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1. Introduction. Let

Hu = uxx-ut,
£2 = (0, a) x (0, T),
r = ([0, a] x {0}) U ({0} x (0, T)),
S = {a} x (0, T),

where T < oo . Also, let u be a solution of the problem:

Hu = -f(u) inQ, u- 0 on T, u- 0 on-S, (1.1)
where f(u) tends to infinity as u approaches c~ for some positive constant c. The
length a* is said to be the critical length for the problem (1.1) if u exists globally
for a < a*, and for a > a* there exists a finite time T such that

max{w(x, t) : 0 < x < a} —► c~ as t —> T~ . (1.2)

This finite time T is called the quenching time. In the special case that /(«) =
(1 - u)~x , Kawarada [9] showed that (1.2) occurred for a > 23/2. Acker and Walter
[2] showed that under appropriate conditions on the forcing term /(«), there existed
a unique critical length a* for the problem (1.1). This result was then extended to
forcing terms of the type g(u, ux) by Acker and Walter [3], and to h(x, u, ux) by
Chan and Kwong [7], Results on the behavior of the solution of the problem (1.1)
with a = a* were given by Levine and Montgomery [10]. Existence of the critical
length a* and its determination by computational methods were given by Chan and
Chen [4] for a more general parabolic singular operator; they studied the problem:

Lu — -(l-u)~l inQ, u = 0 on T, u = 0 on S,

where Lu = Hu + bujx with b a constant less than 1; in particular, a - 1.5303
(to five significant figures) for b — 0. Similar results were given by Chan and Kaper
[6] for the problem:

Lu =-f(u) inQ, u = 0 on T, ux - 0 onS. (1.3)
Received April 26, 1990.
The work of the first author was partially supported by the Board of Regents of the State of Louisiana
under Grant LEQSF(86-89)-RD-A-l 1.

©1991 Brown University
497



498 C. Y. CHAN and S. S. COBB

This includes the problem (1.1) as a special case since the solution of that problem is
symmetric with respect to the line x = a/2. We refer to the papers of Chan and Chen
[4] and Chan and Kaper [6] for the significance of the expression Lu . Critical lengths
for global existence of solutions for a coupled system of two semilinear parabolic
equations subject to zero initial-boundary data were given by Chan and Chen [5].
Existence of the critical size for the multidimensional version of the problem (1.1)
was studied by Acker and Kawohl [1],

The main purpose here is to study the critical length for the following problem:

Lu=-f(u) inQ, u = 0 on T, Bu = 0 on S, (1.4)

where Bu = ux + ku. Here, b is a constant less than 1; k is a positive constant;
/ is nondecreasing and continuously differentiable on [0, c) for some constant c
such that /(0) > 0 ; and limw^c- f(u) = oo. As in the papers by Chan and Chen [4]
and Chan and Kaper [6], we assume existence of a solution u before its quenching
time. In the problem (1.3), u attains its maxima with respect to x at x = a;
unlike the problem (1.1), the singular term bux/x as well as the third boundary
condition in our present problem destroys the symmetry of the solution u about the
line x = a/2, and shifts the points where u attains its maxima with respect to x
from the line x = a/2 . Thus, they make the problem more difficult both theoretically
and numerically.

In Sec. 2, we establish existence of a critical length a*, and give a computational
method to determine a*. In Sec. 3, a method is given to determine an upper bound
of the quenching time for a given a greater than a*. An algorithm is given in Sec.
4 to compute a*. For illustration, a numerical example is given by taking f(u) to
be (1 - w)_l .

2. Critical length. Let us first establish the following results.

Lemma 1. Let u be a solution of the problem (1.4).

(a) There exists at most one solution.
(b) The solution u is positive in Q U S.
(c) The solution u is a strictly increasing function of t for each x e (0, a\.
(d) There exists a curve 4>{t) such that for each t 6 (0, T), u is strictly de-

creasing in x on (<f>(t),a], and nondecreasing in x on [0, </>(/)], where
(f>(t) € (0, a).

Proof, (a) Let w, and u~, be two distinct solutions, and w = u{ - u2. Then by
the mean value theorem,

[L + f(rj)]w = 0 inQ,
where tj lies between u{ and u2. Without loss of generality, let w > 0 somewhere.
Since f'(rj) is bounded above, it follows from the strong maximum principle (cf.
Protter and Weinberger [12, pp. 168-169, 172, and 175]) that w attains its positive
maximum somewhere on S. At this point, wx > 0 by the parabolic version of Hopfs
lemma (cf. Protter and Weinberger [12, pp. 170-172]). This contradicts Bw = 0 on
S. Thus, there exists at most one solution.
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(b) Since /(0) > 0, we have Lu + f(u) < /(0). By the mean value theorem,
[L + f\tj)]u < 0, where rj lies between u and 0. The assertion then follows from
the strong maximum principle and the parabolic version of Hopf s lemma.

