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CRITICAL PERIOD

A strict time window during 

which experience provides 

information that is essential for 

normal development and 

permanently alters 

performance.

SENSITIVE PERIOD

A limited time during 

development, during which the 

effect of experience on brain 

function is particularly strong.

AMBLYOPIA

Poor vision through an eye that 

is otherwise physically healthy 

due to little or no transmission 

of the visual image to the brain 

through circuits that are hard-

wired during a developmental 

critical period. It affects 2–5% 

of the population.

CRITICAL PERIOD PLASTICITY IN 
LOCAL CORTICAL CIRCUITS

Takao K. Hensch

Abstract | Neuronal circuits in the brain are shaped by experience during ‘critical periods’ in 

early postnatal life. In the primary visual cortex, this activity-dependent development is 

triggered by the functional maturation of local inhibitory connections and driven by a specific, 

late-developing subset of interneurons. Ultimately, the structural consolidation of competing 

sensory inputs is mediated by a proteolytic reorganization of the extracellular matrix that 

occurs only during the critical period. The reactivation of this process, and subsequent 

recovery of function in conditions such as amblyopia, can now be studied with realistic circuit 

models that might generalize across systems.

From polyglots1 to virtuosi2,3, human performance 
reflects the neural circuits that are laid down by early 
experience. Although learning is possible throughout 
life, there is no doubt that those who start younger 
fare better, and that plasticity is enhanced during 
specific windows of opportunity. An understanding 
of the neural basis of such CRITICAL or SENSITIVE PERIODS of 
brain development would inform not only classroom 
and educational policy, but also drug design, clinical 
therapy and strategies for improved learning into adult-
hood. Although which might be the critical periods for 
higher cognitive functions such as language, music or 
emotional control is the subject of popular debate, such 
sweeping questions fail to acknowledge the sequential 
nature of a multistage process that involves many brain 
regions. Evidence about the acquisition of these rich 
human behaviours is largely anecdotal, as the complex 
environments of everyday life are inherently difficult to 
quantify and normalize across individuals.

Clear evidence for critical periods has instead been 
found in the primary sensory systems of several species4. 
Animal models are now revealing, with greater resolu-
tion, the molecular, cellular and structural events that 
underlie experience-dependent circuit refinement. 
In this review, I focus on the primary visual cortex, 
which has been the premier model of critical period 
plasticity for 40 years5. During a brief postnatal period 
(of weeks to years, in proportion to the expected 

lifespan of the species6,7), the closure of one eye (but 
not both) causes a permanent loss of visual acuity 
through that eye. AMBLYOPIA occurs despite there being 
no damage to the retina or its target, the visual thala-
mus (dorsal lateral geniculate nucleus, dLGN) and is 
determined in the neocortex (in the visual primary 
cortex, V1), where the inputs from the two eyes first 
converge and compete for space5,6. Most impressively, 
the seemingly innocuous act of covering an eye can 
profoundly alter the physical structure of the brain 
during the critical period only.

Shaping column size during the critical period

The cortical column is a fundamental unit of organiza-
tion of the mammalian neocortex. Clusters of thalamo-
cortical axon terminals that serve either the right or left 
eye tesselate layer 4 of the mature cortex to produce 
alternating OCULAR DOMINANCE domains8,9. Occluding 
one eye during development yields an expansion of the 
columns serving the open eye at the expense of those 
responding to the deprived eye, which become reduced 
in size and afferent complexity10,11. This physical 
manifestation of early postnatal experience occurs 
gradually, and is preceded by more rapid changes12,13 of 
intra cortical circuits outside layer 4, which instruct the 
hard-wiring of an anatomical fingerprint that is unique 
to the individual. By extension, the segregation of col-
umns by normal vision during the critical period has 
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Modulate chloride flux through 

GABA
A
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Benzodiazepine agonists 

enhance and inverse agonists 

decrease GABA efficacy.

been thought to result from similar activity-dependent 
rules acting on an initially overlapping continuum of 
THALAMOCORTICAL AFFERENTS.

This dogma has recently been challenged by the 
finding that axon terminals of thalamocortical affer-
ents might, in part, be clustered well before the critical 
period14. There is also some evidence that siblings show 
substantial similarity of visual maps, which supports the 
idea that molecular cues establish columnar architec-
ture15. Nonetheless, it is agreed that sensory experience 
is important for individualizing ocular dominance 
maps during the critical period. Even the focal patterns 
of deprivation that are produced by shadows of blood 
vessels in a single eye are embossed onto the primary 
visual cortex16. In computational models of self-organi-
zation, the recipient cortical circuits largely determine 
the final spacing of columns17,18. Overlapping inputs 
segregate into clusters (‘neurons that fire together wire 
together’) through a neocortical organization that 
spreads excitation locally but is limited at a distance by 
farther-reaching inhibition.

FIGURE 1 shows how a central area of excitation sur-
rounded by a larger concentric area of inhibition (the 
canonical ‘mexican hat’ profile) of intracortical activa-
tion could, in theory, influence thalamic innervation. 
In particular, lateral inhibition can establish narrow 

or wide columns in computer simulations of column 
formation by adjusting the contrast between inputs at 
nascent border regions during this ‘winner-takes-all’ 
competition18. These long-standing theoretical predic-
tions have recently been validated in vivo through the 
direct infusion of BENZODIAZEPINES into the kitten visual 
cortex during the critical period19. Such drugs come in 
three varieties, including agonists such as diazepam, 
inverse agonists such as the β-carbolines (for example, 
methyl-6,7-dimethoxy-4-ethyl-β-carboline DMCM), 
and antagonists that block the actions of both (flum-
azenil)20. All bind to a particular subset of GABA

A
 

(γ-aminobutyric acid type A) receptor, the agonists 
enhancing and inverse agonists reducing chloride flux. 
Increasing inhibition throughout the critical period 
with benzodiazepine agonists leads to a local 30% 
increase in column width, whereas inverse agonists 
produce column shrinkage19 (FIG. 1).

