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Abstract

A universal integral equation has been derived and solved for the nonlinear evolution

of collective modes driven by kinetic wave particle resonances just above the threshold for

instability. The dominant nonlinearity stems from the dynamics of resonant particles which

can be treated perturbatively near the marginal state of the system. With a resonant particle

source and classical relaxation processes included, the new equation allows the determina-

tion of conditions for a soft nonlinear regime, where the saturation level is proportional to

the increment above threshold, or a hard nonlinear regime, where the saturation level is

independent of the closeness to threshold. It has been found, both analytically and numeri-

cally, that in the hard regime the system exhibits explosive behavior and rapid oscillations

of the mode amplitude. When the kinetic response is a requirement for the existence of

the mode, this explosive behavior is accompanied by frequency chirping. The universality

of the approach suggests that the theory applies to many types of resonant particle driven

instabilities, and several specific cases, viz. energetic particle driven Alfvén wave excitation,

the fishbone oscillation, and a collective mode in particle accelerators, are discussed.

PACS numbers: 52.35.-g, 52.35.Mw, 52.40.Mj

1



I. Introduction

A fundamental problem in plasma physics is the evolution of kinetic instabilities driven

by resonant particles.1 Surprisingly, the nonlinear treatment of this problem has not been

comprehensive and recently new insight has been obtained2 for understanding the behavior

of the system when the kinetic response of the particles can be treated as a perturbation to

the linear mode. It is the purpose of this paper to generalize the earlier developed theory

to problems where the kinetic response is not necessarily a perturbation to the mode and to

point out that the method of analysis is applicable to a wide range of physical problems in

plasma physics as well as in other areas.

One common description for the self-consistent evolution of particles and waves is quasi-

linear theory,3,4 a perturbative approach that involves many overlapped wave-particle reso-

nances as a basis for diffusive particle transport in phase space. When resonances do not

overlap global transport is strongly suppressed. Instead, as the mode grows, most of the

particles respond adiabatically to the wave, and only a small selected group of resonant par-

ticles will mix and cause local flattening of the distribution function in phase space within

or near the separatrices formed by the waves.

The dynamics of this process has been described by Mazitov5 and O’Neil.6 If the ener-

getic particles are perturbative, and background damping is negligible, the unstable mode

will grow until the bounce frequency of the resonant particles trapped in the wave, ωb ∼

A1/2 (with A the amplitude of the wave), reaches a level comparable to the linear growth

rate.7 The most common example is the bump-on-tail instability problem. This saturation

mechanism has also been noted for other similar problems8 and has been observed in com-

puter simulations.9−13 When sources and sinks are present, either higher steady state levels

of saturation are obtained with relatively strong sources or periodic pulsations arise with ωb
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of order the growth rate.8,12

More recently, the nonlinear dynamics of a system near an instability threshold was

studied when there is linear dissipation from background plasma present, and the energetic

particle drive for instability gives a growth rate that just exceeds the damping rate.2 It

was shown that the dynamics is dominated by the resonant particles, and that a low level

saturation occurs when the resonant particles are sufficiently collisional. However, as the

collisionless limit is approached, the saturated state becomes unstable and the mode tends

to grow explosively. Within the context of the perturbation theory the mode reaches an

arbitrarily large amplitude in a finite time. The actual limit of applicability of this explosive

solution is when the bounce frequency of the trapped particles approaches the growth rate

in absence of dissipation, independent of the closeness to marginal stability. Then to within

a numerical constant the saturation level near threshold is the same as when dissipation is

very small.

A further generalization of this threshold analysis method is to treat nonperturbative

waves, i.e., modes whose very existence requires the kinetic response of the particles. A

well-known example of this is the onset of instability due to a smooth double-humped

distribution.14 Attempts have been made to understand the dynamics near threshold15 but

controversy still exists as to the validity of the solution.16

Unlike the work on the evolution of the double humped instability, our analysis addresses

problems that involve either an additional linear dissipation from the background plasma, or

higher dimensionality when the resonance lines or surfaces give both positive and negative

dissipation, balanced at the instability threshold. Ironically, the classic double humped

problem does not fall into this category, but there are host of other problems that do. Some

examples include fishbone oscillations,17,18 beam toroidal Alfvén eigenmodes,19,20 hot electron

interchange modes,21 and collective modes in particle accelerators.22 Experimentally, such

modes often exhibit frequency chirping: their frequency changes in time. This change of
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the mode frequency, which has not had a satisfactory theoretical explanation, appears as a

natural feature in our theory.

The structure of the paper is as follows: In Sec. 2 we extend the derivation of Ref. 2

to obtain a universal nonlinear equation for a weakly unstable mode driven by resonant

particles, that is applicable even to nonperturbative modes. Section 3 presents an analysis

of various nonlinear scenarios described by the universal equation. Section 4 deals with

possible applications of the theory and discusses correlations with several experiments.

II. Basic Equations

Near the threshold of linear instability, the evolution of the unstable mode can generally

be analyzed within the assumption of a weak nonlinearity. In this limit, the perturbed

current J that enters Maxwell’s equations is a sum of JL, a part that is a linear functional

of the mode electric field E, and JNL, a nonlinear current whose functional dependence on

E is calculated with a perturbation technique. Further, in this paper we assume that JNL

arises solely from resonant particles, and we neglect the other contributions to JNL which

are smaller in the range of validity of our calculations. When we use the Fourier transformed

Maxwell’s equations, we find

∫

dr′g(r, r′, ω, α) · E(r′, ω) = JNL (1)

where the matrix g(r, r′, ω, α) includes the contribution from JL and α is a parameter that

measures closeness to the instability threshold. The linear theory yields the homogeneous

equation
∫

dr′g(r, r′, ω, α) · e(r′, ω) = 0.

