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Abstract. In this paper, sequences of camera motions that lead to inherent ambiguities in uncalibrated Euclidean
reconstruction or self-calibration are studied. Our main contribution is a complete, detailed classification of these
critical motion sequences (CMS). The practically important classes are identified and their degrees of ambigu-
ity are derived. We also discuss some practical issues, especially concerning the reduction of the ambiguity of a
reconstruction.

1 Introduction

Uncalibrated Vision and Self-Calibration. One of the major goals of computer vision is the recovery of spatial infor-
mation about the environment. Classical approaches assume that the cameras are calibrated beforehand, but a great
interest in uncalibrated vision and on-line calibration has arisen during the last couple of years. A key result is that
even with completely uncalibrated cameras, spatial information – projective structure – can be obtained: the scene can
be reconstructed up to an unknown projective transformation [7, 9]. Furthermore, a moving camera can self-calibrate,
i.e. the calibration parameters can be estimated solely from feature correspondences between several images [16]

�

.
This allows the projective ambiguity in the reconstruction to be reduced to a Euclidean one (up to a similarity trans-
formation), and we speak of monocular uncalibrated Euclidean reconstruction.

Critical Motion Sequences. It is known that several types of camera motion prevent self-calibration, i.e. the cali-
bration parameters can not be determined uniquely. Accordingly, Euclidean structure can not be obtained, although
reconstruction at some level between projective and Euclidean is generally possible. For example, from pure transla-
tions, even in different directions, affine structure can be obtained [17], while general planar motions of the camera
allow a Euclidean reconstruction up to a scale ambiguity in one direction [2, 25].

These ambiguities are inherent, i.e. they can not be resolved by any algorithm without additional knowledge. Se-
quences of camera motions that imply such ambiguities will be referred to as critical motion sequences (CMS). By
“sequences” we mean that not only the motion between two frames, but that over the complete sequence of frames, is
critical. Another type of inherent ambiguity in structure recovery is caused by critical surfaces: if all observed points
lie on a special surface (certain ruled quadrics) and the cameras have a special position with respect to that surface,
then the structure can not be recovered uniquely [13, 14]. Contrary to critical surfaces, critical motion sequences imply
ambiguities for any scene!

Beside these fundamental ambiguities, others arising from numerical instability due to noisy measurements have been
studied, especially for two calibrated cameras and affine camera models [1, 22]. Numerical instability can also be
caused by near-critical motion sequences, but an analytical study of these effects is beyond the scope of this paper.

Critical motion sequences have already become established in practical works on self-calibration through the devel-
opment of algorithms specially designed for certain types of CMS [2, 11, 17, 25]. However, if applied to other motion
sequences, they will fail. Conversely, algorithms developed for general camera motion [10, 12, 15, 18, 23] will, if
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applied to critical sequences, hopefully find one of the ambiguous solutions, but this will generally not be the correct
one.

The problem of critical motion sequences is important, since many image sequences used for object modeling are
indeed critical, as will become clear in sections 4 and 5. In spite of their importance, we are not aware of any complete
investigation of CMS in literature. A study in this direction is reported in [26], but the problem is only considered for
3 frames and is linked to a particular self-calibration algorithm.

In this paper, we derive a complete characterization of critical motion sequences, which is independent of the number
of frames and of the algorithm used. We also show which of the sequences permit at least affine scene reconstruction
or camera self-calibration.

Basic Idea. Now we sketch the basic idea behind the derivation of the critical motion sequences. Euclidean reconstruc-
tion is equivalent to the determination of the absolute conic

�
[8]. This can only be based upon the special properties

which distinguish it from all other conics in 3-space. The main property, and usually the only one used in existing
algorithms, is that the projection of

�
is invariant under camera motions provided the intrinsic parameters do not

change. Its image � can thus be determined as the “fixed conic of a sequence” [2]. Furthermore,
�

is a proper virtual
conic, and for perfect perspective projection, its images must also be proper virtual conics. Besides these properties
(or equivalent ones) there is no means to determine

�
from monocular uncalibrated image sequences.

Hence, the problem of monocular uncalibrated Euclidean reconstruction fails to have a unique solution exactly when
there is at least one other conic besides

�
with the same properties, i.e. a proper virtual conic

���
that is projected onto

some proper virtual conic � �
in all frames of the sequence.

