by Ck the interval [ k
ln(1/ε)

, k+1
ln(1/ε)

] for k ∈ Aε
def= {0, . . . , ln 1

ε
− 1}.

By the Cauchy–Schwarz inequality and stationarity, we have

φ(θλn, γn) ≤ E

[
exp

[
−2θλn

∑
k∈Aε
even

∫
Ck

eγnXln(1/ε)(r)−(γ 2
n /2)E[Xln(1/ε)(r)

2]Mγn,ε(dr)

]]
.

By the Kahane convexity inequality and because the mapping x �→ e−sx is convex
for any s ∈ R, we deduce

φ(θλn, γn) ≤ E

[
exp

[
−2θλn

∑
k∈Aε
even

∫
Ck

e
√

2Xln(1/ε)(0)−E[Xln(1/ε)(0)2]Mγn,ε(dr)

]]

= E

[
exp

[
−2θλne

√
2Xln(1/ε)(0)−E[Xln(1/ε)(0)2] ∑

k∈Aε
even

Mγn,ε(Ck)

]]
.

Because the sets Ck are separated by a distance of at least 1
ln(1/ε)

, the random vari-
ables (Mγn,ε(Ck))k∈Aε even are i.i.d. with common law εMγn(C) because of (9).
We deduce

φ(θλn, γn) ≤ E
[
φ
(
2θλnεe

√
2Xln(1/ε)(0)−E[Xln(1/ε)(0)2], γn

)(1/2) ln(1/ε)]
.
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By taking the limit as n → ∞, we deduce

ϕ(θ) ≤ E
[
ϕ
(
2θεe

√
2Xln(1/ε)(0)−E[Xln(1/ε)(0)2])(1/2) ln(1/ε)]

.

By letting θ go to 0, we deduce

ϕ(0+) ≤ ϕ(0+)(1/2) ln(1/ε).

Because 1
2 ln 1

ε
≥ 2, we are left with two options: either ϕ(0+) = 0 or ϕ(0+) ≥ 1.

But ϕ(0+) ≤ 1 because e−θx ≤ 1 for all x ≥ 0. Furthermore ϕ(0+) ≥ ϕ(1) = 1
2 .

Therefore, ϕ(0+) = 1 and Mc(C) < +∞ almost surely. Mc(C) is not trivial be-
cause ϕ(1) = 1

2 . We have proved that the sequence (λnM
γn(C))n is tight and that

the limit of every converging subsequence is nontrivial.
Of course, we can carry out the same job for every smaller dyadic interval. But

the normalizing sequence may depend on the size of the interval. Let us prove that
it does not. To this purpose, it is enough to establish that

1

2
≤ lim inf

n
E
[
e−λnMγn(Ck)

]≤ lim sup
n

E
[
e−λnMγn(Ck)

]
< 1

for every dyadic interval Ck of size 2−k . The left-hand side is obvious because
Mγn(Ck) ≤ Mγn(C). By using (9) with ε = 2−k and the Kahane convexity in-
equality, we deduce

lim sup
n

E
[
exp

[−λnM
γn(Ck)

]]
≤ lim sup

n
E
[
exp

[−λnM
γn(C)2−ke

√
2Xk ln 2(0)−E[Xk ln 2(0)2]]]

= E
[
ϕ
(
2−ke

√
2Xk ln 2(0)−E[Xk ln 2(0)2])].

