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CRITICAL PHENOMENA FOR SPITZER’S REVERSIBLE
NEAREST PARTICLE SYSTEMS

By DavID GRIFFEATH' AND THOMAS M. LIGGETT?

University of Wisconsin and University of California at Los Angeles

Motivated by several results and open problems concerning Harris’ basic
contact process, we consider the relationship between the critical behavior of
the finite and infinite versions of Spitzer’s reversible nearest particle systems.
We show that the critical values for the finite and infinite systems agree, but
that the behavior of the two systems at the common critical value can differ.
The Nash-Williams recurrence criterion for reversible Markov chains is an
important tool used in the proofs of the main results, and we give a new
treatment of that theory. Finally, we compute several critical exponents for
the nearest particle systems.

1. Introduction. A physical system indexed by a parameter is said to exhibit a phase
transition (= critical phenomenon) if the behavior of the system changes discontinuously
at some “critical” parameter value. The modeling of such phase transitions is a prominent
theme in contemporary mathematics. Recently a number of stochastic processes known as
interacting particle systems have been studied in some detail (see [7] for a recent review
and bibliography); the presence of critical phenomena in many of these systems is a
primary motivation,

This paper deals mainly with one such probabilistic model of phase transition: Spitzer’s
nearest particle system [29]. Let us briefly summarize the dynamics and basic properties
of Spitzer’s model. The processes w, to be studied are continuous time Markov with state
space @ = {w € {0, 1}%: Y0 w(x) = Y0 w(x) = 0}, where Z is the integers. P,, will denote
the law of w, started in configuration w = (w(x); x € Z) € Q. The evolution of w, is
determined by flip rates:

B:(w) = the exponential birth rate at x when w(x) = 0,
dx(w) = the exponential death rate at x when w(x) = 1.
The birth rates B, are assumed to be of the form
(1.1) Brlw) = B(4(w), ru(w)) = B4 1),

where #(w) is the distance to the nearest occupied site in w to the left of x and r(w) is the
distance to the nearest particle to the right of x. Moreover, the 8(¢ r) satisfy

(1.2) B r) =Nefelfrer, 4z,

where A is a positive parameter and f is a strictly positive function on the positive integers
such that

(13) zZ= 27";1 fk < @
and
(1~4) fk/fk+1 J, 1 as k— o,
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Finally, the death rates 8. are identically one:
(L.5) 8:(w) = 1.

For fixed f satisfying (1.3)-(1.4), the flip rates (1.1)-(1.2) and (1.5) give rise to a one
parameter family of Markov particle systems {P}; w € @}s~9, which we call Spitzer’s
nearest particle systems with density f. For more details on the precise formulation of the
model, see [29] and [12]. For other papers which treat this model and its generalizations,
see [1], [4], [5], and [16]. Assumption (1.4) ensures that {P} is attractive for each A.
Letting 1 = the configuration “all ones” and »} = the law of w, under P}, it follows that
there is an invariant measure v* for {P}} such that

(1.6) vP=r as to o

(= means weak convergence), where of course »* may be the pointmass on 0 (= “all
zeros” ). For background on attractiveness, see e.g. [7]. Assumption (1.2) ensures that each
{P?} is formally reversible (see [29]), and that they are monotone increasing in A for each
. Since 0 is a trap for each {P}} (by convention) it follows from the monotonicity that
there is a critical value A, such that:

for A <A, (subcritical case), =8

(1.7)
for A >\, (supercritical case), »*# &.

(8o = the delta measure at 0). These “soft” results do not rule out the possibilities A, = 0
or A. = », nor do they determine whether or not »* = §,. But, in fact, Spitzer and Holley
have identified the »*, computed the critical value, and determined the behavior in the
critical case. (The proof of Holley’s part of the following theorem was only suggested, but
not written out, on page 886 of [29]. A full proof will therefore be included in a forthcoming
paper “Attractive Nearest Particle Systems” by T. M. Liggett.)