Structure of the Paper. In section 2 we provide the theoretical background of our approach. Basic definitions are
settled in section 3 and used in section 4 to derive the critical motion sequences. A taxonomy of the CMS and some of
their properties are presented in section 5. Practical issues are discussed and conclusions are drawn in sections 6 and
7.

2 Background

The definitions in this section are mainly taken from [4] and [19]. Some of the results for general quadrics are presented
only for central conics.

Notation. We refer to the plane at infinity as the ideal plane and denote it by ��� . �	� is the 
 -dimensional projective
space and � means equality up to a scalar factor. We use the abbreviation PVC for proper virtual conics (see below).

Pinhole Camera Model. In this paper, we use the projective pinhole camera model. The projection can be represented
by a ���� projection matrix � . We consider only the case of perfect perspective projection, i.e. the projection center
does not lie on � � . With regard to physical cameras, the projection matrix can be decomposed into a calibration
matrix � and a pose matrix � . The pose matrix represents the position and orientation of the camera in some absolute
coordinate frame. The calibration matrix describes the invertible affine transformation from the canonical projection to
pixel coordinates. For the pinhole model, the calibration matrix is determined by 5 intrinsic parameters: focal length,
measured in horizontal and vertical pixels, two coordinates of the principal point, and skew angle between the pixel
axes.

Relative Rotation. The relative rotation between two frames whose orientation is given by rotation matrices ��� and
��� , is represented by the rotation matrix �������� ��� .

Quadrics and Conics. A quadric in ��� is a set of points satisfying a homogeneous quadratic equation. Each quadric
can be represented by a symmetric � 
"!$#&%'�� 
"!(#)% matrix. A virtual quadric is a quadric with no real point
and a proper quadric is a quadric whose matrix has a non-zero determinant. Conics are planar quadrics; we will
not distinguish between a conic and its matrix. A conic in �+* , or 3D conic, is defined by its supporting plane and
the conic’s equation in that plane. All proper virtual conics (PVC) are central [4] and hence can be transformed to
Euclidean normal form by a Euclidean transformation (principal axis transformation). The Euclidean normal form
is a diagonal matrix of the conic’s eigenvalues. If all three eigenvalues are distinct, then the conic has exactly two
symmetry lines and is an ellipse. The symmetry lines pass through the conic’s center and are mutually orthogonal. If
the eigenvalues are not all distinct, the conic is a circle and all lines through the center are symmetry lines.

Symmetry Planes of 3D Conics. We define the symmetry planes of a proper 3D conic , as the planes reflecting , onto
itself. The symmetry planes of , are exactly its supporting plane � and the planes perpendicular to � that contain a
symmetry line of , .
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Cones. By cones we mean rank-3 quadrics in � * with vertex not on � � . A cone is uniquely defined by its vertex
and any (conic) section by a plane not containing the vertex. Cones are used in this paper through the notion of the
projection cone of a 3D conic, i.e. the cone traced out by the projection rays of the perspective projection of the conic.
The Euclidean normal form of a cone is a diagonal matrix diag ��������� � ��� * ��� % , with non-zero �
	 . If the ��	 are all distinct
then the cone is an elliptic cone and has 3 mutually orthogonal axes. If exactly two of the ��	 are equal, the cone is
circular. For an absolute cone, all three ��	 are equal.

Absolute Quadric and Absolute Conic. The absolute quadric of �+� is defined by the equations 
�

� !������ !�
�

� �
 ��� �	��� . The absolute conic

�
is the absolute quadric of ��* .

�
is a proper virtual conic in the ideal plane whose

position uniquely defines the Euclidean structure of 3-space. The calibration of a camera is equivalent to determining
the image � of

�
, respectively its dual ��� [16, 8]. From the relation ����������� , the calibration matrix � can be

uniquely recovered by Cholesky decomposition.

3 Basic Definitions

We define a motion sequence � of � camera positions as ��� � ��������� % ��"! � , where � �#������� % are the rotational and
translational components of the $ th camera pose.

3.1 Critical Motion Sequences

We first note that the question of whether a given motion sequence is critical is independent of the cameras intrinsic
parameters: a conic has the same image in a set of views taken by the same camera, exactly if it has the same image in
the corresponding canonical projections * . It is thus sufficient to consider only the pose of the camera.

Definition 1. Let � be a motion sequence and � � the canonical projection for the $ th frame. Let � � � , % be the image
of the 3D conic , .

The motion sequence � is critical if there exists a proper virtual conic , , distinct from
�

, that projects to the same
proper virtual conic % in all frames of � : %�� � � � , % for $ � #&��'�'�'(��� .

