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Abstract The task of complete complexity dichotomy is to clearly distinguish

between easy and hard cases of a given problem on a family of subproblems. We

consider this task for some optimization problems restricted to certain classes of

graphs closed under deletion of vertices. A concept in the solution process is based

on revealing the so-called “critical” graph classes, which play an important role in

the complexity analysis for the family. Recent progress in studying such classes is

presented in the article.

Keywords Computational complexity · Polynomial-time algorithm · Hereditary

graph class · Independent set problem · Dominating set problem · Coloring problem ·
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1 Introduction

A large number of results on polynomial-time solvability and NP-completeness has

been accumulated for many graph problems under various restrictions of graph classes

[45]. The existing extensive literature is constantly updated with new papers in this

area. Despite the critical importance of studying the complexity of graph problems

for individual classes, there is a noticeable absence of the generality in papers in the
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1594 D. S. Malyshev, P. M. Pardalos

field. Usually, the complexity status of an NP-complete graph problem is determined

for “standard” classes, like the classes of bipartite graphs, planar graphs, bounded

degree graphs, and etc. One could say that the standard approach in the area is to

enumerate several “famous” classes and point out the complexity of a given problem

for at least one of them. For example, the classical independent set problem is known

to be polynomial-time solvable for bipartite graphs and graphs with degrees at most

two [48], but it is NP-complete for planar graphs and graphs with degrees at most three

[14]. However, the approach does not allow to clarify what is the reason of different

complexity of the same graph problem for distinct restrictions of the class of all graphs.

At the same time, it would be more natural to look at the issue more generally. A novel

approach for a systematic study of the computational complexity is considered in this

paper.

When considering representative families of graph classes, one could set more

general problems than the complexity analysis of some concrete graph problem for

a given class of graphs. One could ask the following two general questions. How to

classify classes in a family with respect to the computational complexity of a consid-

ered graph problem? Is there a “boundary” separating “easy” and “hard” instances? To

answer these questions, a suitable choice of the corresponding conceptual apparatus

is necessary. Human intuition says that we should focus our attention on classes of

the family critical with respect to some “complexity-topological” sense. For exam-

ple, minimal “hard” and maximal “easy” classes are natural critical classes, as they

are phase-transition elements. Possible absence of the “boundary points” above leads

to the idea to consider the limits of monotonically decreasing sequences of “hard”

classes. Intuitively, these limits may also be critical classes.

This paper is a survey about some types of critical classes (boundary and mini-

mal hard) in the family of hereditary graph classes, i.e. sets of graphs closed under

isomorphism and deletion of vertices.

2 Hereditary classes

All graphs in this paper are finite, unlabelled, undirected, without loops and multiple

edges. A graph H is a subgraph of G if H is obtained from G by deletion of some

edges and vertices with incident edges. A graph H is an induced subgraph of G if H

is obtained from G by deletion of some vertices with incident edges. A class of graphs

is a set of graphs closed under isomorphism. A graph H is called a subgraph of a

graph G if H can be obtained from G by deletion of vertices and edges. A graph H

is called an induced subgraph of a graph G if H can be obtained from G by deletion

of only vertices. A class of graphs is called hereditary if it is closed under deletion

of vertices. A class is hereditary if and only if it contains all induced subgraphs of

each its graph. Any hereditary (and only hereditary) graph class X can be defined

by a set of its forbidden induced subgraphs Y (see Theorem 15 of [28]). We write

X = Free(Y) in this case. In other words, X consists of those and only those graphs

that deletion of their vertices does not produce any graph in Y . There is a unique

minimal set Y with this property denoted by Forb(X ). If Forb(X ) is finite, then X

is called finitely defined. For example, if X1 is the set of all forests, then Forb(X1)
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consists of all cycles. If X2 is the class of graphs, whose connected components are

complete graphs, then a path with three vertices is a unique element of Forb(X2).

The class X2 is finitely defined, but X1 is not. Notice that if X and Y are hereditary

classes such that Y ⊂ X , then there is a subset Z ⊆ X such that Y = X ∩ Free(Z).

For some hereditary graph classes, determining the minimal set of forbidden

induced subgraphs is a simple problem. However, in general, the problem of find-

ing this set is far from being trivial, as the example of perfect graphs shows [10]. It

has been open for almost 40 years.

The choice of the family is motivated by many reasons. Firstly, many known classes

are hereditary. For example, the classes of bipartite and planar graphs, bounded degree

graphs are hereditary. Secondly, the family is continuum and, hence, representative,

which makes the questions raised in the introduction to be interesting for it. Indeed,

taking any two different infinite subsets of the set of all simple cycles and forbidding

their graphs as induced subgraphs produces different hereditary classes. The set of

all simple cycles is countable, the power set of a countable set is continuum [47],

the set of all finite subsets of a countable set is also countable [47]. The difference

of a continuum set and a countable set is also continuum. Hence, the set of all those

hereditary classes is continuum. Thirdly, for hereditary classes, the concept of critical

graph classes really does its job, i.e. it helps to answer when a difficult problem

becomes easy. More precisely, a graph problem is NP-complete for a finitely defined

class if and only if the class contains a subclass critical for the problem. Hence, a

known list of classes critical for a given problem enables to classify its complexity

in the family of all finitely defined graph classes. Additional motivation to consider

specifically hereditary graph classes will be presented through one section.

3 Graphs and classical graph problems

As usual, Pn, Cn , and Kn are a simple path, a simple cycle, and a complete graph with

n vertices, respectively. A graph K p,q is complete bipartite with p vertices in the first

part and q vertices in the second.

A graph G is the complement of a graph G. A graph G1 + G2 is the disjoint sum

of graphs G1 and G2 with non-intersected sets of vertices. A graph kG is isomorphic

to k disjoint copies of a graph G. For a graph G and its vertex x , degG(x) is degree

of x in the graph G.

In this paper, we will refer to the following classical graph problems.

An independent set of a graph is a subset of its pairwise non-adjacent vertices. The

size of a maximum independent set of G is said to be the independence number of G

and denoted by α(G). The independent set problem, for a graph G and a natural k, is

to verify the inequality α(G) ≥ k.