Interestingly, increased column spacing has also been 
reported for STRABISMUS through exotropic deviation of the 
eyes during the critical period21. Both enhanced lateral 
inhibition by direct intracortical infusion of diazepam 
and decorrelation of visual input by artificial squint are 
conditions that favour the maximal segregation of ocular 
dominance. In summary, local imbalances of neuronal 
activity influence columnar architecture during normal 
development, and this cannot be explained solely by 
genetic instruction. The broad range of column sizes 
observed in nature22 might reflect individual differences 
in the span of local circuit inhibition.

Detection by excitatory–inhibitory balance

Long-range, horizontal inhibitory axons therefore pro-
vide a scaffold for discriminating competing sensory 
input (for example, right or left eye) in the developing 
neocortex. This is in contrast to the maturing neuromus-
cular junction in the periphery, where individual motor 
axons may compete directly with each other for synaptic 
space on the same end plate23. This competition is limited 
by the global resources (for example, neurotransmitter) 
that are available within individual presynaptic arbors, 
each of which might contact multiple muscle fibres24. In 
the tangled circuits of the neocortex25,26, the action of 
locally balanced excitation and inhibition first integrates 
and then detects competition.

Even small changes in the relative amounts of 
excitation and inhibition can markedly alter informa-
tion processing27. This delicate balance is dynamically 
adjusted by circuitry in the cortical layers28–30, where 
inhibitory connections are developed later than excita-
tory connections in the pre-critical period for ocular 
dominance31. Drastic pharmacological perturbations 
of neuronal activity, such as hyperexcitation (by, for 
example, glutamate32 or bicuculline33) or total silencing 
(by, for instance, TETRODOTOXIN (TTX)34, 2-amino-
5-phosphonovaleric acid (APV)35 or muscimol36,37), 
not surprisingly disrupt plasticity, but fail to inform 
us about intrinsic network behaviour involved in this 
process. Gentle titration of endogenous neurotrans-
mission by gene-targeted disruption in mice has been 
instrumental in dissecting the physiological role of 

Figure 1 | Local circuit control of developing columnar architecture in the neocortex. 

Activity-dependent models of segregation predict that cortical GABA (γ-aminobutyric acid) 

circuits are involved in determining the final column spacing from an initially overlapping 

mosaic17,18. Neuronal activity from thalamic inputs serving the right or left eye is spread within 

the nearby cortex by local excitatory connections (red cell) but is inhibited at greater distances 

(blue cell), producing a ‘mexican hat’ activation profile. When this profile is modulated during 

development by preferentially enhancing or reducing horizontal, long-range inhibition (arrows), 

columns emerge that are wider or thinner than normal, respectively. This hypothesis was 

verified in vivo in kittens by modulating GABA
A
 (GABA type A) currents20 with benzodiazepine 

agonists (diazepam) or inverse agonists (methyl-6,7-dimethoxy-4-ethyl-β-carboline, DMCM) 

throughout the critical period19.
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local circuit elements. As in other species5–9, MONOCULAR 

DEPRIVATION (MD) shifts the spiking response of neurons 
in the mouse V1 towards the open eye38, but, again, only 
during a critical period for behavioural amblyopia39 
(FIG. 2a; see also BOX 1).

The primary inhibitory neurotransmitter in the 
brain, GABA (γ-aminobutyric acid), is synthesized 
by glutamic acid decarboxylase produced by two 
distinct genes, Gad65 and Gad67. Of these, Gad65 is 
concentrated in axon terminals and bound to synaptic 
vesicles whereas Gad67 is found throughout the cell40. 
Deletion (knockout) of Gad67 is lethal and eliminates 

most cortical GABA content41, but Gad65-knockout 
mice are viable and show poor GABA release only 
on strong stimulation42,43. Baseline receptive field 
prop erties are normal in the absence of GAD65, but 
ocular dominance plasticity is prevented until inhibi-
tion is acutely restored with diazepam43. When infused 
directly into V1, the use-dependent nature and rapid 
breakdown of benzodiazepine agonists ensures that 
only those local inhibitory circuits that are normally 
engaged by monocular deprivation will be boosted. 
Remarkably, rescue of plasticity is possible at any age in 
Gad65-knockout mice, which indicates that the critical 
period is dependent on the proper level of inhibitory 
transmission (FIG. 2b)44.

Conversely, the onset of the critical period can be 
accelerated by prematurely enhancing inhibition with 
benzodiazepines just after eye opening44–46, as well as 
by transgenic overexpression of brain-derived neuro-
trophic factor (BDNF) to promote the maturation 
of GABA neurons47,48 (FIG. 2b). A close relationship 
between neuronal activity, BDNF release and GABA 
function also explains the classic effect of dark-rearing. 
Raising animals without visual experience from birth 
naturally reduces BDNF levels49 and GABA-mediated 
transmission in the visual cortex50,51, and delays the 
peak of plasticity into adulthood45,52,53. Direct diazepam 
infusion45, or BDNF overexpression54 or secretion by 
enriched environments55 in complete darkness abolish 
the expected delay of the critical period. These striking 
results indicate that tonic GABA release is sufficient to 
trigger the eventual closure of the plastic state, even in 
the total absence of visual input.

