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Abstract. It is known that the investigation of the critical point for models
of the type of Dyson’s hierarchical models is reduced to the solution of some
non-linear integral equation. In our previous publication the Gaussian
solution was investigated. Here we construct non-Gaussian solutions of the
equation and find the expressions for critical indices connected with them.
Our procedure permits us to construct meaningful e-expansions.

§ 1. Introduction

Dyson’s hierarchical models or their generalization — asymptotically-hierarchical
models — (a.h.m.) are of great interest because the renormalization group method
in the theory of critical points by K. Wilson [3] and M. Fisher [4] becomes
rigorous for such models (see [2] and the papers by Jona-Lasinio [5] and Galla-
votti-Knops [6]). The investigation of critical points for a.h.m. is reduced to the
solution of the corresponding nonlinear integral equation, which can be considered
as an equation for the fixed point of the corresponding renormalization group.
In [2, 8] a case with the Gaussian solution was investigated. It was shown that the
critical indices in that case are precisely the same as predicted by the Landau
semiphenomenological theory of phase transitions of the second kind. However,
the Gaussian solution is stable only when the potential of interaction decreases
sufficiently slowly.

In this paper we construct non-Gaussian solutions of our main integral
equation. These solutions appear as bifurcations branches from the Gaussian
solutions. The total number of the branches is infinite but only one of them has
the necessary properties of stability to appear in general as a limit distribution
for normed mean spin at the critical temperature. In the second part of this paper
we find the values for critical indices corresponding to this branch. They coincide
with the values found in the general theory by Wilson [3].

From the formal point of view the non-Gaussian solutions can be represented
by a series of the parameter ¢ where ¢ is the deviation of the given value of the param-
eter from its bifurcation value. These series are always asymptotic because they
describe the functions with different asymptotics at infinity. The method we
apply can be regarded as a procedure which permits to make these e-series
meaningful. Roughly speaking at a given ¢ the formal series gives a good
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approximation for the solution only in the domain depending on & Beginning
from a family of test functions we apply the transformations of the renormalization
group and construct e-expansion near every iteration. The values of ¢ rapidly
decrease because the iterations rapidly converge to the solution which we are
seeking. Therefore, e-expansion becomes more and more exact on the increasing
sequence of domains when the number of iterations tends to infinity.

Now we want to recall the definition of Dyson’s hierarchical models,
asymptotically-hierarchical models and to deduce the main integral equation
(see [1,2]). Letan integer r > 1 and a positively-defined quadratic form Q(t,,...,t,)=
gt + ... +t)/r)? +h(ed + ... +2)/r with g, h as parameters be fixed. Assume also
that for any integer n> 1, there is given a volume V, consisting of #" points divided
into r equal subvolumes V,_, ;, i=1,...,r. We consider a classical spin system,
configurations of which can be represented as functions u(x), x € V,, taking the
values of + 1. The Hamiltonian of Dyson’s hierarchical model depends on a
parameter ¢, 1 <c<r, and is defined by the following recurrence relation:

M)ZZ:: 1 Hn* 1(ui)_ch(S(1n4 1)9 vee S£"~ 1)) . (11)

Here s V=(1/""")Y v, ;u(x) is the mean spin in the subvolume V,_,
of the configuration u and u; is the restriction of the whole configuration u(x),
x € V, in the subvolume V,,_l,

Let us introduce g,(t; f)=Prob,{s" =t; 8}, where Prob, is the probability,
calculated by the Gibbs distribution in the volume V, with § as the inverse tem-
perature, s is the mean spin in the volume V,, s =(1/")Y . u(x). Then from
(1.1) easily follows the system of recurrent equations for functions g,,:

9ult; BY= - s(BYELB) XS simr Gn- 1 (15 B Gy (83 BP0 (12)

where Z,.(f) is the grand partition function in the volume V,, k=1. The main
assumption which is made at the investigation of hierarchical models, is that for
B=p.. the typical values of the mean spin have the order ¢~ "2. Making the
change of coordinates t = ¢~ "2 z and putting A, =c"?r ™", fi(z; f)=g.(z-c "*;p)4,*
we obtain from (1.2) the following system of recurrent equations for functions

Sz B
fn(Z;ﬂ):Ln(ﬁ)Z(m+..‘+zr)/r=z/1/3fn—I(Zl;ﬁ)' Su-1lz, ﬁ)eﬁg(zl """ zr)A:;_l (1.2

where L,(f) is a normed constant. From the mathematical point of view, the
previous assumption is equivalent to the assumption that the functions f,(z; ff)
converge at n— oo to a limit and the limit function f(z; ff) of continuous argument z
satisfies the equation

S B=LPf ... T[Sz PO 6z —rz/) ) [ 1= 1 dz. (1.3)

The constant L(f) is the normalization factor. Equation (1.3) is the main integral
equation in the theory of hierarchical models.

It is easy to verify that (1.3) has the Gaussian solution f(z; f)= 1/(1 (B)/me ™ otP)=*
with ay(f)= ((g+h)/(r—c))ﬂ General solutlons of (1.3) for different § are related

to each other via the equality f(z; §,)=1/B,/B:f(z]/ B./B:; B2). Therefore, it is
sufficient to consider (1.3) with f= 1
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If the relations (1.2) are valid for n=n, and the family of initial probability
distributions g, (t; f) is arbitrary then the corresponding model is called asymp-
totically-hierarchical model. Here ¢ takes the values from —r"™ to #" and all
probabilities g, (t; ) are defined for some closed interval [f~, 7] and are C'-
functions of B. For any fixed interval [, 7] there is a natural topology in the
space of such distributions {g,,(t; f), fe[f7. 71}

Definition 1. The solution f(z; ff), 0< <o, of (1.3) is called thermodynamically-
stable if there exists an integer n, and a closed interval [f~, 7] for which one
can find an open set Q in the space of families of probability distributions
{g,,(t; ), B[S, B+ 1} such that for any family {g,(¢; f). fe[p ™. 1} € Q2 there
exists one and only one f*e[f~, 7] for which f, (z; f*) converge weakly to
fz; B7).

One of the main results of [2,8] is that the Gaussian solution is thermo-
dynamically stable for W<c<r and for c<[/; it is unstable. Therefore, for
c<l/}j it is necessary to construct non-Gaussian solutions of (1.3).

Let ¢, ="+ D k=12 ... e=c,—c. The following theorem is the main result
of this paper.

Theorem 1. For any k=1,2, ... one can find 6, >0 such that for any ¢, 0<e <9,
there exists a normed solution f(z) of the equation

fAD)=L,§ . [ flzy). foz)e@er = (Vi zi—rz/)/ o) [Tie 1 dz;. (1.4)

For this solution 0< f(2)<2)/ ao/mexp[ —(aoz® + Aoelzl)]), ag=(h+g)fr—c),
Ao=Ao(k), o« is the root of the equation c*=rv. These solutions f(z) continuously
depend on ¢ for any fixed z. |

It is possible to show that the branches f, for k>1 are thermodynamically
unstable. The branch f, for k=1 is thermodynamically stable (see § 8 of this
paper).

Theorem 1 gives the existence of the solution of (1.3) for ¢ sufficiently close
to r'2. In [10] this branch was investigated on computers for r=2 (see also
Appendix 2 below). The results of [10] doubtlessly show that there is no other
bifurcations for 1<c<ﬂ.

During the proof we discuss in detail only the case r=2 and Q=(t; +1,)*
which corresponds to Dyson’s hierarchical model. The general case can be
treated by obvious modifications. The reader can easily notice the similarity
between the methods of this paper and papers [2, 8].

§ 2. The Idea of the Proof of Theorem 1
For r=2 and Q(t,, t,)=(t; +1,)* Eq. (1.3) takes the form:
fz: =L 2 [z} c+us ) f (2} c—us ydu.

The substitution [(z; B)=/f,(z; B) exp(—ay(B)z?), ao(f)=Pc/2—c) reduces the
latter equation to the equation

Sz =L f= o™ 2P f(z/)/ c4us B f (z/)/ e u; Pydu.
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The next step is to give up the normalization condition and to consider the
equation

f@=/) 2 e f)/ c+u) f(z)) c—udu=Af. (2.1)

After normalization of the solution of (2.1) we shall obtain the solution of the
initial equation (1.3) for f=(2— ¢)/(2c). As was mentioned above, the solution of
(1.3) for any B can be obtained from this one by a simple change of variables.

A depends on ¢ and (2.1) defines a family of non-linear transformations when ¢
changes in the interval 1 < ¢ < 2. It has an obvious solution /= 1 which corresponds
to the Gaussian solution of (1.3). It is very essential that it does not depend on c.
When one has a smooth family of non-linear transformations of the finite-dimen-
sional space with a fixed point which does not depend on the parameter of the
family, one should consider the family of linearized transformation near this
point and find such values of the parameter for which the spectrum of the cor-
responding linear transformation contains t. If the second derivative in the
direction, according to the eigenvalue 1, enters the Taylor series with non-zero
coefficient, then through the fixed point there passes a new branch of fixed points
of transformations of our family. One can say that the initial fixed point generates
new fixed points.

The procedure which is applied below, can be considered as an adaptation
of the methods of the finite-dimensional case to our transformation A4, acting in
the infinite-dimensional functional space. The linearized operator L, correspond-
ing to f(z)=1 takes the form

Lig@)=Q2/)/m)[ e “glz/)/c—u)du.