The last quantity is strictly less than 1. Indeed, if not, then

ϕ
(
2−ke

√
2dXk ln 2(0)−((2d)/2)E[Xk ln 2(0)2])= 1

almost surely, that is, ϕ(θ) = 1 for all θ , hence a contradiction.
To sum up, the sequence (λnM

γn(C))n is tight for all dyadic intervals. By
the Tychonoff theorem and the Caratheodory extension theorem, we can extract
a subsequence and find a random measure Mc(dx) such that (λnM

γn(C1), . . . ,

λnM
γn(Cp))n converges in law toward (Mc(C1), . . . ,M

c(Cp))n for all dyadic in-
tervals C1, . . . ,Cp . Finally, by multiplying both sides of (9) by λn and passing to
the limit as n → ∞, we deduce(

Mc(A)
)
A∈B(R)

law=
(∫

A
e
√

2Xln(1/ε)(r)−E[Xln(1/ε)(r)
2]Mc,ε(dr)

)
A∈B(R)

,(38)

where (
Mc,ε(A)

)
A∈B(R)

law= ε

(
Mc

(
A

ε

))
A∈B(R)

.(39)
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APPENDIX B: AUXILIARY RESULTS

We first state the classical “Kahane’s convexity inequalities” (originally written
in [45]; see also [3] for a proof):

LEMMA 18. Let F,G :R+ → R be two functions such that F is convex, G is
concave and

∀x ∈ R+
∣∣F(x)

∣∣+ ∣∣G(x)
∣∣≤ M

(
1 + |x|β)

for some positive constants M,β , and σ be a Radon measure on the Borelian sub-
sets of Rd . Given a bounded Borelian set A, let (Xr)r∈A, (Yr)r∈A be two contin-
uous centered Gaussian processes with continuous covariance kernels kX and kY

such that

∀u, v ∈ A kX(u, v) ≤ kY (u, v).

Then

E

[
F

(∫
A

eXr−(1/2)E[X2
r ]σ(dr)

)]
≤ E

[
F

(∫
A

eYr−(1/2)E[Y 2
r ]σ(dr)

)]
,

E

[
G

(∫
A

eXr−(1/2)E[X2
r ]σ(dr)

)]
≥ E

[
G

(∫
A

eYr−(1/2)E[Y 2
r ]σ(dr)

)]
.

If we further assume

∀u ∈ A kX(u,u) = kY (u,u),

then we recover Slepian’s comparison lemma: for each increasing function
F :R+ →R:

E

[
F
(

sup
x∈A

Yx

)]
≤ E

[
F
(

sup
x∈A

Xx

)]
.

B.1. Chaos associated to cascades. We use Kahane convexity inequalities
(see Proposition 18) to compare the small moments of the Gaussian multiplica-
tive chaos with those of a dyadic lognormal Mandelbrot’s multiplicative cascade.
Let us briefly recall the construction of lognormal Mandelbrot’s multiplicative cas-
cades. We consider the 2d -adic tree

T = ({1,2}d)N∗
.

For t ∈ T , we denote by πk(t) (k ∈ N
∗) the kth component of t . We equip T with

the ultrametric distance

∀s, t ∈ T d(t, s) = 2−dn where n = sup
{
N ∈ N; ∀k ≤ N,πk(t) = πk(s)

}
with the convention that n = 0 if the set {N ∈ N; ∀k ≤ N,πk(t) = πk(s)} is empty.
Let us define

∀s, t ∈ T pn(t, s) =
{

u, if d(t, s) ≤ 2−nd ,
0, if d(t, s) > 2−nd .
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The kernel pn is therefore constant over each of the 2dn cylinders defined by the
prescription of the first n coordinates [in what follows, we will denote by In(t)

that cylinder containing t]. For each n, we denote by (Yn(t))t∈T a centered Gaus-
sian process indexed by T with covariance kernel pn. We assume that the pro-
cesses (Yn)n are independent. We set

∀s, t ∈ T qn(t, s) =
n∑

k=1

pk(t, s).(40)

Notice that

∀s, t ∈ T qn(t, s) = u

d ln 2
ln

1

d(t, s) ∨ 2−dn
(41)

and

qn(t, s) → u

d ln 2
ln

1

d(t, s)
as n → ∞.