A vertex cover of a graph G is a subset V ′ ⊆ V (G) such that any edge in E(G) is

incident to an element of V ′. It is easy to see that V ′ is a vertex cover of G if and only

if V (G)\V ′ is independent. The size of a minimum vertex cover of G is denoted by

β(G). Clearly, α(G) + β(G) = |V (G)| for each graph G. The vertex cover problem,

for a graph G and a natural k, is to verify the inequality β(G) ≤ k.
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A clique in a graph is a set of pairwise adjacent vertices. For a given graph G and a

natural k, the clique problem is to determine whether G contains a clique with at least

k vertices.

A dominating set of a graph G is a subset V ′ ⊆ V (G) such that any element of

V (G)\V ′ has a neighbor in V ′. The size of a minimum dominating set of G is said to

be the domination number of G and denoted by γ (G). The dominating set problem is

to check, for a given graph G and a natural k, whether γ (G) ≤ k or not.

A proper coloring (or simply a coloring) is an arbitrary mapping from the set of

vertices or edges of a graph into a set of colors of the graph such that any adjacent

vertices (or edges) are colored by different colors. The chromatic number of graph G

denoted by χ(G) is a minimal number of colors needed to properly color G. The vertex

k-colorability problem is to verify whether vertices of a given graph can be properly

colored with at most k colors. The edge k-colorability problem is the edge analogue of

the vertex k-colorability problem. The chromatic number problem, for a given graph

G and a given natural k, is to check the validity of the inequality χ(G) ≤ k. Notice,

the vertex k-colorability and the chromatic number problems are distinct problems,

because we know k for the first problem in advance, i.e. before giving G. At the same

time, k is a part of an input for the second problem.

A Hamiltonian cycle of a graph is a cycle that once visits all its vertices. For a given

graph, the Hamiltonian cycle problem is to check whether a given graph contains a

Hamiltonian cycle or not.

4 Boundary graph classes

We use the following natural formal definitions for “easy” and “hard” hereditary

classes. For a given NP-complete graph problem �, a hereditary class is said to be

�-easy if � can be polynomially solved for its graphs. A hereditary class is �-hard

if � is NP-complete for it. For instance, bipartite graphs constitute an easy case for

the independent set problem [48], but the class of planar graphs is hard for it [14].

Maximal �-easy and minimal �-hard classes are natural boundary elements in

the family of hereditary classes. It turns out that the boundary may be absent at all.

First, there are no maximal �-easy classes, as any �-easy class X can be extended by

adding a graph G /∈ X and all proper induced subgraphs of G. Clearly, the resultant

class is also �-easy, as we added a finite set of graphs to X . Second, minimal hard

classes exist for some problems and do not exist for some others. For a given graph G ′

and a function f : E(G ′) −→ {1, 2}, the travelling salesman problem with distances

one and two is to check whether the minimum length of its Hamiltonian cycles is at

most a given number or not. It is NP-complete in the class of all complete graphs

[44]. Forbidding any fixed complete graph in the class of all complete graphs restricts

the number of vertices of graphs in the resultant class. Hence, each proper hereditary

subclass of the class of all complete graphs contains a finite set of graphs. Hence, the

problem can be solved in O(1) time for the subclass. Hence, the class of all complete

graphs is a minimal hard case for the problem. On the other hand, for the vertex and

edge variants of the k-colorability problem, any hard class contains a proper hard

subclass. Indeed, if Y is a hard case for the problem, then it must contain a graph
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that cannot be properly colored in k colors. Let H ∈ Y be a fixed graph of this type.

Therefore, Y\Free({H}) contains only graphs that also cannot be properly colored in

k colors. There is a polynomial-time algorithm to test whether a given graph G ′′ ∈ Y

belongs to Y∩ Free({H}) by enumerating all subsets of V (G ′′) with |V (H)| elements

and verifying whether one of them induces H . If G ′′ ∈ Y\Free({H}), then G ′′ is

not k-colorable, as H is not k-colorable. Hence, Y ∩ Free({H}) must be hard for the

problem, and we have a contradiction. The phenomena of the absence of the boundary

we just considered was noticed in [31].

So, to classify hereditary classes, we have to take into account that the sets of easy

and hard classes can be open with respect to the inclusion relation. In other words, there

may be infinite monotonically decreasing sequences of hard classes. Intuitively, the

limits of such chains should play a special role in the analysis of the complexity. This

observation leads to the notion of a boundary graph class. A class X is �-limit if there

is an infinite sequence X1 ⊇ X2 ⊇ . . . of �-hard classes such that X =
⋂∞

k=1 Xk .

Clearly, any �-limit class is hereditary. Moreover, any �-hard class X ′ is �-limit, as

the stationary sequence {Xi }, where Xi = X ′ for each i , converges to X ′. A �-limit

class that is minimal under inclusion is said to be �-boundary. The following theorem

shows the significance of the boundary class notion (see [2,4]).

Theorem 1 A finitely defined class is �-hard if and only if it includes some �-

boundary class.

The theorem shows that knowledge of the �-boundary system (i.e. the set of all

�-boundary classes) gives a dichotomy with respect to NP-completeness and non-NP-

completeness of � for the family of finitely defined classes. Note, the theorem does not

state that a finitely defined class is �-easy if it does not contain any �-boundary class.

One more interesting fact is that there is a boundary class for each NP-complete graph

problem (in contrast to minimal hard classes), as the set of all graphs is finitely defined.

Unfortunately, Theorem 1 cannot be extended to the whole family of all hereditary

classes, since it is wrong for it. The corresponding counterexample will be presented

later.

The definition of a boundary graph class also shows the importance of the family

of hereditary graph classes, as critical graph classes may be absent at all for some

other families. For example, the method does not work for the family of all graph

classes. Indeed, if X is an arbitrary class of graphs, then it is a finite or a countable

set, as the class of all graphs is countable. If X is �-hard, then X must be countable.

