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Abstract 

Critical national infrastructures, including energy, transport, digital communications and 

water, are prone to flood damage. Their geographical extent is a determinant of, and is 

determined by, patterns of human development, which is often concentrated in floodplains. It 

is important to understand how infrastructure systems react to large-scale flooding. In this 

paper we present an integrated framework for critical infrastructure flood impact assessment. 

Within this integrated framework we represent interdependent infrastructure assets through 

spatial network models. We quantify infrastructure flood impacts in terms of disrupted 

customers linked directly to flood assets and customers disrupted indirectly due to network 

effects. The analysis shows how spatial network models inform flood risk management 

practitioners to identify and compare critical infrastructures risks on flooded and non-flooded 

land, for prioritising flood protection investments and improve resilience of cities. A case 

study of the Thames catchment in England is presented, which contains key infrastructure 

assets and highest population concentrations in United Kingdom.       
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Introduction 
 

Civil infrastructures, such as electricity grids, roads, railways, ports, airports, water, ICT, are 

the physical backbone of modern societies, as they are essential for the continued delivery of 

goods and services and maintaining economic and social well-being. In Great Britain (GB), 

where our study area lies, civil infrastructures are classified as ‘critical national 

infrastructures’ because their failures could lead to “serious consequences, including severe 

economic damage, grave social disruption, or even large scale loss of life” (Cabinet Office 

2010). 

 

Extreme weather events pose serious risks to critical national infrastructures in GB. Flooding 

has been identified as the greatest risk to GB, both currently and in future climate change 

exacerbated scenarios (ICE 2009). In England and Wales there are currently around 50,000 

hectares of land that are classified as at risk of frequently flooding (at least once in every 

three years), which is projected to increase to around 200,000 hectares by the 2080s (HM 

Government 2012). There is increased focus in GB on flood risk assessment to reduce socio-

economic risks and enhance resilience (HM Government 2011; ASC 2014). Flood risk 

assessments are also prioritized in national planning documents in United States (Homeland 

Security 2013), Australia (AECOM 2008), Europe (EC 2007), among others. Due to such 

continued efforts normalised flood vulnerability and losses across the world have been 

declining over the last few decades (Barredo 2009; Jongman et al. 2015). 

In research there is increased recognition that flood risk assessments need to be integrated 

with other catchment management objectives (EC 2007; HM Government 2012). One such 

objective is to prepare cities in a way that they are adapted to flood inundations 

(resistance/resilience). Several integrated flood risk assessment frameworks have been 

proposed (Evans et al. 2006; Merz et al. 2010), along with quantifiable examples of 

catchment-level impacts of flood inundation (Hall et al. 2003; Dawson et al. 2005; Gouldby 

et al. 2008). Mostly these frameworks provide methods and tools for planning flood defense 

protection and insurance measures for aggregated number of household or business properties 

within flood areas. There is very little done in terms of understanding and quantifying flood 

risks to critical infrastructures and their wider impacts on flood risk management and 

catchment level planning. There are only a few studies (Pant et al. 2016; Kalantari et al. 

2014; Zischg et al. 2005) that address this topic, because network characteristics of 

infrastructures are recognized but seldom modeled in the analysis (Emanuelsson et al. 2014). 

In particular representations of infrastructure network interdependencies (or dependencies) 

(Rinaldi et al. 2001; Rinaldi 2004) in existing flood risk assessment frameworks are mostly 
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non-existent. These interdependencies (or dependencies) are crucial for understanding how 

flood risks propagate across infrastructures and towards society. 
 

The focus of this paper is on modelling the flood inundation impacts on critical infrastructure 

networks, which leads toward informed flood resilience planning. We present an integrated 

framework for quantifying wider spatial consequences of infrastructure failures due to 

flooding. The framework includes: (1) assembling data and models for representing critical 

infrastructures as spatially interdependent networks; and (2) developing models for mapping 

customers as flows onto the networks. Within the framework when the spatial network 

models are subjected to flood hazards we estimate the flood disruption impacts. These are 

presented in terms of numbers of infrastructure assets and their customers who are directly a 

risk due to flooding, and infrastructure assets and customers indirectly at risk due to network 

effects. The methodology is demonstrated through a case study of the Thames catchment 

floodplain in England, containing some of the most densely populated areas like London 

supported by infrastructure assets for electricity, water, waste, telecoms and airport sectors in 

the region. 