At the threshold, α ≡ αcr, this equation has a real eigenvalue ω = ω0 and a nontrivial

eigenvector e(r, ω0) which is determined up to an arbitrary constant. Also, there exists an
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adjoint vector e†(r, ω0), which is a solution to the equation

∫

dr′e†(r′, ω0) · g(r′, r, ω0, αcr) = 0.

When 0 < α/αcr−1 ≪ 1 and the nonlinear current is sufficiently small, the eigenfunction

e(r, ω) must be peaked about ω = ω0. We can then expand g(r, r′, ω, α) about ω = ω0 and

α = αcr. To eliminate the lowest order term, we take a dot product of Eq. (1) with e†(r, ω0)

and integrate over all space. This procedure reduces Eq. (1) to

∫

drdr′e†(r, ω0) · [(ω − ω0)gω(r, r′, ω0, αcr) + (α− αcr)gα(r, r′, ω0, αcr)] · E(r′, ω)

=
∫

dre†(r, ω0) · JNL(r, ω)

where a subscript indicates a partial derivative. It is now allowable to use the lowest order

expression for E(r, ω) in this equation, namely we put

E(r, ω) = c(ω)e(r, ω0).

The factor c(ω) represents the Fourier components peaked at ω = ω0. The real electric

field of the mode is

E(r, t) = C(t) exp(−iω0t)e(r, ω0) + c.c. (2)

where C(t) is a slowly varying mode amplitude. Transformation to the time domain gives

the following equation for C(t):

iGω
dC

dt
+ (α− αcr)GαC = eiω0t

∫

dre†(r, ω0) · JNL(r, t) (3)

where

G(ω, α) ≡
∫

drdr′e†(r, ω0) · g(r, r′, ω, α) · e(r, ω0)

and

Gω =
∫

drdr′e†(r, ω0) · gω(r, r′, ω0, αcr) · e(r, ω0)
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Gα =
∫

drdr′e†(r, ω0) · gα(r, r′, ω0, αcr) · e(r, ω0).

In order to evaluate the nonlinear term in Eq. (3), we first express JNL(r, t) in terms of

the particle distribution function, which gives

eiω0t
∫

dre†(r, ω0) · JNL(r, t) = qeiω0t
∫

dΓe†(r, ω0) · v(r,p)fNL(r,p, t). (4)

Here, q is the particle charge, dΓ = drdp is the phase space volume element, v(r,p) is the

particle velocity, and fNL(r,p, t) is the nonlinear part of the distribution function.

We now need to find fNL(r,p, t) from the kinetic equation

∂f

∂t
+ [H, f ] = Stf + Q (5)

in which the Hamiltonian H splits into H = H0 + H1 with H0 being the nonperturbed

Hamiltonian that determines the equilibrium orbits, and H1 the perturbation from the mode.

The right-hand side of Eq. (5) takes into account particle source Q and collision operator, St.

We assume the nonperturbed motion described by H0 to be fully integrable, which allows

canonical transformation to action-angle variables. Let Ii with i = 1, 2, 3 be the actions and

ξi be the corresponding canonical angles, so that all physics quantities are periodic functions

of ξi with the period 2π. Then, the Hamiltonian H can be cast into the form

H = H0(I1, I2, I3) + H1 (6)

with

H1 = 2 ReC(t)e−iω0t
∑

ℓ1,ℓ2,ℓ3

Vℓ1,ℓ2,ℓ3(I1, I2, I3)e
iℓ1ξ1+iℓ2ξ2+iℓ3ξ3 (7)

where ℓ1, ℓ2, and ℓ3 are integers, and Vℓ1,ℓ2,ℓ3(I1, I2, I3) are matrix elements that can be

calculated in a standard way, given the mode structure and the nonperturbed particle orbits.

We have neglected C2 and other higher order corrections to H as it can be shown that they

produce small terms in the final equation, compared to the terms we will generate.
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For nearly resonant particles we can relate H1 to the perturbed electric field given by

Eq. (2). The result is

H1 = 2qRe
(

iC(t)
v · e

ω0

e−iω0t
)

.

With this expression for H1, we find

Vℓ1,ℓ2,ℓ3(I1, I2, I3) =
iq

ω0

∫ dξ1dξ2dξ3

(2π)3
exp [−i(ℓ1ξ1 + ℓ2ξ2 + ℓ3ξ3)]v · e.

Each term in the perturbed Hamiltonian represents a resonance that can be treated

separately if the resonances do not overlap, which we assume here to be the case. For the

motion dominated by a single resonance, the summation sign can be dropped in Eq. (7).