We define the centered Gaussian process

∀t ∈ T �Xn(t) =
n∑

k=1

Yk(t)

with covariance kernel qn. Let us denote by σ the uniform measure on T , that is
σ(In(t)) = 2−dn. We set

�Mu
n =

∫
T

e
�Xn(t)−(1/2)E[�Xn(t)2]σ(dt).

This corresponds to the lognormal multiplicative cascades framework. The mar-
tingale ( �Mu

n)n converges toward a nontrivial limit if and only if u < 2d ln 2. The
boundary case corresponds to u = 2d ln 2. It is proved in [46] that, for u = 2d ln 2,
limn

�Mu
n(dx) = 0 almost surely.

It turns out that the 2d -adic tree can be naturally embedded in the unit cube
of Rd by iteratively dividing a cube into 2d cubes with equal size length. Notice
that the uniform measure on the tree is then sent to the Lebesgue measure by this
embedding. We also stress that the dyadic distance on the cube [0,1]d is greater
than the Euclidean distance on that cube

∀s, t ∈ [0,1]d |t − s| ≤ √
dd(t, s)1/d .

This allows many one-sided comparison results between lognormal cascades and
Gaussian multiplicative chaos.

So, taking u = 2d ln 2 in the kernel qn of (41), we claim for all s′, s ∈
[0,1]d, ∀n ∈N,

qn

(
s, s′)− C ≤ 2dKn ln 2

(
s − s′)(42)

for some constant C > 0 that does not depend on n (only on k).
We are now in position to prove the following:
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PROPOSITION 19. For γ 2 = 2d , the standard construction yields a vanishing
limiting measure

lim
t→∞M

√
2d

t = 0 almost surely.(43)

Furthermore, for all a ∈ [0, 1
2 [ and any bounded open set A, almost surely,

sup
t≥0

(
sup
x∈A

Xt(x) − √
2dt + a√

2d
ln(t + 1)

)
< ∞.(44)

PROOF. We consider �Xn with covariance given by (41) for u = ln 2; by a slight
abuse of notation, we consider that �Xn is defined on the unit cube by the natural
embedding.

The family (M
γ
t ) is a positive martingale. Therefore, it converges almost surely.

We just have to prove that the limit is zero. We will apply Kahane’s concentration
inequalities (Lemma 18). Let us denote by Z a standard Gaussian random variable
independent of the process (Xt(x))t,x . From (42), the covariance kernel of the
centered Gaussian process �Xn is less than that of the Gaussian process

√
CZ +

Xn ln 2. By applying Lemma 18 to some bounded concave function F :R+ → R

and n ∈ N, we obtain (we stick to the notations introduced just above)

E
[
F
(
e
√

CZ−(1/2)CM
√

2d
n ln 2

([0,1]d))]≤ E

[
F

(∫
T

e
√

2d�Xn(t)−dE[�Xn(t)2] dt

)]
.(45)

Now we further assume that F is increasing. Because of the dominated conver-
gence theorem, the right-hand side goes to F(0) as n → ∞. So does the left-hand

side. This shows that M
√

2d
n ln 2([0,1]d) goes to 0 in probability as n → ∞. Since

we already know that the martingale M
√

2d
t ([0,1]d) converges almost surely as

t → ∞, this completes the proof of the first statement.
For the second statement, we fix a ∈ [0, 1

2 [ and we consider the case d = 1
with k(x) = (1 − |x|)+ for simplicity (this is no restriction since every C1 kernel
k with k(0) = 1 is greater or equal to some (1 − |x|

L
)+ for L > 0). In this case,

one can represent the variables Xs(x) as integrals of truncated cones with respect
to a Gaussian measure; see Section B.2 below for a quick reminder or [7, 11]
for details. Note that a similar cone construction can be performed in R

d × R+,
and hence the proof can be generalized to all dimensions. The cone representation
ensures that we have the following decomposition (see Section B.2):

LEMMA 20. We fix n and cut [0,1] into 2n intervals. We have the following
decomposition for Xs ln 2(x) for all s ∈ [n,n + 1] and x ∈ Ii,n := [ i

2n , i+1
2n [:

Xs ln 2(x) = Xi,n + Y i,n
s (x)

with the following properties:
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• There exists a constant C > 0 (independent of n) such that

E[Xi,nXj,n] = n ln 2 −
(

1 − 1

2n

)
if i = j,

E[Xi,nXj,n] ≥ E

[
�Xn

(
i

2n

)
�Xn

(
j

2n

)]
− C if i = j.