(c) For any h > 0, let

w(x, t) = u(x, t + h) - u{x, t).

By the mean value theorem, [L + ~ 0, where t] lies between u(x, t + h)
and u(x, t). Since w(x, 0) > 0 for 0 < x < a, w(0, t) = 0, and Bw = 0 on S,
it follows from the strong maximum principle and the parabolic version of Hopf s
lemma that w > 0 on Qu5. The assertion is then proved.

(d) It follows from Lemma 1(b) that ux(a, t) = -ku(a, t) < 0 for 0 < t < T; by
the parabolic version of Hopf s lemma, ux{0, t) > 0 for 0 < t <T. For any fixed t
and any positive x0 (< a) such that ux(x0, t) < 0, it follows from the mean value
theorem that for any positive e {< x0),

0 < u{e , t) - u(0, t) = ux(rj, t)e for some rj e (0, e).

Thus for each t (> 0), there exists a point x e (0, x0) such that ux(x, t) = 0.
Differentiating the differential equation in (1.4) with respect to x , we obtain

{L + f (m) - b/x2)ux = 0.
Let G be the component containing S such that ux < 0 in G. Since G does not
intersect the line x = 0, it follows by applying the strong maximum principle that
G is simply connected with ux = 0 on dGnQ, where dG denotes the boundary of
G. If ux(xx,t j) < 0 somewhere in Q \ G~ , where G~ denotes the closure of G,
then by the continuity of ux , there exists a neighborhood N of (x,, ?j) such that
ux < 0 in N and ux = 0 on dNn(Q.\G), but this contradicts the strong maximum
principle. Thus, ux> 0 in Q \ G~ , and dG n Q = 0(f).

Let
iu=u" + ~u', pu = u' + ku.x

With slight modification of the proof of Theorem 3 of Chan and Kaper [6], we obtain
the following result.

Theorem 2. If T = oo and u(x, t) < C < c for some constant C, then u converges
uniformly on [0, a] from below to a solution U of the singular nonlinear two-point
boundary-value problem:

/£/ = -/(£/),. U{0) = 0 = pU(a). (2.1)
Furthermore, u < U in (0, a] x [0, oo).

In order to show that beyond the critical length there exists a finite time T such
that (1.2) holds, the following result is crucial.

Theorem 3. Bu(x, /) > 0 in Q.
Proof. For any e e (0, a), let

Qe = (e, a) x (0, T),
re = ([e,a]x{0})U({e}x(0, T)).
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Let ut denote the solution of the (regular) problem:

Lut = - f{u ) in ,f e> e> (22)
uf = 0 on T(, Buf =0 on S.

An argument as in the proofs of Lemma 1(b) and (c) shows that ue > 0 in Qf US,
and uf is a strictly increasing function of t for each x e (e , a]. It follows from
the strong maximum principle and the parabolic version of Hopf s lemma that ue
strictly increases as t decreases. In particular, we have 0 < uf < u in Q£ . Let us
differentiate (2.2) with respect to x, and denote the partial derivative of ut with
respect to x by w . We obtain

[L + /(uf) - b/x2]u( x = 0 in Qf.

Now,
Mf X(x, 0) — 0 for e < x < a .

For any x e (0, T),

uf x(e, t) > 0 and ue x(a, t) = -ku((a, t) < 0 for 0 < t < x.

Let £2f r = [e , a] x [0, t] . By the strong maximum principle, ue x attains its negative
minimum somewhere on QfT at x = a. Since ue(a, t) increases as t increases,
it follows that u( v(x, t) > -kuf(a, r) on Qer. An argument as in the proof of
Lemma 1(d) shows that there exists a curve i//(t) such that for each t € (0, T),
y/(t) e (e , a) and ue is strictly decreasing in x on (y/(t), a] and nondecreasing in
x on [e, y/(t)] ■ Thus for x 6 (y(t), a), Buf(x, t) > 0. Because ue(x, x) > 0 for
x e (e , ^(t)] . Bu( (x, t) > 0 there. Since x is arbitrary, we have

Bu((x, t) > 0 in . (2.3)

Since uf is bounded, lime^0 u( exists. Let us denote this limit by Z . Then in Qe ,
0 < uf < Z < u and BZ > 0.

To prove that Z = u, let a G (e , a) and ua be the unique solution of the
(regular) problem:

Lua = ~f{ua) inQa,
ua{x, 0) = 0, ua{o ,t) = ut(o ,t), Bua = 0 on 5.