Hence, X = {G1, G2, . . .}. Therefore, for each fixed i , the problem � is also NP-

complete for Xi = X \
⋃i

j=1{G j }. The sequence {Xi } converges to the empty set, as
⋂∞

i=1 Xi = ∅. Hence, an infinite monotonically decreasing sequence of classes with

NP-complete problem � converging to the empty set can be stretched from any class

with NP-complete problem �. So, applied to the family of all graph classes, the empty

set is an analogue of a boundary class. In other words, critical classes do not exist for

the family. At the same time, removing a graph G from a hereditary class X forces to

remove all supergraphs of G from X , i.e. we come to the class X ∩ Free({G}). The

computational status of a graph problem for X and X ∩ Free({G}) may be distinct.

So, to form an infinite monotone sequence {Xi } of �-hard classes, for each i , one can
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forbid only particular graphs in Xi to obtain Xi+1. This restriction imposes “lower

bounds” on �-boundary classes in the family of hereditary classes.

The notion of a boundary graph class was originally introduced by V. E. Alekseev

for the independent set problem [2]. It was later applied for the dominating set problem

[5]. Nowadays, boundary classes are known for several algorithmic graph problems

[2,4,5,19,30,34,36,39].

The aim of the following three sections is to present some known boundary classes

for the independent set, dominating set, and edge 3-colorability problems. The bound-

ary of some of them will be equipped by a complete or a partial proof to demonstrate

key ideas in this area.

5 Boundary classes for some classical graph problems

5.1 The independent set problem

The notion of a boundary class was introduced in [2] applied to the independent set

problem, where the first boundary class was also found for the problem. This class is S,

which consists of all forests with at most three leaves in every connected component.

In other words, any connected component of every graph in S is a graph of the form

Si, j,k for some non-negative numbers i, j , and k (see Fig. 1).

Now, we are ready to give an example showing that Theorem 1 is not true for

general hereditary classes. Indeed, the class of all forests is easy for the problem [48]

and it contains S.

Any proof that a class is boundary for some graph problem can be split into two

parts. First, the fact that it is a limit class should be proved. Next, its minimality

should be shown. There are two tools to discover limit classes: graph transformations

and reducibility between NP-complete problems. We demonstrate the first tool in this

and the third subsections and the second tool in the following subsection.

A graph is subcubic if degrees of all its vertices are at most three. Let Deg(3) be

the set of all subcubic graphs. The hereditary closure [X ] of a graph class X is the set

of all induced subgraphs (not necessary proper) of all members of X .

Lemma 1 The class S is limit for the independent set problem.

Proof The independent set problem is NP-complete in the class Deg(3) [14]. Denote

this class by X0. A k-subdivision of an edge (a, b) of a graph is to delete it from the

graph, add new vertices c1, c2, . . . , ck and the edges (a, c1), (c1, c2), . . . , (ck−1, ck),

Fig. 1 A graph Si, j,k

1

2

i

1
2

k

1
2

j

123

Author's personal copy



Critical hereditary graph classes: a survey 1599

(ck, b). It is known that a 2-subdivision of any edge of any graph increases its inde-

pendence number by exactly one [43]. Let us apply a 2i-subdivision to every edge of

each graph in X0. Let Xi be the hereditary closure of the set of all resultant graphs.

Clearly, the problem is NP-complete for Xi for each i . Let Yi be equal to
⋃∞

j=i Xi .

Clearly, Y1 ⊇ Y2 ⊇ . . . and Yi is a hard case for the problem for each i . In addi-

tion,
⋂∞

i=1 Yi = S. Hence, S is a limit class for the independent set problem by the

definition. ⊓⊔

The dominating set problem is NP-complete for the class Deg(3) [14]. It is also

known that a 3-subdivision of any edge of any graph increases its domination number

by exactly one [18]. Hence, similar to the proof of Lemma 1, it is easy to show that S

is limit for the dominating set problem.

There are no common ideas in proving the minimality of limit classes. That is, the

most of known proofs are individual and based on a structure of a limit class. Perhaps,

a proof for S and reduced to it are the only exceptions due to some interesting property

of monotone graph classes not including S.

A hereditary graph class is monotone if it is additionally closed under deletion of

edges. For example, the classes of bipartite and planar graphs are monotone, but the

class of all complete graphs is not. Any monotone class (and only monotone) can be

defined by its forbidden subgraphs [28].

Clique-width is an important parameter of graphs. This is explained by the fact

that many graph problems can be solved in polynomial time for graphs of bounded

clique-width (see [11] for more information). More precisely, for each fixed number

C , many problems that are NP-complete for the set of all graphs become polynomial-

time solvable for the class of all graphs having clique-width at most C . In particular,

this category includes the independent and dominating set problems, the vertex 3-

colorability problem [11].

Lemma 2 [8] If X is a monotone class and S � X , then there is a constant C(X )

such that any graph in X has clique-width at most C(X ).

Theorem 2 If P �= N P, then the class S is boundary for the independent set problem.

Proof Assume that there is a class X , boundary for the problem, such that X ⊂ S.

As X is hereditary and X ⊂ S, there is a number k such that kSk,k,k /∈ X . Then

X ⊆ S∩ Free({kSk,k,k}). Let Y be the set of all possible graphs obtained from kSk,k,k

by addition of one or more edges. Any graph in this set is not a forest with at most three

leaves in every connected component. Hence,Y∩S = ∅ andX ⊆ Free({kSk,k,k}∪Y).

The class Free({kSk,k,k} ∪ Y) is monotone, as it coincides with the set of all graphs

that do not contain kSk,k,k as a subgraph. In addition, it is finitely defined and does

not include S. Hence, it must easy for the problem by the previous lemma. But, by

Theorem 1, it must be hard, as it includes a boundary class X . We have a contradiction

with P �= N P . ⊓⊔

By Theorem 2, if P �= N P , then S is boundary for the vertex cover problem.