• For all i, the process (Y i,n
s (x))s∈[n,n+1],x∈Ii,n

is continuous and independent
of Xi,n.

• For all i, j , s, s′ ∈ [n,n + 1] and x ∈ Ii,n, x′ ∈ Ij,n:

E
[
Y i,n

s (x)Y
j,n

s′
(
x′)]≥ 0.

• For all i, j , s ∈ [n,n + 1] and x ∈ Ii,n:

E
[
Y i,n

s (x)Xj,n

]≥ 0.

We introduce a standard Gaussian variable Z independent from the process
(Xs ln 2(x))x and a standard Gaussian i.i.d. sequence (�Zi)0≤i≤2n−1. We also in-
troduce a sequence of independent processes (�Y i,n

s (x))s∈[n,n+1],x∈Ii,n
independent

from �Xn and such that for all i the process (�Y i,n
s (x))s∈[n,n+1],x∈Ii,n

has same law
as (Y i,n

s (t))s∈[n,n+1],x∈Ii,n
. By Lemma 18, we have the following for all y:

P

(
sup

0≤i≤2n−1
sup

s∈[n,n+1]
sup

x∈Ii,n

(
Xi,n +

√
1 − 1

2n
+ CZ + Y i,n

s (x) − √
2n ln 2

)
≥ y

)

≤ P

(
sup

0≤i≤2n−1
sup

s∈[n,n+1]
sup

x∈Ii,n

(
�Xn

(
i

2n

)
+ √

C �Zi

+ �Y i,n
s (x) − √

2n ln 2
)

≥ y

)
.

Indeed, we have the following if i = j , x, x′ ∈ Ii,n and s, s′ ∈ [n,n + 1]:

E

[(
Xi,n +

√
1 − 1

2n
+ CZ + Y i,n

s (x)

)(
Xi,n +

√
1 − 1

2n
+ CZ + Y

i,n
s′
(
x′))]

= n ln 2 + C +E
[
Y i,n

s (x)Y
i,n
s′
(
x′)]

= E

[(
�Xn

(
i

2n

)
+ √

C�Zi + �Y i,n
s (x)

)(
�Xn

(
i

2n

)
+ √

C�Zi + �Y i,n
s′
(
x′))]

and for i = j , x ∈ Ii,n, x′ ∈ Ij,n and s, s′ ∈ [n,n + 1]:

E

[(
Xi,n +

√
1 − 1

2n
+ CZ + Y i,n

s (x)

)(
Xj,n +

√
1 − 1

2n
+ CZ + Y

i,n
s′
(
x′))]

≥ E[Xi,nXj,n] + 1 − 1

2n
+ C



1802 DUPLANTIER, RHODES, SHEFFIELD AND VARGAS

≥ E

[
�Xn

(
i

2n

)
�Xn

(
j

2n

)]
= E

[(
�Xn

(
i

2n

)
+ √

C�Zi + �Y i,n
s (x)

)(
�Xn

(
j

2n

)
+ √

C�Zj + �Y j,n

s′
(
x′))].