This operator is known as the Gauss integral operator (see [11]). We consider its
action in the space of even functions f. Its eigenvalues are equal to 2, 2¢ ™4, 2¢72,...,
2¢7* .... The corresponding eigenvectors are the Hermite polynomials, which
are orthogonal with the weight exp(—7yz?), y=1—c 1. Thus, the critical values
of ¢ near which one can expect the appearance of new solutions have the form
cp=2""*Y k=1,2,.... For c<¢, and close to ¢, the point /=1 has (k+ 1)-
dimensional unstable cigenspace. Accordingly, the new solution must have
k-dimensional unstable eigenspace for these values of c.

Our method of construction of new solutions of (2.1) has much in common
with the widely-known Hadamard-Perron theorem in the theory of smooth
dynamical systems (see [12, 13]). The direct method of contracting mappings
cannot be applied because we are looking for unstable solutions. The construction
must begin with the construction of the stable separatrice of the solution which
we are seeking. The next step is the proof that the induced mapping on the separa-
trice is a contraction. The first step, i.e. the construction of the separatrice is
usually taken in the following way. One takes a k-dimensional manifold which
is close in a natural sense to the unstable subspace and finds its intersection with
the separatrice. This intersection lies in one point. This point is determined by
the property that all its images lie in a small region of the fixed point.

Our procedure is similar to the above process. However, we do not construct
the whole separatrice but take a special k-dimensional family of test functions,
find one point of this family which lies on the separatrice and prove that it converges
to the solution which we are seeking.
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§ 3. Properties of Operators Ly

The differential L, of the non-linear transformation A in an arbitrary point f has
the form

Lg(2)=Q2/)/7)[* e f(z))/ e—ug(z])/c +u)du. (3.1)
In this section we shall investigate several largest eigenvalues and eigenvectors
of the linear operator L, when the function f is sufficiently close to 1.

Roughly speaking we shall prove that in the case under consideration the
formulae of the perturbation theory are applicable. One cannot hope that the
series of the perturbation theory converge because the spectrum of non-perturbed
operator when f =1 consists of numbers 2, 2¢™%, 2¢72,... and tends to zero.
However, we shall show that when the perturbation has the order ¢ in the ap-
propriate norm the difference of n-th eigenvectors for perturbed and unperturbed
operators is no more than ¢ if ¢ is sufficiently small and n is fixed.

The consideration of this section will not be used below. The reader may
acquaint himself with the formulation of Theorem 3.1. and proceed to the next
section.

Now we are going to formulate the exact condition concerning a perturbation
and to give the formulation of the theorem. Let ¢, 0<e< 1, be a certain number and

D,=[—dy|/In(L/e), do |/ In(1/e)], dy = 10/(c — 1) .

Assume that there is given an even function f(z) € C*(R?') such that for ze D, the
function f can be written in the form

f(D=1—eG()/72)+R(2) (3.2)
where G,,(z) is the 2k-th Hermite polynomial (see [11]), y=1—¢~! and

IR(2)|, |[dR(z)/dz| <& . (3.3)
For z¢ D, the function f satisfies the estimates

f(2)<exp(—(e'/2)|z]"), o =2(log,c) ™", (3.4)
g'=¢- po, where p, is the 2k-th coefficient of GZk(]/); 2),

|d f(z)/dz| <|z|"exp(—(&'/2)|2]"). (3.5)

Let us denote the Hilbert space of even functions on the line which have an
integrable square with respect to the weight exp(—yz?) by LA(R';exp(—yz?)).

Theorem 3.1. Let N be fixed. Then there exists a number ¢,=¢4(N) such that
for any function f satisfying (3.2)~3.5) with e, 0< e <e&,, the operator L, has (N +1)
eigenvectors eyz: f), ..., ex(z; f) and accordingly, eigenvalues Ay, ..., Ay Such that

a,) |4, —2/c|<e*,i=0,...,N;
|A—2/c*—2¢ [ exp(— yzz)GZk(]/L)AGZk(]/yz ydz| <&t ;
a,) lledz; /)= Gl v D)lespy <™ i=0,...,N;
a3) [e,.(z;f)jgzlz‘“exp(—(s /D).,
|de(z; f)/dz| < |z|* exp(—('/2)]2") ,
for z¢ D_; i=0,...N ;
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a,) in the Hilbert space L2(R";exp(—yz*)) there exists the closed subspace
H y of the co-dimension (N +1) invariant under L, and such that

HLfHHf,Nézc—N7%
dist(H y, LY(R*; exp(—yz°)) =&*°
where L3(R"; exp(—yz?)) is the subspace of the Hilbert space L2(R';exp(—yz?))
generated by the Hermite polynomials Gzl(]/'z i>N. N
The proof of the theorem will be divided into several lemmas.

Lemma 3.1. If the function f(z) satisfies the condition (3.2)~3.5) and £>0 is

sufficiently small, then
“Lf—_LIHLz(R‘;exp( yzz))S 132 >

HLf_Ll Gl L2(R1;exp( - y22)) <&t
Proof. We have from (3.1) and (3.5)
(Ly— Ly _6,)9(2)=Q2/)/1) §* o exp(— u)g(z/)/ c ~ w)R(z/)/ c + u)du
2/[/”‘” exp[ —z/]/ VIR( 22/[/2 wgwdu=[*  K(z,u)gwdu=Kg,
where
K(z, w)=(2/)/m)exp[ — (u—z/)/ c)*TR(2z/)/ c —u)
Moreover
HK“LZ(Ri;exp(—yZZ)): “KOHLZ(R‘) > (3.6)
where
Ko(z, 1) = K(z, upexp[ — (7/2)(z* — u*)] = (2/)/m)exp[ — Q(z, )]R(2z/)/ ¢~ ),
0(z, u)=( z/]/— —i—(y/Z(Z —u)=(1/)/ Nz —u?+(1/2+ 1/2c)—1/)/c)

(2 +u?) —1))/c )2(2 + 1) =ay(z2 +u?)>0. (3.7)
We shall show that
[ o % o IKo(z, u)*dzdu<e? . (3.8)

Let Q,={}/2? +u2<(d0/3)|/1n 1/8)}. For (z,u) € Q, the point 22/]/—ueD and
thus [see (3.3)]

§§o. Ko(z, u)2dzdu= [ [(2/)/n)exp(— Q(z, u)R(2z/)/ c — u))*dzdu

S@/m) [ [o,e' 2 exp(— 204(z? + u?))dzdu < conste! 7 < $¢3 (3.9)
for a sufficiently small e. From (3.2)—3.4) it follows that the inequality
|R(2)| <1+ 2% (3.10)

is valid for all z e R!. Therefore |R( 2z/]f u)| £ 1+ 4(z% +u*)** and for sufficiently
small &
[ [0, K o2 w)dzdu < (4/m) { (o o, eXPL - 202> + 14%)]
(1+4(z* +u?)*"2 dzdu
<const [, 3)yimciTs €XP(— 226021 + 40*)2do < conste?*4/d* (In*z)
41n4k

<conste c<le?,

Thus (3.8) is proved.
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From the Schwartz inequality we have
HKO”LZ(Rl)él/j‘D—Ooo j.afoo (Kofz, ”)ldedu .

Then from this inequality, (3.6) and (3.8) one can easily derive

HKHLZ(R1;exp(-yzz)): HLf _Ll 46G2;;HL2(R‘;exp(—yz2))é8% .
The second inequality of Lemma 3.1 is proved. The first one is obtained in a

similar way. Thus Lemma 3.1 is proved.
Similar considerations lead to the proof of the following lemma.

Lemma 3.2. Under the conditions of Lemma 3.1

le™ " (L; = L)g(@)| csirry S €313 192 L2r 1 exp( - 7220 -
He‘vz;z(Lf“ Ly 6,092 1y S €3 192 L2kt exp(— 220 - -

We shall omit the proof of Lemma 3.2. Up to the end of this section we shall
write ||g(z)|| instead of Hg(z)1|L2(R1;ex_p(4yzz,).
Lemma 3.3. Under the conditions of Lemma 3.1 the operator L, has the main

eigenfunction ey(z; f) with eigenvalue Ay(f) such that

12— Ao(f)<et¥1e;

lea(z; f)—1[ <et1e.

Proof. We shall use the method of the contraction mappings. Let us denote

S={f2:1fI=1},

Ss={/f(2): f(2)€S, ]| f(2)~1] <}
and consider the non-linear mapping U,:g(z)—||Lg| “1L,g(z), U,:S-S,
6=3¢"*1% and ¢ be sufficiently small. We shall show that U, S,CS; and U S,
is a contraction mapping.

Let U, be the mapping U, corresponding to the function f =1 and D, be the
differential of this mapping at the point g.

It is easy to see that the spectrum of the operator D, consists of the numbers
¢ ' ¢72 ¢73,... and D, is selfadjoint. So |D,|=c~? <1 and D, is a contraction
operator. Hence, we deduce that the differentials D, of the operator U, at the
points g close to 1, namely at the points g € S;, are contraction operators and
then we deduce that the differentials D, U, g € S; are also contraction operators.
That means that U s, is a non-linear contraction operator. Moreover, it follows
from our considerations that for g, g, € S;

1UAg1)—Ugdg) £3(1+c Hlgi—gal
if ¢ is sufficiently small. Furthermore, due to the evident estimate
U1 1] <3732

the latter inequality implies U,:S;—S;.

Thus, the mapping U ,:S;—S; is contractive and therefore there exists a fixed
point eq(z; f) of this mapping. It is evident that the function ey(z; f) is the eigen-
function of the operator L,:

Lieg=Ageq .