Similarly, the class co(S) = {G| G ∈ S} is boundary for the clique problem if

P �= N P . A proof that S is boundary for the dominating set problem (assuming that

P �= N P) is similar to the proof of Theorem 2.
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Theorems 1 and 2 not only shed some new light on known results on the complexity

of the independent set problem, but also give numerous new facts of this type. The

class of all graphs without triangles is finitely defined. For each fixed k, the class

of all graphs with degrees of all vertices at most k is also finitely defined. Indeed,

any its minimal forbidden induced subgraph is obtained from a graph H with k + 1

vertices by adding a new vertex adjacent to all vertices of V (H). The first class and

the second class for k > 2 are classical cases with NP-complete independent set

problem [14]. These facts known more than 35 years completely correspond to those

recent theorems, as each of the two classes includes S. Moreover, for arbitrary graphs

G1, . . . , Gs not belonging to S, the independent set problem is NP-complete for

Free({G1, . . . , Gs}) by Theorems 1 and 2. So, the new approach generalizes some

previously known intractability results and discovers a lot of new hard cases for the

problem.

Assuming P �= N P , V. E. Alekseev conjectured that S is a unique boundary class

for the independent set problem [2]. This conjecture is true if and only if Free({G}) is

easy for the problem for each G ∈ S [2]. Progress on the way to prove or disprove this

conjecture is modest. At the moment, polynomial-time solvability of the independent

set problem for Free({G}) was proved for all graphs G ∈ S having at most five vertices

[3,21,24]. On the other hand, the complexity of the problem is already unknown for

Free({S1,1,3}) and Free({P6}), i.e. for classes defined by forbidding some six-vertex

graphs in S. Nevertheless, there are several indirect evidences that the Alekseev’s

conjecture is likely true [6,7,23,35].

5.2 The dominating set problem

The class S is boundary for the dominating set problem [5]. Three more boundary

graph classes are known for it. For a graph G, its line graph L(G) has vertex set E(G)

and two vertices of L(G) are adjacent if and only if the corresponding edges of G are

adjacent. Let T be the set of all line graphs of graphs in S, i.e. the set {L(G)| G ∈ S}.

In other words, any connected component of any graph in T is a path or of the form

shown in the figure below.

If P �= N P , T is boundary for the dominating set problem [5]. A proof of this

fact is somewhat similar to the proof presented for S and the independent set problem

(Fig. 2).

For a graph G, a graph Q(G) has vertex set V (G) ∪ E(G) and edge set

{(vi , v j )| vi , v j ∈ V (G)} ∪ {(v, e)| v ∈ V (G), e ∈ E(G), v is incident to e} (see

Fig. 3).

Fig. 2 A representative of the

class T
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Fig. 3 The graphs S1,2,2 and

Q(S1,2,2)

1 2 3 4 5

6 (1, 2) (2, 3) (3, 4) (4, 5) (3, 6)

1 6

3 4
2 5

The class Q is the set [{G| ∃H ∈ S, G = Q(H)}]. It is the third boundary class for

the problem. Partially proving this fact, we also demonstrate the idea of polynomial-

time reducibility between two graph problems.

Lemma 3 For every connected graph G, we have γ (Q(G)) = β(G).

Proof The set V (Q(G)) can be split into a clique A and an independent set B, where

A = V (G) and B = E(G). Clearly, any vertex cover of G corresponds to a subset

of A that is a dominating set of Q(G). Hence, γ (Q(G)) ≤ β(G). It is easy to see

that if D is a dominating set of Q(G) and x ∈ D ∩ B, then D\{x} ∪ {y} is also a

dominating set of G, where y ∈ A is an arbitrary neighbor of x . Therefore, there is a

minimum dominating set of Q(G) included in A. It corresponds to some vertex cover

of G. Hence, γ (Q(G)) ≥ β(G). ⊓⊔

Theorem 3 If P �= N P, then the class Q is boundary for the dominating set problem.

Proof For a hereditary class X , by Q(X ) we denote the hereditary closure of {G| ∃H ∈

X , G = Q(H)}. The independent set problem for X is polynomially equivalent to

the dominating set problem for Q(X ) [5]. Lemma 3 is the most important result to

prove this fact. Hence, Q = Q(S) is a limit class for the dominating set problem, as

it is so for S and the independent set problem. In addition, the class Q(G) is finitely

defined, where G is the class of all graphs [5]. Hence, any monotone sequence {Xi }

of hard classes for the dominating set problem converging to a proper subset of Q

must contain an element X j such that X j ⊆ Q(G). Moreover, there is a graph G ′ ∈ S

such that X j ⊆ Q(G) ∩ Free({Q(G ′)}) for some j . The dominating set problem for

X j can be polynomially reduced to the independent set problem for the class of all

graphs that do not contain G ′ as a subgraph. The last class is monotone, and it does

not include S. Hence, the independent set problem is easy for the class. Hence, X j is

easy for the dominating set problem. We have a contradiction with P �= N P . ⊓⊔

The fourth boundary class is defined similar to Q. Let G be a subcubic graph. Let

V ′(G) be the set of all degree three vertices of G and V ′′(G) = V (G)\V ′(G). We

define a graph Q∗(G) as follows. The set V (Q∗(G)) coincides with V ′′(G) ∪ E(G).

A vertex x ∈ V ′(G) is incident to edges e1(x), e2(x), e3(x) in the graph G. The

set E(Q∗(G)) coincides with {(vi , v j )| vi , v j ∈ V ′′(G)} ∪ {(v, e)| v ∈ V ′′(G), e ∈

E(G), v is incident to e}∪
⋃

x∈V ′{(e1(x), e2(x)), (e1(x), e3(x)), (e2(x), e3(x))}. The

class Q∗ is the set [{G| ∃H ∈ S, G = Q∗(H)}].

A proof of the following result is similar to the presented proof of Theorem 3

(Fig. 4).

Theorem 4 [39] If P �= N P, then the class Q∗ is boundary for the dominating set

problem.
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Fig. 4 The graphs S1,2,2 and

Q∗(S1,2,2)

1 2 3 4 5

6 (1, 2) (2, 3)
(3, 6)

(3, 4) (4, 5)

1 5

6
2 4

Unfortunately, a complete description of all boundary classes for the dominating

set problem is unknown.

5.3 The edge 3-colorability problem

In this subsection, we present boundary classes for the edge 3-colorability problem.

Graph stretching is the main idea to reveal limit classes for it. The proof for their

minimality presented below is surprising. Namely, we show that boundary classes

included in the revealed limit classes must contain graphs of a special form. Next,

we prove an “extendability property”—if a boundary class X contains a graph G

having a vertex x of a special type, then there is a graph H ∈ X such that G is an

induced subgraph of H and x is not a special-type vertex in G. This property and

those mandatory graphs impose some structural “lower bounds” on boundary classes

for the problem, which mean that those limit classes must be boundary.