One can then choose a new set of action-angle variables so that one of the new angles is

ξ = ℓ1ξ1 + ℓ2ξ2 + ℓ3ξ3, and I is the corresponding action. The Hamiltonian then reduces to

the one-dimensional form

H = H0(I) + 2 ReC(t)e−iω0tV (I) exp(iξ) (8)

where the remaining variables, not shown here, are suppressed as they can be treated as

parameters in the new Hamiltonian. The resonance action Ir is determined by the equation

Ω(Ir) = ω0

where Ω(I) ≡ ∂H0

∂I
= ℓ1

∂H0

∂I1
+ ℓ2

∂H0

∂I2
+ ℓ3

∂H0

∂I3
. The collisionless motion of a resonant particle

satisfies the pendulum equation

d2ξ

dt2
+ ω2

b sin(ξ − ω0t− ξ0) = 0 (9)

where

ωb ≡ |2CV (Ir)∂Ω(Ir)/∂Ir|
1/2

is the nonlinear bounce frequency of the particle (when C is time independent) and ξ0 is a

constant phase.
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Near the resonance, the kinetic equation reads

∂f

∂t
+ Ω(I)

∂f

∂ξ
− 2 Re[iC(t)V (Ir) exp(iξ − iω0t)]

∂f

∂I
= Stf + Q. (10)

In this equation, we have neglected the term ∂H1

∂I
∂f
∂ξ

, which is indeed a justified approximation:

this term is small compared to the last term on the left-hand side of Eq. (10) because the

perturbed distribution function of the resonant particles has a steeper gradient in I than

the perturbed Hamiltonian. For the same reason, we treat the matrix element and ∂Ω/∂I

as constants evaluated at I = Ir when we solve Eq. (10) for the resonant particles.

We will consider two different descriptions of collisions in Eq. (10): a simplified Krook

model and a more realistic diffusive model. For the Krook model, we take

Stf + Q = −νr(f − F ) (11)

where F is the equilibrium distribution function with a nearly constant nonzero slope near

the resonance, and νr is the relaxation rate. The diffusive collisional operator takes the form

Stf + Q = ν3
eff

∂2

∂Ω2
(f − F ) (12)

where F is again the equilibrium distribution. Equation (12) and the expression for ν3
eff can

be consistently derived from a specific Fokker-Planck collision operator with an appropriate

orbit averaging procedure developed in Ref. 23. The specific form for ν3
eff is given in section

(c) of the Appendix. Note that only second derivative terms with the perturbed distribution

function need to be retained in the collision operator as these are the dominant terms near

the resonance where the perturbed distribution is strongly peaked. Equations (11) and (12)

lead to similar results if one takes νr ∼ νeff . The ν-parameter in both equations describes

the rate particles decorrelate from resonance when C(t) is sufficiently small.

We explicitly solve Eq. (10) for the Krook model (we shall also present the results for the

diffusive model) with the use of a perturbation technique that assumes that either the time
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interval is short compared with the characteristic bounce period, 2π/ωb, or the collisional

relaxation rate is much greater than ωb. This assumption allows us to seek f in the form of

a truncated Fourier series

f = F + f0 + [f1 exp(iξ − iω0t) + f2 exp(2iξ − 2iω0t) + c.c.] (13)

where the Fourier coefficients f0, f1, and f2 are functions of t and I. Although the second

harmonic generally needs to be included in the calculations of the nonlinear response, it

turns out that f2 does not affect the resulting equation for the mode amplitude. Therefore,

we ignore f2 from the very beginning, a procedure that can be verified in a straightforward

way. With this simplification, Eqs. (10) and (11) reduce to

∂f1

∂t
− i[ω0 − Ω(I)]f1 + νrf1 = iC(t)V

∂

∂I
(F + f0) (14)

∂f0

∂t
+ νrf0 = iC(t)V

∂f ∗
1

∂I
− iC∗(t)V ∗∂f1

∂I
. (15)

We integrate Eqs. (14), and (15) iteratively taking into account that F ≫ f1 ≫ f0

and assuming zero initial values for f1 and f0. We first neglect f0 on the right-handside of

Eq. (14) and find f1L, the part of f1, linear in C:

f1L = i

t
∫

0

dτe−νr(t−τ) V
∂F

∂I
C(τ)ei(ω0−Ω)(t−τ).

Next, we use f1L instead of f1 in Eq. (15) to find f0. We then substitute f0 into Eq. (14) and

calculate f1NL, the part of f1 cubic in C. For ω0t ≫ 1, the dominant contribution to f1NL

comes from the terms in which the differential operator ∂
∂I

acts on the exponential functions

in f1L and f0. The final leading order contribution to f1NL has the form

f1NL = −i

t
∫

0

dτ

τ
∫

0

dτ1

τ1
∫

0

dτ2(τ1 − τ2)
2e−νr(t−τ2) V |V |2

(

∂Ω

∂I

)2
∂F

∂I

·
[

C(τ)C(τ1)C
∗(τ2)e

i(ω0−Ω)(t−τ−τ1+τ2) + C(τ)C∗(τ1)C(τ2)e
i(ω0−Ω)(t−τ+τ1−τ2)

]

. (16)
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The nonlinear term on the right-hand side of Eq. (3) is a functional of f1NL. The evaluation

of this term involves an integration over phase space, including integration over I, or alter-

natively, over Ω(I). As a function of Ω, the integrand is a product of a smooth function,

which can be treated as constant near the resonance, and the exponential functions in f1NL.