THEOREM 1.8. ([29]). A, = 27 .. For A > X,, v’ is the renewal measure on Z with
probability density

(1.9) fh=Ms®,
where s is given by Y -1 fi =1. v’ = & if and only if p = Z kfy, = 0. If p < 0, then v is
the renewal measure with probability densityfi = A.fr.

For the sake of comparison, we now introduce two additional one parameter families of
particle systems which exhibit phase transitions. The first example, Harris’ (linear) contact
processes on Z [14], are the spin systems with birth and death rates

(1.10) Bx(w) = Aw(x — 1) + w(x + 1)], 8:(w) =1,

A > 0 a parameter. The second example consists of some generalized smoothing processes
on Z? introduced by Holley and Liggett [15]. Here the state space € is an appropriate
subset of [0, ©)?°, and the transitions at each site x € Z? are of the form

w(x) > (1 + %) % i lwlx +e) + wlx —e)] atrateA,

(1.11)
-0 at rate 1,

where e,(1 = { < 3) are the standard unit vectors in Z® and A > 0 is a parameter. In both
instances the {P}} are attractive for each A and have 8, as a trap. The first process is
monotone increasing in A, while for the second, Theorem 3.4 of [15] provides an analogue
to this monotonicity. Thus the “soft” theory applies as before, (1.6) holds, and there is a
critical value A, where the phase transition (1.7) occurs. The ergodic theory of the contact
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processes (1.10) is fairly well developed by now; see [13] for a recent survey. However
there is no known analogue of Theorem 1.8: A. can be shown to lie between 1 and 2, but
the first decimal place has not been rigorously determined, and it is still not known whether
or not »* = §,. Similarly, for the smoothing processes, the methods of [15] give upper and
lower bounds on A., but the precise value is unknown, and whether or not »™ = &, is an
open problem.

One of the keys to understanding the ergodic theory of the contact processes (1.10) is
the behavior of these processes restricted to the denumerable space  of finitely many
particles,

Q' ={we {0,1}%:wx) #0 for finitely many x € Z}.

If w € Q/, then w is an absorbing Markov chain on ' under P}, and interest centers on the
probability of ultimate absorption in the trap 0. We let Ty denote the hitting time for “all
0’s” and write

o} =Pi(Te>0),
where * is the configuration with a single particle at the origin x = 0. Clearly
o} | 6 =Pi(To=0) as t— o,
Also, since ¢” is increasing in A, there is a critical value for the finite systems: -
(1.12) AL =inf{A:¢" > 0}.

If we let p? be the density of the measure v} i.e.

pi = Pi(wl0) = 1),
then the self-duality equation for the linear contact processes asserts that p? = o7 and so
(1.13) p* = o?, A>0.
We see immediately from (1.7), (1.12) and (1.13) that for the linear contact model
(1.14) M=,

ie. “the infinite and finite critical values agree.” This phenomenon is undoubtedly
widespread, but very little is known about conditions which imply (1.14) for other one
parameter families. (As remarked in [8], (1.14) can be shown for any A-increasing family of
additive nearest neighbor systems on Z, but this is the only available result.) For example,
it is not known whether (1.14) holds for the smoothing processes (1.11). There is a
generalized potlatch model studied in [15] with a theory which parallels that of the
smoothing model quite closely. In fact the two models are connected by certain duality
equations, so that if one knew A% = A, for the systems (1.11), then one could conclude that
the infinite (or finite) critical value for the corresponding potlatch family coincided with
A. (and ML), and thus resolve a special case of an open problem posed in [15].

The remarks of the last paragraph are intended to explain our interest in the finite
nearest particle systems (w;, P2), w € §'. These are the denumerable Markov chains on
Q' with flip rates given by (1.1)~(1.5). Since the finite systems have a leftmost and rightmost
particle, it is natural to specify their flip rates by continuity, setting

(1.15) B(k, @) = B(e, k) = Af,  B(w, ®) =0.