The integrated framework presented here gives quantitative measures to inform spatial 

planners and flood risk managers about the locations and spatial extents of risks due to 

infrastructure failures. Flooding impacts urban areas where several key infrastructures are 

located. Decisions on where to build houses are now recognised as a key tool in managing 

future flood risks. The importance of protecting vital infrastructure from flooding is also clear 

(Wheater & Evans 2009). Through the integrated framework we can identify which 

infrastructure assets lie within flooded areas and how many customers are impacted by their 

failures. We can also identify which infrastructure assets lie outside flooded areas but are 

disrupted due to their dependence on other flooded assets. Such information is useful in 

deciding where to target and prioritise flood protection measures, which logically would be 

around flooded assets that create widespread network disruptions. Ultimately this helps city 

planners to narrow down and strategize spatial flood management planning for improved 

resilience to flooding inundations. 

In such decision-making it is also important to recognise that flooding creates upstream-

downstream dependency relationships between multiple municipal boundaries based on their 

location in the flood catchment (Thaler 2014; Seher and Löschner 2015; Thaler et al. 2016) 

and the propagation of the sediment transport (Bornschein and Pohl 2005). Infrastructure 

disruptions introduce wider effects due to network failure propagation. There are several 

notable real-world examples of such infrastructure failures and disruption propagations. 

Some of these include: (1) In 2011 power failure at a major exchange in Birmingham resulted 

in the loss of broadband connection for hundreds of thousands of customers across the UK 

(BBC 2011). (2) During winter 2013 flooding led to the failure of three electricity sub-

stations at Gatwick airport disrupting 13,000 airline customers (McMillan 2014). Hence with 

infrastructures there is a need to understand both vertical and horizontal risk-sharing at a 

catchment-wide scale to spatially distribute risk decision-making (Seher and Löschner 2015). 

Through our integrated framework we are able to capture the spatial distribution of the flood 

risks across multiple boundaries, which inform how the risk could be shared vertically and 

horizontally across catchments.   

The rest of the paper is organised as follows. First we present the integrated framework and 

explain the mathematical development of the infrastructure network models, customer 
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demand assignments and disruption analysis. Next we present the case study for the Thames 

catchment flooding and its effect on interconnected infrastructures and assets understood in 

terms of direct and indirect customer disruptions. Finally the conclusions of the analysis are 

discussed, its possible further developments, and value for flood risk decision-making. 

Integrated framework and component models  
In this section we present the integrated framework for critical infrastructure flood impact 

assessment. We explain the underlying infrastructure network assembly, which includes the 

mathematical notation for representing the infrastructure network topologies as spatial 

networks and customer flows assignments. We also explain how network disruptions are 

estimated. 

The end result of the integrated framework is to quantify the potential ‘customers at risk’ due 

to widespread flooding. We use the word ‘risk’ in a qualitative sense to indicate potential 

negative impacts. We present three categories of risks: (1) Direct risk: the total numbers of 

customers that are at direct risk of disruptions due to the failure of an asset on which they 

dependent. For example: electricity customers are directly disrupted by failed electricity 

assets, airport customers are directly disrupted by failed airport assets. (2) Indirect risk: the 

total number of customers that are at indirect risk of disruptions due to the failure of the 

electricity asset for which they are dependent. For example, airport customers are indirectly 

dependent on electricity assets. (3) Direct and indirect risk: Customers that are at risk to both 

direct and indirect failures. For example some assets (i.e. water and airport) might be at risk 

of failure from flooding directly and also at risk of flooding indirectly through loss of 

electricity supply. To our knowledge such metrics for customer risks are unique to this work. 

However similar metrics of direct and indirect risks are widely used in estimating economic 

losses due to flooding (Thieken et al. 2008; Koks et al. 2015).   