Once integrated over Ω, the exponential functions generate two δ-functions: δ(t−τ−τ1 +τ2)

and δ(t− τ + τ1 − τ2), of which only the first one falls into the time domain of Eq. (16). This

observation leads to the following structure of Eq. (3):

iGω
dC

dt
+ (α− αcr)GαC =

K

t
∫

0

dτ

τ
∫

0

dτ1

τ1
∫

0

dτ2δ(t− τ − τ1 + τ2)(τ1 − τ2)
2e−νr(t−τ2)C(τ)C(τ1)C

∗(τ2) (17)

where

K = 2πω0

∫

dΓδ(ω0 − Ω)V † V |V |2
(

∂Ω

∂I

)2
∂F

∂I
, (18)

V † = −
iq

ω0

∫ dξ1dξ2dξ3

(2π)3
e† · v exp(iξ), (19)

and for simplicity we have taken νr independent of phase space position.

When Eqs. (17)–(19) are applied to specific problems, transformation from I to more

natural variables can be useful. For example, natural transformation of the operator ∂
∂I

for

a tokamak is given in section (a) of the Appendix.

It is convenient to measure time in Eq. (17) in the units of γ−1, where γ is the linear

instability growth rate. In addition, we introduce a new unknown function

A = aC exp(ibt)

where a and b are real constants whose values are such that Eq. (17) takes the standard form

dA

dt
= A− eiφ

t/2
∫

0

τ 2dτ

t−2τ
∫

0

dτ1e
(−2ντ−ντ1)A(t− τ)A(t− τ − τ1)A

∗(t− 2τ − τ1) (20)
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where ν = νr/γ, and φ is a constant angle defined by the relation

eiφ ≡ iK|Gω|/(|K|Gω).

A similar derivation can be carried out with the diffusive collision operator (12). The

resulting dimensionless equation has the form

dA

dt
= A− eiφ

t/2
∫

0

τ 2dτ

t−2τ
∫

0

dτ1e
−ν3τ2(2τ/3+τ1)A(t− τ)A(t− τ − τ1)A

∗(t− 2τ − τ1) (21)

where ν = νeff/γ.

In the perturbative case, the matrix g in Eq. (1) is nearly Hermitian, which gives e† = e∗

and V † = V ∗. The factor K is real in this case. One can also show that Gω is purely

imaginary for any Hermitian matrix g and that ImGω has the same sign as the mode

energy. We thus conclude that the value of φ can only be 0 or π in the perturbative case.

Note that φ = 0 applies for the frequently studied situation of a positive energy wave with

negative dissipation from resonant particles.

The absolute value of the dimensionless amplitude A in these Eqs. (20), (21) measures

the square of the nonlinear bounce frequency ωb, namely

ω2
b ≈ γ2

L

(

α− αcr

αcr

)5/2

|A|. (22)

with γL the growth rate when 1− αcr/α ≈ 1. It should also be noted that the presence of a

small parameter
(

α−αcr

αcr

)5/2
in Eq. (22) is the basis of justifying the neglect of higher order

nonlinear terms in this derivation, as long as |A| ≪ [αcr/(α− αcr)]
5/2. Further discussion of

the applicability range of Eqs. (20) and (21) is given in section (b) of the Appendix.

III. Steady-State Saturation, Limit Cycle, Explosion

Equation (20) is of the form derived in Ref. 2, except for the additional phase factor eiφ

and the complex conjugate appearing in the nonlinear term. In the limit of large t, Eq. (20)
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has a periodic solution with constant amplitude:

A =
2ν2

(cosφ)1/2
exp(−it tanφ), (23)

a generalization of the steady state solution found in Ref. 2 for φ = 0. A similar solution

can be readily obtained for Eq. (21):

A =
ν2



cosφ

∞
∫

0

dz exp(−2z3/3)





1/2
exp(−it tanφ). (24)

Solutions (23) and (24) imply that the nonlinear term has a stabilizing effect; this requires

cosφ to be positive. For a system with a negative value of cosφ, weak nonlinearity can never

balance the linear drive in an unstable system, and this always leads to a hard nonlinear

scenario where the mode grows to a large amplitude regardless of closeness to the instability

threshold. Note that cosφ > 0 is a necessary but not a sufficient condition for the mode

to saturate at a low level. A hard scenario is possible even when cosφ > 0. In this case,

however, it requires sufficiently low collisionality (see below). We also note that the hard

regime can arise in a linearly stable system if the initial perturbation is sufficiently large.

We now address the question of stability for the constant amplitude solutions (23) and

(24). In order to make the analysis more compact, we use the transformation

A = a(t) exp(−it tanφ) (25)

and also combine Eqs. (20) and (21) into

da

dt
= (1 + i tanφ)a−

eiφ

ν2

∞
∫

0

dτ

∞
∫

0

dτ1Q(ντ, ντ1)a(t− τ)a(t− τ−)a∗(t− 2τ − τ1) (26)

with Q(x, y) = x2e−2x−y for Eq. (20) and Q(x, y) = x2e−x2(2x/3+y) for Eq. (21). We have

extended the integration limits in Eq. (26) to infinity, reflecting the limit of large t. We now

linearize Eq. (26) about the steady state α = α0 = const with

|a2
0| = ν4



cosφ

∞
∫

0

dx

∞
∫

0

Q(x, y)dy





−1

(27)
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and look for a solution of the form

a = a0 + δa1 exp(νλt) + δa2 exp(νλ∗t) (28)

with λ an eigenvalue. The solvability condition for the ensuing linear equations for δa1 and

δa∗1 yields the dispersion relation

λ2ν2 cos2 φ− 2λν cos2 φQ1 + Q2
1 = Q2

2 (29)

where

Q1(λ) =





∞
∫

0

dx

∞
∫

0

Q(x, y)dy





−1 ∞
∫

0

dx

∞
∫

0

dyQ(x, y)[1 − exp(−λx) − exp(−λx− λy)]

Q2(λ) =





∞
∫

0

dx

∞
∫

0

Q(x, y)dy





−1 ∞
∫

0

dx

∞
∫

0

dyQ(x, y) exp(−2λx− λy)

For large values of ν(ν ≫ 1) all roots of Eq. (29) have Reλ < 0, while if ν is sufficiently

small unstable roots are found. The critical value of ν (for each of the two relaxation models)

at which the first unstable root appears is shown in Fig. 1 as a function of φ. When the

steady state nonlinear solution is unstable, the mode cannot converge to the steady level.