Let G be a graph with two chosen vertices such that there is an automorphism of G

mapping these vertices to each other. Replacement of an edge e = (a, b) by the graph

G is to delete e from a graph, identify a with one of the chosen vertices of G and b

with the other chosen vertex of G. Clearly, the resultant graph does not depend on the

choice of a vertex identified with a.

For a finite binary sequence π of length l, a π -garland is a graph obtained from a

path with 2l +2 vertices by replacements of its edges. For each i ∈ {1, 2, . . . , l}, 2i-th

edge of this path is replaced by a diamond (if πi = 0) or by a bug (if πi = 1), where

the degree two vertices of the diamond and the bug are chosen (see Figs. 5, 6).

Lemma 4 For every graph and every finite binary sequence π , replacement of any

its edge by a π -garland preserves edge 3-colorability.

Proof Follows from the fact that replacement of any edge of any graph by the (1)-

garland or by the (0)-garland preserves edge 3-colorability. This fact can be checked

Fig. 5 The graphs diamond

and bug

Fig. 6 The (0, 1)-garland
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as follows. Let G be an arbitrary graph and e = (a, b) be its edge. Let G ′ be

obtained by replacement of e by the (0)-garland. That is, we delete e from G, add ver-

tices v1, v2, v3, v4 and the edges (a, v1), (v1, v2), (v1, v3), (v2, v3), (v2, v4), (v3, v4),

(v4, b). Suppose that G has a proper edge 3-coloring, in which e has the first

color. For the graph G ′, keeping the colors of E(G) ∩ E(G ′), we color the edges

(a, v1), (v2, v3), (v4, b) in the first color, the edges (v1, v2) and (v3, v4) in the second

one, the edges (v1, v3) and (v2, v4) in the third color. Hence, G ′ is edge 3-colorable.

Suppose that G ′ is edge 3-colorable. The colors of (a, v1), (v1, v2), (v1, v3) are pair-

wise distinct. The same is true for (b, v4), (v2, v4), (v3, v4); (v1, v2), (v2, v3), (v2, v4);

(v1, v3), (v2, v3), (v3, v4). Hence, the edges (a, v1), (v2, v3), (v4, b) have the same

color c∗ in the coloring of G ′. For the graph G, keeping the colors of E(G) ∩ E(G ′),

we color the edge e in c∗ to obtain a proper edge 3-coloring of G. The case of replace-

ment of e by the (1)-garland is considered in a similar way. ⊓⊔

By Sπ we denote a graph obtained by replacements of all edges of an S1,1,1 by

π -garlands.

Let π be an infinite binary sequence now and π (l) be its subsequence that consists

of the first l members of π . The class Sπ is the set [
⋃∞

l=1{l Sπ (l)}].

Lemma 5 For every infinite binary sequence π , the class Sπ is limit for the edge

3-colorability problem.

Proof The edge 3-colorability problem is NP-complete in the class X0 of all graphs

with degrees of all vertices equal to three [17]. For a graph G ∈ X0, let Gπ (i) be a

graph obtained from G by replacements of all its edges by π (i)-garlands, where π (i) is

the sequence that consists of the first i members of π . Let Xi be the hereditary closure

of
⋃

G∈X0
{Gπ (i)}. Clearly, for each i , Xi is hard for the edge 3-colorability problem,

as the problem for X0 can be polynomially reduced to the same problem for Xi by

Lemma 4. Let Y j =
⋃∞

i= j Xi . Clearly, Y1 ⊇ Y2 ⊇ . . . and
⋂∞

i=1 Yi = Sπ . Hence,

Sπ is a limit class for the edge 3-colorability problem. ⊓⊔

A vertex x of a graph G ∈ Deg(3) is called specific if one of the following conditions

holds:

(a) degG(x) ≤ 1

(b) degG(x) = 2, and there exists a neighbor y of x such that degG(y) ≤ 2

(c) degG(x) = 2, and x belongs to an induced diamond of G

(d) degG(x) = 2, and x belongs to an induced bug of G

Lemma 6 Let X be an arbitrary boundary class for the edge 3-colorability problem,

G1 ∈ X , and x be a specific vertex of G1. Then X ⊆ Deg(3) and it contains a graph

G2 such that G1 is an induced subgraph of G2 and x is not specific in G2.

Proof For every subcubic graph H and every its specific vertex x , the graph H is edge

3-colorable if and only if it so for H\{x}. To make sure the correctness of this fact,

one should verify that H is edge 3-colorable whenever H\{x} is edge 3-colorable. It

is clear if degH (x) ≤ 1. If degH (x) = 2, y is a neighbor of x in H having degree

at most two, H\{x} is edge 3-colorable, then H\{(x, y)} is also edge 3-colorable, as

x and y are degree one vertices in H\{(x, y)}. As x and y are degree one vertices
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in H\{(x, y)}, then H is also edge 3-colorable. If degH (x) = 2, x belongs to a

diamond of H induced by vertices x, a, b, c, where (x, c) /∈ E(G), H\{x} is edge

3-colorable, then coloring of (x, a) in the color of (b, c) and (x, b) in the color of (a, c)

produces a proper edge 3-coloring of H . If degH (x) = 2, x belongs to a bug of H

induced by vertices x, a1, b1, a2, b2, y, where (x, a1, b1) and (y, a2, b2) are triangles

of H , (a1, a2) ∈ E(H), (b1, b2) ∈ E(H), H\{x} is edge 3-colorable, then coloring

of (x, a1) in the color of (y, a2) and (x, b1) in the color of (y, b2) produces a proper

edge 3-coloring of H .