31/32 2,15/16
3€

Then from the inequalities |L,—L,||<&>'*?, |leo~1]< we obtain the
estimate |A,— 2| <g!>/16. Q.E.D.
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Lemma 3.4. For z,ue R' and 0=2
lz+u*+|z—ul* =2z + u?|z]* " 2o — 1)/2 . |

Proof. Let us divide the both sides of the inequality into |z|* (for z=0 the
inequality is evident) and denote uz~ ! =d:

e+ d|* 41— d* =2+ (oo — 1)/2)d? .

Without losing generality we can consider d 20, d =+ 1. Let F(d)=|1+d|*+ |1 —d|*—
2— (o —1)/2)d*. Then

F(dy=ole— (1 +d* 2 +{1 —d 2~ 1)>0
and F'(0)=0, therefore, F'(d)>0 for d>0. Then F(0)=0 and thus, the inequality
F'(d)>0 for d>0 implies the inequality F(d)>0 for d>0. Q.E.D.
Proof of Theorem 3.1. We have

ILF— Lyl =Ly, — Ly* | =L, — L] <332

Therefore, from proof of Lemma 3.3 it follows that there exists the main eigen-
function e¥(z; f) of the operator L¥ and |ef(z; /)— 1] <&'>*°. The hyperplane
H, which is orthogonal to the function e}(z; ), is invariant with respect to the
operator L,. Using the method of contraction mappings (see Lemma 3.3) in the
hyperplane H,, we shall prove the existence of the eigenfunction e (z; f)e H,
close to e,(z; 1)=G2(Wz). Then we shall prove the existence ef(z; f) etc. As a
result, N4 1 eigenfunctions eqz; /), ..., ey(z; f) and eigenvalues A, ..., Ay of the
operator L, will be constructed. Besides, the following inequalities are true for
i=0,1,..,N

lez: )= G}/ 72l <™,

[4—2c i <e®
and at the end we shall construct the subspace H, yC LZ(R"; exp(—yz?)), satisfying
the condition a,) of Theorem 3.1.

Let us now prove that |4, —2/c*—&(Gyy, L, Gl < ¢?. For this we must find

the eigenfunction e,(z; f) using the perturbation theory up to the terms of order ¢
included. We have

LiGop=(Li+L_ 6, +Lg)Gy=(2/Gry— L, G+ O(*);
let e,= G +ep, 4,=2c *+¢l. Then, in the formula L e,=Ae, equating all the
terms of order ¢, we obtain

~ L6, Got Lip=2c" 0 +1G,,,

P2)= (D) +aGoul)/72), p(2) L Goul]/72),

—Lg,, Ga=Q2c” L +1Gy l= ~ (L6, G20 G215

=2 = L) (= L6, Goi—1G0) .

The function L, G, is the polynomial of 4k degree and therefore it is easy to
find v from the latter equality (it is also the polynomial of 4k degree).
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Thus, the function ¢ is found and

1|Lf(G2k+8(P)— MGy +20)| =0 .

Then, using the method of contraction mappings we prove the estimates

lex— Gyy—e@ll <e?

=267 *—8(Gap Lg,, Gap) < &
if ¢ is sufficiently small. Thus, the condition a,) of Theorem 3.1 is proved.

Let us now prove a,). It is necessary to point out that all the previous con-
siderations were of a general character and they are applied to various problems
of the perturbation theory. The proof of the conditions a,) and a,) is based on the
nature of the perturbation of the main operator, reflected by conditions (3.2)+3.5).

Let us consider the function go(z)=exp(— (¢'/2)|z|*) and the operator T, =2, 'L,
The main eigenvalue of the operator T, is equal to 1 and others do not exceed
3(c™' +1)<1, therefore, the iterations g,= Tg, tend to the function constey(z; /)
in the space L2(R!;exp(—7yz?%)) where const~ 1. In reality there takes place the
convergence in C' on compacts because Tf is an integral operator with a smooth

kernel.
More precisely from Lemma 3.2 it follows that

exp(— 720G+ 1(2) — g2 c1r sy S const] g, — g, -1 || -
The following estimate is evident from the definition of the function g,:
lgr—gollSet™e.
Besides, due to the inequality
1gus1—gall SHe D gu—gu—s 1l
we have
g+ 1 = gall STHe™ T+ ]300
and
fexp(—yz°)gn+ 1 — g, CHRYH = <const[3(c™ ' +1)

Let DO =[—d\?, d], where d°=0,01(1—c~*)~*}/In(1/e). It follows from the
latter estimate that

]n 15/16

”gn Hcl(DéO)) é 1 + COIlStSl 5/16 .
Therefore the inequality
9i(2)S(2+|zPJexp(—('/2)|2%) (3.11)

is fulfilled for all n in any case for ze D%, It is evident that the function g,(z)
satisfies this inequality for all ze R
Now let us assume that the function g,(z) satisfies inequality (3.11) for all
ze R and prove that the function g, ,(z) satisfies this inequality for z e RI\D.
The following inequality results from properties (3.2)+3.4) of the function f(z):

f@ <+ xp(@)exp(—(e/2)lz)) ,
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where y,(z) is an indicator of the interval D=[—d, d], containing all zeroes of
the polynomial G,( ]/z) It is very important to point out that D does not depend
on ¢. From here

s 12 S LA/ T [2 o €™ (1 + ypfz/]) c— w))e ™ € 1PNV e ul
-@+uw@+m>eﬂ”WWHﬂmw

Let us now use Lemma 3.4. As 2=c%?

Gur1(2) S exp(— (/212 2/ o)/ T) [ o e~ (L + (2] € — )2+ |2/} ¢ +ul*)du.

It is easy to verify that the main contribution into the right-hand side of this
inequality is made by the item

So=exp(—(&/lzl") 2/hol/7) |2 p e Iz c+ultdu, z¢ DO

From the inequality |2 — 4o|<&!3/'® we have 2/(J,)/c)<1—(c—1)/8 and thus for
z¢ DI

So=1z[*(1— (e~ 1)/10)exp(~ (¢'/2}z[) .

So we have proved inequality (3.11) for the function g,, for z¢ D). As we
have established it for ze D’ too, inequality (3.11) is valid for all ze R!. That
means that the first inequality of condition a;) of Theorem 3.1 is proved for the
eigenfunction ey(z; f). The second one is deduced similarly and its proof is omitted.

Now we shall sketch the proof of conditions a,) for all the other eigenfunctions.
Let us consider such p,

p<constg! /16

that the function go(z)zGz(]/yz)exp(—(s//Z)|z°‘|)+ ueo(z; f) belongs to the hyper-
plane H, which is orthogonal to ef(z; f). Then the iterations g,= Tfg,, where
T,=i]'4 1> converge with e (z; f) and, besides, the function go(z) satisfies the
inequality

\9o(2)| <(const+|z]*"%) (exp(—(¢//2)|z}") .

As above it is proved by induction that all the sequent functions g, satisfy this
inequality too, therefore it is fulfilled also for the function e((z; f). Similar con-
siderations are true for the sequent eigenfunctions.

Let us now prove a,). Let gqo(z) =exp(— (¢//2)|z]"). We have established already
that the iterations g,=T7g,, T,=4¢ 14 + converge to the eigenfunction ey(z; f)
in C* on compacts and satisfy inequality (3.11). Let us show now that there exists
a sequence of numbers {n;}Z,, n,—> 0, such that

”gnf l]Cl(D5)<8 e (3.12)

It is evident that as a result, we shall prove a,) for the eigenfunction ey(z; f).
Let ny=0, n, =[0,0001lne~']. Let us expand the function hy=g,—1 in the
Hermite polynomials up to the order M (the value M will be indicated below):

ho(2)=Y M 039G, (/7 2)+ Hol2) ,
where (H(z2), sz(]/yz))z(), j=0,1,..., M. Let us denote
n2)= —eGul[/72) +R(), T,=T, + T,
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and write
g1=Trgo="Tigo+ 1,go=Ti 1+ Tihg+ T,g0=2/Ao+ T1ho+ T,g, .
Hence,
hy(2)=g1(2)— 1=(2/20 = 1)+ X} (2/(Aec)NOYG o |/ 72)
+ T HE + Tgo(2)= Y1 080G, (/7 2) + H,(2)+ S,(2)

where
8O =(2/20— iy~ +(2/2,)0 (3.13)
8 =(2/(AocY, j=1,... M, (3.14)
H =T,H,. (3.15)
S1=Tg,- (3.16)

Analogous expansions are obtained for all the sequent functions h,(z)=g,{z)—
and the following estimates are true:

6 <2m15010 (3.17)
0] <270 e~ et e (3.18)
HHn(Z)H<2n)*—n —n(M+1) , (319)
[S.(2)]| Seme?/?2, (3.20)

It is very important that the validity of all these estimates is proved on the basis
of the following properties of the function g,:

1. g, satisfies the estimate (3.11),
2. ligo2) = crip,y £61°, (3.21)
3. llgo(z)— 1] =12, (322)

Relations (3.17)—(3.20) are casily proved by induction. Let us now use estimates
(3.17}+3.20) for n=n,. Then we receive for z € D, that

(2N S I8ty + T 896/ 7 D)+ 1H, (2

+ IS,II(Z)| éSO 99 +C0nst(1n8‘ I)M 31/32 +e .31/32-0.001 §815/16

if ¢ is sufficiently small. We have used here the following considerations: the
estimates 0%y 3 <e®® and Y M 0(5,,‘G2](]fyz (< conste®?[Ine~ Y™ are
deduced from (3.22), the estimate |S, (z)|<e*'?27%%%1 — from (3.20) and the
estimate |H, (z)] <e is proved in the following way

HH111(Z)HC1(DE)§87 100 lexp(— )’ZZ)Hnl “CI(Rl)
< 1O0H,, | Se 002l e

[see (3.19)]. Next ¢ ™ =¢g00001e et ys choose M=107(Inc)~* (M does not
depend on ¢). Then it follows from the latter inequality that ||, {1 p,<e Q.E.D.