Integrated framework   

The integrated framework, shown in Figure 1, is presented and explained as following: 

A. Hazard estimation – The aim of the component is to assemble data and models for spatial 

flood hazards. Such hazard information is represented through indicative flood hazards 

maps that include: (1) the flood footprint – which shows the spatial extent of a flood 

outline; and (2) the magnitude of the flood hazard – which is given either in terms of 

likelihood of flood exposure or the magnitude of flooding (either flow volumes or flood 

depth). In this paper the flood hazard information is available from other sources, hence 

our aim is not to explain the details of flood modelling.  

B. Network estimation – In this component we assemble multiple interconnected national 

scale infrastructure networks. These models are explained in the next section. The 

important considerations during network estimation are collecting suitable geospatial and 

connectivity data, mapping the functional flow paths, and assigning customers to the 

infrastructures.  

C. Infrastructure failure assessment – The final component of the framework is a 

computational process based on simulating the failures of nodes and edges in networks. In 

the first instance these failures are initiated based on the direct exposure of network assets 

to the flood hazard. The customers disrupted by such failures contribute toward direct 
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losses. Following such failures, we find all disrupted functional pathways and 

subsequently find the disrupted customers. This gives us the indirect asset failures and 

customer losses.   

Figure 1 demonstrates a workflow for the implementation of the integrated framework. 

Infrastructure failure assessment in Component C follows from Component A and B hazard 

and network model assembly. By setting up a simulation procedure to execute Component C 

we can repeat it several times for different assets to generate multiple failure scenario 

outcomes.   

 
Figure 1: Flowchart showing the integrated assembly of component models and implementation of the models to 

estimate flood disruptions of critical infrastructure networks.  

 

Network assembly  

We assume there are  number of different infrastructures represented by the set ={ , … , }. An individual infrastructure type ∈  is a network graph, represented as ≡ ( , ), where = { , … , } is the set of nodes and = { = , ⊆ ×} is the set of edges, defining the existence and connectivity of all assets belonging only to 

the infrastructure . Here = ,  signifies the edge element  connecting adjacent 

nodes  and . Infrastructure  is also connected to other infrastructures, which is 

represented by the edge set = { = , ⊆ × }. Overall combining all node 

and edge sets together, our set of all infrastructures is defined as a network-of-networks ≡ ( , ), where = { , … , } and = { ∀ , ∈ {1, … , }}. 

While assembling and creating the different infrastructure networks the following properties 

are incorporated into the network models: (1) The network assets exist in a 2D space defined 

in terms of a Cartesian coordinate system. Nodes are assigned point coordinates (latitudes, 

longitudes) to specify their locations; each edge is a collection of point coordinates that form 

a linear element. (2) All edges are represented as directed edges, which means there is a 

distinction between different types or quantities of flows in separate directions along the 
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same edges and treat them as separate, i.e., , ≠ . (3) For all directed flows we avoid 

creating hyper-edges and represent them as one single weighted flow edge.  

provides of visual representation of the notation discussed above. 

This network model described here represents two type of interdependency effect discussed 

widely in literature (Rinaldi et al. 2001; Rinaldi 2004): (1) physical interdependence: when 

there are physical flows of resources between networks assets, as represented through the 

network edges; (2) geographic interdependence: when spatial proximity between network 

assets results in their exposure to similar local environment effects, as represented by the 

spatial information in the networks.  

We observe that infrastructure networks have certain directional structures that determine the 

flow of resources. These directional structures exist due to three types of node characteristics 

associated with flows: (1) source nodes - which generate resources, (2) intermediate nodes - 

which transmit resources from the source nodes to further nodes, and (3) sink nodes - which 

are connected directly to the customers to deliver the resources generated at the source nodes. 

This is shown in, where for visual clarity we have shown the source, intermediate and sink 

nodes and their connections as separate layers organised hierarchically, though such 

hierarchy is not strict. 