A necessary condition for a graph to be edge 3-colorable is to be subcubic. Let

Y be a hard case for the edge 3-colorability problem. We remove all non-subcubic

graphs from it. Next, we consider all induced subgraphs having no specific vertices

of all graphs in the remaining part of Y . The hereditary closure of the class of all

subgraphs of this type is denoted by Y ′. It is a hard case for the problem, as the edge

3-colorability problem for Y can be polynomially reduced to the same problem for

Y ′ by the first sentence of the previous paragraph. Notice that every graph in Y ′ is

subcubic. In addition, the class Y ′ has the following extendability property. For any

graph G1 ∈ Y ′ and its specific vertex x , there is a graph G2 ∈ Y ′ such that G1 is an

induced subgraph of G2 and x is not specific in G2. This follows from the fact that Y ′ is

the hereditary closure of a set of subcubic graphs, whose every vertex is not specific. As

X is boundary for the edge 3-colorability problem, there is a monotonically decreasing

sequence {Xi } of hard classes for the problem converging to X , each member of which

is included in Deg(3) and has the extendability property. Therefore, X ⊆ Deg(3).

We will show that X also has the extendability property.

Let G be a graph in X such that some vertex x of G is specific. Clearly, for any

i , G ∈ Xi . Let Gi ∈ Xi be a graph such that G is an induced subgraph of Gi and

x is not specific in Gi . It obligatory exists. We construct a graph G ′
i as follows. If

degGi
(x) = 3 , then we delete all elements of V (Gi )\V (G) non-adjacent to x . If

degGi
(x) = 2, then we delete all elements of V (Gi )\V (G) lying at the distance at

least four from x . Taking into account that x is not specific in Gi and the “locality” of

the specific vertex notion, it is easy to see that x is also not specific in G ′
i . Moreover,

|V (G ′
i )|−|V (G)| ≤ 14 for any i , as G ′

i is subcubic. Hence, the sequence (G ′
1, G ′

2, . . .)

contains finitely many distinct graphs. Therefore, for some i∗, a graph G ′
i∗ belongs to

infinitely many of the classes X1,X2, . . .. As X1 ⊇ X2 ⊇ . . ., then G ′
i∗ belongs to each

of these classes. Therefore, G ′
i∗ ∈ X . We have a contradiction with the assumption. ⊓⊔

Theorem 5 If P �= N P, then, for every infinite binary sequence π , the class Sπ is

boundary for the edge 3-colorability problem.

Proof Assume that there exists a class X , boundary for the problem, such that X ⊂ Sπ .

Clearly, X ⊆ Free({L(S2,2,2)}), as Sπ ⊆ Free({L(S2,2,2)}) by the definition of Sπ .

First, we will show that a graph i S1,1,1 belongs to X for each i . It is known that for every

graphs G1 ∈ S and G2 ∈ T clique-width of any graph in Deg(3) ∩ Free({G1, G2})

is bounded by some constant C(G1, G2) [26]. Hence, Deg(3) ∩ Free({G1, G2}) is

an easy case for the edge 3-colorability problem [11]. The class Deg(3) is a finitely

defined superclass of X by the previous lemma. Hence, if i∗S1,1,1 /∈ X for some

i∗, then Deg(3) ∩ Free({i∗S1,1,1, L(S2,2,2)}) is a finitely defined superclass of X .

Therefore, any monotonically decreasing sequence of hard classes converging to X
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must contain a class that is included in Deg(3) ∩ Free({i∗S1,1,1, L(S2,2,2)}). This

class is easy for the edge 3-colorability problem by [11,26]. We have a contradiction

with P �= N P .

As X ⊂ Sπ , then a graph l S
(l)
π does not belong to X for some l. Let G ∈ X be

a maximal proper induced subgraph of l S
(l)
π that contains an l S1,1,1 as an induced

subgraph. Then the graph G obligatory has a vertex x such that x is a specific vertex

of G. Let H be a minimal graph in X such that G is an induced subgraph of H and

x is not a specific vertex of H . This graph exists by Lemma 6. We may consider that

degG(x) ≤ 2, otherwise deleting all elements of V (H)\V (G) except any neighbor of

x produces an supergraph of G, which is a proper induced subgraph of l S
(l)
π . Hence,

G is not maximal in the case degG(x) ≤ 2. Suppose degG(x) = 2. By the minimality

of H and by the structure of l S
(l)
π , H is obtained from G by adding exactly one vertex

adjacent to x or several vertices, each of which is adjacent to a neighbor of x . By the

structure of Sπ , H is also an induced subgraph of l S
(l)
π . We have a contradiction with

the maximality of G. Hence, the strict inclusion X ⊂ Sπ is impossible. So, the class

Sπ is boundary for the problem for every infinite binary sequence π . ⊓⊔

Clearly, Sπ1 �= Sπ2 for every distinct infinite binary sequences π1 and π2. Hence,

as the set of all binary infinite sequences has the continuum cardinality, the boundary

system for the edge 3-colorability problem is also continuum. This result was initially

proved in [30,32]. The boundary systems for the vertex k-colorability and edge k-

colorability problems for every k ≥ 3, the chromatic number problem also have the

continuum cardinality [19,33,34].

Advances in complete descriptions of the boundary systems for the independent set

and dominating set problems are minor. A natural idea arises that for some graph prob-

lems structure of boundary systems is too complex that is impossible to describe them

completely. By Theorem 1, the cardinality of a boundary system can be interpreted

as a complexity measure of the corresponding graph problem. It has been conjectured

in [4] that there is a graph problem with an infinite boundary system, i.e. with a large

value of the measure. One could consider this conjecture as a Gödel argument in the

sense that a boundary system may be quite complicated and attempts to get its exhaus-

tive description may look hopeless. Theorem 5 shows that the conjecture is a true

statement.

5.4 The chromatic number and Hamiltonian cycle problems

A subcubic tree is a tree with degrees of all vertices at most three. A vertex is said to

be cubic if it has three neighbors. A caterpillar with hairs of an arbitrary length is a

subcubic tree, in which all cubic vertices belong to a single path. An example of such

a graph is shown in Fig. 7.

The class S constitutes all graphs, in which every connected component is a cater-

pillar with hairs of an arbitrary length. The class R(S) is the hereditary closure of the

result of inscribing a triangle in each cubic vertex of every graph in S (see Fig. 8).