What develops instead when ν is close to the critical value, is a limit cycle of the type

discussed in Ref. 2. Examples of such behavior are shown in Fig. 2. As ν goes deeper into

the unstable range, bifurcations destroy periodicity of the cycle but the mode amplitude can

still be limited in this regime (see Fig. 2). Further, at even smaller values of ν, the mode

develops an explosive singularity, evolving into a hard nonlinear regime that runs out of the

applicability range of Eqs. (20) or (21).

Examples of the explosive solutions were found in Ref. 2. Here, we present similar, though

somewhat different analytic solutions of the Eqs. (20), (21). As in the analysis in Ref. 2,

we set ν = 0 and neglect the linear drive, looking for a solution that evolves very fast and

becomes singular at a finite time t0. In this limit, there is no difference between Eqs. (20)
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and (21). We look for a solution of the form

A(t) = g[χ(t)](t0 − t)−5/2 (30)

where g[χ] is a periodic function of χ ≡ ln(t0 − t). One readily observes that this structure

of A allows a common time factorization and then we can reduce Eqs. (20) and (21) to

e−iφ

(

5

2
g −

dg

dχ

)

=

∞
∫

0

dξ

∞
∫

0

dηU(ξ, η)g[χ+ln(1+ξ)]g[χ+ln(1+ξ+η)]g∗[χ+ln(1+2ξ+η)] (31)

with

U(ξ, η) =
ξ2

(1 + ξ)5/2(1 + ξ + η)5/2(1 + 2ξ + η)5/2
.

We now observe that

g(χ) = ρ exp(iσχ) = ρ exp[iσ ln(t0 − t)]. (32)

is an exact solution to Eq. (31) if the constants ρ and σ, with σ real, satisfy the complex

relation

e−iφ
(

5

2
− iσ

)

= |ρ|2
∞
∫

0

dξ

∞
∫

0

dηU(ξ, η) exp {iσ ln[(1 + ξ)(1 + ξ + η)/(1 + 2ξ + η)]}

that can also be rewritten as

e−iφ
(

5

2
− iσ

)

= |ρ|2
∞
∫

0

dz F (z) exp(iσz) (33)

with

F (z) = e−7z/2

1
∫

0

s3ds

[1 + s(1 − e−z)1/2]4[1 + s(1 − e−z)−1/2]2
.

Thus, in order for σ to be real, we require

σ cosφ + 5
2
sinφ

σ sinφ− 5
2
cosφ

=

∞
∫

0

dz F (z) sin(σz)

∞
∫

0

dzF (z) cos(σz)

. (34)
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A plot of σ vs. φ for two roots of Eq. (34) is shown in Fig. 3. Note that these roots are

related by symmetry: if σ(φ) is a root of Eq. (34), then σ(−φ) = −σ(φ) is also a root.

An interesting feature of the presented explosive solution is that it describes the effect

of chirping: it follows from Eq. (32) that the mode frequency increases with time if σ is a

positive number and vice versa [decreases if σ is negative]. When the kinetic response is

non-perturbative, the frequency shift in the explosive regime can reach a substantial fraction

of the mode’s initial frequency before solution (30) breaks due to higher nonlinearities. An

example of such a behavior is shown in Fig. 4.

When φ = 0, the numerical solution to Eq. (20) for small values of ν seems to follow the

symmetric explosive solution described in Ref. 2 . However, for |φ| >∼ π/8, the numerical

solutions is closer to the chirping explosive solution [given by Eqs. (30) and (32)] where the

smaller absolute value of σ, plotted in Fig. 3, is taken.

It should be noted that the oscillations of the mode amplitude described by Eqs. (30)–(32)

are not directly due to particle trapping (indeed, particle trapping would only occur when

the explosive solution is beyond its range of validity). The qualitative explanation for these

oscillations is that when the slope of the particle distribution function decreases nonlinearly

at the location of the original resonance, steeper slopes build up on both sides of the resonance

next to it. In the symmetric case (φ = 0) discussed in Ref. 2, the mode frequency splits

into two sidebands that tend to grow faster than the original mode. Hence, an explosive

overall growth of the amplitude with the oscillations at the beat frequency that increases as

the sidebands move apart. This process continues until the mode traps resonant particles

and forms the plateau on the distribution function near the resonance. The corresponding

peak amplitude of the mode is unrelated to the closeness to the instability threshold. For

the bump-on-tail problem, this peak amplitude can be estimated from the condition ωb ≈ γL

where γL is the instability growth rate without the background damping. This is a much

higher level than the underestimated value ωb ≈ γ presented in Ref. 2. For those instabilities
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that have γ = ω far above the threshold, ωb can grow up to ωb ≈ ω. This makes the

applicability range for the explosive solution much broader than originally expected.