 

Figure 2: Model representation of the infrastructure modelling and disruption analysis. 
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Demand assignments 

In this paper demands are modelled in terms of the number of customers (derived from 

spatial population statistics) connected to networked assets. While in some instances data 

on the customer demand is available, in several cases simplified models are built to 

develop estimates for customer estimates. Our model is outlined here. 

Customer demand mapping onto assets – In the first instance customers are most 

immediately connected to sink nodes, hence the first stage of estimating customer demands 

is to model such connections. Each sink node  of an infrastructure type has a unique 

footprint, which defines the geographical area ( ) it serves and the customer numbers 

( ) with that area. A representation of this is shown in the Figure 2population areas layer. 

Among other methods, a simple way of deriving the footprint area is through Delaunay 

triangulation (Lee and Schachter, 1980) or Voronoi tessellation (Poljansek et al., 2010) 

methods. We create a triangle or polygon with a sink node at the centroid, which is based 

on the assumption that the population nearest to it in space will create the sink node’s 

demand. For most types of infrastructures this is a valid assumption, because in reality 

infrastructure assets are located and connected to their nearest demand centres as this 

results in the expansion of least energy (or effort) for delivering goods and services. The 

customer numbers within an area can be estimated through the population census maps 

which give population density estimates at different spatial disaggregation, which when 

multiplied by the footprint area ( ) gives the customer numbers ( ). 

Customer demand mapping onto networks - The intermediate and source nodes also are 

assigned customers through their connectivity to the sink nodes. This depends upon the 

network topology information along with other parameters such as the capacity of source 

(or intermediate) nodes. In general infrastructure network flow models are more complex 

and depend upon the properties of the type of infrastructure being studied. Here our aim is 

to present a simple model for mapping flows onto networks, which can be used for 

disruption analysis. If the sink node  is delivering the resources for a source (or 

intermediate) node , then using the network topology the functional path ( , ) of 

all nodes traversed on the network between  and  can be traced. All nodes in this path 

are then assigned the customer number . Since any source (or intermediate) node could 

be supplying to several sink nodes, within capacity limitations and other operational 

factors, the customers assigned it can be estimated by mapping all the paths through it and 

summing the customers assigned to each path. This is given by the equation: = 	 ∑∀ ( , )                        (1) 

where ∈ (0,1] is a parameter that indicates proportion of customers being served by the 

flow along the source-sink path ( , ), creating a weighted flow network. 

The Equation (1) formulation shows the mapping of the number of customers of a 

particular infrastructure to all its assets. These are referred to as the direct customers for the 

infrastructure sector. We can also map the number of customers of other infrastructure 

sectors onto each other. These are referred to as the indirect customers for the supplying 

infrastructure sector. If the source (or intermediate) node  of infrastructure  is 

connected to the different types of sink nodes  of infrastructure types , then similar to 
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Equation (1) all indirect customers of  are estimated by summing over all mapped 

functional paths ( , ) given the proportional weight (influence) of the path  in 

satisfying customer demand      = 	 ∑∀ ( , )                        (2) 

Figure 2 depicts the weighted flows in the network as quantified by Equations (1) and (2). 

The width of the arrows shows the increased number of customers mapped along paths 

upwards from the sink to the source layers.      

Disruption estimation 

To estimate how disruptions are initiated and spread across different infrastructure systems 

we extract the information on the hazard footprint , the spatial polygon extent that could 

affect the infrastructure assets. 

When a particular infrastructure asset intersects the flood footprint, and it is considered failed 

(due to physical damage or operational shutdown), the network characteristics are used to 

estimate the number of customers affected due to the disruption of service. If a sink node  

fails then all customer attached to it will stop receiving service, which implies that the 

disruption will be ̃ = 	 . For other nodes the number of disrupted customers depends upon 

the number of affected paths that cannot function due to the failure of any particular asset on 

that path. Hence for a source (or intermediate) node  the number of disrupted customer is 

estimated as: ̃ = 	 ∑∀ ( , )                        (3) 

where { , } is the set of all source-sink paths that can no longer function and hence the 

number customers, , being served along these paths are disrupted. 