The following result was obtained in [19]. We do not present a proof, since its

ideas are graph transformations and reducibility between graph problems and we have

already met with them.
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Fig. 7 A caterpillar with hairs

of an arbitrary length

Fig. 8 Inscribing a triangle in x y1

y2 y3

x

y1

y2 y3

x2 x3

x1

Theorem 6 If P �= N P, then co(T ) = {G| G ∈ T } is boundary for the chromatic

number problem, S and R(S) are boundary for the Hamiltonian cycle problem.

The notion of a boundary graph class can be used for graph problems of a diverse

nature, not only to algorithmic ones. An interested reader is referred to [20,25,27].

6 Complete descriptions of boundary systems

Perhaps, the most important issue in the theory of boundary classes is obtaining a

comprehensive description of boundary systems. This question appears to be difficult

to answer for many graph problems. The first and unique known result about complete

descriptions of boundary systems has recently been obtained by one of the authors in

[36], where a generalization of the edge k-colorability problem has been considered.

This problem is called the list edge-ranking problem, which can be stated as follows.

We are given a graph G and a set L = {L(e) : e ∈ E(G)}, where L(e) is a finite

set of naturals that are feasible colors to color e. The list edge-ranking problem is

to recognize whether G admits a mapping c : E(G) −→
⋃

e∈E(G) L(e) such that:

a) c(e) ∈ L(e) for each e ∈ E(G) b) if c(e1) = c(e2), e1 �= e2, then any path

connecting e1 and e2 contains an edge e3 ∈ E(G) with c(e3) > c(e2). Clearly, the

last requirement generalizes the definition of a proper edge coloring, as it forbids to

color any adjacent edges in the same color. The problem was firstly introduced in [13],

and it has applications in parallel query processing [29] and in parallel assembly of

modular products [12].

To define the boundary classes, we need to define some graphs. Graphs Combi ,

Stari , Cami , Cometi are drawn in Fig. 9.

The class Cliques is the set of all complete graphs, Bat is the set of all complete

bipartite graphs with at most two vertices in one of the parts, Comb,Star , Cam, Comet

are the hereditary closures of
⋃∞

i=1{Combi },
⋃∞

i=1{Stari },
⋃∞

i=1{Cami },
⋃∞

i=1

{Cometi }, respectively.

Graphs S̃i and T̃i are isomorphic to S1,i,i and L(S1,i+1,i+1), respectively, graphs Ŝi

and T̂i are drawn in Fig. 10.

The classes S̃ , Ŝ, T̃ , T̂ are the hereditary closures of
⋃∞

i=1{i S̃i },
⋃∞

i=1{i Ŝi },⋃∞
i=1{i T̃i },

⋃∞
i=1{i T̂i }, respectively.
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Fig. 9 Graphs

Combi , Stari , Cami , Cometi

1 i2

Combi

1 2 i

Stari

1

2 i

Cami

1

2

i

1 2 i

Cometi

Fig. 10 Graphs Ŝi and T̂i

12i 1 2 i
Ŝi

12i 1 2 i
T̂i

In [36], the following result was proved. We do not give its proof, since it is too

long and difficult.

Theorem 7 If P �= N P, then the boundary system for the list edge-ranking problem

consists of the classes Cliques,Bat, Comb,Star , Cam, Comet, S̃, Ŝ, T̃ , T̂ .

Theorem 1, a general result, does not claim that a finitely defined class is �-easy

if it contains no �-boundary classes. Applied to the list edge-ranking problem, we

really have a complete complexity dichotomy (a “zero-one law”) in the sense that any

finitely defined class is easy or hard for the problem.

Theorem 8 [36] If a finitely defined class contains at least one of the classes

Cliques,Bat, Comb,Star , Cam, Comet, S̃, Ŝ, T̃ , T̂ , then it is hard for the list edge-

ranking problem. Otherwise, it is easy for the problem.

By Theorem 8, we have a complete description of all finitely defined easy cases for

the edge list-ranking problem. This rises the following natural question. How to apply

Theorem 8 for a given finitely defined class? How to decide whether it contains at

least one of the ten classes? To this end, one could use a more simple, graphic form of

Theorem 8. Let us demonstrate it on the example of the classes Free({P6, K3, C4})

and Free({P5, S1,1,1, K4}). We fill two criterion tables by pluses and minuses as

follows. We put “+” if and only if a graph in the lists of forbidden induced subgraphs

belongs to one of the ten classes (Tables 1, 2).

Theorem 8 can be reformulated as follows. A class is hard for the list edge-ranking

problem if there is a column having only minuses. Otherwise, it is easy. Hence,

Free({P6, K3, C4}) is hard, but Free({P5, S1,1,1, K4)}) is easy.

When the set of all �-boundary classes is completely known, a table reformula-

tion of Theorem 1 could be more useful than the original. Indeed, for a given class
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Table 1 A criterion table for Free({P6, K3, C4})

Graph Cliques Bat Comb Star Cam Comet S̃ Ŝ T̃ T̂

P6 – – – – – + + + + +

K3 + – + – + – – – + +

C4 – + – – – – – + – –

Table 2 A criterion table for Free({P5, S1,1,1, K4)})

Graph Cliques Bat Comb Star Cam Comet S̃ Ŝ T̃ T̂

P5 – – – + – + + + + +

S1,1,1 – + + + + + – – + +

K4 + – – – – – – – – –

X = Free({G1, . . . , Gs}), one may construct a table, whose rows correspond to

G1, . . . , Gs and columns correspond to �-boundary classes. If a graph Gi belongs

to j th �-boundary class, the we put “+” into the i j-cell and “−” otherwise. By

Theorem 1, X is �-hard if and only if there is a column containing only minuses.

7 Applications of the boundary class notion in the analysis
of the computational complexity

Theorem 8 is a unique known example of a complete complexity dichotomy in the

family of all finitely defined graph classes. This fact certifies the opinion that obtaining

a complete dichotomy in the family is a difficult task for many graph problems. A

natural idea comes to mind is to consider a subfamily of the hereditary classes family

and try to solve the problem specifically for it. One of the best examples in this field

is connected to monotone classes. Indeed, a finitely defined monotone graph class

including S is hard for the independent set problem by Theorems 1 and 2. On the

other hand, any monotone graph class not including S is easy for it by Lemma 2 and

[11]. Hence, we have the following result.