Thus it is proved that the function g, satisfies the same conditions 1, 2, 3 as
the function gy(z). Now in a similar way we prove that the function g, (z), n,=2#n,
satisfies these conditions too and so on. As a result, we establish (3.12) Theorem 3.1
is proved.
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§ 4. Inductive Assumptions, Formulations of Main Lemmas
Proof of Theorem 1

We shall begin with some notations. Let

=(Gapp AG)= [ e G}/ 7 )A(G )/ 7 2))dz

and e={¢;—c)/a. In Appendix 1 we show that a=%0. Below we consider only the
case ¢>0. All our assertions should begin with the phrase: “Let ¢ be sufficiently
small”. For this reason we shall omit it everywhere. Let us put D, =[—d,, d,| where
d,=10(Ine " +In(1 —&)"")*/(c —1). We shall take w>1 which is the root of the
equation 5° '=(1—g) 1% je w—1a¢/(100In5). Furthermore, we shall
consider the sequence of integers ny=[wn,_;+ny], i=1,2,..., ng=2logse™".
Our procedure will be slightly different for n=n; and n,<n<n;, . At each step
we shall deal with a family of functions f,(z; a)= A" f,(z; a), where a is a parameter
of the family, all the values of which form the k-dimensional parallelepiped:
a={ay, ..., a1}, @) LAY, i=1,..., k. All the functions of the family are even.

Inductive Assumptions for n=n,. Conditions (U,)

For n=n; the k-dimensional parallelepiped B, ={a=(ag,ay,....a-1):|a|=
e>3(1 8/2)"’ s=0,...,k—1}, for each a=(ay,...,a;_,) € B, the even function
fulz; a) is given so that
u,) for some a'” € B, the function f,(z; a'”) =7, satisfies the conditions of

Theorem 3.1; therefore the operator Ly has N +1 eigenfunctions e(z; f)=e",
s=0,1,..., N with eigenvalues A(f)= )u(l) and the invariant space Hy, y; besides
|/1§“—20‘S| <e*3 s=0,1,...,N; the number N does not depend on ¢ and will be
indicated below;

u,) the function g, (z;a)=Af,(z;a)— f,(z;a), aeB, can be represented in
the form

Gz @)= 525 a;€(2) + 8, (@)ef(2) + R, (z; a)

here the function R, (z; a) being expanded on the subspace H, ; and one-dimen-
sional subspaces generated by ¢!, s=0,1,..., K has zero projections on these one-
dimensional subspaces; for ze D,

Up1) 10, (@) <2y~ M2e%3(1—28/3)"; |V, 6, (a)l <2y~ 1267/3(1 —2¢/3)"
Ups) [R,(z; @)l <e®¥(1—2¢/3);
|OR,(z; @)/dz| <&>/*(1 — 2¢/3)" ;
VR, (z; a)l <e&>2(1—2¢/3)" ;
Uy3) 10g,(z; a)/0z| <e*(1 —3e/5)";
[0g.(z; a)j0a] —efz; [ <& P(1—3¢/5)";  j=0,...k—1;
w;) for z¢ D,
0= f.(z; a)sexp(—(&/2)|2%),
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where a=2(log,c) ™! and is sufficiently close to 2k for small ¢;
|0£,(z5 @)/0z| < (L + |21y exp( — (¢'/2)|2%) ,
Vo fulzs Al S(L+1227 exp(—(¢/2)|27)
V012 )0zl S (1+]21*exp(—(e'/2)2%) .

Inductive Assumptions for n;<n=<n; .. Conditions (V,)

Let a k-dimensional parallelepiped 2,={a=(ay, ..., a;_,): |a] <3e>3(1 —¢/2)"-
0 =0, 1, ..., k—1} and for each a € 9, an even function f,(z; a) be given.
We put g,(z; a)=Af,(z; a)— f,(z, a) and denote

vi=1-3¢/4, v;=A+er<c PR k<j<N+1
where 4, are eigenvalues of the operator Ly, acting in the Hilbert space L (R';

exp(—7yz?) of even square-integrable functions with the weight exp(—yz?),
y=1—c~!. Then the family {g,(z; a), ae U,} satisfies the conditions:

v,) forze D,
glz: @)=Y (20 ae(2) + Y- 0(@)el(2) + hy(z: @) +1,(z; @)

where N is the same number as in the conditions (U, ) and will be indicated below
and

Vi) 0@ =2y HeB (1 =23y, s=k. ., N
W78a) <2y 221 —2e/3yv ™, s=k,..,N;

Vi) h(z;0)=0 for z¢D,; hlz;a)eHj,
”hn(za a)”LZ(RI;exp(~yzz)) < 2’})_%88/3(1 - 2‘5‘/3)anN+r1lt
| (25 @1Vl 23 O sy S872(1 = 2630,
125 @)l emepy + 1Vah25 @)llomp,y < L0873 (1—2e/3)"3" 7",
m=0, 1, L{®=const

Vi3) 16425 Dllcp,y Se7(1—2/3)m 1307 mxs

[ IVatn(Z;a)l+\ ¢ tiz;a) + Va_a_tn(z;a) <& (1—3g/5ynriznm
0z C(Dn)
Vig) “gn(Z;a)HC(Dn)<88/3(1'_28/3)"3”*””1

0 _
| a; guz;a)—efz: f)

<31 —3g/5)3nm

C(Dn)

ooza

C(Dy)
vy for z¢ D,
Va1) 0= filz; a)<exp(—¢/2/z[");

0
Shiza
Va) (Vaf,fzs @) < (1+ (2 exp(— /210"

Vagf W25 a)
0z

<(L+[21*exp(—¢'/2/z1%);

V34)

<(+[z*" exp(—e'/2|2%) .
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Now we shall formulate three lemmas from which we shall deduce Theorem 1.
In the formulations 4 is a certain constant larger than 1.

Lemma 1. Let n=n,, and for n=n; the conditions (U, ) are valid for the family
{f,{z:a), aeB,}. There exists a subset B, CB, and C'-diffeomorphism @,

B, A, such that for the family {f,(z; ¢, (a), aeN,} the conditions (V,) are
valid. Moreover ||, —Id||lci<e* where 1d is the identity transformation in the
k-dimensional space.

Lemma 2. Let for n, m,<n<n,,  the family {f(z; a), ac W,} satisfies the condi-
tions (V). Then there exists a subset W,,C W, and C*- dzjjeomorphzsm W, WUy
such that d(p (@), wa@N=Ada,a") and the family {Af(z; v, W), ae,,}
satisfies the conditions (V, . ). For n=n;,, —1 the conditions (V, . ,) are valid with
the functions ¥,

Lemma 3. Let for n=mn;., the family {f,, (z;a), ae W,  } satisfies the condi-

tions (V, ) with the functions €. Then there exists a subset A, CA, . and
C'-diffeomorphism y,,, W, . —B,, ., such that for the family {f, . (z:x.". (@),
ae®B,, . ) are valid and ||y, , —1d| <é.

} the conditions (U
Proof of Theorem 1. Let us take the initial family of functions
f(z;0)=@(2)(1 —£G o+ Y FL o b,G i+ ) f1 5 ae(2))

where @(z) € C7, @(z)=@(—2z), p(z)=1 for |z| < dno(s) and @(z)=0 for {z{ >d, (e)+ 1,
coefficients b; are found from the formulae of the perturbation theory

Al — eG4+ 823 HE 0 b,G o) — (1 — G+ 62 Y 5 1 b,G ) =0(%)

ni+1

where ez) are the eigenfunctions of the operator L ., It is easy to see that this
family satisfies the conditions (U, ). Now we can apply Lemmas 1, 2, 3 and con-
struct a decreasmg sequence of sets B,, ‘lB =W, OB, 1= 1(Brr 1)

%no—# 27 wng + ano + 1(58710 + 2) for which mn no — (1 € QIno
We shall show that the limit lim A" f(z; ) h(z; a) exists uniformly on any

finite interval and Ah=h. Let f,, (z)=A"f(z;a), fo(z)= f(z;a). Lemma 2 can be
applied to the function g,(z)= f,+ (z)— f,(2) from which it follows that

l9.(2)| <e**(1-2¢/3)",  zeD,,
lgA2) <exp(—(e/2)zf"), z¢D,.

Therefore for any fixed ! the series fo(z)+ > 7% g,(z) converges uniformly on D,
and for its limit h(z)=0 the following estimate is valid

h(z)<exp(—(¢/2)z|"), zeD,.

From this estimate we have 4h=h. Theorem 1 is proved.

§ 5. Proof of Lemma 1

Let be n=n,. Let us denote h(z)= yp (2)e(z), j=0, ..., N, where y;, is the indicator
of the mterval D,=[—d, dn], ¢{(z) is the j-th eigenfunction of the operator Ly,
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Firstly we shall show that

|| o hl2)hdz)e” 7 dz — )| < ¥ (5.1
where J] is the Kronecker symbol. According to the Theorem 3.1

1692 = Gafe)/ Nl emreny <
and for |2/>dy=10(c— 1) !}/Ine” ! |ef(z)| <|z/*/* L. Therefore

112) = D Faimrie-vey = foi>a, 1€ (D) e 77 dz

<fiz>al2*t2e ¥ dz <.