IV. Applications

A. Toroidal Alfvén Eigenmodes in Tokamak Fusion Test Reactor

Regimes in which the Toroidal Alfvén Eigenmode (TAE) instability is at threshold have

been found in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas 1, 1560 (1994)]

when rf minority-ion heating produces fast tail ions which are sometimes augmented by alpha

particles in deuterium-tritium discharges.24 Many features observed in this experiment are

consistent with inferences that can be drawn from our nonlinear theory.

One example, shown in Fig. 5a, is the situation when the TAE signals decrease in am-

plitude but still persist when the applied rf power is shut off. This feature illustrates the

role of collisional relaxation of resonant fast particles in maintaining a steady level of the

TAE signal. Prior to t = 3.805 s (indicated by arrow in Fig. 5a), the rf power is on, and fast

ions are produced at a heating rate νh that is roughly proportional to the applied power.

The rf heating is a diffusive process that renews the distribtution function of the resonant

particles at a relatively quick rate νeff ≈ (νhω
2
TAE)1/3, with ωTAE the TAE frequency. When

the heating is turned off, the principal relaxation mechanism that persists is collisional pitch

angle scattering of resonant ions, with νs ≈ 0.1νh, so that νeff decreases to roughly half of

the rf-on value. This leads to a lower level of quasi-stationary oscillations, as seen after

t = 3.805 s. Figure 5b presents a model for the two quasi-stationary levels seen in the ex-

periment, a numerical solution of Eq. (21) (generalized to the case of time dependent ν)

which shows a decrease in saturation level when ν is abruptly reduced by 1/2. The TAE

signal in Fig. 5a eventually disappears after rf turn-off. The reason is that the fast ions slow

down. As a result, their instability drive becomes weaker than the dissipative effects from the
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background plasma. This appears to occur on a time scale about 1/10th the slowing-down

time, presumably because the original fast-ion distribution is only slightly above marginal

stability.

A second example is the time evolution of a single mode that grows from the onset of

instability to a saturated state as shown by the dots in Fig. 6. This figure also shows a

theoretical fit to the experimental data for the system that goes through the instability

threshold. In the simulation, the mode growth rate, γ, is taken to vary linearly in time

from γ = 0 to γ = 0.1γL where γL is the energetic particle growth rate in the absence of

dissipation. From the fitting, we infer that the ratio of perturbed to equilibrium magnetic

field is roughly 10−5, and the rf heating time is 0.2 s; results that are consistent with the

experiment.24 This correlation indicates that the collisional relaxation process can indeed be

an important ingredient in the long time evolution of a weak TAE instability.

B. Fishbones

A fishbone is an internal rigid “kink” displacement of the plasma column in a tokamak.17,18

It develops within the magnetic surface on which the safety factor q equals unity, with q < 1

in the interior. If the perturbed magnetohydrodynamic (MHD) potential energy is positive,

continuum damping precludes the ideal kink mode from existing in absence of energetic par-

ticles. However, with a large enough energetic particle pressure confined within the q = 1

surface, kinetic drive from the precessional drift resonance can overcome continuum damping

and make the kink mode unstable.

To illustrate the link between our theoretical model and the evolution of the fishbone

instability, we neglect such additional factors as plasma resistivity, thermal ion diamagnetic

frequency effects, finite ion Larmor radius effects and fluid-type nonlinearities. In reality,

these factors are not always negligible and can play an important role in the interpretation of

the experimental results. To simplify the discussion even further, we consider the energetic
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particles to be deeply trapped in the equilibrium mirror field of the torus and to have thin

“banana” orbits. The distribution of these particles is taken to be Maxwellian in energy

and to have a flat density profile that abruptly goes to zero at some radius inside the q = 1

surface. With this idealization, the dispersion relation derived in Ref. 25 can be schematically

written in the form

G(ω, α, δ) = −1 − i
δ

ω
+ iα

∞
∫

0

dxx exp(−x)

ω − x
= 0 (35)

where ω is the normalized frequency relative to typical precession drift frequency, the positive

parameter δ is proportional to the perturbed MHD energy, and α is the normalized pressure

of the energetic particles.

At marginal stability, Eq. (35) yields ω real, which translates into the following relations

for δ and α:

α =
1

πω
eω; δ =

1

π
eω Re

∞
∫

0

dxx exp(−x)

ω − x
. (36)

One can infer that both δ and α are monotonic functions of ω in the range where δ > 0.

Taken together, relations (36) determine αcr for the onset of instability as a function of the

parameter δ. The plot of αcr vs. δ shown in Fig. 7 indicates that the system is stable at

a sufficiently large perturbed MHD energy and can be destabilized by increasing energetic

particle pressure.

A separate calculation shows that the value of K determined by Eq. (18) is nearly real

and positive in our idealized model of the fishbones. Therefore, the phase φ, that appears in

the nonlinear Eqs. (20) and (21), is arg(i∂G∗/∂ω) or equivalently

φ = arg





1

ω

∂

∂ω
ωRe

∞
∫

0

dxx exp(−x)

ω − x
− iπ(ω − 1)e−ω



 .

A plot of φ vs. δ is shown in Fig. 7. We see that −π/2 < φ < 0, for 0 < δ < δc, and that

φ < −π/2 for δ > δc.
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The case φ < −π/2 corresponds to a very hard nonlinear response with a destabilization

from the cubic nonlinearity. In this case there is no steady nonlinear solution.