Theorem 9 A finitely defined monotone class is hard for the independent set problem

if it contains S. Otherwise, it is easy for it.

The last theorem also holds for the dominating set problem.

Another example of a “good” subfamily is a set of all classes defined by small for-

bidden induced subgraphs. Combining results of [2,3,21,24], we obtain the following

result.

Theorem 10 Let X be a set of graphs with at most five vertices. Then the independent

set problem is hard for Free(X ) if it contains S. Otherwise, it is easy.

Korobitsyn has considered in [18] the so-called monogenic graph classes, i.e.

classes defined by a single forbidden induced structure. He also proved there that the
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dominating set problem is polynomial for Free({G}) if G is isomorphic to Pi + pK1,

where i ≤ 4 and p is arbitrary. Moreover, the problem is NP-complete for all other

choices of G [18]. This result can be rewritten as follows.

Theorem 11 A monogenic graph class X is hard for the dominating set problem if

S ⊆ X or T ⊆ X or Q ⊆ X . It is easy in all other cases.

The complexity of the dominating set problem was considered in [39,40] for classes

defined by small forbidden induced structures. Namely, the following result has been

proved.

Theorem 12 Let X be a set of graphs with at most five vertices. The class Free(X )

is hard for the dominating set problem if S ⊆ X or T ⊆ X or Q ⊆ X . It is easy in

all other cases.

Of course, the boundary class notion helps to prove only half of each of Theorems 9,

11, 12, as, by Theorem 1, it can certify only NP-completeness of a graph problem for

a finitely defined class. To prove the second half, the corresponding polynomial-time

algorithms should be invented for all classes in the families not including the boundary

classes. So, Theorems 9, 11, 12 are concrete examples of a successful application of

the general method for obtaining complexity dichotomies based on boundary classes:

prove NP-completeness for some classes in a family by applying Theorem 1 and design

polynomial-time algorithms for all of the remaining classes.

Clearly, any result on a complexity dichotomy in a subfamily of hereditary classes

defined by small forbidden induced subgraphs can be formulated in terms of an explicit

description of “easy” prohibitions not in terms of boundary classes. It was done in

[1,9,15,16,22,37,38,41,42,46] and many other papers. At the same time, the size of

an answer can quickly grow with the size of the prohibitions. The notion of a boundary

class helps to represent the answer more compactly.

8 Conclusions and open problems

In this paper, we considered the notion of a boundary graph class, which is a helpful tool

for analyzing the computational complexity of graph problems in the family of finitely

defined classes. This notion is interesting in that a graph problem is NP-complete for

a finitely defined graph class X if and only if X includes a boundary class for the

problem. Therefore, discovering boundary classes for various graph problems is of

interest. We described all known boundary classes for some classical graph problems:

the independent set and the dominating set problems, the Hamiltonian cycle problem.

For the edge 3-colorability problem, we constructively showed that the boundary

system has the continuum cardinality. We gave a complete description of all boundary

classes for the so-called list edge-ranking problem. At length, we presented several

examples on how boundary classes present a complete complexity dichotomy in a

“simple” subfamily of the hereditary classes family.

Despite some achievements, the theory of boundary graph classes is still full of

open questions. Perhaps, the oldest open question here is the Alekseev’s conjecture.

Open problem 1 Is S a unique boundary class for the independent set problem?
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Similar questions can be asked for the dominating set and Hamiltonian cycle prob-

lems.

Open problem 2 Is there is a boundary graph class for the dominating set problem

distinct to S, T ,Q,Q∗, simultaneously?

Open problem 3 Is there is a boundary graph class for the Hamiltonian cycle prob-

lem distinct to S and R(S), simultaneously?

As we mentioned before, the cardinality of a boundary system can be considered

as a complexity measure of a graph problem. It would be interesting to know what

values can take this measure.

Open problem 4 What are possible cardinal numbers of boundary systems of graph

problems?

The set of all graphs is countable. The set of all finite subsets of a countable set

is also countable [47]. Every finitely defined class can be described by a finite set of

its forbidden induced subgraphs. Hence, the set of all finitely defined graph classes is

also countable. Therefore, the boundary system for the edge 3-colorability problem

is redundant for complexity classifying in the family of all finitely defined classes, as

the system is continuum. This observation leads to the notion of a criterial system. For

a graph problem �, a �-criterial system is any countable subset of the �-boundary

system that is enough to classify the complexity of � in the family of all finitely defined

graph classes. Such a system obligatory exists, as we can take the union
⋃

X {YX } over

all �-hard finitely defined classes X , where YX is any �-boundary class included in

X .

Theorem 13 If the �-boundary system is finite, then there is a unique �-criterial

system coinciding with the �-boundary system.

Proof Let some �-criterial system consists of classes X1, . . . ,Xk and do not contain a

�-boundary class X . Let Forb(X ) = {G1, G2, . . . , Gs, . . .}. This set must be infinite,

otherwise X is finitely defined and it includes a �-boundary class X . Hence, it must

be a �-hard class. As {X1, . . . ,Xk} is a �-criterial system, X must contain one of

its elements. We obtain that one of �-boundary classes contains another �-boundary

class. It is impossible. We have a contradiction.

For each i , let Yi = Free({G1, . . . , Gi }). It is a �-hard class, as it includes X . As

{X1, . . . ,Xk} is a �-criterial system, then, for each i , there is a number ji such that

Yi includes X ji . The infinite sequence j1, j2, . . . has finitely many distinct elements.

Hence, some number 1 ≤ i∗ ≤ k appears in the sequence infinitely many times.

Therefore, we can find an infinite subsequence in the sequence {Yi } such that each

its member includes Xi∗ . This subsequence also converges to X . Hence, X ⊇ Xi∗ . In

other words, one of �-boundary classes includes other �-boundary class. We have a

contradiction. ⊓⊔

For the edge 3-colorability problem, any criterial system is distinct to the boundary

system, as the boundary system has the continuum cardinality. Perhaps, the problem of

finding out its criterial system is much simpler than the boundary system. This raises

the following open problem.

Open problem 5 What is a criterial system for the edge 3-colorability problem?
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