Then 0 is a trap, Ty, o7 and ¢* can be defined as before, and we can introduce the finite
critical value A/ given by (1.12). The main result of this paper, which will be proved in
Section 3, establishes (1.14) for Spitzer’s nearest particle systems, and asserts that for any
given function f the finite systems die out at the critical value. Our theorem is the following.
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(1.16) THEOREM. Given A, fi > 0, let (w, {PY; w € Q}) be the finite nearest particle
system determined by (1.1)-(1.5) and (1.15). Then Ty < o P} -almost surely if and only if
A = A, = z7". Thus the finite and infinite critical values agree, but the critical behavior
may differ in the sense that

(1.17) =0, p*>0 provided = kf, < .

As already mentioned, whether p* = 0 for the linear contact model is an important
open problem. Because of (1.13), that problem is equivalent to whether or not ¢’ = 0; the
situation (1.17) cannot arise here. Thus we feel that our result supports the prevalent belief
that p* = 0 for the contact model, since extinction of finite critical systems seems to be the
rule.

The proof of our theorem is based on a recurrence criterion for reversible Markov
chains which appeared in a little known paper by Nash-Williams [26] written more than
twenty years ago. When translated back into potential theory, his result is a simple
application of the Dirichlet principle, and has an illustrious history in the theory of electric
circuits. We feel that the main result of [26] constitutes an important “lost” chapter in the
theory of reversible Markov chains, which may well have applications to a wide range of
processes. For this reason, and because [26] is difficult to read, Section 2 below is a self-
contained exposition of the Dirichlet principle and the Nash-Williams recurrence criterion,
with historical remarks. )

In Section 3 we prove Theorem (1.16). Section 4 deals with asymptotics for nearest
particle systems near the critical value. Physical principles and empirical observation
suggest that the discontinuities and divergences observed at critical values for phase
transitions obey “universal power laws”. Roughly, if some meaningful quantity x* exhibits
a critical phenomenon at A = A, then for some y

XM o |A = A"

as A T Ac or A | A (perhaps with different values y in the two cases). The universality
hypothesis asserts that even though A, will differ for different systems, the critical exponent
vy should remain the same for whole “universality classes” of related systems. While these
ideas are widespread in the literature of mathematical physics, and certainly intriguing
from a mathematical point of view, there are very few models for which they can be made
precise. Lang [23] provides an excellent account of two classes of systems (hierarchial
models, iterated maps) which have been treated in detail. Qur object in Section 4 is to
illustrate the notion of universality by evaluating a few critical exponents for the nearest
particle systems. The exponents for finite systems make use of computations from Section
3; those for the infinite system reduce to simple asymptotics for renewal measures. In
neither case is the mathematics difficult. The point is to add to the short list of examples
where the detailed analysis of critical phenomena can be carried out rigorously.

2. The Dirichlet principle for reversible Markov chains. The classical Dirichlet
principle (see [31], for example) states that among all continuously differentiable functions
h on a bounded domain D with given boundary values, the integral

D(h) =f J'Igradh|2dxdy
D

is minimized by the harmonic function with those boundary values. Of course, the potential
theory for Markov chains is highly developed (cf. [20]), but the role of the analogous
variational principle seems to have been largely overlooked in probability circles. This
section presents such a Dirichlet principle for reversible denumerable Markov chains, gives
some applications to problems of recurrence, and then concludes with a few remarks on
the history of the results.

Let S be a denumerable set. A matrix A = [a;], s is called a flow matrix if a; = ), =
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0 for all 7, j, and
O<a=Y,a,<o foreach i

The (discrete time) Markov chain X, on S with flow matrix A is the reversible chain with
invariant (o-finite) measure & = (a,)ics and transition matrix P = [ p;]; jes given by p; =
a;/,. Any reversible chain comes from a flow matrix A, although A is not uniquely
determined. We write P; for the law of X,, starting from i; of course P; depends on A. By
convention, all chains X, considered throughout this section will be assumed to be
irreducible without further notice. Introduce the hitting times

Th =min{n = 0:X, € A}, TX =min{n > 0:X, € A},

A C 8 (= w0 if no such n). Fix a reference state 0 € S, and write To = T(0y, T3 = T o). Our
principal objects of study in this section are the hitting probabilities

Pa(p) = Po(Ta < T).