The case where 0 > φ > −π/2, and ν → 0, is what we conjecture describes fishbone

oscillations. It is clear that the mode can arise at a broad range of parameters. The finite

φ value leads to a downward frequency shift as the mode blows up. This follows from the

numerical solutions of Eq. (21), where the mode frequency is observed to decrease as the

mode gets larger. A preliminary comparison of the explosive solution with the experimental

data26 on the onset of the fishbone instability reveals promising correlation between the two

(see Fig. 8). Note in particular a frequency downshift and a faster than exponential growth

of the mode amplitude, both of which are consistent with the theoretical explosive scenario

for −π/2 < φ < 0.

C. Single Bunch Microwave Instability in Circular Accelerators

A microwave instability usually arises when the number of particles in a circulating bunch

exceeds a critical value that depends on parameters of the accelerating regime. The mode

emerges as a result of interaction of the perturbed beam with the high-frequency impedance

of the vacuum chamber. The instability causes “turbulent bunch lengthening” and increases

the energy spread of the beam.22

Recent observations in the Stanford Linear Collider damping ring at the Stanford Lin-

ear Accelerator Center27 with a new low-impedance vacuum chamber revealed interesting

nonlinear regimes of this instability. In some cases, initial exponential growth was found to

saturate at a level that remained constant through the accumulation cycle. In other cases,

relaxation-type oscillations occurred at the nonlinear stage of the instability. The frequency

of the unstable mode tends to be close to the second harmonic of the synchrotron oscillations.

Similar oscillations of the bunch length have been reported in Ref. 28.

A vast literature devoted to this instability is mostly focused on the linear analysis
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aimed to quantify the instability threshold and the mode structure for a given wake in the

accelerator (see e.g. Ref. 29). Recent efforts30 to address the nonlinear problem rely on

sophisticated numerical tools rather than on developing simplified analytical models. The

theory presented in this paper adds to a purely numerical approach by offering an analytical

model for the interpretation of the experimental results. Another attempt to treat the

problem semi-analytically with an emphasis on the resonant particle response was recently

made in Ref. 31.

In order to quantitatively compare our theory with experiment, detailed computations

for specific experimental conditions are needed to determine the values of the parameters in

the nonlinear equations. However, even without the calculation of the exact values of the

parameters, we can compare the patterns of the signal measured in the experiments with the

solutions of Eq. (21). Note that the diffusive collisional operator (12) used in the derivation

of Eq. (21) is a relevant model for the quantum diffusion of beam particles in phase space due

to synchrotron radiation. In our comparison, we only pay attention to qualitative features

of the signal, such as growth, oscillation and saturation.

The signal presented in Fig. 9a (data from Ref. 27) demonstrates the mode saturation at

a steady level after the initial growth. The time scale of the transition is comparable with

the synchrotron damping time. This signal looks very similar to the solution of Eq. (21)

shown in Fig. 2 for ν = 6.69. In another case (see Fig. 9b), decreasing oscillations of the

mode amplitude are observed.27 This response can be compared with the plot in Fig. 2 for

ν = 2.71. In unpublished work by B. Podobedov and R. Siemann, purely periodic behavior

of the mode was found, which resembles the limit cycle shown in Fig. 2 for ν = 2.03. The

period of the cycle tends to agree with the measurements, although more quantitative work

is needed to verify preliminary interpretations.
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V. Summary

In this paper we have shown how a nonlinear single mode near threshold theory, first

discussed for a paradigm, the bump-on-tail instability, in Ref. 2, generalizes to a wide range

of kinetic problems. This generalization leads to new results which include:

The extension of the nonlinear theory to arbitrary geometry and to nonperturbative

modes (i.e. modes whose very existence requires the kinetic response of the particles). Now

the theory applies to any mode and any device where the equilibrium orbits are integrable,

including tokamaks and accelerators.

An analytic description for the onset of frequency chirping in the nonlinear evolution

of nonperturbative instabilities. The fishbone instability is a particular example, which is

emphasized in this paper, and there are many other examples that have been observed in

experiment (see Refs. 19, 21) .

Presentation of the nonlinear equation for the mode with a realistic diffusive collision

operator as opposed to the idealized Krook model for collisions. A detailed derivation will

be given in a subsequent paper.

A new explosive solution that applies to the new complex nonlinear equation. We have

also observed that the applicability range of the explosive solutions extends considerably

beyond the limit estimated in Ref. 2.

We have presented new theoretical correlations with experiments (faster than exponential

growth of the fishbone oscillations in a tokamak, collective instability patterns in storage

rings). These applications of the theory are in addition to the interpretation of the mode

saturation data in the Toroidal Alfven Eigenmode experiments discussed briefly here and in

more detail in Ref. 24.
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Appendix: Technical Details

a.. Operator ∂/∂I in a symmetric torus

For the quiding center motion in a toroidally symmetric magnetic field, the operator ∂/∂I

can be expressed in terms of the three conserved quantities in the nonperturbed field: the

particle energy E, the canonical toroidal angular momentum Pφ, and the magnetic moment

µ. One can readily establish that

∂/∂I = ℓ1∂/∂I1 + ℓ2∂/∂I2 + ℓ3∂/∂I3.