Similarly the indirect customer disruptions ̃  are estimated by assembling all cross-sector 

disrupted paths { ( , } and summing the affected customers along these paths. ̃ = 	 ∑∀ ( , )                        (4) 

The disruption analysis is also represented in Figure 2, showing the flood hazard footprints 

affecting different parts of the network, subsequently disrupting different function paths. It is 

noted here that in our modelling network disruptions have a bi-directional propagation 

because any asset failed ‘upstream’ or ‘downstream’ in a network disables the functionality 

of the whole path.  

Case-study 

Data and model assembly  

A catchment-wide flood impact analysis for a collection of infrastructures networks and 

assets is presented. The area of study is the indicative floodplain for the Thames catchment in 

England. Figure 1 shows the floodplain map of the Thames catchment, which has an 

estimated area of 1,600km
2
 spread over 16,000km

2
 of Local Enterprise Partnerships (LEPs) 
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such as London, Oxfordshire, Buckinghamshire, Berkeshire. LEPs are collections of local 

authorities that participate together for shared common interests in economic developments 

within their local areas. The LEP’s within the Thames catchment contain some of the highest 

population densities and demands in the UK, especially in the London LEP. The indicative 

floodplain map for this area is extracted from the National Flood Risk Assessment (NaFRA) 

flood likelihood map data, which gives likelihood of flooding to areas of land within the 

flood plain of 1 in 1000 fluvial and tidal flooding scenario. Overall the NaFRA indicative 

flood give estimated likelihood of flooding accounting for the probability that the flood 

defences will overtop or breach. The flood footprints are presented for three flood likelihood 

risk categories as: (1) low - the chance of flooding each year is 0.5 per cent (1 in 200) or less, 

(2) moderate - the chance of flooding in any year is 1.3 per cent (1 in 75) or less but greater 

than 0.5 per cent (1 in 200), and (3) significant - the chance of flooding in any year is greater 

than 1.3 per cent (1 in 75). In Figure 1 the flood footprints  for low, medium, significant 

likelihoods are shown. 

 

Figure 1: Representation of the Thames catchment with the hazard footprints for the low, medium and significant 

flood likelihoods. Also shown in the background are the local enterprise partnerships within and outside to Thames 

flood catchment. 

 

The infrastructure data for this study has been extracted from a bigger database complied at 

the Great Britain national scale. In this study the infrastructure assets belonging to ={electricity, airports, ports, water, and	wastewater, telecommunications} are used. Table 

1 lists the infrastructure datasets used, further details of these and the network assembly are 

given in Thacker et al. (2015). All the data are assembled, created and analysed on a spatial 

database platform Postresql, using Python programming tools, and GIS tools like QGIS.  
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Table 1: List of assets included in the spatial criticality analysis. Detailing the data sources used to complete the 

spatial topological network representations and the capacity and demand data used to estimate the functional path 

set and assign customer demands. 

Sector  Spatial and Topological 

Attributes 

Capacity and Demand 

Attributes 

Electricity generation 

• Nodes: 207 

Derived using DECC 2012 

DUKES data (DECC, 2012) 

Derived using DECC 2012 

DUKES data (DECC, 2012) 

 

Electricity transmission 

• Voltage: 400kV, 275kV, 

132kV 

• Nodes: 437 

National Grid – derived using 

10 year statement (National 

Grid, 2012) 

Estimated using capacity 

constrained location-allocation 

path model  

Electricity sub-transmission 

• Voltage: 132kV, 33kV 

• Nodes: 4798 

Synthetic – recreated using 

inference from known 

localized network data and 

ordnance survey data (2013) 

Estimated using capacity 

constrained location-allocation 

path model 

Electricity Distribution 

• Voltage: 33kV, 11kV, 

415V 

• Nodes: 164,069 

Synthetic – recreated using 

inference from known 

localized network data and 

ordnance survey data 

(Ordnance Survey, 2013) 

Estimated using Voronoi 

decomposition 

Airports 

• Nodes: 32 

Network derived from CAA 

2010 statistics (CAA, 2010) 

Demands derived directly from 

CAA 2010 statistics (CAA, 

2010) 

Water towers 

• Nodes: 2566 

Obtained from Ordinance 

Survey (2013) 