In order to formulate our variational principle, we fix 0 € A C S, let #= {h:S— [0, 1], Ao
=0, A |a = 1}, and for & € # consider

Q(h) = @a(h) = 3., aylh, — )°.

The Dirichlet principle for reversible chains is as follows.

(2.1) THEOREM. Suppose Py(Ty < ») = 1, and let h* = P(Tx < T,). Then

(2.2) D(hP) = 2a0pa(A),
and
(2.3) ®(A) = minpeP(h).

Thus, for fixed A, aopa(A) is increasing in A (componentwise) provided that Po(Tx < )
= 1 for each A considered. In particular, if A = A and &y, = aq for all j, then pa(A) =
pa(p).

Proor. We will prove (2.2) and (2.3) only, since the final statements are immediate
consequences of them. Assume first that S is finite. Put g = 1 — 2" and compute

Or") =D(g) = Yoo igi[Y, Py — &)+ T ro g . pn(g — &)l
+ 200 ¥ pos (1 — &)

The first two sums on the right vanish since g is zero on A and g is harmonic off A U {0}.
This proves (2.2). For (2.3), suppose that A minimizes ® on #, Taking partial derivatives
with respect to the A;, we see that 4 must be harmonic off A U {0}. Therefore & = 2. Now
let S be general and take S” finite, so that $* 1 S, 0 € 8", A N §" # 0, and the chain on S
with flow matrix o, |s- is irreducible. All expressions with the superscript n will refer to
this chain on 8”. In particular, A} = P}(Tx» < To) for i € S,,, where A" = A N S™ By the
already proved finite version of (2.2} and (2.3),

DMA") = 2a5par(A") and P"(A") = minpe @ (h).

Since Py(Ts < ®) = 1, it is easy to see that A? — A for all i. Therefore
lim, wpar(A”) =limu o 3, pGh} = 3, pohl = pa(A),
and also
®(h*) = lim inf,_..®"(A") = lim inf,_..min,c »®"(h)
= lim inf,, ,.minze »P"(h) < minne »®(R)

which gives both (2.2) and (2.3), since equality must then hold throughout. 0
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Since the hitting probabilities p4 (A) govern recurrence or transience, the monotonicity
in A established by the Dirichlet principle yields the following useful comparison result.

(2.4) CorOLLARY. If the chain (X,, {P;}) with flow matrix A is recurrent, and if (X,
{P;}) has flow matrix A < A, then X, is recurrent.

Proor. Choose finite Ay, N =1, so that Ay 1 S. Then T, < © Py — a.s. and P, — as.
for each N, so by Theorem (2.1),

Po(T§ = ®) = limy-oPa(Af) < ? limy o PA(A%) = Po(T§ = o).
0
The last probability is 0 since X, is recurrent, so X,, is recurrent as well. [

Let us now give an application of (2.4) to what we shall call constrained Markov chains.
If (X,) is reversible on S with flow matrix A, there are two natural ways to restrict X, to
a subset Sy C S. Namely, we can define the new process X, to have flow matrix A, where
either

(2.5) a5 = &y, 1, ] € So;  ay = 0 otherwise;
or

aij=07,-],i,j€So, l?é]
(2.6) ) '
i = &y + Y jes Ay, oy = 0 otherwise.