It can also be shown that it is always allowable to take I2 = Pφ and I3 = µmc/q; here q is the

particle charge. The particle energy E as a function of I1, I2 and I3 is the Hamiltonian of the

system. We now choose I1 to be the action for the poloidal motion, so that the quantities

ω1 ≡ ∂E/∂I1, ω2 ≡ ∂E/∂I2 and ω3 ≡ ∂E/∂I3 are the frequencies of the poloidal, toroidal

and gyromotion, respectively. We can then rewrite the operator ∂/∂I in the form

∂/∂I = (ℓ1ω1 + ℓ2ω2 + ℓ3ω3)∂/∂E + ℓ2∂/∂I2 + ℓ3∂/∂I3.

At the resonance, the sum ℓ1ω1 + ℓ2ω2 + ℓ3ω3 equals the mode frequency ω. In addition,

ℓ3 must be taken zero for the low-frequency modes, and ℓ2 is nothing else than the toroidal

mode number n. Hence, we find

∂/∂I = ω∂/∂E + n∂/∂Pφ = ω
∂

∂E

∣

∣

∣

∣

P ′

φ

= n
∂

∂Pφ

∣

∣

∣

∣

∣

∣

E′

with P ′
φ = Pφ − nE/ω and E ′ = E − ωPφ/n.
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b.. Validity limit of cubic integral equation and explosive solu-

tion

It is clear from Eq. (9) that the particle motion can be described perturbatively for short

enough time scales, satisfying the condition

t
∫

0

ωbdt ≪ 1.

With collisions present, the time of validity of perturbation theory can be indefinitely long

if the decorrelation time τc, which is 1/νeff or 1/νr depending on description of collisions, is

less than ω−1
b . Hence, a perturbative treatment is expected to be applicable if

min





t
∫

0

ωbdt;ωbτc



 ≪ 1. (A-1)

The explicit evaluation of the next (fifth) order nonlinear terms in Eq. (17) shows that those

terms are indeed smaller than the cubic term when condition (A-1) is satisfied.

Condition (A-1) sets the limit on ωb for which the explosive solution is valid. For the

explosive solution, the dC/dt term in Eq. (17) equals the nonlinear term with νr = 0. This

relation gives the following estimate:

1

C

dC

dt
≈ γL





t
∫

0

ωbdt





4

≪ γL

where γL is the instability growth rate far above the threshold (at α ≈ 2αcr). We then find

that the breakdown occurs when

1

C

dC

dt
≈ γL,

which determines the characteristic time scale near the singularity: ∆t ≈ 1/γL. The corre-

sponding limit for ωb is thus, ωb ≈ 1/∆t ≈ γL.
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c.. Form of νeff

Suppose the Fokker-Planck operator is of the form

St ≡
∂

∂v
· D ·

∂

∂v
,

where ∂
∂v

is a velocity space derivative with the spatial position r fixed, and D a dyadic

describing velocity space diffusion. The distribution function, f , is in general a function of

I(Ω), ξ and two additional action variables, but only the derivative with respect to I is large

near the resonance. Hence, the dominant part of the collisional term is

Stf = ν3
eff

∂2f

∂Ω2

with

ν3
eff =

∂I

∂v
· D ·

∂I

∂v

(

∂Ω

∂I

)2

,

where the bar denotes bounce average over the nonperturbed orbit.

Using the result of section (a) of this Appendix we can take I = Pφ/n at constant E ′.

Then we find

ν3
eff =

∂Pφ

∂v
· D ·

∂Pφ

∂v





∂Ω

∂Pφ

∣

∣

∣

∣

∣

∣

E′





2

.
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FIGURE CAPTIONS

FIG. 1. Stability boundaries for the steady state nonlinear solution. These curves plot the

value of νcr vs. φ with the dotted curve for the Krook collisional model and the solid

curve for the diffusive collisional model. ν < νcr corresponds to instability of the

steady state.

FIG. 2. Transition from steady state saturation to the explosive nonlinear regime as ν de-

creases. Plots of the absolute value of the normalized amlitude, |A|, vs. normalized

time t for the diffusive case with φ = 0.

FIG. 3. Nonlinear eigenvalues σ(φ) for the explosive solution.

FIG. 4. Explosive solution of nonlinear integral equation for φ = −π/8. The oscillatory

curve shows the normalized amplitude proportional to Re[A(t) exp(−iω0t)], and the

monotonic curve shows the frequency shifting down in time.

FIG. 5. Decrease and persistence of Alfvén signal. Figure a shows the TFTR signal after

turnoff of rf power. Figure b shows the replication of this effect achieved with the

nonlinear mode equation by an abrupt decrease of νeff .

FIG. 6. Comparison of theoretical prediction of mode evolution to saturation with TFTR

data (dots).

FIG. 7. Stability boundary αcr(δ) and phase factor φ(δ) for the fishbone model. The mode

is linearly unstable at α > αcr. For |φ| < π/2 (δ < δc), both the soft and the hard

nonlinear regimes are possible, depending on collisionality. For |φ| > π/2 (δ > δc),

weak nonlinearity always leads to the hard regime above the linear threshold.
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FIG. 8. Fit of fishbone onset with the explosive chirping solution (open circles show the

experimental data from Ref. 26).

FIG. 9. Video envelopes of the unstable modes in the damping ring of the Stanford Linear

Collider in two different regimes. (a) Example of steady state saturation; (b) Oscil-

lations in the mode amplitude. Instability signal emerges from noise at about 3 ms

in both cases.
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