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1. Introduction. Let
Hu=u_ -u,
Q=(0,a)x(0,T),
I'= ([0, a] x {0}) U ({0} x (0, T),

S={a}x(0,7),
where T < oo. Also, let u be a solution of the problem:
Hu=-f(u) inQ, u=0 onT, u=0 onlS, (1.1)

where f(u) tends to infinity as u approaches ¢~ for some positive constant ¢. The
length 4 is said to be the critical length for the problem (1.1) if u exists globally
for a < a*, and for a > a" there exists a finite time 7 such that

max{u(x,t):0<x<a}—c ast—T . (1.2)

This finite time 7 is called the quenching time. In the special case that f(u) =
(1- u)_l , Kawarada [9] showed that (1.2) occurred for a > 2%% . Acker and Walter
[2] showed that under appropriate conditions on the forcing term f(u), there existed
a unique critical length a” for the problem (1.1). This result was then extended to
forcing terms of the type g(u, u,) by Acker and Walter [3], and to A(x, u, u,) by
Chan and Kwong [7]. Results on the behavior of the solution of the problem (1.1)
with a = a* were given by Levine and Montgomery [10]. Existence of the critical
length @ and its determination by computational methods were given by Chan and
Chen [4] for a more general parabolic singular operator; they studied the problem:

Lu=—-(1-u"" inQ, u=0 onI', u=0 onS,

where Lu = Hu + bu /x with b a constant less than 1; in particular, a” =1.5303
(to five significant figures) for b = 0. Similar results were given by Chan and Kaper
[6] for the problem:

Lu=-f(u) inQ, u=0 onT, u,=0 onS. (1.3)
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This includes the problem (1.1) as a special case since the solution of that problem is
symmetric with respect to the line x = a/2. We refer to the papers of Chan and Chen
[4] and Chan and Kaper [6] for the significance of the expression Lu . Critical lengths
for global existence of solutions for a coupled system of two semilinear parabolic
equations subject to zero initial-boundary data were given by Chan and Chen [5].
Existence of the critical size for the multidimensional version of the problem (1.1)
was studied by Acker and Kawohl [1].
The main purpose here is to study the critical length for the following problem:

Lu=—f(u) inQ, u=0 onT, Bu=0 onsS, (1.4)

where Bu = u, + ku. Here, b is a constant less than 1; k is a positive constant;
f is nondecreasing and continuously differentiable on [0, ¢) for some constant ¢
such that f(0) > 0; and lim,_ - f(u) = oc. As in the papers by Chan and Chen [4]
and Chan and Kaper [6], we assume existence of a solution u before its quenching
time. In the problem (1.3), u attains its maxima with respect to x at x = a;
unlike the problem (1.1), the singular term bu,/x as well as the third boundary
condition in our present problem destroys the symmetry of the solution # about the
line x = a/2, and shifts the points where u attains its maxima with respect to x
from the line x = a/2. Thus, they make the problem more difficult both theoretically
and numerically.

In Sec. 2, we establish existence of a critical length a”, and give a computational
method to determine a” . In Sec. 3, a method is given to determine an upper bound
of the quenching time for a given a greater than a”. An algorithm is given in Sec.
4 to compute a*. For illustration, a numerical example is given by taking f(u) to
be (1-u)"".

2. Critical length. Let us first establish the following results.

LEMMA 1. Let u be a solution of the problem (1.4).

(a) There exists at most one solution.
(b) The solution u is positive in QU S .
(c) The solution u is a strictly increasing function of ¢ for each x € (0, a].
(d) There exists a curve ¢(¢) such that for each ¢t € (0, T), u is strictly de-
creasing in x on (¢(t), a], and nondecreasing in x on [0, ¢(¢)], where
o(t) € (0, a).
Proof. (a) Let u; and u, be two distinct solutions, and w = u, — u,. Then by
the mean value theorem,
[L+f(Mw=0 inQ,

where 7 lies between u; and u,. Without loss of generality, let w > 0 somewhere.
Since f'(n) is bounded above, it follows from the strong maximum principle (cf.
Protter and Weinberger [12, pp. 168-169, 172, and 175]) that w attains its positive
maximum somewhere on S. At this point, w, > 0 by the parabolic version of Hopf’s
lemma (cf. Protter and Weinberger [12, pp. 170-172]). This contradicts Bw = 0 on
S . Thus, there exists at most one solution.
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(b) Since f(0) > 0, we have Lu + f(u) < f(0). By the mean value theorem,
[L+ f'(n)]u <0, where 7 lies between u and 0. The assertion then follows from
the strong maximum principle and the parabolic version of Hopf’s lemma.