Specific GABA circuits for plasticity

Interestingly, not all GABA circuits are involved in 
critical period regulation. Several lines of evidence 
point towards a single class of interneuron that has the 
potential to mediate long-range inhibition and syn-
chrony in the visual cortex. Among the many types of 
GABA-positive interneuron56–58 (FIG. 3b), neurochemi-
cal markers, such as calcium-binding proteins, have 
been used to reveal that the onset of the critical period 
corresponds closely to the emergence of PARVALBUMIN-
positive cells59 and both events are accelerated by BDNF 
overexpression47. The specific blockade of a potassium 
channel (Kv3.1) that uniquely regulates the fidelity of 
FASTSPIKING behaviour (and thereby GABA release) from 
parvalbumin-positive interneurons60–62 slows the rate 
of ocular dominance plasticity (Y.-T. Matsuda et al., 
unpublished observations). To date, the molecular bio-
logy of benzodiazepine action has provided the deepest 
insight into the local circuits that underlie plasticity.

The α-subunits of GABA
A
 receptors determine 

benzodiazepine binding through a single amino acid 
residue in their amino terminus20,63 (FIG. 3a). In mice, 
knock-in of a point mutation at this site renders 
 individual GABA

A
 receptor subtypes insensitive to 

benzodiazepines64. Weak inhibition in the visual 
cortex in early life (as observed for Gad65 deletion) 
prevents experience-dependent plasticity44,45. Loss of 
responsiveness to an eye deprived of vision can be 

Figure 2 | GABA-mediated control of the critical period. a | Monocular deprivation produces a 

loss of response to the deprived eye and a gain of open-eye input, as measured by the neuronal 

discharge of single units from the mouse visual cortex38. The ocular dominance of cells, rated on a 

seven-point scale of neuronal responsiveness, indicates a typical bias toward the contralateral eye 

(1–3) in the rodent (top left). After 3 or more days of monocular deprivation, the distribution shifts 

toward the open, ipsilateral eye (4–7; top right). b | Sensitivity to monocular deprivation is restricted 

to a critical period that begins, in mice, about 1 week after the eyes open (at postnatal day 13) and 

peaks 1 month after birth38. Monocular deprivation causes amblyopia only during the same critical 

period. Red circles indicate the onset, peak and end of amblyopia resulting from monocular 

deprivation39. The onset of plasticity can be delayed by directly preventing the maturation of GABA 

(γ-aminobutyric acid)-mediated transmission by gene-targeted deletion of Gad65, which encodes 

a GABA-synthetic enzyme43, or by dark-rearing from birth (red arrow)50–53. Conversely, the critical 

period can be brought forward by enhancing GABA transmission directly with benzodiazepines 

just after eye-opening44–46 or by promoting the rapid maturation of interneurons through excess 

brain-derived neurotrophic factor (BDNF) expression (blue arrow)47,48.
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initiated prematurely by enhancing GABA-mediated 
transmission with zolpidem (FIG. 4a), a GABA

A
 α1-, α2- 

and α3-subunit selective ligand46. Systematic use of the 
mouse ‘knock-in’ mutation has further shown that only 
one of these subtypes, the α1-subunit-containing cir-
cuits, drives cortical plasticity (FIG. 4b). Diazepam fails 
to trigger premature plasticity in α1-subunit-mutants, 
although they are fully capable of undergoing plasticity 
at the proper age (postnatal day (P) 25) even without 
drugs46, as they form normal α1- subunit-containing 
GABA receptors at the appropriate time.

Importantly, GABA-releasing interneurons in 
the neocortex show precise connectivity25,58 (FIG. 3b). 
Synapse formation by parvalbumin-positive cells is 
largely mediated through molecular cues and then 
refined by neuronal activity65,66. These cells include 
axon-ensheathing CHANDELIER CELLS and soma-targeting 
LARGE BASKET CELLS. The latter extend the wide-reaching, 
horizontal axonal plexus (FIG. 1), which has been shown 

to span ocular dominance columns in the cat67. The use 
of immuno-electron microscopy has further indicated 
that individual GABA

A
 receptor α-subunits are traf-

ficked to discrete postsynaptic sites on the pyramidal 
cell axon, soma and dendrites (FIG. 3b). For example, α2-
subunits are preferentially enriched at the axon initial 
segment and at short-range basket cell synapses that 
are innervated by CHOLECYSTOKININ-positive axon termi-
nals68,69. Although α2-subunit-containing connections 
do regulate neuronal firing, they have no effect on the 
induction of plasticity46. This dissociation has implica-
tions not only for models of brain development, but also 
for the safe design of benzodiazepines for use in human 
infants (see below).

The α1-subunit-containing GABA
A
 receptors are 

instead localized to receive parvalbumin-positive (but 
not cholecystokinin-positive) synapses on the soma68,69, 
further implicating these large basket cell circuits in 
the control of the critical period. With age, large par-
valbumin-positive cells are preferentially enwrapped 
in PERINEURONAL NETS of extracellular matrix (ECM) 
molecules and sugars70. When these are disrupted, 
perisomatic inhibition of their targets is reduced71, and 
ocular dominance shifts can once again be induced 
by monocular deprivation, even in adulthood72. This 
might be the result of resetting and tapping the orig-
inal GABA-mediated trigger44 (FIG. 5b), as perineuronal 
nets probably control the extracellular ionic milieu (for 
example, potassium concentration70) that surrounds 
parvalbumin-positive cells, allowing them to estab-
lish their fast firing efficiency60–62, or might otherwise 
sequester molecular regulators of parvalbumin-positive 
cell maturation (S. Sugiyama et al., unpublished obser-
vations). The identification of a cellular critical period 
trigger holds great promise as a therapeutic target and 
for the development of strategies for lifelong learning.