Such PVC , will be referred to as potential absolute conics and we say that the motion sequence � is critical with
respect to , .

It follows that Euclidean reconstruction from an uncalibrated monocular image sequence is ambiguous exactly when
the underlying camera motion is a critical motion sequence (cf. the basic idea described in section 1).

3.2 Affine Reconstruction

In view of the stratification of reconstruction [8] the question naturally arises, which motion sequences allow at least
an affine reconstruction of the scene. Affine reconstruction is equivalent to the determination of the ideal plane � �
in a projective reconstruction. ��� is uniquely characterized as the supporting plane of the absolute conic ) . Hence, if
for a given motion sequence there exist potential absolute conics with different supporting planes, then the ideal plane
can not be uniquely identified and affine reconstruction is not possible:

Definition 2. A motion sequence is critical for affine reconstruction if it is critical with respect to a proper virtual
conic , , which is not on the ideal plane.

3.3 Self-Calibration

While Euclidean reconstruction implies the (self-) calibration of the camera, the inverse is not always true: a camera
which rotates about its projection center can in general self-calibrate [11], but because of the missing base-line, no
reconstruction is possible. The fact that (self-) calibration is equivalent to the determination of the image of the absolute
conic, leads to the following definition:
*

There is an invertible affine transformation between the canonical projection and the image plane (see section 2).+
In [18] the constraint that the infinite homography has eigenvalues of the same modulus is used for affine reconstruction. We
show in [21] that this is a necessary but insufficient constraint.
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Definition 3. A motion sequence � is critical for self-calibration if it is critical with respect to a PVC, whose image
% is different from that of the absolute conic.

In the case of a rotating camera, there indeed exist an infinity of potential absolute conics, but they all lie on the
projection cone of the absolute conic. This is why the images of all potential absolute conics are identical and equal
to the image of the absolute conic, which means that self-calibration is possible!

4 Derivation of the CMS

In this section, the critical motion sequences are derived, based on the previous definitions. We divide the derivations
into two parts, for potential absolute conics which lie / do not lie on ��� . The results are summarized in section 5. For
more details and formal proofs refer to [21].

4.1 Potential Absolute Conics on ���
4.1.1 Constraint on Relative Rotations

Let , be a PVC on the ideal plane. Its (canonical) perspective projection % by a projection matrix � � � ��� �&% is given
by %�� � , ��� . Note that the projection of , depends only on the orientation of the camera, not on its position.

Consider two frames with orientations ��� and ��� . The projection of , is the same in both frames if ���), � � � �
��� , � � � . Since the determinants of rotation matrices are 1, we obtain the condition � �&, � � � � ��� , � � � . Introducing
the relative rotation � between the two frames, the condition that , has the same projection in both frames becomes

� ,"��, � ' (1)

Let � be an eigenvector of , with eigenvalue � . From Equation (1) it follows that , ���"� � ,�� � � ��� , i.e. ��� is
also an eigenvector of , with eigenvalue � . This is valid for all eigenvectors � of , and it follows that � conserves
the eigenspaces of , . Hence, for a PVC , on the ideal plane to have the same image in all frames of a sequence, all
relative rotations between pairs of frames must conserve the eigenspaces of , . This is also a sufficient condition [21].

4.1.2 Developing the Constraint

We develop the condition on the relative rotations with respect to the various possible forms of , . The criticality of
a motion sequence does not depend on the absolute coordinate frame in which the poses are expressed, so we can
take , to have Euclidean normal form. Since , is proper virtual, there are exactly 3 different cases, differing in the
multiplicity of the eigenvalues of , :

Case 1. One Triple Eigenvalue. The only conic on � � with a triple eigenvalue is the absolute conic, so the sequence
is not critical.

Case 2. One Double and One Single Eigenvalue. The eigenspace of the double eigenvalue is a plane � and that of the
single eigenvalue a line 	 perpendicular to ��
 . Since the rotation � conserves � and 	 , it must be either the identity
transformation, a rotation about 	 by an arbitrary angle, or a rotation by #����� about a line on � , incident with 	 .
Case 3. Three Single Eigenvalues. The eigenspaces are three mutually orthogonal lines. � is thus the identity trans-
formation or a rotation by #�&� � about any of the 3 lines.