(c) Forany 4 >0, let

wx,t)=ulx,t+h) —ulx,t).

By the mean value theorem, [L + f'(7)Jw = 0, where 7 lies between u(x, t + h)
and u(x,t). Since w(x,0)>0 for 0<x<a, w(0,t)=0,and Bw=0 on §,
it follows from the strong maximum principle and the parabolic version of Hopf’s
lemma that w > 0 on QU S . The assertion is then proved.

(d) It follows from Lemma 1(b) that u (a, t) = —ku(a,t) <0 for 0 <t < T; by
the parabolic version of Hopf’s lemma, u, (0, ¢) >0 for 0 <t < T. For any fixed ¢
and any positive x, (< a) such that u (x,, t) <0, it follows from the mean value
theorem that for any positive € (< x;),

O<u(e,t)—u(0,1)=un,t)e forsomene(0,e).

Thus for each ¢ (> 0), there exists a point x € (0, x,) such that u (x,?)=0.
Differentiating the differential equation in (1.4) with respect to x, we obtain

(L+ f(u) b/x u,=0.
Let G be the component containing S such that ¥, <0 in G. Since G does not
intersect the line x = 0, it follows by applying the strong maximum principle that
G is simply connected with #, =0 on dGNQ, where G denotes the boundary of
G. If u/(x,,t)<0 somewhere in Q\ G, where G~ denotes the closure of G,
then by the continuity of u_, there exists a neighborhood N of (x,, ;) such that
u,<0in N and u, =0 on dNN(Q\G), but this contradicts the strong maximum
principle. Thus, . >0 in Q\ G ,and 0GNQ = §(1).
Let b
Iv=0"+ )—CU', BU=U +kU.

With slight modification of the proof of Theorem 3 of Chan and Kaper [6], we obtain
the following result.

THEOREM 2. If T = o0 and u(x, t) < C < ¢ for some constant C, then u converges
uniformly on [0, a] from below to a solution U of the singular nonlinear two-point
boundary-value problem:

IU=-fU), U0)=0=pBU(a). (2.1)
Furthermore, u < U in (0, a] x [0, o).

In order to show that beyond the critical length there exists a finite time 7" such
that (1.2) holds, the following result is crucial.

THEOREM 3. Bu(x,t)>0 in Q.
Proof. For any € € (0, a), let

Q =(,a)x(0,7),
I, =([e,a]l x{0})u({e} x (0, T)).
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Let u, denote the solution of the (regular) problem:

Lu, =—f(u,) inQ_,

22
u, =0 onl_, Bu.,=0 onsS. (22)

An argument as in the proofs of Lemma 1(b) and (c) shows that u, >0 in Q US,
and u, 1is a strictly increasing function of ¢ for each x € (¢, a]. It follows from
the strong maximum principle and the parabolic version of Hopf’s lemma that u,
strictly increases as € decreases. In particular, we have 0 < u, <u in Q_. Let us
differentiate (2.2) with respect to x, and denote the partial derivative of u, with
respect to x by u, .. We obtain

[L+f(u,)-b/x"lu, =0 inQ,.

€

Now,
uE.X(x,O)=O fore <x<a.

Forany 7€ (0,7),

u, (€,0)>0 and u, (a,t)=-ku(a,t)<0 forO<r<r.

€,X

Let Q. =[e, a]x[0, 7]. By the strong maximum principle, U o attains its negative
minimum somewhere on €, at x = a. Since u (a, ) increases as ! increases,
it follows that u,  (x,?) > —ku_(a, ) on Q_ . An argument as in the proof of
Lemma 1(d) shows that there exists a curve w(¢) such that for each ¢t € (0, T),
w(t) € (€, a) and u, is strictly decreasing in x on (y(¢), a] and nondecreasing in
x on [e, y(t)]. Thus for x € (y(1), a), Bu,(x, t) > 0. Because u (x, ) >0 for
x € (e, w(1)], Bu,(x, t) >0 there. Since 7 is arbitrary, we have

Bu (x,t)>0 inQ,. (2.3)

Since u, is bounded, lim,_,u, exists. Let us denote this limit by Z . Then in Q,,
O<u, <Z<uand BZ >0.