Now, let β > 1 and r < 1 be such that βr < 1 and (3
2 − a)βr > 1. We have

P

(
sup

0≤i≤2n−1
sup

s∈[n,n+1]
sup

x∈Ii,n

(√
2�Xn

(
i

2n

)
+ √

2C�Zi + √
2 �Y i,n

s (x)

− 2n ln 2 + a ln(n + 1)

)
≥ 1

)
= P

(
sup

0≤i≤2n−1

(√
2�Xn

(
i

2n

)
+ √

2C�Zi + √
2 sup

s∈[n,n+1],x∈Ii,n

�Y i,n
s (x)

− 2n ln 2 + a ln(n + 1)

)
≥ 1

)
≤ (n + 1)aβre−βr

×E

[(2n−1∑
i=0

e
β(

√
2�Xn(i/2n)+√

2C�Zi+
√

2 sups∈[n,n+1],x∈Ii,n
�Y i,n
s (x)−2n ln 2)

)r]

≤ (n + 1)aβre−βr

×E

[
E

[(2n−1∑
i=0

e
β(

√
2�Xn(i/2n)+√

2C�Zi+
√

2 sups∈[n,n+1],x∈Ii,n
�Y i,n
s (x)−2n ln 2)

)r ∣∣∣∣∣�Xn

]]

≤ (n + 1)aβre−βr

×E

[(
E

[2n−1∑
i=0

e
β(

√
2�Xn(i/2n)+√

2C�Zi+
√

2 sups∈[n,n+1],x∈Ii,n
�Y i,n
s (x)−2n ln 2)

∣∣∣∣∣�Xn

])r]

≤ (n + 1)aβre−βr
E
[
e
β(

√
2C�Zi+

√
2 sups∈[n,n+1],x∈Ii,n

�Y i,n
s (x))]r

×E

[(2n−1∑
i=0

eβ(
√

2�Xn(i/2n)−2n ln 2)

)r]

≤ Cβ,r(n + 1)aβr
E

[(2n−1∑
i=0

eβ(
√

2�Xn(i/2n)−2n ln 2)

)r]

≤ Cβ,r

n(3/2−a)βr+o(1)
,

where in the last line we have used Theorem 1.6 in [43]. This entails the desired
result by the Borel–Cantelli lemma. �
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B.2. Reminder about the cone construction. The cone construction is based
on Gaussian independently scattered random measures; see [66] for further details.
We consider a Gaussian independently scattered random measure μ distributed
on the measurable space (R × R+,B(R × R+)), that is, a collection of Gaussian
random variables (μ(A),A ∈ B(R×R+)) such that:

(1) For every sequence of disjoint sets (An)n in B(R × R+), the random vari-
ables (μ(An))n are independent and

μ

(⋃
n

An

)
=∑

n

μ(An) a.s.

(2) For any measurable set A in B(R×R+), μ(A) is a Gaussian random vari-
able whose characteristic function is given by

E
(
eiqμ(A))= e−(q2/2)�(A),

where the control measure � is given by

�(dx, dy) = 1

y2 dx dy.

We can then define the stationary Gaussian process (ωl(x))x∈R for 0 < l ≤ 1 by

ωl(x) = μ
(
Al(x)

)
,

where Al(x) is the triangle like subset Al(x) := {(u, y) ∈ R × R
∗+ : l ≤ y ≤ 1,

−y/2 ≤ x −u ≤ y/2} (see Figure 2). The covariance kernel of the stationary Gaus-
sian process ωl is given by

Kl(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if |x| ≥ 1,

ln
1

|x| + |x| − 1, if l ≤ |x| ≤ 1,

ln
1

l
+ |x| − |x|

l
, if |r| ≤ l,

(46)

FIG. 2. A graphical representation of the cone construction Al (x).
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FIG. 3. A graphical representation of Ai,n.

which can also be rewritten as

Kl(x) =
∫ 1/l

1

(1 − |xu|)+
u

du.

Therefore, the process ωe−t has the same law as Xt . This approach is called the
cone construction.