Expression by proteases: structural rewiring

The ECM is increasingly being recognized as a potent 
site for critical period plasticity73. To convert physio-
logical events (altered vision) into structural refine-
ments, connections must ultimately be broken and 
neuronal wiring rerouted. Proteases are ideally suited 
to clear the way for growing neurites74. TISSUETYPE 

PLASMINOGEN ACTIVATOR (tPA) is the main serine protease 
in the postnatal mammalian brain75,76, and was originally 
identified there as an IMMEDIATE EARLY GENE activated by 
hippocampal seizures77. Proteolysis by tPA is gradually 
upregulated in V1 within 2 days of monocular depriva-
tion during the critical period (FIG. 5a), but not in adults 
or Gad65-knockout mice78. Interestingly, at least 2 days 
of diazepam treatment are required to rescue plasticity 
in the absence of GAD65 REF. 45. Functional ocular 
dominance plasticity is impaired when tPA action is 
blocked78–80 and can be rescued by exogenous tPA (but 
not diazepam)78.

Permissive amounts of tPA might, therefore, couple 
functional to structural changes downstream of the 
excitatory–inhibitory balance that triggers visual cort-
ical plasticity. The second messenger systems, which 
are known to be recruited during ocular dominance 

Box 1 | Critical periods: gateway to lifelong plasticity

Ocular dominance is one of several thalamocortical circuit properties in the primary 

visual cortex (V1) that develop in an experience-dependent manner during early life4,186. 

These might show different postnatal profiles (see panel) with, for example, orientation 

or direction selectivity (green) being shaped earlier than ocular dominance7,44,53 

(orange), or slow-wave sleep oscillations169 (dark blue). Surprisingly, the detailed 

molecular machinery underlying each receptive field property may also differ53. Recent 

gene expression profiling supports the idea that the critical period for ocular dominance 

offers a specialized molecular milieu for plasticity170,171, which is consistent with 

dendritic spine and axonal rearrangement being limited to this time in life10,85,86.

Recently, monocular deprivation in adult animals has been reported to produce 

subthreshold synaptic plasticity172–174, which has no further impact on spiking 

output38,44,175 spines85,86 or visuospatial acuity7,39. This suggests that the closure of the 

critical period might reflect sequential ‘locks’ that are placed on the molecular 

pathway as it flows from mature GABA (γ-aminobutyric acid)-mediated detection 

towards structural consolidation (FIG. 6). Functional plasticity may persist throughout 

life in many other systems (such as the somatosensory cortex154,176 and the barn owl 

tectum149). Interestingly, limited plastic states can be greatly facilitated (to near critical 

period levels) by the judicious activation of neuromodulatory systems in 

adulthood177,178. A potent endogenous regulator of neuromodulation is sleep, which 

plays an intriguing part in enhancing adult learning179.

Neuromodulators signal through second-messenger systems (FIG. 6), which can acutely 

reset the excitatory–inhibitory balance180,181. Full reactivation of the critical period may 

further require the ‘undoing’ of hard-wired neuronal structures72,73. The non-permissive 

growth environment of mature myelin is an especially promising target for rekindling 

plasticity, as it relates broadly to the acquisition of visual182, linguistic183 or musical184 

abilities. Better still, laying down multiple anatomical traces through rich childhood 

experiences might also expand the capacity for plasticity in adulthood147,150. 
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plasticity81 (FIG. 6), lie along a molecular cascade that 
links neuronal activity to tPA release4,78, the structural 
consequences of which have recently been clarified. 
Thalamocortical axon rearrangement is a classical 
outcome of critical period plasticity (FIG. 1), but is much 
too slow to explain the rapid shift of ocular dominance 
that occurs within days of monocular deprivation10–13,82. 
Morphological plasticity is initiated postsynaptically 
along the apical dendrites of target pyramidal cells in 
the cerebral cortex, where spines serve as pleiomorphic 
sites of excitatory synaptic connection.

Spine shape has been shown to be highly dynamic 
using two-photon laser scanning microscopy in living 
transgenic mice expressing green fluorescent protein 
(GFP) in a subset of layer 5 cells. The motility of spines 
decreases with age in the visual cortex83,84, but, dur-
ing the critical period, can be transiently elevated by 2 
days of monocular deprivation85 (FIG. 5a, step 1). This 
occludes the motility that can be induced by the direct 
application of tPA to naive brain slices, which indicates 
that tPA and its substrate, plasminogen, might be the 
endogenous mediators of experience-dependent spine 
motility. Even along the same apical dendrite85, spines 

are set in motion by brief monocular deprivation only 
in layers 2, 3 and 5, consistent with early extragranular 
changes that instruct later events in layer 4 REF. 12.

After 2 days of monocular deprivation, increased 
proteolysis degrades ECM and cell-adhesion proteins 
before any physiological ocular dominance shift is 
detectable38,78. Consequently, spines are eliminated by 
4 days of monocular deprivation, which corresponds to 
the rapid, complete loss of functional responsiveness86 
(FIG. 5a, step 2). After this postsynaptic pruning, axons 
carrying input from the deprived eye retract before affer-
ents serving the open eye can migrate to spaces cleared 
by tPA–PLASMIN along the dendrite (FIG. 5a, step 3)10,11. 
As expected for a true critical period event, spine den-
sity is not reduced by brief monocular deprivation in 
adulthood or in mice that lack tPA or GAD65 REF. 86. 
The reduction in spine density can be restored in 
tPA- or Gad65-knockout mice by exogenous tPA or 
diazepam infusion, respectively. Importantly, spine 
motility and pruning faithfully reflect competitive 
interactions between the two eyes, as they fail to occur 
in the adjacent monocular segment that receives input 
solely from the contralateral eye85,86.