To prove that Z = u, let ¢ € (¢,a) and u, be the unique solution of the
(regular) problem:

Lu,=~f(u,) inQ_,
u,(x,0)=0, ulo,t)=u.lo,t), Bu,=0 onS.
The adjoint L™ (cf. Friedman [8, p. 26]) of L in Q_ is given by
L'v=v_ —(bv/x) +v,
with adjoint boundary conditions (cf. Polozhiy [11, p. 413]) given by
v(o,t)=0=v(a,t)+(k-b/a)v(a,t).

Let R*(&, 7; x, t) denote its Green’s function (cf. Friedman [8, pp. 82-84 and 155]).
In Green’s identity (cf. Friedman [8, p. 27]),

vLu—uLl™v = (vu_—uv_+buv/x) — (uv),,
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let u =u, and v(¢, 1) = R*(&, 1; x,1t). Let us integrate this over the domain
(6,a)x(0,t—7J), where J is a small positive constant less than ¢. By letting ¢
tend to zero, we obtain

ue<x,z)=/0/aR*@,r;x,t)f(uecs,r))dcdr

t
+/ R;(0,1;x,u (o, 1)dt inQ,.
0

Since R*(¢,1;x,t) >0 for (&, 1) € (6,a)x (0,t) (cf. Friedman [8, p. 84]), it
follows that Rg(a, 7;x,1) >0. As € decreases, u, and f(u,) are nondecreasing.
By the monotone convergence theorem (cf. Royden [13, p. 84]),

Z(x,t>=/0/aR*@,r;x,r>f<Z<¢,r>>d¢dr

4
+/0R2(a,t;x,t)Z(a,r)dt inQ_.

Thus, LZ = —-f(Z) in Q_. Since ¢ is arbitrary, it follows that LZ = —f(Z) in
Q. Now, Z(x,0)=0 and BZ =0 on S. From 0<u, <Z<uin Q, we have
Z(0,¢t)=0. Since u is unique, it follows that ¥ = Z . From (2.3), Bu >0 in Q.

Let u(x, t; a) denote the solution u(x, t) of the problem (1.4). Then for any
positive constant «, let 2 be a nonnegative constant such that 4 < .

THEOREM 4. If lim,___ u(¢(1), t; a) = ¢, then there exists a finite time T such that
max{u(x,t;a+a):0<x<a+a}—oc ast—T . (2.4)

Proof. Let us assume that there does not exist a finite time 7 such that (2.4)
holds. Let
wx,t)=ulx+h,t;a+a)-u(x,t;a).

By the mean value theorem,
[L+f(Mw=0 inQ,

where 7 lies between u(x + h,t;a+ o) and u(x, t;a). By Theorem 3, Bw > 0
on S. Since w(x,0) =0 and w(0, ¢t) > 0, it follows from the strong maximum
principle and the parabolic version of Hopf’s lemma that w > 0 on QU.S. That is,

ux+h,t;a+a)>ulx,t;a) onQuUS. (2.5)
Let us choose positive numbers € (< c¢) and ¢, such that

8 (2 2|b| 2
102 5 (24 ga3am) +o
for ze[c—¢€,¢) and u(¢( to)s ty; a) > c—€. Also, let
= (6(fy) + /4, d(ty) + a) x (t;, 00).
By assumption, u(x, ¢; a+a) exists for all £ > 0, and hence u(x,?;a+a)<c in
(

E . From (2.5) and Lemma 1(c), u(x, t;a+a) > c—¢€ on the parabohc boundary
OF of E. Let

z(x, ) =c—€+[x - @ty —a/d][$(t)) +a—x](t—1t,) inE.



502 C. Y. CHAN anpD S. S. COBB
On O0F, z =c — €. By direct computation,

Lz= -2(t-1,)+ é{Z[qS(tO) = X]+ 5a/4}(t - t,)
=[x = o(ty) — a/4(4)) + o — x].
In the domain
(B(ty) + /4, d(ty) + ) x (1, t, + 8€/a’),
denoted by D, we have for z € [c—¢€, ¢),
Lz+ f(z)>0 inD.
By the strong maximum principle, u(x,¢;a+«a)> z in D. Since
2(B(ty) + /2, 1, + 8¢ /a’) = ¢,
it follows that
u(Pt) + /2, 1, +8¢/a’ s a+a) >c.