Now we explain how to use the cone construction to prove Lemma 20, that, is
to decompose the process Xs ln 2 = ω2−s for s ∈ [n,n + 1]. So we choose i ∈ N

such that 0 ≤ i ≤ 2n − 1. We call Ai,n the common part to all the cone like subsets
A2−s (x) for s ∈ [n,n + 1] (see Figure 3) and x ∈ Ii,n,

Ai,n = ⋂
s∈[n,n+1]

⋂
x∈Ii,n

A2−s (x)

=
{
(u, y) ∈ R×R

∗+ : 2−n ≤ y ≤ 1,−y

2
+ i + 1

2n
≤ u ≤ y

2
+ i

2n

}
.

For s ∈ [n,n + 1] and x ∈ Ii,n, we define the set Ri,n
s (x) as

Ri,n
s (x) = A2−s (x) \Ai,n.

Then we set Y i,n
s (x) = μ(Ri,n

s (x)) and Xi,n = μ(Ai,n). In particular, we find

E[Xi,nXj,n] = n ln 2 + ln
1

|i − j | + 1
+ |i − j | + 1

2n
− 1.
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It is then straightforward to check the claims of Lemma 20 by using the properties
of the measure μ. The process (Y i,n(x))s∈[n,n+1],x∈Ii,n

is independent of Xi,n since
the sets (Ri,n

s (x))s∈[n,n+1],x∈Ii,n
are all disjoint of the triangle Ai,n. We also have

E
[
Y i,n(x)Y j,n(x′)]≥ 0

since this covariance is just given by the �-measure of the set Ri,n
s (x) ∩Ri,n

s (x′).
The same argument holds to prove E[Y i,n(x)Xj,n] ≥ 0.
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[41] GROSS, D. J. and MILJKOVIĆ, N. (1990). A nonperturbative solution of D = 1 string theory.
Phys. Lett. B 238 217–223. MR1050721

[42] GUBSER, S. S. and KLEBANOV, I. R. (1994). A modified c = 1 matrix model with new critical
behavior. Phys. Lett. B 340 35–42. MR1304657

[43] HU, Y. and SHI, Z. (2009). Minimal position and critical martingale convergence in branch-
ing random walks, and directed polymers on disordered trees. Ann. Probab. 37 742–789.
MR2510023

[44] JAIN, S. and MATHUR, S. D. (1992). World-sheet geometry and baby universes in 2D quantum
gravity. Phys. Lett. B 286 239–246. MR1175135

[45] KAHANE, J.-P. (1985). Sur le chaos multiplicatif. Ann. Sci. Math. Qué. 9 105–150.
MR0829798

[46] KAHANE, J.-P. and PEYRIÈRE, J. (1976). Sur certaines martingales de Benoit Mandelbrot.
Adv. Math. 22 131–145. MR0431355

[47] KAZAKOV, V., KOSTOV, I. and KUTASOV, D. (2000). A matrix model for the 2d black hole.
In Nonperturbative Quantum Effects. JHEP Proceedings. Available at http://pos.sissa.it/
cgi-bin/reader/conf.cgi?confid=6.

[48] KLEBANOV, I. R. (1995). Touching random surfaces and Liouville gravity. Phys. Rev. D 51
1836–1841. MR1320922

[49] KLEBANOV, I. R. and HASHIMOTO, A. (1995). Non-perturbative solution of matrix models
modified by trace-squared terms. Nuclear Phys. B 434 264–282. MR1312995

[50] KLEBANOV, I. R. and HASHIMOTO, A. (1996). Wormholes, matrix models, and Liouville
gravity. Nuclear Phys. B Proc. Suppl. 45BC 135–148. String theory, gauge theory and
quantum gravity (Trieste, 1995). MR1410550

[51] KNIZHNIK, V. G., POLYAKOV, A. M. and ZAMOLODCHIKOV, A. B. (1988). Fractal structure
of 2D-quantum gravity. Modern Phys. Lett. A 3 819–826. MR0947880

[52] KOSTOV, I. K. (1991). Loop amplitudes for nonrational string theories. Phys. Lett. B 266 317–
324. MR1126824