Figure 3 | Heterogeneity of local GABA circuits in the neocortex. a | Inhibitory synaptic transmission is mediated by GABA 

(γ-aminobutyric acid) synthesized by glutamic acid decarboxylase 65 (GAD65) in the presynaptic terminal during strong 

stimulation. The postsynaptic effect of released GABA is modulated by exogenous benzodiazepines acting on specific 

postsynaptic receptors. Among the 20 identified subunits that the GABA
A
 (GABA type A) receptor (GABA

A
R) may comprise20,63, 

the α1-, α2-, α3- and α5-subunits contain an amino acid residue, histidine, that is vital to the benzodiazepine binding site20,64 . 
Benzodiazepine (but not GABA) binding is lost when this amino terminus histidine is mutated to arginine (causing the α1-, α2-, 

α3- and α5-subunits to mimic the naturally benzodiazepine-insensitive α4- and α6-subunits. b | Many subtypes of GABA-

releasing inhibitory interneuron can be identified in the neocortex on the basis of morphology, connectivity, expression of 

calcium-binding proteins or neuropeptide content56–58,25. Moreover, specific contacts are preferentially enriched in specific 

GABA
A
 receptor α-subunits63,64. The perisomatic localization of different subunits is shown next to the central pyramidal neuron. 

All subunits are found diffusely along the dendrite. ais, axon initial segment; CCK, cholecystokinin expressing; Ch, chandelier 

cell; CRC, Cajal–Retzius cell; DB, double bouquet cell; M, Martinotti neuron; N, neurogliaform neuron; PV+, parvalbumin positive. 

Lower part of panel a modified, with permission, from REF. 63 © (2001) Elsevier Science.
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Ultimately, the territory that represents the open 
eye grows9–11 (FIG. 5a, step 3, right), and this requires 
cortical protein synthesis87. Cleavage of secreted pro-
neurotrophins by tPA–plasmin to yield active mature 
forms such as BDNF might contribute to the elonga-
tion of neurites88,89. As proteolytic activity slowly wanes 
after a week of monocular deprivation78, axons serving 
the open eye expand10,11, spines grow out to meet them 
and their density largely recovers86 (FIG. 5a, asterisks). 
Curiously, spine loss is most robust near the soma 
of layer 2/3 pyramidal cells. Competition detected 
by inhibitory circuits impinging on pyramidal cell 
somata might, therefore, be translated into structural 
changes mediated by a multistep proteolytic action of 
the extracellular tPA–plasmin cascade.

The homosynaptic view

It is tempting to speculate that the loss or gain of visual 
responsiveness of neurons in V1 during the critical 
period is simply the result of homosynaptic LONGTERM 

DEPRESSION (LTP) or POTENTIATION (LTP) somewhere in 
the visual circuit (the homosynaptic view). On theoret-
ical grounds, homosynaptic rules of excitatory synaptic 
plasticity alone are insufficient to produce a com-
petitive outcome90, as they require the involvement of 
other complex mechanisms, such as sliding thresholds 

or metaplasticity. Although correlative evidence has 
been presented to support homosynaptic rules for 
plasticity in vivo, the fact that direct comparisons are 
not supportive is often overlooked.

In favour of the homosynaptic view, changes in 
phosphorylation state and membrane trafficking of 
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid) receptor subunits — events that seem to 
underlie LTP or LTD at central synapses91 — have been 
observed in the primary sensory cortex after natural 
sensory experience in vivo. For example, whisker stimu-
lation at P12–14 in rats drives a recombinant AMPA 
receptor subunit (GluR1) into synapses from layers 4 to 
2/3 in the somatosensory barrel cortex92. Expression of 
the GluR1 cytoplasmic tail, which inhibits the synaptic 
delivery of endogenous receptors during LTP in vitro, 
blocks this insertion and subsequent synaptic potentia-
tion in vivo. Whisker deprivation produces both an 
expansion of neighbouring input from spared barrels 
and a loss of response to the principal whisker. The 
latter largely occludes induction of NMDA (N-methyl-
d-aspartate) receptor-dependent LTD by low-frequency 
stimulation (LFS) along the principal ascending path-
way93, which supports the idea that the mechanisms 
mediating changes in barrel cortex responsiveness are 
the same as those that mediate LTD.

Similarly, in the visual cortex, 24-h monocular depri-
vation (too short a time period to shift ocular domi-
nance in vivo38) reduces the saturation level of LTD in 
response to repeated LFS, and leads to numerous 
changes in the GluR1 phosphorylation status, which 
are akin to those that occur during hippocampal LTD94. 
The main difficulty with correlative studies is that they 
can never demonstrate causality. Ostensibly similar 
molecular pathways (FIG. 6) might be used differently by 
LTP/LTD and by critical period mechanisms subserv-
ing circuit function in vivo. For example, the late onset 
and experience-dependent profile of NMDA receptor 
2A (NR2A) subunits95–98 — known to determine LTP 
levels in the hippocampus99,100 — is irrelevant to critical 
period expression in the visual cortex53. A decline in 
LTP/LTD magnitude and slow emergence of NR2A at 
thalamocortical synapses in the barrel cortex during the 
anatomical critical period in the first postnatal week 
might also be coincidental101,102. Barrel shrinkage and 
expansion on whisker cauterization at birth is imper-
vious to cortical NMDA receptor deletion103 and might 
reflect changes at subcortical levels, before thalamic 
axons segregate in layer 4 REF. 104.