The adjoint L* (cf. Friedman [8, p. 26]) of L in is given by

L*v = vxx - (bv/x)x + vt

with adjoint boundary conditions (cf. Polozhiy [11, p. 413]) given by

v{o ,r) = 0 = vx{a, t) + {k - b/a)v(a, t).

Let R*(£, x; x, t) denote its Green's function (cf. Friedman [8, pp. 82-84 and 155]).
In Green's identity (cf. Friedman [8, p. 27]),

vLu - uL*v = (vux - uvx + buv/x)x - (uv)t,
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let u — uf and v(£,t) = R*(£, x, t). Let us integrate this over the domain
(a, a) x (0, t — 8), where 8 is a small positive constant less than t. By letting 8
tend to zero, we obtain

ue(x,t)= [ [ R*(Z,T,x,t)f(u {Z,T))d£dT
JO Ja

+1 x ; x, t)ue(a, x) dx in .

Since R*(£, t; x, t) > 0 for (£, t) € (a, a) x (0, t) (cf. Friedman [8, p. 84]), it
follows that R*z(o, x; x, t) > 0. As e decreases, ue and f(ue) are nondecreasing.
By the monotone convergence theorem (cf. Royden [13, p. 84]),

Z(x, t) = [ [ R*(Z,x-,x,t)f(Z($,x))d£dx
Jo Ja

+ / R*Ao, r; x, t)Z(a, i) dx in .
Jo

Thus, LZ = -f{Z) in . Since a is arbitrary, it follows that LZ = -f(Z) in
Q. Now, Z(x, 0) = 0 and BZ = 0 on S. From 0 < u( < Z < u in Q, we have
Z(0, /) = 0. Since u is unique, it follows that u = Z . From (2.3), Bu> 0 in Q.

Let u(x, t \ a) denote the solution u(x, t) of the problem (1.4). Then for any
positive constant a, let h be a nonnegative constant such that h < a.

Theorem 4. If lim^^ u(</>(t) ,t\a) = c, then there exists a finite time T such that

max{u(x, t; a + a) : 0 < x < a + a} -► c~ as t —» T~ . (2.4)

Proof. Let us assume that there does not exist a finite time T such that (2.4)
holds. Let

w(x, t) = u(x + h, t\ a + a) - u(x, t\ a).
By the mean value theorem,

[L + / (f])]w = 0 infi,
where rj lies between u(x + h , t\ a + a) and w(x , t\ a). By Theorem 3, Bw > 0
on S. Since w(x, 0) = 0 and if(0, t) > 0, it follows from the strong maximum
principle and the parabolic version of Hopf s lemma that w > 0 on Q u S. That is,

u(x + h , t\ a + a) > u{x, t; a) onHuS. (2.5)
Let us choose positive numbers e (< c) and t0 such that

,, . ^ 8e (2 2\b\ \ 2/,Z)2^U + SgwV+a
for z £ [c - e , c) and u{<j>(tQ), tQ] a) > c - e . Also, let

E = (<f>(tQ) + a/4, <f>(tQ) + a)x (tQ , oc).
By assumption, u(x, t; a + a) exists for all / > 0, and hence u(x, t; a + a) < c in
E. From (2.5) and Lemma 1 (c), u(x, t \ a + a) > c - e on the parabolic boundary
dE of E. Let

z(x , t) = c - t + [x - (f){t0) - a/4][0(/o) + a - x](/ - tQ) in E.
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On dE, z = c - e . By direct computation,

Lz= - 2(t - t0) + ^{2[cp{t0) - x] + 5a/4}{t - t0)

-[x- 4>{t0) - a/4][<f>(t0) +a-x].

In the domain
(0(*o) + Q/4, 0(?o) + a) x (rQ , fQ + 8e/a ),

denoted by D, we have for z e[c - e , c),

Lz + f(z) >0 in D.

By the strong maximum principle, u(x, t\ a + a) > z in D . Since

z(<t>(t0) + a/2, t0 + 8e/a2) = c,

it follows that
2

w((^>(?q)-)-d;/2,?q + 86/q ci -j- a) ^ c.

This contradiction proves the theorem.
We remark that Theorem 2 shows that there exists a critical length a* such that

u exists globally if a < a*. This critical length is determined as the supremum of all
a for which a solution U of the problem (2.1) exists; if U(a*) exists, then u(a*, t)
exists also. Theorem 4 shows that (1.2) holds for some finite time T when a > a*.