Consequently,

11(2)= Gzl D) o senp 3oy S 2612 (52)

The Hermite polynomials {G, j(zl/~,7)} are orthogonal in the space L*(R';
exp(—7z?)), therefore inequality (5.1) follows from the last inequality. Then from
(5.2) we may readily obtain:

112, h(2)h(2)e 77 dz) < 26 (5.3)

for j=0,...,N and h(z)e Hy, y.
Inequalities (5.1) and (5.3) allow to expand the function R,(z; a) in functions
{h{z)} for small ¢ [see the condition (U,,)]

R,(z; @)=Y 00N @)h2) +h,(z; a),

where for ae®, supph,z;a)CD, and hfz;a)e Hy y and obtain for any
J, 0N, the following estimates

@) (1 +e*P)IR,(z: a)] (5.4)

Ihz; @ S(1+e*) R (z: )], (5.5)

VSN <L+ VR (23 a)] . (5.6)

IVahiz; @) S(L+ &) | VR (23 a)l (5.7)
where | - | = - | L2 exp(— y22)-

As a result, we have the expansion of the function g,(z; @) as follows

9uz; @)=Y 28 (a;+ 89 (@)el(z) + (3 a) + 5P (a)e(z)

+Y Y v 100(@)eN2) + hfz; a) . (5.8)
The estimates u,,) in the condition (U, ), and the estimates (5.4), (5.6) show that
169(a)| <2y~ *eB3(1 —2¢/3)™ (5.9)
|7, 09(a) <0.9 - 29~ 2e5/2(1 — 2¢/3)" . (5.10)

Let us define the mapping ¢, :B,—R* by the formula:

(@gs - os g 1) = G=—rb = (g +8a)s .., a1 + 55 V().
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Then the estimates (5.9) and (5.10) mean that
loy—1dl|c: =% (5.11)

that is, ¢, is C*-diffeomorphism which is close to the identical one. For the point
x € 0B,, the boundary of the cube B,,

|ulx)— x| <e?|x].

Let us denote A, = {|a;/ <3¢>*(1—¢/2)'}. From the last inequality it follows
that

A, Co,(B,)
where ¢,(B,) is the image of the cube B, under the mapping ¢, Let us put
B! =, '(A,). We have proved that the mapping ¢, : B, — U, satisfies the estimates
formulated in the lemma. It should be verified that expansion (5.8) of the function

g,(z; a) satisfies all the requirements of the condition (¥V,), provided the variables
a= @, *(b) are substituted in this expansion. Let us denote

81(b)="0,(; (b)) + 6, (b)),

S b)=0Np, '(b).j=k+1,...,N,
hiz; b)=h,(p, (b)),
t(z;5)=0.
We have for k+1<5jSN

09(b)] =169, (D] < 2y~ 2e3(1 — 2¢/3)™
|Vb5y)(b)1§“7( ;1(b)5_:(1j)(§0; l(b))‘ AV, 1(b)l
<209y %321 —2e/3)"(1 + 23y < 2y 2321 — 2¢/3)™ .

In the same way we verify the remaining parts of the condition (¥,). Lemma 1 is
proved.

§ 6. Proof of Lemma 2
We have

Gne1= fui2— Fur1 :Afn+1—Af‘rl:th<f;r+1 — /)
+A(fn+1—fn):Lf‘gn—i_(Lfn—fi)gn_*_Agn

=Lsg,+t,+t,. 6.1)

Firstly we show that for ze D,
ti(z; @) <(1/4)e"/2(1 — 2e/3)m+ 130 mrr (6.2)
|t(z; a)f < (1/4)e72(1 —2g/3)m+r . 3 mrr, (6.3)

Vat(zs a)l, [Vtu(z; @)l <(1/4)e*03(1 —g/2)m 13 et (6.4)

n
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In order to derive (6.2) let us first establish, that for zeD,,
£z a)— filz) <e”P(1—e/3)" . (6.5)

Let us denote a®=a, a?=y; (@' V) for j=n—1,....n, b™ =g, (a™).
From v,,)

|filzs @)= £z DU £ Y20 1g(z; aP) S 267 (1 — 2¢/3" (6.6)
and from u;) it follows

£z 6" = fi2) =1 £uz; b))~ f,42; O)
<{b™| sup |V, £, (z: D) e P(1 —g/2)e” V203!
beB,,

<e"B(1—g/3)met 01 —g/2y(1 —g/3) " ™dak+ 1, 6.7
Inequality (6.5) will result from (6.6), (6.7), if we show that
eMO(1—gfo)ndZ < 1. (6.8)

From the form of d,, denoting x =¢(1 —¢)™, we have
81/10(1 8/6)” d2k+1 <(8(1 _8)ni)1/10d'21]c+1:Lx1/10 lnk+%x~1

where L is limited, and x—0 for ¢—0. Thus, (6.8} and therefore (6.5) are proved.
Let us consider now (6.2). Suppose ze D, . Then

MLy~ L7)guz: @)l =12/)/ 7 ]2, e Szl c —u; a)
— Fz)/ ¢ —w)gz/)/ e +u; aydul
ST fjuico.90 - sana i F @V futs 090 a1
=1, +1,.

From us) it obviously follows that f,<2, and, putting u,=0.9(1—c"%d,, (, we
have

Iy < Lexp(—u?)<(e(1—g)** 112,
In case |u|<u,, and zeD,,, we have

2/ e £l Slzf)/ el + [l S dy /) ¢ +uy=d, (1) e +09(1=1/)/¢)
=d,,(09+0.1/)/c)=d,d,. 1/d,(09+0.1/)/c)<d,, (6.9)
since
dys1/dy,=d, . Jjd, =(Ine" +n  In(I—g) " H/(Ine” +n;In(l—e)~1)*
<((ng " +nfw—DIn(1—e) ' +nIn(l —e) ) /(Ine ! +n,In(l —e)~1))*
<m=[/5;31.

From (6.9) it follows that in estimating the value I; we may employ the properties
of functions f,(z; a)—f(2) and g,(z; a), ze D,. Using v, ;) and (6.5), we obtain

L =Q/Y/ ) [y <, (file)) € —u; @)= Flz])/ ¢ ~ g2/} ¢ +u; a)du

<L —g/3) 7P (L /2" 3 e S (et ) (1 — 263300
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Performing summation of the estimates for [, and I, we obtain (6.2). The relation
(6.3) can be proved analogously.
Let us now prove (6.4). We have

Vatlz; @)=LV, g,+ (L, — Lp)V.g,.
We shall use the inequalities, resulting from (V}):

Vo flzs @)l SKo(1 4121771,

Vg2 )l S KoL+,

\Weg(z; a) Se¥(1—3e/5/%3""" for [z=d,.

Let us divide the integral, which determines L, ; g,, into the sum of two
integrals:

Ly, 9025 ) =Y/ ML A N zud e Vo filz/ ) —u; a)g,(z/)/ ¢ +u: a)du.

For the external integral we have the estimate:

K, fups e (12} e —uly T 1412/} e+ ulf ™ du

<K fus el 2du<e?H (1 - 263,

so far as for ze D, and [u}>u,, we shall evidently have |Z/1/Ei ul < K5u. The last

inequality follows from the fact that exp(—u2)<e*(1—¢)" due to the definition
of u,. For the internal integral on the base of the condition v,,):

VT i< we ™ Vadule/V/ ¢+ us a)gz/ )/ e —us a)du
<Y/ g <upedu- €831~ 2e/3)" 12Tt <e¥2(1—5e/8)".

Summing the estimates of the external and internal integrals, we obtain the
estimate for the value |L, ; g,. Analogously (L, —L,}V,g, can be estimated.
So, the first inequality in (6.4) is proved. In a similar way we prove the second
inequality for |V t,| in (6.4).