In the absence of NR2A, the depolarizing action of 
NMDA currents is prolonged. Like Gad65 deletion43, 
this tips local circuit equilibrium towards excitation, 
weakening ocular dominance plasticity that can be 
restored by diazepam53. Counter-intuitive to an LTP 
perspective99,105, inhibition is required for plasticity 
in vivo when NMDA receptor function is high. 
Conversely, although LTD is blocked by NMDA-
receptor antagonists, high doses of APV35 promote 
a paradoxical loss of open eye input, as does strong 
postsynaptic activation of GABA

A
 receptors with mus-

cimol36,37. Although maturation of other receptive field 

Figure 4 | Specific GABA
A
 circuits for visual cortical plasticity. a | Ocular dominance shifts, 

as rated by the neuronal discharge of single units from the mouse visual cortex on a scale from 

1 (contra) to 7 (ipsi) eye input, can be induced by monocular deprivation (MD) before the critical 

period in the presence of zolpidem46, a benzodiazepine (BDZ) agonist that is selective for α1-, 

α2- or α3-subunit-containing GABA
A
 (γ-aminobutyric acid type A) receptors (GABA

A
Rs)20. 

b | Conversely, premature plasticity cannot be induced in mice with a point mutation that renders 

the α1-subunit insensitive to the benzodiazepine diazepam46 (α1(H101R)). Importantly, GABA
A
 

receptor expression and localization occur normally, as the knock-in mice show robust plasticity 

(without drugs) at the typical critical period (postnatal day (P) 25). Figure modified, with 

permission, from REF. 46 © (2001) Elsevier Science. 
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properties (such as orientation bias44,53) might reflect 
subunit-specific coupling of NR2A to postsynaptic 
signalling pathways (like LTP100), the yin-yang rela-
tionship of excitatory–inhibitory balance is essential 
for ocular dominance plasticity.

During learning, distinct plasticity mechanisms 
subserve sequential phases of memory106. Local (syn-
aptic and cellular) events are eventually consolidated at 
a systems (circuit) level by increasing protein synthesis 
and neurite growth. Excessive emphasis on LTP/LTD 
alone (which is all-or-none at single synapses107) 
ignores the gradual, long-lasting changes that are the 

hallmark of critical period plasticity. One day of 
monocular deprivation does not occlude homosynaptic 
depression by single LFS94, and these early forms of syn-
aptic change, which persist in the presence of protein 
synthesis inhibitors108, are insufficient to shift ocular 
dominance in vivo87. However, multiple spaced condi-
tioning stimuli, used to saturate LTP/LTD94, activate 
distinct transcriptional pathways (for example, that 
of immediate early gene Zif268)109, which are also not 
required for ocular dominance plasticity110. In fact, the 
role of proteases (tPA) in growth for long-lasting forms 
of LTP111,112 is opposite to that for ocular dominance 
plasticity (spine pruning86).

Overall, no consistent correlation has been found 
between the ability to induce homosynaptic plasticity 
in vitro and amblyopic effects in vivo113–116. The relation-
ship is not straightforward, as the mechanisms of LTP 
and LTD might differ depending on cortical layer117. 
Moreover, unlike the very rapid induction of synaptic 
changes, no loss of visual response or acuity occurs 
until several days of eyelid suture have elapsed38,39. 
Rapid phosphorylation dynamics of one GluR1 amino 
acid residue alone are unlikely to explain the complex 
functional and structural events that constitute the 
critical period (FIG. 5). Spine shrinkage by LFS is, in fact, 
mediated by cofilin and is independent of the AMPA 
receptor dephosphorylation that underlies LTD118. At 
present, there is only limited evidence directly connect-
ing the coincident structural and functional plasticity 
at spines119.

Most strikingly, synaptic depression is intact 
whereas ocular dominance plasticity is lost in mice 
that conditionally overexpress the protein phosphatase, 
calcineurin120. Underscoring a double dissociation, 
homosynaptic models based on NMDA-receptor 
activation stipulate that the maturation of inhibition 
will terminate plasticity105, whereas quite the opposite 
is true: in vivo, GABA function is required to trigger 
the critical period44. Given that diazepam121 and endo-
genous BDNF122 block LTD induction in the cortex, 
their acceleration of plasticity in vivo44–48 is not predicted 
by homosynaptic models, which are routinely studied 
in vitro in the presence of GABA-receptor blockers. In 
the end, adjusting local inhibitory circuit function has 
provided direct control over the critical period (FIG. 2), 
which LTP-based models have not.

Local circuit models of critical period plasticity

That inhibition might enable plasticity in the develop-
ing brain seems paradoxical. The identification of a 
particular GABA circuit that drives the onset of the criti-
cal period and the subsequent sequence of anatomical 
events (FIG. 5) now allows us to construct realistic models 
with which to target the plasticity process more precisely. 
Two scenarios centred on the parvalbumin-positive bas-
ket cell serve as heuristic examples for further study. One 
is an ‘instructive’ model (FIG. 7a), in which powerful, fast 
somatic inhibition edits one-by-one the action potentials 
that can pass into the dendritic arbor by back-propaga-
tion through the cell body. Recent SPIKETIMING DEPENDENT 
models of synaptic plasticity rely on precise millisecond 

Figure 5 | Structural consolidation during the critical period. a | Once functional detection 

of competing inputs is made possible by the maturation of relevant GABA (γ-aminobutyric acid) 

circuits43–48, a series of structural rearrangements accompanies sensory deprivation. Shortly 

(2 days) after monocular deprivation (MD), the motility of spines (two-headed arrows)85 is 

increased on apical dendrites of excitatory pyramidal neurons by an increase in tissue-type 

plasminogen activator (tPA)–plasmin proteolytic activity (blue background)78. No shift in ocular 

dominance (OD) can be detected at this stage38 (1). The total number of spines on pyramidal 

cell apical dendrites is transiently and significantly decreased owing to their elimination 

(asterisks), with a time course that corresponds to the loss of cellular responses of the deprived 

eye 4 days after monocular deprivation86. This is followed by a retraction of thalamocortical 

axons10,11 as extracellular tPA–plasmin activity remains high78 (2). After long-term monocular 

deprivation, new spines emerge (asterisks) to receive synaptic input from sprouting axons 

carrying input from the open eye (triangles)10,11,13 as tPA–plasmin activity subsides78 (3). 

b | These results predict that structural modification is necessary to reactivate critical period 

plasticity in adulthood. Infusion of chondroitinases (scissor symbols) to break up perineuronal 

nets (PNNs) in the extracellular matrix restores ocular dominance shifts to adult rats72. 