Note that the relative rotations � that arise from Case 3 are also covered by Case 2. The following class covers all
motion sequences that are critical with respect to a PVC on � � :

CMS-Class 1: Motion sequences for which all relative rotations are either rotations by an arbitrary amount about
some line 	 or by #�&��� about lines perpendicular to 	 .
If a conic , on � � has the same image in all frames of a sequence, this is also true for all conics in the linear family
spanned by , and

�
. Hence, there exists a familiy of ambiguous Euclidean reconstructions. Class 1 is rather large but

we can identify more specific sub-classes:
�

Eigenvectors of symmetric matrices corresponding to different eigenvalues are orthogonal.
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CMS-Class 1.1: All relative rotations are arbitrary rotations about some line 	 .
CMS-Class 1.2: All relative rotations are rotations by #��� � about 3 mutually orthogonal lines.

CMS-Class 1.3: All relative rotations are rotations by #����� about some line 	 .
CMS-Class 1.4: There is no relative rotation at all, i.e. the motions are pure translations in arbitrary directions.

A further discussion is given in section 5.

4.2 Potential Absolute Conics not on ���

Conics not on � � are rather more difficult to deal with, since their projection depends on both the position and
orientation of the camera. An algebraic description of the CMS through constraints on the position and orientation of
the frames in a sequence is very tedious to derive [26] and it is not at all clear if it is tractable for more than 3 frames.
We thus preferred a more intuitive geometrical approach. This does not provide an exact algebraic description but it
does yield a geometric description of all types of critical motion sequences, for any number of frames.

4.2.1 Problem Formulation

We construct the critical motion sequences generically by solving the following problem:

Problem 4. Let , be a PVC that does not lie on ��� . Let % be its projection for an initial camera pose. Determine all
poses, for which the projection of , equals % . Any subset of these forms a CMS. Equivalently, we may determine all
rigid transformations mapping the initial pose to poses where the projection of , equals % .

We transform this into an equivalent, more tractable form:

Problem 5. Let , and % be given as in Problem 4. Let � be the projection cone of , for the initial pose. Determine all
rigid transformations mapping � to cones containing , .

4.2.2 Solving Problem 5

In order to cover the whole range of possible critical motion sequences, we must treat all different forms of proper
virtual conics and also the different possibilities which arise when choosing the initial camera pose. The fact that ,
is a PVC greatly reduces the range of conics we have to deal with. Furthermore, we can immediately exclude camera
positions on the supporting plane of , , one of the properties of potential absolute conics being that their images are
proper.

We solve Problem 5 through two key observations: (i) Planar reflections, although not orientation preserving, induce
transformations on a cone that are setwise equivalent to rigid motions. (ii) The rigid transformations required in
Problem 5 are exactly those induced by certain planar reflections of the projection cone � . In concrete terms (see [21]
for proofs):

Lemma 6. The reflection of a quadric � in a hyperplane is a quadric �
�

which is equal to � up to a rigid transfor-
mation.

Lemma 7. Let , be a PVC that does not lie on ��� . Let � � be a cone containing , and � � another that equals � �
up to a rigid transformation. Then � � contains , exactly when � � can be obtained from ��� by a combination of
reflections in symmetry planes of , .

Hence, the combinations of rigid transformations induced by planar reflections of � in symmetry planes of , , are
exactly the rigid transformations solving Problem 5 and thus Problem 4. An explicit description of these motions [21]
is omitted, due to lack of space. Instead we concentrate on the essential features of the description: the number and
locus of the camera positions and corresponding orientations.
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4.2.3 Camera Positions

Since , is a proper virtual conic it must be a circle or an ellipse. The symmetry planes of a circle are its supporting
plane � and all planes orthogonal to � containing the circle’s center. An ellipse has 3 symmetry planes: � and the
2 planes orthogonal to � containing an axis of the ellipse. Consider a point � and apply all combinations of planar
reflections in symmetry planes of , . For an ellipse , , the locii of reflected points are the 8 corners of a rectangular
parallelepiped. These may even collapse, if � lies on one or more symmetry planes. For a circle , , the locii are two
equally sized circles, whose supporting planes are parallel and equidistant to � . We immediately draw the important
conclusion that the projection centers in motion sequences that are critical with respect to a PVC not on � � , lie at
most on two parallel and equally sized circles (the corners of a rectangular parallelepiped lie always on such circles)!