[53] KOSTOV, I. K. (1992). Strings with discrete target space. Nuclear Phys. B 376 539–598.
MR1170955

[54] KOSTOV, I. K. (2010). Boundary loop models and 2D quantum gravity. In Exact Methods
in Low-Dimensional Statistical Physics and Quantum Computing (J. Jacobsen, S. Ouvry,
V. Pasquier, D. Serban and L. F. Cugliandolo, eds.) 363–406. Oxford Univ. Press, Oxford.
MR2668651

[55] KOSTOV, I. K. and STAUDACHER, M. (1992). Multicritical phases of the O(n) model on a
random lattice. Nuclear Phys. B 384 459–483. MR1188360

[56] KYPRIANOU, A. E. (1998). Slow variation and uniqueness of solutions to the functional equa-
tion in the branching random walk. J. Appl. Probab. 35 795–801. MR1671230

[57] LIU, Q. (1998). Fixed points of a generalized smoothing transformation and applications to the
branching random walk. Adv. in Appl. Probab. 30 85–112. MR1618888

[58] MADAULE, T. Convergence in law for the branching random walk seen from its tip. Available
at arXiv:1107.2543v2.

[59] MANDELBROT, B. B. (1972). A possible refinement of the lognormal hypothesis concerning
the distribution of energy in intermittent turbulence. In Statistical Models and Turbulence
333–351. Springer, New York.

http://www.ams.org/mathscinet-getitem?mr=1053364
http://www.ams.org/mathscinet-getitem?mr=1076752
http://www.ams.org/mathscinet-getitem?mr=1050721
http://www.ams.org/mathscinet-getitem?mr=1304657
http://www.ams.org/mathscinet-getitem?mr=2510023
http://www.ams.org/mathscinet-getitem?mr=1175135
http://www.ams.org/mathscinet-getitem?mr=0829798
http://www.ams.org/mathscinet-getitem?mr=0431355
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=6
http://www.ams.org/mathscinet-getitem?mr=1320922
http://www.ams.org/mathscinet-getitem?mr=1312995
http://www.ams.org/mathscinet-getitem?mr=1410550
http://www.ams.org/mathscinet-getitem?mr=0947880
http://www.ams.org/mathscinet-getitem?mr=1126824
http://www.ams.org/mathscinet-getitem?mr=1170955
http://www.ams.org/mathscinet-getitem?mr=2668651
http://www.ams.org/mathscinet-getitem?mr=1188360
http://www.ams.org/mathscinet-getitem?mr=1671230
http://www.ams.org/mathscinet-getitem?mr=1618888
http://arxiv.org/abs/arXiv:1107.2543v2
http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=6


1808 DUPLANTIER, RHODES, SHEFFIELD AND VARGAS

[60] MOTOO, M. (1958). Proof of the law of iterated logarithm through diffusion equation. Ann.
Inst. Statist. Math. 10 21–28. MR0097866

[61] NAKAYAMA, Y. (2004). Liouville field theory: A decade after the revolution. Internat. J. Mod-
ern Phys. A 19 2771–2930. MR2073993

[62] NEVEU, J. (1988). Multiplicative martingales for spatial branching processes. In Seminar
on Stochastic Processes, 1987 (Princeton, NJ, 1987) (E. Cinlar, K. L. Chung and
R. K. Getoor, eds.). Progr. Probab. Statist. 15 223–241. Birkhäuser, Boston, MA.
MR1046418

[63] NIENHUIS, B. (1987). Coulomb gas formulation of two-dimensional phase transitions. In
Phase Transitions and Critical Phenomena (C. Domb and J. L. Lebowitz, eds.). Aca-
demic Press, London. MR0942673

[64] PARISI, G. (1990). On the one-dimensional discretized string. Phys. Lett. B 238 209–212.
MR1050719

[65] POLCHINSKI, J. (1990). Critical behavior of random surfaces in one dimension. Nuclear
Phys. B 346 253–263. MR1080693
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