Interestingly, these nets preferentially enwrap large, parvalbumin-positive (PV+) basket cells70, 

which control perisomatic inhibition71 and trigger the endogenous critical period. The section 

depicts parvalbumin-positive basket cells stained with monoclonal antibody (red) and 

perineuronal nets stained with Wisteria floribunda agglutin (WFA; green). Note that small 

parvalbumin-positive cells are not ensheathed by perineuronal nets. BDNF, brain-derived 

neurotrophic factor; Glu, glutamate.
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time windows to allow such postsynaptic spikes to meet 
presynaptic input123,124. Sloppy gating by weak inhibition 
at the soma would prevent a competitive outcome by 
allowing excess back-propagation and spurious coinci-
dent activity with infrequent, deprived inputs from the 
retina125. Identifying a molecular substrate that is unique 
to spike-timing dependent (as opposed to LFS or tetanus-
induced126) plasticity will be a prerequisite to testing this 
scheme in vivo.

Both immature (pre-critical period) and Gad65-
knockout mice show prolonged neuronal discharge 
that continues well after stimuli have passed through 
the receptive field of individual cells43–45. Chandelier 
cell ‘cartridge’ synapses (which use α2 GABA

A
 receptor 

subunits) can directly control this excessive spiking 
at the axon initial segment46,127. Surprisingly, plastic-
ity is still triggered prematurely by diazepam when 
hyperexcitability persists in mice whose α2-subunits 
can no longer bind benzodiazepines46. Fast-spiking, 
feedforward inhibition mediated by α1-subunit-con-
taining receptors on the soma is then ideally situated 
to suppress back-propagation of unwanted spikes125 
(FIG. 7a). The model incorporates the wide-reaching, 
horizontal axons of basket cells that receive input from 

one eye to inhibit targets of the other eye67. This simple 
contrast enhancement circuit relieves the burden of 
discriminating competitors by LTP/LTD at single 
synapses. Alternatively, well-timed spikes in the soma 
itself might facilitate nuclear calcium entry for gene 
transcription (and growth) in response to waves of 
calcium arriving from synapses on dendritic spines.

A second, ‘permissive’ model emphasizes newfound 
knowledge of parvalbumin-positive cell biology. Even 
in adulthood, basket cells can be coupled electrically 
into groups of 40 or 50 cells128,129, endowing the network 
with the ability to detect synchrony130 (FIG. 7b). Whereas 
simultaneous inputs (for example, from the same eye) 
rapidly co-excite cells through gap junctions, even a 2-ms 
input jitter (for example, between opposite eyes) is 
sufficient to dampen the coupling by reciprocal GABA

A
 

synapses, which are also enriched in α1-subunits131. 
As a result, these neurons with long, horizontal axonal 
arbors67, are maximally active on a columnar scale, time-
locked to release growth or plasticity factors when strong 
synchronous activity arrives in the neocortex. Gap junc-
tional coupling between interneurons also promotes 
synchronous oscillation among principal cells132,133. 
Validation of the ‘permissive’ model awaits conditional 
deletion of connexins in cortical parvalbumin-positive 
cells alone, as the retina is also rich in gap junctions134.

This model assumes an extracellular locus of compe-
tition to be quite distinct from the intracellular mecha-
nisms of LTP and LTD. Axons and dendritic spines 
that are co-active with the synchronized parvalbumin-
positive cell network can benefit from the rapid, focal 
creation of a permissive growth environment78,86,135. The 
source and dynamics of tPA–plasmin release in the brain 
remain unclear owing to the lack of specific reagents. 
Laminar motility of spines85 and their rapid pruning86 
by brief periods of monocular deprivation could reflect 
activity-dependent secretion of proteases136–138 from 
the axons of fast-spiking cells themselves, in which 
parvalbumin is an important contributor to presynaptic 
calcium signals and synaptic integration139.

This might explain why spines nearest the soma of layer 
2/3 pyramidal cells are most robustly lost during mono-
cular deprivation86, as they lie nearest the parvalbumin-
positive cell-rich layer59. Potential synaptic plasticity 
of GABA-mediated transmission might add a further 
layer of regulation. How a competitive outcome arises 
by uniformly bathing dendrites in proteases also needs 
to be considered. Cell-adhesion molecules can become 
insensitive to proteases during high levels of activity140,141. 
Less active synapses also release fewer endogenous 
protease inhibitors142, tilting the overall balance nearby 
towards pruning. Therefore, open-eye axons can pro-
tect themselves from proteolytic removal in two ways, 
whereas silent deprived-eye inputs are left defenceless 
in a sea of tPA–plasmin during monocular deprivation.

Towards a common brain principle

How general is the idea of local circuit inhibition and 
critical periods across other systems? Zebra finches 
acquire a unique song once in life during a critical period 
for vocal learning that progresses through three stages4. 