4.2.4 Camera Orientations

For any cone, rotations about its vertex exist that leave the cone globally invariant. We refer to these as local orientation
changes. The number of local orientation changes depends on the cone’s Euclidean normal form: arbitrary rotation of
an absolute cone about its vertex leave the cone globally unchanged; a circular cone may be rotated by any degree
about its main axis or by #��� � by any line perpendicular and incident to the main axis; elliptic cones are left globally
invariant by rotations by #�&��� about their axes. We count the local orientation changes as follows: � * for an absolute
cone, ���� for a circular cone and � for an elliptic cone (including the identity transformation). Consider a frame
in a motion sequence that is critical with respect to a PVC , not lying on ��� . Let � be the projection cone of ,
in the considered frame. Any rigid transformation that leaves � globally invariant, i.e. any local orientation change,
possibly changes , , but not its image, because the transformed , still lies on the projection cone � . Dually, changing
the orientation of the camera by any local orientation change of � has no effect on the image of , .

4.2.5 Synthesis

We synthesize the derivations of the previous subsections by considering camera position and orientation together. All
combinations of the following possibilities must be considered: � is an elliptic, a circular or an absolute cone and ,
is an elliptic or a circular virtual conic. Let in the following � be the supporting plane of , .

Case 4. � : Absolute cone, , : Ellipse. All planar sections of absolute cones are circles, so this case is not realizable.

Case 5. � : Absolute cone, , : Circle. The orthogonal projection of the vertex of � on � is the center of the circle , .
Hence, � is the only symmetry plane of , that does not contain the vertex of � . Thus, only two camera positions are
possible: the vertex of � and its reflection by � . At both positions the camera may be oriented arbitrarily.

Case 6. � : Circular cone, , : Ellipse. The vertex of � must lie on the plane � � , which is perpendicular to � and
contains the major axis of , . Combining reflections in symmetry planes of , leads to the total of 4 possible camera
positions, forming a rectangle in � � . At each position, the camera can be oriented as discussed in section 4.2.4.

Case 7. � : Circular cone, , : Circle. As in Case 5, the orthogonal projection of the vertex of � on � is the center of
, , and there are only 2 possible camera positions. At each position, the camera may rotate arbitrarily about the line
joining the projection centers or by # �&��� about perpendicular lines. This is a sub-case of Case 5.

Case 8. � : Elliptic cone, , : Ellipse. There are 8 possible camera positions which are the corners of a rectangular
parallelepiped. At each position, 4 orientations are possible. This case is illustrated in Figure 1 (d).

Case 9. � : Elliptic cone, , : Circle. The only case where infinitely many camera positions are possible: the camera
may move on two circles (see section 4.2.3). At each position, 4 different orientations of the camera are possible.

Note that a #�&� � rotation does not necessarily mean that the gaze directions before and after the rotation are opposite,
e.g. if the rotation is about the optical axis, they even coincide.

5 A Taxonomy of the CMS

We now summarize the results of sections 4.1 and 4.2. Table 1 contains all classes of critical motion sequences,
ordered by decreasing number of possible camera positions. The numbers of camera positions (# � ) and orientations
(# � ) shown in the table, represent maximum configurations. #

�
, the number of potential absolute conics, indicates

the lowest achievable degree of ambiguity in the Euclidean reconstruction.

From Definition 2 it follows that the motion sequences in Classes 2–5 are those critical for affine reconstruction.
The sequences of Class 5, which are not contained in any of Classes 1–4, are the only CMS, that are not critical for
self-calibration.
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Class Description # � # � # �
1 See 4.1.2 � * ��� � �
2 Cf. Case 9

��� � 4 � �

3 Cf. Case 8 8 4 4
4 Cf. Case 6 4

��� � 3
5 Cf. Case 5 2 � *

2

Table 1. A taxonomy of the critical motion sequences. “# � ” is the number of possible camera positions and “# � ” the number
of possible orientations of the camera at each position. “# � ” means the minimum number of potential absolute conics (including
� itself).

5.1 Practically Important Cases

The taxonomy can be further refined. This is mainly interesting to obtain a specific description of the CMS that might
have practical significance. In Table 2, we show the classes of CMS likely to be met in applications. Orbital motion
(see also Figure 1 (a)), planar motion (Figure 1 (c)) and pure translation are particularly common imaging conditions
for object modeling or navigation. Pure rotations are a good means of calibrating a camera, because of the simple
algebra and easier feature matching due to the absence of occlusions [11].