(In either case we assume that a; > 0 for each i € S,.) Since both constrained processes
have the same imbedded jump chain, their recurrence properties are the same. We call
either version X, constrained to So. If S = G = a graph, N; = the neighbor set of i in G,
and @; = 1 for j € N; (= 0 otherwise), then we call X, the random walk on G. In this
setting (2.5) gives rise to the random walk on the subgraph G = & of G with neighbor sets
N; = N, N G. Version (2.6) is random walk on G with reflection at

G={jeG—-G:jEN; forsome i€ G}

when the process attempts to jump from { € G to j € dG it remains at i. As a special case
of (2.4) we have the following.

(2.7) COROLLARY. If X, is recurrent reversible on S, and if X, is X, constrained to S
C S, then X, is recurrent.

ProoF. In version (2.5), A < A.O

For example, (2.7) asserts that simple symmetric random walk on Z? constrained to any
(connected) subset of Z? is recurrent. This fact, mentioned in the 3rd edition of Feller Vol.
I [9, page 425] but not in earlier editions, is neither intuitively obvious nor easy to prove
by standard probabilistic techniques.

Another important application of Theorem (2.1) is the Nash-Williams recurrence
criterion [26]. To state it, we now assume that S can be partitioned as S = Y %-o Ay, so that
whenever i € Ay and a; > 0, then j € Ap_; U Ap U Apv1(A_; = @). We need not assume
that the A, are finite, but only that

(2.8) Yicar o <oo forall k.

Finally, for convenience, assume that Ao = {0}. If S = G = a graph, and if X,, is a reversible
chain on G which can only jump from a site to neighboring sites, then it is natural to take

(B _ JJ € G: the minimal number of edges in
A = {k-neighbors of 0} = {a chain connecting 0 toj is &
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provided that (2.8) is satisfied. For 2 = 1, set
(2.9) a(R) = Yica,, Dicay Qi

(2.10) THEOREM. If Po(Ts, < ) =1 for all m = 1, and (2.8) holds, then
.11) Po(Th, < T%) < (@0Zn)",
where

Zn =Y {atk)}

Thus X, is recurrent provided that
(2.12) S {a(R)} ™ = e,

ReMARKs. Nash-Williams [26] proved that (2.12) implies recurrence, and also a partial
converse which is too involved to state here. We do not know whether (2.11) is implicit in
[26]. For another recurrence criterion for reversible chains, which was obtained after the

present paper was written, see the forthcoming paper “A Simple Criterion for Transience
of a Reversible Markov Chain” by Terry Lyons.

Proor orF THEOREM (2.10). It suffices to verify (2.11). Choose finite A;’;‘T Ax, and
introduce the approximating flow matrices A, £= 1, given by

af’ = a;+ ¢ 1,j € A}, for some &,
= oy otherwise.
Then af” = ap and A = A, so by Theorem (2.1), for each fixed m,
palAn) = limopao(An).

We show that the right side is equal to (a0 =,) " Let {P{”},cs be the Markov measures
induced by A,

An=YFrnAr and A =P(Tsy, <T).
Another appeal to Theorem (2.1) and & |5, = 1 yield
Pav(An) = pac(Bn) = 2ao) ' @an (B)
= (2a0) " Yo Yiea, YA UAUAL, (B — h,‘-")zaif}.
To compute the limit on m, we first establish two claims:
(2.13) lmese Yijenral’ (B — k) =0 forall &,
and
(2.14) lim e (B!’ — A) = Ena(R)™', (€ Ar, jJE A1, 1<k=m.
To get (2.13), we first show that for each i, j € A,,
(2.15) R — R | = O{(£|AL])T") as ¢— .
In fact, if i, j € A}, then since the A; are harmonic probabilities,
|0 = KL< 3 1p0 — B

a,;+ ¢ a,,-f-é’
a + £\ Ax|  a+ £ A

Air _ Gjr
a+ | AL« + £ AL

= Yren; + Yrea;
2(a, + ) 20,0, - 4K + 2K?

= AN +/2|A£|2" AT where K = sup.ea,a; < © by (2.8).