This contradiction proves the theorem.
We remark that Theorem 2 shows that there exists a critical length a* such that
u exists globally if a < a”. This critical length is determined as the supremum of all
a for which a solution U of the problem (2.1) exists; if U(a") exists, then u(a”, ?)
exists also. Theorem 4 shows that (1.2) holds for some finite time 7 when a > a".
To compute a”, let us construct a sequence {U,} for a < a” by U, =0 for
0<x<a,andfor n=1,2,3...,

v, + f(U,_,) =0, U,(0)=0=gU(a). (2.6)

In terms of Green’s function G(x; &) corresponding to /, we have

U,,(x)=/0 ébG(X;é)f(U,,_l(é))dé forn=1,2,3,..., (2.7)
where
(1-g&" "x'" /(1 ~b) for0<x<é,
G(x;¢) = I=b\z1-b
(I—gx ) 7/(1-b) for{<x<a,

with ¢ = k[(1 - b)/ab + kczl_b]_1 . The sequence is well defined. From (2.7) and
the positivity of Green’s function, U,(x) > 0 for n > 1 and 0 < x < a. Since
U,'l(a) < 0, it follows that U, (x) attains its positive maximum somewhere in (0, a).

With slight modification of the proof of Theorem 5 of Chan and Kaper [6], we obtain
the following result.

THEOREM 5. The sequence {U,} converges monotonically upwards to the minimal
solution U (< c¢) of the problem (2.1); furthermore,

0<U,<U,,, <U, O<x<a, n=1,2,3,....

The results established in the rest of this section are useful for computational
purposes. To obtain an upper bound a, for a”, let us use U,(x), which is a lower
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bound of the solution U of the problem (2.1). From (2.7),

a*t ga?\ x'7t 1 1 x?
Ul(x)=f(0)((ﬁ_b_7 'ITb"F(z—T)l_b for b # -1,

2 2
U,(x) = f(0) <1_#x2+ %ln%) forb=-1.

(2.8)

Differentiating (2.8) with respect to x yields

1+b 2
Ull(x) = f(0) (({:—b - %) L (1 - %) 1—f—> forb # -1,

2
Ul(x) = f(0) (—%xuln%) forb=—1,

from which U|(x) =0 occurs at

x. = {[2a"" - g’ (1 + )2}/ forb £ -1,

2
xc=ae_qa 2 for b=-1,

where U]" = —f(0) < 0. This implies that the (absolute) maximum of U, (x) occurs
at the value x,. Thus, an upper bound a, for a” is determined by U(x,)=c,
which yields

2" — g1+ b)a® = 2[2(1 = b)e/£(0)]""* for b # -1,

u u

(2.9)
dc = f(0)ale W/ FH*NN 4 ka J(2 +ka,)] forb=-1.

To show that (2.9) determines exactly one a, for a given b, let us differentiate
(2.8) with respect to a:

U, _ g’ f(0)x' " ((1 — a4 k* 2p  kQ2+b-bY s

9a k2 7(1 +—2W—a ) forb;é—l,

U,  f(0)x*(4 + 3ka + k’d®)
1 =

forb=-1.
da 2a(4 + 4ka + k*a?)

In either case, 0U,/0a > 0. Thus, U, increases as a increases. Hence for a given
b, a, is determined uniquely by (2.9). We obtain the following result.

LEMMA 6. 0 < a” < a,, where a, is determined uniquely by (2.9) for each given
b.
Our next result is useful in stopping the computation of successive iterates.

LEMMA 7. For 0 < x < a, if f is strictly increasing and U,.-U,>U,-U,_,
for some positive integer n, then U, , - U, > U, -U, _, for m=n+1,n+
2,n+3,....
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Proof. The sequences {U,} and {f(U,)} are strictly increasing. For some 7

between U,,, and U,, and some { between U, and U,_,, we have

U, ,(x)-U,, (x)= /0 G O, &) - FU, @) dé
- /0 "G L MU, (€) - U, (E)]dé

> /0 "G L OWULE) - U,_ ()]
=U,, (x)=-U,x).

n+1
The lemma then follows by using mathematical induction.
We now show that each iterate is a unimodal function.

LeEMMA 8. For a < a”, and each n > 1, the function U,(x) has a unique (positive)
maximum.

Proof. Let h be a critical point of U,(x) (n > 1) in the interval (0, a). From
(2.6),

n

Uy () = = (U

n n—1

)< 0,

which shows that all critical points of U, (x) give relative maxima. Hence, there is
exactly one (positive) maximum.

Since /(U,,, — U,) <0, a proof similar to Lemma 8 gives the following result.
LEMMA 9. For a < 4" and each n > 0, the difference U, ,(x)—U,(x) has a unique
(positive) maximum.