Class Description # � # � # �
1.1 See 4.1.2 and Figure 1 (b) � * � �
1.1.1 Planar motion, Figure 1 (c) � � � �
1.4 Pure translations � *

1 � �
2.1 Orbital motion, Figure 1 (a)

��� � 1 � �

5.2 Pure rotations 1 � * � *

Table 2. Practically important classes of critical motion sequences. The numbering of classes does not reflect completely the
hierarchy, since for example Class 1.1.1 is also a sub-class of Class 2.

Figure 1. Illustration of critical motion sequences. The cameras are represented by the local coordinate axes, arcs indicate
optical axes. (a) Orbital motion. (b) Rotation about parallel axes and arbitrary translation. (c) Planar motion. (d) A hypothetical
critical sequence of Class 3. At each position, only one of the 4 possible orientations is shown.

5.2 Degree of Ambiguity

For the practically important CMS in Table 2, we indicate which level of reconstruction can be recovered. Sequences
of Classes 1.1 and 1.1.1 permit Euclidean reconstruction up to a scale ambiguity in one direction [2, 25]. Pure camera
translations (Class 1.4) enable an affine reconstruction of the scene [17]. Of course, from pure rotations, no recon-
struction at all is possible. From orbital motion (Class 2.1), the Euclidean structure of the planes parallel to the motion
plane can be recovered, but there remains a two degree-of-freedom projective ambiguity perpendicular to it.
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6 Practical Issues

The problem of CMS, in contrast to critical surfaces (”Motion fields are hardly ever ambiguous” [14]) is important in
practice, since many image sequences are actually critical.

Reducing Ambiguities. It is possible to reduce the degree of ambiguity in reconstructions, when prior knowledge of
the scene structure or the camera motion is available. A known or partially known calibration of the camera should
also be used if available: for applications in robotics, at least the stable camera parameters (aspect ratio and skew) are
normally known. No fault is usually committed if the angle between the pixel axes is set to ��� � . In [2], this constraint
is used to reduce the ambiguity of Euclidean reconstruction from planar motion to a two-fold one. However, the
constraint is added after having obtained a 1-degree ambiguous reconstruction, which shows that it is not always clear
how to integrate constraints on the intrinsic parameters into a batch solution. Another way of discarding ambiguous
solutions is to analyze reconstructions with respect to physical contradictions, e.g. to see whether a reconstructed
point lies behind a camera by which it is actually seen. The best way to counter CMS is clearly to avoid them by using
motion sequences that are “far” from critical: turning around an object while fixating it is adequate for modeling, but
critical if the camera is not calibrated; however, including rotations about the camera’s optical axis turns the sequence
into a non-critical one (photogrammetric experience has shown that rotations of �&� � produce good conditions for
reconstruction).

Detecting and Identifying CMS. A general-purpose system for Euclidean reconstruction should at least be able to
detect the presence of ambiguous solutions, e.g. by analyzing covariance matrices. Better would be the identification
of the type of the underlying motion sequence. This would enable the ambiguity in the reconstruction to be labeled
correctly, e.g. as an affine reconstruction. Furthermore, if the CMS is identified, a special algorithm might be applied
to achieve a more stable and accurate reconstruction. A “brute force” approach would be to execute all available
algorithms, designed for general or critical sequences. The adequate solution could then be determined by a model
selection phase: the “smallest” model (reconstruction with lowest geometric level) which fits the data acceptably well
(e.g. with a reprojection error below a threshold). An algorithm that identifies singular motions in order to obtain less
complex constraint equations for self-calibration than Kruppa’s equations is described in [24]. However, only frame-
to-frame motions are considered, and thus critical motion sequences are not identified and may cause the algorithm to
fail.

7 Conclusion

We have derived all types of motion sequences for which monocular uncalibrated Euclidean reconstruction is ambigu-
ous. By identifying several typical imaging conditions as critical we have shown that critical sequences are important
in practice so that they should be taken into account when developing systems for Euclidean reconstruction. It is clear,
that ambiguities can often be reduced right from the start by using an available partial calibration or just by avoiding
critical motions.

Work in progress is concerned with the investigation of approaches for the implementation of a stratified reconstruction
system. We are also working on an extension of our formalism to the affine camera model and to the case of a zooming
camera. A study similar to that of the “Gefährliche Räume” [13] would also be interesting, i.e. investigating how near
a motion sequence must be to critical in order to cause inherent numerical instabilities.

Acknowledgements. I would like to thank Long Quan and Bill Triggs for fruitful discussions.
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