Estimated using Voronoi 

decomposition – detailed in 

paper 

Waste-water treatment 

• Nodes: 1563 

Obtained from Ordinance 

Survey (2013) 

Estimated using Voronoi 

decomposition 

Telecom masts 

• Nodes: 5226 

Obtained from Ordinance 

Survey (2013) 

Estimated using Voronoi 

decomposition 

 

The electricity infrastructure is modelled as a network, where nodes are used to represent 

power generation facilities and electricity substations (of different voltages) and edges are 

used to represent overhead lines and underground cables. We look at the flood exposure of 

this network within the Thames catchment area. All other infrastructure assets, airports, water 

assets, wastewater treatment plants and telecommunication towers, are represented as single 

point nodes. For each asset of these specific infrastructure types the dependence on electricity 

is considered, by building physical connecting edges between the electricity network nodes 

and other infrastructure’s chosen asset. This physical connectivity is inferred by mapping the 

geographically closest electricity substation of proper voltage to the infrastructure asset. For 

example an airport is mapped to its closet 33kV electricity substation as that is the correct 

substation supply voltage needed to satisfy its demand. Figure 2 shows an abstract 

representation of the infrastructure network model discussed above.  
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Figure 4: Snapshot of the infrastructure assembled (nodes shown only) for electricity networks, airports, telco masts, 

water towers, wastewater treatment works. Also shown are the (merged) customer footprints of several assets and the 

overlay of the infrastructure assets with the flood footprints.  

 

Results and discussion 

Following the assembly of the flood footprints and the infrastructure networks and points 

assets, the remaining steps outlined in the integrated framework are implemented. From  

 

Figure 4 it is clear that the footprint of the assets extend far beyond the flood footprint, which 

provides evidence that localised infrastructure disruptions can potentially extend across wider 

spatial scales. Here the aggregated effect of infrastructure flooding and disruption in the 

Thames catchment are presented and discussed. Figure 5 shows the results for a ‘worst-case’ 

scenario of all assets flooded and their overall customer disruption impacts. The results of 

customer disruptions in millions are reflective of the whole catchment area, and most we see 

that the impacts extend beyond LEP boundaries. These results are presented in terms of the 

direct and indirect risk metrics discussed previously. While it is difficult to validate the exact 

numbers, as no data for such analysis is available or provided by utility companies. 

Nonetheless the analysis here is a what-if scenario where the order of magnitudes of 

disruptions and the failure characteristics are as expected and reflective of the population 

concentrations in the Thames catchment. 

Some of the highlights of the results for different sectors are as follows: 

Electricity risk: 

Cumulatively there are potentially high disruptions resulting from aggregated electricity 

failures. There are approximately 2.5 times more customers directly at low risk of disruption 
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to electricity infrastructure due to flooding, and approximately 1.8 times more customers at 

moderate risk of disruption to electricity infrastructure due to flooding, compared to the 

significant risk of disruption to electricity infrastructure due to flooding. 

Waste Water Treatment Works (WWTW) risk: 

Cumulatively WWTW have the largest risks because large numbers of such assets are located 

directly in flood areas, as expected due to function. Significant proportions of the WWTW 

are at risk both directly and indirectly.   

Water (towers) risk: 

Water storage assets are found to be located away from flood zones or at elevation, as 

expected due to function. Hence they have relatively lesser flooding risks. Most of the water 

risks are indirect risks, due to the failure of the electricity substation supply to the connected 

water tower. Though there is potentially high susceptibility to electricity loss, in reality water 

towers many have storage to buffer demand. 

Telecom masts risk: 

Similar to water storage assets, telecom assets are also found to be located away from flood 

zones or at elevation, as expected due to function. Like water, telecom also a potentially high 

susceptibility to electricity loss. But unlike water the telecoms towers do not have suffer 

capacity and can be instantaneous ‘shut-down’ due to electricity outages. However due to the 

presence of several assets (generally in a mesh structure) in reality there is highly redundancy 

built in telecoms, which could potentially counter disruptions. 