3. Quenching time. To obtain an upper bound for the quenching time, we may
consider the singular Sturm-Liouville problem:

lw=-2w, w0 =0, pw@a)=0.
Its eigenvalues A% are determined by
AJ,_(Aa) +kJ, (Aa) =0,

where v = (1 —b)/2 and J (x) is the Bessel function of the first kind of order v .

The eigenfunction corresponding to the smallest positive eigenvalue #2 is x"J (ux).
Following the argument of Sec. 4 of Chan and Kaper [6], the upper bound ¢, for
the quenching time is determined by

[max x"JV(,ux)} gt)=c,

0<x<a
where g(t) is given by the problem
g0+ u'g)=Glg),  g0)=0;

here,

G(g(t)) < inf{
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In particular, for f(u) = (1-u)"",
t=p (4 —u®) " tan T ud - 1)
—24Y) ' In[(4 - 1) /4] + (In2)(4 - )"

4. Numerical algorithm. By Lemma 6, an upper bound a, of a” can be de-
termined for each given b by using the subroutine DZREAL (to find, to double
precision, the real zeros of a real function using Muller’s method) from the IMSL
MATH/LIBRARY (Version 1.1, January, 1989; MALB-USM-PERFCT-EN8901-1.1).
Since 0 can be taken as a lower bound of a”, we can use the method of bisection to
approximate a* by a*" = a,/2. We use the representation formula (2.7) to compute
U,(x) with n>1 by using the following steps:

1. We divide the interval [0, a"] into 20 equal subintervals with end points X,
satisfying 0 =x, < X, < X3 < <Xy =a .

2. At the 19 interior subdivision points, we evaluate

1-b 1-b
xy=x T/(1=-b), y,(x)=(1-gx 7)/(1-b);
we also compute y,(x,,). These values are stored in the memory of the computer

for future use.
3. Let

FaG. 0= | YerU_(@©)dE,  FLU. k) = [& s, e

-1/2

To save computer time, we evaluate U, (x,,) first. From (2.7),
U,(x;,) =y, (x; )F, (1, 11) +y,(x,)F,,(11, 21).
To obtain U, (x,,), we only need to compute F, (10, 11) and F,,(10, 11) since
U,(x,0) = Vo (X, o) [F, (1, 11) = F, (10, 11)] + p,(x o )[F,,(11, 21) + F,,(10, 11)].

In this way, we can successively compute U, at x,, Xy, X5, ..., X, . Similarly,
U, (x,,) = V5 (x,5)[F, (1, 11) + F, (11, 12)] + y,(x,)[F,,(11, 21) = F (11, 12)].
Proceeding in this way, we obtain successively U, at X,,, X3, X4, -c0 5 Xy, -

To use a computer to calculate U, (x), we use three subroutines from the IMSL
MATH/LIBRARY: DCSINT (to compute, to double precision, the cubic spline in-
terpolant with the ‘not-a-knot’ condition) and DQDAG (to integrate, to double pre-
cision, a function using a globally adaptive scheme based on Gauss-Kronrod rules)
with DCSVAL (to evaluate, to double precision, a cubic spline).

4. We use the subroutine DUVMGS (to find, to double precision, the mini-
mum point of a nonsmooth (unimodal) function of a single variable) to determine
max, .- U,(x) without any initial guesswork of where its critical point is since,
by Lemma 8, U, (x) is unimodal. Let us denote this maximum value by M .

5. We stop the computation of U, (x) as follows:

(a) If M >c,then a™* >a".
(b) If U, -U,_, >U,_,—U,_, for some n, then, by Lemma 7, ™" > a",
provided f is strictly increasing.
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(¢) If M < ¢ and (by using Lemma 9)
max [U, (x) - U,_ (x)] < 5x 107"V

0<x<a
for some arbitrarily chosen nonnegative integer r, then a** < a*. Here, r
determines the error tolerance in computing the successive iterates.

If @™ > a", then we replace a, by a™"; otherwise u exists globally, and we
replace 0 by a™*. The above procedure of bisection is repeated until we reach the
demanded accuracy (such as the difference between two successive approximations
of @ isless than 5x 10""""). Since the difference between a* and the (ultimate)
approximation a** can be made as small as we like, this value a"* can be taken
numerically to be a”.

We apply the above algorithm to the case f(u) = (1 — u)_1 and Kk = 1. We
compute critical lengths a” for various given values of » with the use of a computer.
The results with » = § are given in Table 1.

TABLE 1. Critical lengths a” for four values of 5.

b a*
0.40000 0.82415
0.00000 0.99514

—0.40000 1.14290
—1.00000 1.33802
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