Now we make use of the representation for g,(z;a) involved in v,). In the
expression

Lrgfzia)=Y" 20a;Lz e+ YN 8(a) L5 e + Ly h,+ L5,
we consider each term separately, beginning from the right one. Let us introduce
the operator

Lrg=Q/)/m) ", e e/} c —wglzl)/ ¢+ wydu.
We shall show that for zeD,
Lz~ L)z a) <e*(l—ey ' (6.10)
‘From the conditions ;)
Ifilewn=2, Ntz @)1 +12) 72V 2 emy<1.
Hence
(L= L)tz | S @Y7 e U412/ e —u) N du
<K j|u|>une’“2|u]””du< K, exp(—u?)u2+?
<e*(1—e)" 1K, exp(—0.1ut)u2N* 2,

n
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that proves (6.10), since K; exp(—0.1u2)u?""?—-0 at u,—o0, whereas due to
smallness of ¢ we may consider all i, to be sufflclently large.
For zeD, ¢, lu|<u, it is obvious that z/WiueDn. Thus,

1Ltz Dl e,y 0 S 2 UEd25 @i, - (6.11)

Let us put t,.,(z; a)=t,(z; a)+1,(z; )+ L7 t,(z; a). Having summed the esti-
mates (6.2), (6.3), (6.10), (6.11), we obtain the resulting estimate for ¢, (z; a):

ltysr(zs Dllcp,, S e (1= 2e/3)mr 1300

The same consideration allows to obtain an estimate for the vector-function
Vatn+ 1(2; a):

WVt 1z Dl o, G SE (1= 3g/5ynrr 3T

Now we turn to the function h, . (z:a)= ¥, , (2)L7h(z; a).
According to the assumption of v,,) h,€ H 7, y. Therefore from the Theorem 3.1
it follows:

“hn+ 1(z; a)”LZ(Rl exp(— yz2)) = HLfI (Z;a)HLZ(R‘;exp(Ayzz))
SVn+ 1 1025 Dl 2w expi - 1220 - (6.12)
So far as h,(z; a)e Hz y for any ae U, then
oh(z;a)/0a;eHy n, j=0,..,k—1.
So, analogously to (6.12), we shall have
10 (23 /00| Lo exp ooy S Vv 1 19023 @003 s enp— v -
From the inequalities

IlLf,.hn(Z;a)chm)—Z Lh,(z; a)HC(D)
HLf_,-hn(Z; a)‘lci(Dn+ W=K hiz: a) C(Dy)

we get directly the following

s 1(z3 )l ey E2 Uiz D ep, (6.13)
1 1(23 Dl 1m0 SK N2 D, » (6.14)
Wi 125 Dllcp,, S 2 HIVaZ5 @l e, (6.15)
1Wohur 125 D oo, n SKIVah25 )l cop,y - (6.16)

Now we have
Gni1(z;0)= ) 520 25a5e,(2) + Z] 1404 D a)ej(z)_*’l;n-%— (z;a)+ 1,4 4(z3a) (6.17)

where Ao,...,Ay are the eigenvalues of the operator L. From the invariance of
Hy, y it follows that L7 h,e Hy y but, generally speaking, h,, ¢ H7, y.
Thus, we consider the expansion

n+1(Z a)= Z y(zj+)1(aXDnH(Z) ()+]7n+1(2;a)7 (6.18)
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where h, ., €H7y, 5. From the Theorem 3.1

N0y s1(z2; a)“LZ R exp(— ;zZ))fl 1“h_n+ 1z a)HLZ(Rl exp (—7z2))
Vol 1(2; a)HLZ(Rl exp(— >z2))<1 1”th+1(2 a)HLZ(Rl exp(—yz2))
iér(tji)- {1, U,y (25 A L2R 1 exp(— v22)
VS @I =1, 11V 1(23 @) e,

exp(—yz2)) *

Let us introduce the mapping ,,: 2, — R, putting
Wildo, - i 1)=(Rotto + 840 1 (@ -y Ay 1ty y +055P(@)
From the last estimates, from (6.13), (6.15) and from the condition v,,)
@ e e (1—2¢/3) (6.19)
[, =1l cr 873 (1 = 2¢/3y" (6.20)

where v P(aq,...,a,_1)=(Aolo, ..., Au— 104 ). Let us insert expansion (6.18) into
(6.17) and denote the vector w(a) by a:

gnﬂ(z;a):Z’;.;é a]e] +Z_} k(45 5(1)(117—1(‘1))"‘55:&1( ﬁl(a))ej(z)
+hn+1(zaw 1(“))‘1‘%“(2;9‘) l(a))'
From (6.19) it follows that 1p(2,) >, , ;. Let us put
0P @)= 4,09 (w @) + L, (™ @), By 1(2; @)
=hys 1 (23T HA), iz @)=t (239 Ya)).

Lemma 2 is proved.

§ 7. Proof of Lemma 3
In this section we assume n=#;
R—n(z; Cl)': Jj= k+15(1)( )ej(Z)Jf-hn(Z; a)+tn(z;a) .

We shall estimate firstly |R,(z; a)| for zeD,=[—d,, d,}. From the condition v;;)
and the Theorem 3.1 we obtain the estimate

16 (a)e (2)] < v "eB (1 —2¢/3)"d I

Hence
Yok 110 (a)e () < e (1 —2/3" (1= 3e/dy ™™ Y T i 1 a7 v/ (1= 3e/4)) ™™
(7.1)
Let us show that for j>k
(v;/(L—3g/ay'~md2i* ! < ¢ 3=k, (7.2)

Indeed:
vi/(1—3e/d) < e 207PB /(1= 3e/)< e PVWE p—n=[(w—~Dn+ng .
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The left-hand side of Eq. (7.2) does not thus exceed

¢~ BIBU=Ro=1md+no) G2+ 1 < o= Hi~kina o= (1/8)( =Rl = Lnd o) g2+ 1
In order to prove the inequality (7.2} it is sufficient to show, that
¢~ A== DmlTno) g2N+1 o
From the definition of the numbers ngy, n,,...,®, d, we have
[w—Dn]z(w—Dm—12 (-~ Dnfo—-1—(o— /o,
¢ Dlo _ (5o HlossafBo) < (1 _g)t  }=(logsc)/320,
cTmB <t p=(logsc)/50> 1,
d,=4/(1—cH}/Ine” T+ nin(1—g) "= const)/Ine " *+nin(1—e) *.

Consequently, if we denote x=¢*(1—¢)", then

C*(1/8)(j*k)([(w41)ni]+no)d3N+l n(2N+ 1)/2x 0

£—~0

< constx1

the fact that should have been shown. Turning to the inequality (7.1) we can see
that

S 10 @ (2] < 6% (1 22/3) (1= 3e/ap " Yy 200
<8B3 (1—2e/3y"(1—3e/4)* ™M 30/(1 —c W)
<gB3tlosse( _Dg/3y(1 — 3g/4y ™, (7.3)
_ Mo
since ¢~ #0=5 2 loescgloBs¢ dye to the choice of n,. _
Let us estimate now the other terms entering into R,(z;a). From the con-
dition v,5) we have |t,(z; a)| <&”'*(1—2¢/3)". From v,,)
“hn(zﬁ (1) HLZ(Rl) é eXp (,yerI) ”hn(z; a) ”LZ(ng exp(—7z2))
< evd%C~(2/3)(N-k)(n—m)88/3(1 —2¢/3)=S.
It may be shown now that S<e&*(1 —2¢/3)". The idea of proving consists in the

fact that by choosing the number N sufficiently large the increase of e* " will
be compensated by the decrease of the value ¢~ #3W-Rt—m) We have

n—n=[o—n]+n,=(0—On+ny—-1=(w— o)y n—ne+1)
+no—1Z2(w—-1D/on+ny/o—2,
C—(2/3)(w—1)/w:(5w—1)2(Iog5c)/(3w)§(1___8)1’ )L-:(logsc)/(60a)), c*2ng/3w:8u ,
n=(logsc)/(120), e F=[(1—8)"e™']", v=16(/c+D/(}/c—1).
Hence
S~_<_87v+(N‘k)u+ 8/3(1 _S)n(—v+(N—k)J.)(l —28/3)'“6‘2 .

The required inequality for S is obtained, provided (N —k)u, (N—-k)A=zv+1.
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Let us estimate now |h,(z; a)| for zeD,. The discussion presented below has
been already employed in [2]. Suppose 0<z=<d, and

0, i ¢[0, —2]
1+3u, uel0, —2].

II{w)= {
From v,5)
hy(u; a)l > h,(z; @)l T(u— z)
and, therefore:
25 a)l < lih(u; @)l oy / ITT) | Logryy < 1 auts @)l oy <€ (1 =2¢/3)". (7.4)
Performing the summation of the estimates (7.3), (7.4), we obtain
IR,(z; a)| < g3 T¥loese(] _2g/3y"
Analogously the following inequality may be proved
|V.R(z; a)| < g2 ¥loesc(1 _ 5¢/8)" .
Let us turn now directly to proving the conditions (U,). We have
gz )= Y- b aje (2) + 00 (a)ey2) + Rofz5a) (7.5)

It should be recalled that here e; are the eigenfunctions of the operator Ly,
We verify first that the function f,  (z;0)= f,(z;0) satisfies all the conditions of
the Theorem 3.1. Suppose b= N (... 0,21 (0)...)), j=n,...,n—1 where
@ W,—-W, ., are the mappings constructed in Lemma 2. Then from v,,) for
zeD, we have:

| fi+1(z; YD) — filz; b)Y =1g(z; b <7 (1 — 2¢/3)"377".
Whence
|filz;0)— f£,(z; b < 2673(1 — 2¢/3)" . (7.6)

Then, so far as || £, (z; d'?) — (1 — £G,4(z; YD)l c1pyy= O(e*'*) the analogous equal-
ity is valid for f(z;0) also. Thus, in the segment D, function f, satisfies the con-
dition of the theorem. From the conditions (V}) it also follows that it satisfies the
conditions of the Theorem 3.1 outside D, too. Consequently, Theorem 3.1 is
applicable, and we may introduce the eigenfunctions e(z; fi+ 1), iy 1=, (z;0),
j=0,1,...,N. From (7.5), v;) and u,5)

|25 0) = £325 D) o exp - yazy < (47872 (1= 28/3)"
1fudz: D) = fu2s @) 2wes enp = o0 S SUPIV (75 )

b — g O < g3(1 — 2¢/3)"

i+1

where a'® is introduced in u,). Thus,

1123 0) = fr(23 @) Lagssexp —yary <(3/)/7)E7 (1~ 2¢/3)".
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From this inequality, using the consideration of the Theorem 3.1, it is easy to
derive the estimates

lej(z; fis 1) — €425 Fll Lo exp ey <87 (1 = 26/3)"
for j=0,1,...,N. From here
ej(z;fi): an: oG+ ij)em(zjw 1) +I€n(29 a,
where &/ is the Kronecker symbol,
Ciml IRz D,y <e"P(1=26/3)",  Ry(z;a)eHy,, .