Figure 6 | Molecular mechanisms of visual cortical plasticity. Many candidate plasticity 

factors have been screened using the monocular deprivation protocol — by pharmacology in 

kittens or by gene-targeted disruption in mice (for a review, see REF. 81). Only a handful of 

second messenger molecules have been found to have a direct role in plasticity without 

perturbing global neuronal activity. These include PROTEIN KINASE A (PKA)181, calcium/

calmodulin-dependent protein kinase II (CaMKII), calcineurin120, extracellular signal-regulated 

kinase (ERK), cyclic AMP responsive element binding protein (CREB), protein synthesis 

machinery87 and the plasmin system (tissue-type plasminogen activator (tPA)–plasmin), which 

is regulated by its inhibitors (plaminogen activator inhibitor, PAI-1)78–80. Brain-derived 

neurotrophic factor (BDNF) has an early role in plasticity, establishing the GABA (γ-aminobutyric 

acid) cells that discriminate competing sensory inputs to trigger the critical period47. Mature 

BDNF, which is produced from the cleavage of pro-BDNF by tPA–plasmin 88, in turn stimulates 

the expression and release of tPA185. Both tPA and BDNF can then contribute sequentially to 

the final anatomical rewiring of the cortical circuit10,11,13,85,86,89 (FIG. 5). Plasticity might come to 

an end when permissive factors are gradually lost86, or when further growth is actively 

suppressed by late-emerging inhibitory factors (myelin) in the extracellular matrix7,73,182.
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After first memorizing the father’s template, birds enter 
a motor practice phase, followed by song crystalliza-
tion. In register with the active singing component, a 
peak in the number of GABA neurons is observed in 
the motor nucleus robustus archistrialis (RA), where 
descending auditory and forebrain memory circuits 
converge onto individual cells143. Such a GABA profile 
is observed only in males, and not in  females, which do 
not produce song. Local inhibitory circuits might allow 
the proper matching (and discrimination) of template 
and vocalized sub-song in the RA before consolidation. 
Indeed, infusion of cannabinoids, which primarily bind 
presynaptic CB1 receptors to reduce GABA release144, 
alters developmental sensorimotor vocal learning but 
not adult song performance145.

If barn owls are reared wearing prism lenses to skew 
their visual world, a learned shift occurs in the audi-
tory map of interaural time differences in the tectum 
so that it corresponds with the visual input146. Multiple 
maps can be stored in the same tectum if this expe-
rience occurs during a critical period147. To allow 
discrimination between conflicting circuits, new 
GABA-mediated connections are formed to suppress 
the unused representation148. Adult plasticity is limited 
to incremental displacement of the visual scene within 
the architectural constraints of axons that were hard-
wired during the critical period149,150.

Conversely, in the barrel cortex GABA circuits 
are formed and reorganized throughout life151–153, and 

are associated with lifelong plasticity154. This is also the 
case in the mammalian olfactory system, where constant 
neurogenesis is responsible for the underlying memory 
of odour discrimination in adulthood155,156. The newly 
born cells are GABA-containing granule cells, the 
functions of which include lateral inhibition and syn-
chronization of neuronal activity157,158. This raises the 
question of whether an olfactory critical period would 
emerge in the absence of neurogenesis, or whether 
visual plasticity could be maintained by prolonging cell 
proliferation in the neocortex.

Most interestingly, the control of visual cortical 
plasticity by GABA in animal models might also apply 
to the development of the human brain. In postnatal 
samples of V1 that were removed post-mortem159, the 
maturation of NR2A to 2B is complete within the first 
9 months after birth. By contrast, Gad65 expression 
and the conversion of GABA

A
 receptors from α3- to 

α1-subunit containing occurs more slowly, over several 
years, which is consistent with the extended length of the 
critical period for amblyopia in humans6,7. Strikingly, 
the levels of GAD67 and α2-subunits are constant dur-
ing the same early postnatal time period159, consistent 
with their limited role in plasticity in animals46. To 
avoid the rapid, premature induction of critical period 
plasticity through α1-subunit-containing receptors45,46, 
new benzodiazepine agonists that are selective for α2-
subunits should be developed for the control of status 
epilepticus in human infants160.

Figure 7 | Two models for inhibitory control of sensory plasticity. a | Somatic inhibition by fast-spiking parvalbumin-positive 

(PV+) cells (green) expressing the potassium channel Kv3.1 is mediated by the GABA
A
 (γ-aminobutyric acid type A) α1-subunit, 

whereas axonal inhibition is mediated by the GABA
A
 α2-subunit. Somatic inhibition is ideally situated for suppression, or ‘editing’ of 

unwanted spikes, preventing them from back-propagating through the cell body into the dendritic tree (red arrow). This is an 

‘instructive’ model, as individual action potentials can produce long-term potentiation (LTP) or depression (LTD) based on precise 

spike-timing dependent windows at individual synapses of coincident pre- and postsynaptic activity123,124. Notably, failure to 

regulate excess spiking at the axon initial segment can still be differentiated by fast-spiking inhibition at the cell body. 

b | Gap junctional coupling endows networks of parvalbumin-positive (PV+) interneurons with the ability to detect synchronous 

input128–130. Even a slight jitter in input timing (for example, between eyes) dampens network activity through reciprocal GABA-

mediated contacts (enriched with GABA
A
-receptor α1-subunits131). Only synchronous open-eye input will produce maximal, 

activity-dependent release or uptake of ‘permissive’ factors for neurite growth (for example, tissue-type plasminogen activator78,86 

and brain-derived neurotrophic factor). Competition is determined extracellularly. 
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In general, critical periods are a process of selecting 
the best neural representation available from among the 
many competing inputs that continually bombard the 
mat uring nervous system. Growth and function of lateral 
inhibitory circuits offer a rational, cellular substrate to be 
compared and modelled across regions to gain broader 
insight into brain development and its disorders161,162. 
Interestingly, cortical lesions or retinal scotomas in 
adulthood transiently reconfigure local circuit excita-
tion–inhibition to an immature state163. This provides a 
rationale for the administration of diazepam after acute 

stroke164 — not only might it reduce excitotoxicity, but it 
could also aid recovery by triggering plasticity machinery 
(FIG. 6). The concept of excitatory–inhibitory balance26 
in key neural systems during development might apply 
to epilepsy162, autism161, Rett syndrome165 and Tourette’s 
syndrome166,  schizophrenia167 and even the encoding 
and retrieval of memories168. Finding the keys to critical 
period plasticity could enable the development of novel 
therapies and training paradigms for education, reha-
bilitation, recovery from injury and lifelong learning in 
adulthood.
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