Airports: 

Within the Thames catchment, airports are relatively the least affected. One reason is that 

their daily passenger numbers are fewer compared to the demand of other assets, hence the 

disruptions number are low. However airport disruptions can potentially have much wider 

social and economic consequences, as important airports such as Heathrow, Gatwick are 

included here. Mostly airport are affected indirectly due to electricity failure, which is 

reflective of the real situation of London airports at risk to indirect failure (McMillan 2014).  

 

Figure 5: Estimated number of aggregated customers within the Thames flood catchment who are at risk directly, 

indirectly and both due to potential infrastructures being flooded and disrupted. Here the indirect effects are 

estimated with respect to the disruption of electricity to other dependent assets.   
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Conclusions 
In this paper we have presented an integrated framework for flood impact assessment of 

infrastructures. The main objective of the methodology is to create measures for informed   

catchment-wide infrastructure flood risk assessment and management. The work presented 

here informs some key issues missing from current research: (1) the interconnected and 

networked nature of infrastructures lead to failure propagations beyond the extent of the 

flooded areas and across multiple spatial boundaries, which needs to be considered in flood 

risk assessment frameworks; (2) quantifying the sources, locations and extent of flood risks to 

infrastructures helps incorporate proactive risk management options to strategically enhance 

the flood resilience of infrastructures and subsequently make cities adaptable to flood 

inundations. 

A key development presented in this paper is the infrastructure network assembly, which 

brings together large amount of unique infrastructure data. Also the representation of flows in 

terms of customers attached to different types of infrastructure assets gives us a common 

metric across all infrastructures, which is useful in creating disruption estimates. Here we 

have introduced the notion of estimating direct and indirect customer disruption estimates, 

which is generally not considered in such disruption analysis studies. The case study for the 

Thames catchment demonstrates the widespread nature of critical infrastructure disruption 
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impacts. The set of critical infrastructures networks and assets assembled, i.e., electricity, 

water, waste, telecoms and airports, satisfy demands from the most populated regions in UK. 

Our analysis shows how these infrastructures could be potential disrupted due to the direct 

exposure to flooding and indirectly due to dependency on the electricity network. The 

aggregated sector level analysis presented here shows which sectors are more prone to 

flooding than others and which sectors are highly affected by electricity disruptions. 

  

The models and analysis shown here provide several insights into understanding different 

aspects of the land use for flood risk management for critical infrastructures. As we have 

highlighted in the case-study the entire flood catchment and the infrastructure footprints 

extend across several LEP authority areas, which result in disruptive impacts across multiple 

governance boundaries. This reinforces the issue that flood risks are shared both upstream 

and downstream and resulting flood risk management requires overlap of the catchment areas 

and respective political and administrative actions (Seher and Löschner 2015). With 

infrastructures the risk sharing is bi-directional and has to be more widespread as several 

assets (e.g. airports) have much wider national-scale impacts from their localised failures 

(due to electricity in this study), affected governance at the national-scale.      

Several research challenges and questions can be further developed from this analysis.  

1. This analysis should be followed by much detailed site inspection and studies, to create 

better models and validate the data and magnitude of losses predicted by such analysis.  

2. This work provides methodology for screening and prioritisation locations of vulnerable 

infrastructure assets in flood prone areas. Hence the question of ‘where to invest in flood 

protection of critical infrastructures?’ is answerable through such analysis. Mostly flood 

protection is determined through studies on household properties exposed to flooding, 

with little or no analysis done of prioritising flood protection for infrastructures (DfT, 

2014). 

3. From the spatial models and tools presented here further analysis can be developed to 

compare impacts amongst different LEP (or similar municipalities/regions). This is useful 

for understanding ‘which economic/business regions are at more risk than others?’, and 

‘where to budget and allocate macro-scale finances and resources?’  

4. An interesting question for further research and inquiry is locating ‘which infrastructure 

assets have cross-boundary impacts making them to collective responsibility of multiple 

administrations?’. The need for such an analysis has repeatedly arose in UK (ASC, 2014), 

and also has applicability to similar issues at the global scale. 
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