Inserting this expansion into the equality (7.3), and performing the substitution
of the variables similar to the identical one in the space of the parameters
a=(ag,...,a,_4) we obtain the condition (U,) at n=n;, ;. Lemma 3 is proved.

§ 8. Derivation of Formulas for Indices

In papers {2, 8] there have been obtained results concerning the indices of the
asymptotic hierarchical models under the condition W<c<r. As it will be seen
in what follows the cases [/17<c<r and ¢ -——]/;—e differ essentially. For the sake
of simplicity we consider the case r=2.

The values of the critical indices we derive by studying the asymptotic be-
haviour of the recursive relations (1.2) when n—oo. Function f,(z; f) in (1.2) is
defined on the discrete finite lattice of points M, = {c¢"*(—1+i/2""1)}2, with the
step A,,:Z(]/E/Z)”, since ) ..y, #(x)is an even number, which does not exceed 2"
in modulus. The summation is carried out in (1.2) so, that z/]ﬂiueMn.

As in the papers [2] and [8] we obtain the critical indices for a.h.m., their
initial distribution f, (z; p) satisfying some relations of the inequality type for a
sufficiently large value of n,. These inequalities determine the open set 2 which
is deliberately non-empty in the space of all a.h.m. In this way we show that the
branch g,, is thermodynamically stable.

Let us suppose ¢ be fixed, and ]/§~c>0 is small. Let f(9(z; B)= const be the
solution of Eq. (1.3) constructed in the Theorem 1, and e(z; ) are the eigen-
functions of the operator L jo (see the Theorem 3.1) with the eigen numbers ;.
The eigenfunctions are considered to be normalized by the condition

ledzs Bl zatirsexp( === (/%) - () 12/2)) - (29%)2)(2))1

so that efz; f) for z~]/Ine™" has the asymptotics z*/. The set € consists of the
families of the probability distributions f, (z; f)=exp(~ao(f)z*)p,,(z; f) de-
pending on f, which satisfy the following conditions (the number n, is large, it
is enough for it to exceed 107¢™2):

The condition (U). There exists a segment of inverse temperatures [, ]
and C'-function b(f) defined on [, 7], such that

Puy(2; B =p"V(z: B)+ A°b(Ble, (z; p'¥) 4+ R(z; P) (8.1)
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and in this case
w) Ah(BE)= Fe¥2 p(B>)e for fe[. 7]
uy) |R(z ,ﬂ))+)5R( ;/3)/@/3|+15R(Z;13)/@Z|<82
for |z|<4p)/Ine”", pelp. 7]
u3) 0<p,(z; B)<exp(—(Be'/2)lzl");
|0p2o(z; B)/ 02 < |2i* exp(—(Be'/2)|zI") ;
10Pno(z; B)/ 0P| < |21 exp (—(Be'/2)|z|%);
|07 P25 B)/020B1 <|2|” exp(—(Be'/2)|2]")
for |z|>4p)/In(1/e), Pelf "1
Theorem 8.1. Suppose the value ]ﬁ—c is sufficiently small, and the condition

(U)is fulfilled. Then inthe segment [B~, BT there is one and only one critical point
Bew for which f,(z; Bo)= fV(z; Be,).

Note. 1t follows from Theorem 8.1 that the value of the critical index #=0,

. . . : . 2
provided the dimension of the model is d,= fog,2/c” N

Theorem 8.2. Suppose the value ﬂ—c is sufficiently small, the condition (U) is
fulfilled, and fe[B., B..). Then

(c/2)" filz(e/2)? ; = (2na,(B)) " *exp(—(a.(f)/2)z%).
For §— .. asymptotically o (B)~|B..— Pl™ 7, y=1—log;, (cA/2). _

Theorem 8.3. Suppose the value ]ﬁ~ ¢ is sufficiently small, the condition (U)
is fulfilled, and e[ _, f.,). Then there exists a sequence of the numbers 0 < M {(f)<
My(B) <., lim M,(8)=M(B) such, that (c/2"* £,((¢/2)"%; )= G (z; B)=0, where

G\(z; B)=13(2m0,(B) "*(exp(—(z— 2" M,(B))*/202(B))

+exp(—(z+2"2 M, (B))*/20,(B))) -
For B— ., the asymptotical formulas

M(B)~1B—Bel®,  o=3log;c;  axf)~Ip—Bd’, y=1-log, (ci/2)

are valid.

Refinement of Theorem 8.3 (calculation of the correlation radius). In the
assumptions of the Theorem 8.3 there is 2 number N = N(f) such that for n< N the
condition |(¢/2)" f.(z(c/2)*; B)— fo(z; B)l<&*” is fulfilled, and for n>N the con-
dition |(¢/2)" f,(z(c/2)"; B)— G (z; B)| < &> is fulfilled; the value &= E(B)=2NPa g
the correlation radius, and for f—f,, &B)~|B— B~ . v=1log, (2/c).

Let us consider the Gibbs distribution in the Volume V, at the external field
value H and at the inverse temperature f§ and put

Sz B )= (/) OV JEDN Y 22 Eaer, o= 2€XP( = BH(0) + HY ey, 0(x) . (8.2)
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Theorem 8.4. Suppose the value [ﬁ—c is sufficiently small, the condition (U} is
fulfilled, Be[B™,B*], and |H{<elf™ —B~|, H*0. Then there is a sequence of
numbers M (f, H)?M(ﬁ, H) such that

(/2" fi(2(c/2)"; B)—(2ma(B, H))™* exp(—(z+2"* M, (B, H)Y/2a(B, H)=0

Theorem 8.5. In the assumptions of Theorem 84 we have :
a) M(B, H) is the monotonously increasing function of H ;
b) HliIEOM(,B, H)=+ M(f3) (see Theorem 8.3);

¢) function H=H(f, M), which is an inverse one to the function M(f, H),
permits for , M—0 the expansions;
¢,) in the region |M|/|t>Ine ™!, 1=(f— B..)/Ber @ =73log;,C

H=(Ly(Be— PIM™ + Ly {MP2 + .. JsgnM (8.3)
where 8, =1—2log.(cA,/2), 6,=3+2log.(2/c?), L, >0, L, >0 are constants, ... are

the terms of higher order in the expansions; for c—>]ﬁ Li~1, L2~(]/§~c) ;
¢,) in the region |M|/|t|°<(Ine” ")™Y, B< .,

H=LB,—p) " "M+... (8.4)
where y=1—log, (cA,;/2), Ls is a constant; for c—>[/§ Li~1.

Note. The presence of two asymptotical expansions in different regions of the
equation of state H(f, M) in the neighbourhood of the critical point is a very
important phenomenon. It shows the type of the expansion H(B, M), when the
Landau theory cannot be applied.

The Theorem 8.1 is derived in the same way as the proof of the basic theorem
(see also [2]), and we shall omit it. The proofs of the remaining theorems also
involve essentially the technique of paper [8]. We present two lemmas without
proof which elucidate the derivation of Theorem 8.3. These lemmas are proved
analogously to the corresponding lemmas in paper [8], and we shall omit it too.
Let us denote N = N(B)= min {#n : 215" (B.)| - 18— Berl > (4/5)Ber/(2/c— D)}, eg(w) ="
for )/In(1/e)<|u[<e™ 33 80(u)—e”3182/3u| 13 for e7 <[y <"/ Ine T

Lemma 8.1. Suppose no<n<N(f),]/Ine™ ' <[V <" /Ine™ . Then there
exist the numbers L,=L,(B, 2%, w,=w,(p, 2, s,=s,p, z'%) independent on z,
such that

Iz By=Lyexp(—=p,(z—3,)°) (L+R,(2)), (8.5)
where |R,(2)]=|R(z; 29, Bl <eo(zo) for |z—z<)/(1/u)In(zV/e) and the re-

cursive relations are fulf lled
s 1B, )/ €2 ) = (ao(B)+(2/0) (1, (B, 29) — ao BN (1+ Oeo(= ) (8.6)
See1(B )/ e29)= 2/1/ V(4B )4 1(B,1/€2Ns, (B, 27N (L4 Oeof= ). (8.7)
Moreover for ]/lneﬁ_l <|z(°)l<2]/F
1B, 20y =(ao(B) = Ly 25(B— Ber)/ Bee + Lalz®12) L+ O(127 1), (8.9)
sulB. 2 =(Ls |2 /1, (B, N1+ 00277 1)) (8.9)
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where Ly, L,, Ly>0 are independent on B and z\°, and for e—0 L, ~1, L,, Ly~e,
Lnglm%. And finally, for 29 =c""""2|/Ing™! and z> 294 1/(1/u,)n(z0/)

(1+R,(z)< 1.

Lemma 8.2. For Be[B™, B..] there is a sequence of the numbers zyg . 1(f)<
Zygy+ 2BV <., €70 <z, <€7 9! such that all the statements of the Lemma
8.1 are valid for n> N(P) for the points 29,29 > u,(B)=z,(B)— |/ 1tx ' (B,z,(B)Inz,(p)
and t=1z,(f}) is the solution of the equation s,(f, t)=t. Besides, for |z| <u,(p) f,{z; B) <
2f(udB); B). For n—co there exists the limit ¢~ "?z,(B)—M(p). _

Let us elucidate the derivation of the critical index, connected with magnetiza-
tion, and the equation of state in the vicinity of the critical point.
Suppose n> N(f). Using Lemma 8.2 we may show [8], that

I flz: B) = Gfz; 2, )l oty <€olz,)

where

Gn(Z; Zps :u'n) = Ln [exp(_ ‘Ltn(Z - Zn)z) + exp(_ ,U,n(Z + Zn)z)] 5

z,=z,(f) is the solution of the equation s(f,t)=t, u,=p(z,(B)). Therefore, the
spontaneous magnetization is determined by the formula M(ﬁ):,}iﬁé c "2z (P).