To compute a*, let us construct a sequence {Un} for a < a* by U0 = 0 for
0 < x < a, and for n = 1,2,3...,

lUn + f(Un_l) = 0, Un(0) = 0 = (W(a). (2.6)
In terms of Green's function G(x ; £) corresponding to /, we have

Un(x)= [\bG(x-i)f(Un_^))di for n = 1,2,3,..., (2.7)
Jo

where

G(x\i)
(1 - q£l b)xl b/(l - b) for0<x<£,

(1 - qxx~b)£x~b K1 - b) for £<x<a,

with q = /:[(1 - b)/ab + ka~b]~x . The sequence is well defined. From (2.7) and
the positivity of Green's function, Un(x) > 0 for n > 1 and 0 < x < a. Since
U'n(a) < 0, it follows that Un(x) attains its positive maximum somewhere in (0, a).
With slight modification of the proof of Theorem 5 of Chan and Kaper [6], we obtain
the following result.

Theorem 5. The sequence {Un} converges monotonically upwards to the minimal
solution U (< c) of the problem (2.1); furthermore,

0 < Un < Un+X < U, 0<x<a, « = 1,2,3,....

The results established in the rest of this section are useful for computational
purposes. To obtain an upper bound au for a*, let us use Ux(x), which is a lower



CRITICAL LENGTHS FOR BOUNDARY VALUE PROBLEMS 503

bound of the solution U of the problem (2.1). From (2.7),

f,w -m ((ttt - ¥) f^J+ G - rb) i^r) for M•
Ux (x) = /(0) ( 1 4ga x2 + y In ^ for b = — I.

(2.8)

Differentiating (2.8) with respect to x yields

-/(0) ((f?T - ¥) + (' " ITS) T^») for 4 # '

=/(0) ^-y-x + xln ^ for& = -l,

from which U[(x) = 0 occurs at

xc = {[2a+b - qa2( 1 + 6)]/2}1/(1+A) for b -1,

xc~ae~qa/2 forb = -\,

where U" = -/(0) < 0. This implies that the (absolute) maximum of £/,(x) occurs
at the value xc. Thus, an upper bound au for a* is determined by Ux{xc) = c,
which yields

2alu+b -<?(! + b)a2u = 2[2(1 - b)c/f(0)]{l+b)/2 for b ^-1,

4c = /(0)a2£,~fca"/(2+^a")[l + kau/{2 + kaj] for b = -1.

To show that (2.9) determines exactly one au for a given b, let us differentiate
(2.8) with respect to a :

dUi q2f{0)xl~b (11 U\ ~b , ^ 2~b , k(2 + b-b2) i-b\ c , . ,^ = ~+ Ta + 2(1+6) fl J forM-1,

dU_L = /(0)x2(4 + 3/cfl + /c2a2) = _
9a 2a(4 + 4&a + k2a2)

In either case, dU^/da > 0. Thus, Ux increases as a increases. Hence for a given
b , au is determined uniquely by (2.9). We obtain the following result.

Lemma 6. 0 < a* < au, where au is determined uniquely by (2.9) for each given
b.

Our next result is useful in stopping the computation of successive iterates.

Lemma 7. For 0 < x < a, if /'is strictly increasing and Un+l - Un > Un - Un_l
for some positive integer n, then Um+l - Um > Um - Um_{ for m = n + 1, n +
2, n 3, ... .
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Proof. The sequences {Un} and {f(Un)} are strictly increasing. For some t]
between Un+l and Un, and some £ between Un and Un_l, we have

(x) - Un+l(x) = f\bG(x- {)[.f(Un+im - f(Unmd£
Jo

= [a$bG(x-,z)fmun+l(z) - unmdz
Jo

> J\bG(x^)/(Q[Un^) - £/„_,({)]#
= Un+l(x) - Un(x).

The lemma then follows by using mathematical induction.
We now show that each iterate is a unimodal function.

Lemma 8. For a < a*, and each n > 1, the function Un(x) has a unique (positive)
maximum.

Proof. Let h be a critical point of Un(x) (n > 1) in the interval (0, a). From
(2.6),

^'(A) = -/(!/„_,) <0,
which shows that all critical points of Un(x) give relative maxima. Hence, there is
exactly one (positive) maximum.

Since l(Un+l - Un) < 0, a proof similar to Lemma 8 gives the following result.

Lemma 9. For a < a and each n > 0, the difference Un+X(x) - Un(x) has a unique
(positive) maximum.

3. Quenching time. To obtain an upper bound for the quenching time, we may
consider the singular Sturm-Liouville problem:

lw = -Xlw, w(0) = 0, pw(a) — 0.

Its eigenvalues X are determined by

Ma) + kJv(ka) = 0,
where v = (1 - b)/2 and Jv{x) is the Bessel function of the first kind of order u .
The eigenfunction corresponding to the smallest positive eigenvalue f.i2 is xv Jv(nx).
Following the argument of Sec. 4 of Chan and Kaper [6], the upper bound for
the quenching time is determined by

max x J,(ux)
0 <x<a

<?(M = c,

where g(t) is given by the problem

g'(t) + n2g(t) = G(g(t)), g( 0) = 0;
here,

^ • r \ fix" Jv{fix)g{t)) rn ^G(gW)<-nf x-Jijix) :xe[0-"1
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In particular, for f(u) = (1 - u)~x ,
2*— 1/2 -1, 2. —1/2,tx (4 — fi ) tan [n(4-n ) ]

- (In2)'1 ln[(4 - h2)/4] + (In 2)(4 - n2)'x.

4. Numerical algorithm. By Lemma 6, an upper bound au of a* can be de-
termined for each given b by using the subroutine DZREAL (to find, to double
precision, the real zeros of a real function using Muller's method) from the IMSL
MATH/LIBRARY (Version 1.1, January, 1989; MALB-USM-PERFCT-EN8901-1.1).
Since 0 can be taken as a lower bound of a*, we can use the method of bisection to
approximate a* by a** = au/2 . We use the representation formula (2.7) to compute
Un(x) with n > 1 by using the following steps:

1. We divide the interval [0, a *] into 20 equal subintervals with end points xi
satisfying 0 = xx < x2 < x3 < ■ ■ ■ < x21 = a**.

2. At the 19 interior subdivision points, we evaluate

yx(x) = x'~V(l -b), y2(x) = (1 - qxl~b)/{l -b)\
we also compute y2(x2l). These values are stored in the memory of the computer
for future use.

3. Let

w,k)= Fn2u,k)= /V-^m-^))^-
Jxj JXj

To save computer time, we evaluate Un(xu) first. From (2.7),

Un(xii)=y2(xn)FmV> n)+yi(xu)Fn2(l\,2l).
To obtain Un(xl0), we only need to compute ,Fnl(10, 11) and ^(10, 11) since

Un(xl0) = y2(xl0)[Fnl( 1, 11)-7^,(10, 11)] +^(x10)[F„2(l 1, 21) + Fn2( 10, 11)].
In this way, we can successively compute Un at xl0, x9, xs, , x2. Similarly,

^(*12) = ' 1!) + Fn 1 (1 ̂ ' 12)] +yx{xn)[Fn2{U , 21) - F„2(ll, 12)].

Proceeding in this way, we obtain successively Un at xl2, xl3, xl4, , x2l .
To use a computer to calculate Un(x), we use three subroutines from the IMSL

MATH/LIBRARY: DCSINT (to compute, to double precision, the cubic spline in-
terpolant with the 'not-a-knot' condition) and DQDAG (to integrate, to double pre-
cision, a function using a globally adaptive scheme based on Gauss-Kronrod rules)
with DCSVAL (to evaluate, to double precision, a cubic spline).

4. We use the subroutine DUVMGS (to find, to double precision, the mini-
mum point of a nonsmooth (unimodal) function of a single variable) to determine
max0<;[<a.. Un(x) without any initial guesswork of where its critical point is since,
by Lemma 8, Un(x) is unimodal. Let us denote this maximum value by M.

5. We stop the computation of Un(x) as follows:
(a) If M > c, then a** > a*.
(b) If Un - Un_l > Un_{ - Un_2 for some n, then, by Lemma 7, a** > a*,

provided f is strictly increasing.
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(c) If M < c and (by using Lemma 9)

max [*y„(x) - U„ ,(x)] < 5 x 10~" + 1)
0<x<a " "_l

for some arbitrarily chosen nonnegative integer r, then a* < a . Here, r
determines the error tolerance in computing the successive iterates.

If a* > a*, then we replace au by a**; otherwise u exists globally, and we
replace 0 by a*. The above procedure of bisection is repeated until we reach the
demanded accuracy (such as the difference between two successive approximations
of a* is less than 5xl0~(r+1)). Since the difference between a* and the (ultimate)
approximation a** can be made as small as we like, this value a** can be taken
numerically to be a*.

We apply the above algorithm to the case f(u) = (1 - u)~[ and k — 1 . We
compute critical lengths a* for various given values of b with the use of a computer.
The results with r = 5 are given in Table 1.

Table 1. Critical lengths a* for four values of b .

b a*
0.40000 0.82415
0.00000 0.99514

-0.40000 1.14290
-1.00000 1.33802
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