Denote M ()= z,(B)/c"* and consider such m, that |/Inc™* < ™?*M(f)<2])/lne" L.
It may be shown that m< N(f) [8]. From the asymptotical formulas (8.6), (8.7)
it follows that

B, 2B = IV P B 2OVl 2 BB, 21 +0E ), (810)
B, 2B = ol B) + 2/ (unlB, 20) = ol D)1 + 0 ). (811
20 ="M (f).

So far as |/Ine” ' <2?<2]/Ing”", we may use the formulas (8.8) and (8.9). The
errors in the relations (8.8)—(8.11) can be neglected. Then for M, (f) we derive
the equation:

Sp=2Zy

:u'nsn = :u“nzn 2
/Y )" S = g + 2/ " (g — @) 22O
.umsm = (#m - aO)Z(O) s

[the term ()/ c/4)"""a0n—:«>0, which is inessential in deriving the asymptotics, may
be omitted ]

Ly(z ) = (= LiATt+ Ly(29)%)2,
LMy = —Li(A Jo)"t+ LM} (8.12)
M =Ly(A,/c)",
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where t=(f—f.)/f, L,=(L,—L3)/L,>0, since, as has been formulated in
Lemma 8.1, L,L3'—3 for é—0. Further |/Ine™' <c¢™?*M,<2|/Ine”", whence it
follows that

(A /)" =Ls M;210gc(ﬂ;/c), (m)2logc(lx/c) <L, <(2] /Ine” 1)210gc(/11/c) .
Thus,

MZ2=LoM,; 280y Lo=L,.Li,

M = 1201 Floge(u/oNl—1 (8.13)
" .

As a result we have found the critical index B=[2(1+log.(4,/c)]*. The neg-
lecting of errors in the formulas (8.8)—(8.11) is substantiated as it has been done
in the paper [8].

Let us derive now the equation of state. Suppose f,(z; f, H) is the density of
the distribution of the random value (]/c/_Z)” Y xev, u(x) in the Gibbs ensemble at
the inverse temperature 5, and at the external field H. It may be easily seen that

filz; B, Hy=L,exp(BH(2/|/ )" f,(z; B, 0).

For large values of n the function, as may be derived from the Lemmas 8.1,
8.2 [8] is close to the Gaussian density with the average z,=z,(f, H) satisfying
the equation

sz +(2c Y BH/2u,(z,) =2,

Let us denote M, =M (f, H)=c "*z,(B, H). It is clear that M,(f, H) is an odd
function of M, thus, we may consider H > 0.

Let us consider such m that }/Ine™! <z(% <2}/In¢™", 2P=M,c™?. It is easy
to show that m<N(f) for > f.. [8]. Then analogously to (8.13) we obtain the
equation

H=(L7‘L'M1 —2logc(cAi/2) +L8M3+210g°(2/cz)) SgnM ) (814)

1=(f— Po)/Bers L7, Lsg>0 are the constants, which gives the asymptotics of the
equation of state in the neighbourhood of the critical point in the region f=
IM| = M(B).

At < ., the asymptotics (8.14) holds true, provided |M|c¥®"?>]/Ine” !. Since

cr

N(p)=min {n- 270" (B)el} > (4/5) (2/c-1)7",
this condition is equivalent to the following one
|M| |t] " F8 < (lng ™ 1),

In fulfilling this condition the number m, determined from the condition
|/Ine”t <Mc™?<2}/Ine” !, is less than N(f), and therefore the asymptotics
(8.14) takes place.
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If the following condition is fulfilled
|M\/(7]*log,,c)<(Ing~ ) ~*

then m> N(f), and
fidz: B)=L, exp(— w,,2%) (1 + O(e/20m =N/ 2y

Thus, in this case the derivation of the equation state is reduced to the case of
the Gaussian fixed point studied in [8]. The asymptotics of the equation of state
in this case can be given by:

H=const.|t| "M,

where y=1—log, (cA;/2) is the critical index calculated in Theorem 2.

Appendix 1
Calculation of the Number

a= {2, e Gyl y2)n " [2 e TGl ez — |/ yu) G|/ ez + )/ yu)dud:z ,

y=1-c"t.

Let us make a substitution of z=1y ™ *:
a=[% e "G, (t)d(t)dt ,

where

B(t)= ()" # %, e Goylt/) ¢ =/ 7w Gt} e+ ]/ yu)du

Using the equality e Gy, (t) = (n* 242k) 1%)~ 1 (d**e " /dt**) and integrating by
parts, we obtain

a=(n*242k) 1F) {7 e (dP* @) di* )t = (¥ 252k) VE(my) )[R S e T
(A2 [Goylt)) e =Y/ yw)Golt))/ e+ yuY] dud .

Lemma. {2 (% e~ G(t/)/c +)/yw)G{t/)/ c— |/ yuwdtdu= (2/c— 1)'5i)/.
Proof. Suppose i<j. We have (1/]/2)2 + (]/y)2 =c¢ '+ 1—c '=1. Therefore,
the matrix
T
Voo e

is orthogonal. Let us make a substitution of the variables in the integral

=0l
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We obtain
§70 §%0 e G WG (= L+ 2w +2)/y/cv)dwdy
=2, [2, e 7 G (w) [2/c— 1) G{w)+ Q(w, v)]dwdv

where the degree of the polynomial Q(w, v) with respect to w does not exceed
i—1<j, and, therefore,

[20e "G00t v)dr=0.

Since [* G, (1)G{t)e " dt =5, the lemma is proved.
Let us use the known property of the Hermite polynomials:

d'G(z)/dz =12~ 1)...(—i+1)G;_ (2).
In a combination with lemma this gives the following:
a=(rt 22k) 13 (ym)2) T Cl 28 (R ik e (2 (2w e TGz e~ ul/7)
L Gilz/) e+ )/ )dzdu=([(2k) T3 /(k )?) (2/c? — 1) (nF (my)) ™1 .

The number a is calculated.

Appendix 2

One of the authors (Bleher) has investigated the renormalization group trans-
formation for the hierarchical model in the case d=1, r=2, with the help of the
computer. As a result all the critical indices for all the values of the parameter
of the hierarchical model were found.

In the case under consideration the renormalization group transformation
can be considered as the nonlinear integral mapping:

Q: f(z)->const [*, e f(z/)/c+u) f(z/)/ c — w)du

where 1 <c¢<2 is a parameter of the hierarchical model. The first aim of the com-
putations was to find all the thermodinamically-stable fixed points (TSFP) of the
mapping Q. From the mathematical point of view it means that we seek fixed
points for which the linearized mapping L,Q has explicitly one eigenvalue the
modulo of which is bigger than one.

It is one of the results of the computations that for all the values of the
parameter ¢, 1 <c< 2, there exists one and only one TSFP of the transformation
Q. For ]/§<c<2 this is the evident fixed point f(x)= const. The graphs of the
TSFP for various values of the parameter ¢, 1<c<]ﬁ, are shown on the Figs.
1-5. Probably for ¢—1 TSFP degenerates in a discrete measure. The branch of
nonconstant TSFP have been considered rigorously before for sufficiently small
g= 1/5— ¢>0, where ¢=0 is the point of the bifurcation of TSFP. The numerical
computations show that there are not bifurcations of this branch of TSFP for
all e, 0<e<|/2—1.
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Fig. 1. The graphs of the TSFP (the continuous line), of the first eigenfunction (the interrupted line)
and of the second eigenfunction (the dotted line) are plotted for ¢=2%4°

Fig. 2. ¢=2'3

Fig. 3. ¢=202

Fig. 4. ¢=2%!

Fig. 5. c=20-03
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Fig. 6. The dependence of the first eigenvalue | | | L |

on the parameter log,c 0 01 02 03 04 O05logye
Azt
10+
08 _///
06}
0.4+
02+

Fig. 7. The dependence of the second eigenvalue , | | | [
on the parameter log,¢ 0 01 02 03 04 0Slogyc

Our second aim was to compute the spectrum of the linearized mapping L,Q
for TSFP. It is a very interesting problem because of as it was pointed out before
all the critical indices of the asymptotically hierarchical models can be expressed
via the first eigenvalue A, >1 of the operator L Q. On the Fig. 6 the dependence
of A, on the parameter c is plotted. One can see that there is a good agreement
of this curve with the theoretical e-expansions A, =(1+¢/3 + 0(52))]ﬁ fore= ﬂ— €
and /11=1+]/5 for c=1+¢ The last expansion is taken from the paper by
Kosterlitz [13].

Finally on the Fig. 7 it is plotted the dependence of the second eigenvalue of
the linearized operator L,Q on the parameter c. It is evident that O0<l,<1 for
all the values ¢, 1 <c<]/2. This points out that the considering branch of TSFP
has not any other bifurcation for 1<c<]/§ indeed.

On the Fig. 1-5 the two first eigenfunctions of the operator L,Q are also
plotted for some values of the parameter c.
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