888 D. GRIFFEATH AND T. M. LIGGETT

Now, the sum on the left in (2.13) is majorized by

’

Zi,jEA{, (ay + ¢) ZVAE + Zi,/EA,.-,i,]notbothinA;’, Ay

- ’ L2 —1 3
=K {Supi,jeA,’,a”f +7) + Zi,jem,i,jnotbothm/\; Y

which goes to zero as /— . The argument for (2.14) goes as follows. By harmonicity, for
i€EA, 1=k=m-1,wehave

al?ni — Siear B = S eans aiht? + Y e tnn @i B0
Sum over i € A, to get
(2.16)  Nicar B =Y, jen, alfBY = Vica,jen, ayhi? + Z;eAkjeAk+l aihi?.
(all sums are finite by (2.8).) Now from (2.13), we can find a subsequence (¢’) such that
limy k"’ = h(k) forall i€ A,.
Letting ' — o in (2.16), by dominated convergence we get

(a(k) + alk + 1)) h(k) = a(k)h{k — 1) + alk + DA(k + 1),

or
el
h{k + 1) — h(k) —m (h(k) — h(k —1)).
Iterate to obtain
o al(l) b
h(k+l)—h(k)—mh(1), l=k=m-1.

Since Y75 (h(k + 1) — h(k)) =1, and since the last equation also holds for 2 = 0, it
follows that a(l)h(1) = 2 Claim (2.14) follows since the limit is independent of the
subsequence ¢'. Finally, using (2.13), (2.14) and dominated convergence, we compute:

lim e pan (Am) = ap" i Tiennjenn, limeo (A — B2V a,;
= a5 Tie {3, a(k) Y a(k) = (0 X))

as desired. [

ExaMPLE. S = Z% A, = {k-neighbors of 0}, X, = simple symmetric 2-dimensional
random walk. Then ag = 4, a(k) < 8k for £ = 1, and so

Po(Ta, <Tg) =231 k) "= 2/log m.

Histrorical REMARKS. The connection between reversible Markov chains and electric
circuits is well-known (see [20, pages 303-310] or the recent monograph [19], for example).
As a consequence of Ohm’s law and Kirchhoff’s law, if resistance aj;' is placed along each
edge (= wire) of a graph, if 0 is kept at unit voltage by an outside source, and if A is
grounded, then the charge at 0 equals aypa(A). In the electrical setting the results of this
section are classical, but the only probabilistic treatment we know is the Nash-Williams
paper [26]. The monotonicity of aopa(A) simply states that increasing the resistance
anywhere in the network increases the effective resistance between 0 and A. Peter Doyle
[6] has written a colorful article on the history of this principle, citing papers from the last
century by Rayleigh [28], Kirchhoff [22] and Maxwell [25]. As explained by Jeans [18,
pages 321-324], the functional ® represents the heat generated in the network; harmonic
voltages minimize heat. Jeans remarks parenthetically that “heat = random motion.”
Monotonicity of effective resistance can be used to estimate the charge at a site by the
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corresponding charges in simpler networks. The extreme operations are to short out edges
(no resistance) and to cut edges (infinite resistance). According to Doyle, this comparison
technique is called “Rayleigh’s short-cut method”. The material we have presented is
simply a probabilistic version of the short-cut theory. For instance, constraining a chain to
So C § amounts to cutting all the connections between S, and S§. The Nash-Williams
result is also easy to explain: we short out all edges within a given A, in order to reduce
the network to a one-dimensional one. Linear circuits have no loops, only parallel and
series connections, and so we can do the computations explicitly. A limiting argument is
necessary in the probabilistic treatment, since shorting out edge (i, j) amounts to taking
a;; = . The computations for linear circuits are entirely equivalent to those for birth-
death chains, which explains the familiar form of the difference equations in the proof of
Theorem (2.10). In closing this section, we note that Rayleigh’s short-cut method provides
an alternate proof of Polya’s theorem. Recurrence of simple random walk on Z* (or any
connected subset of Z?) follows from the Nash-Williams criterion. To show transience on
Z? it suffices to find a transient random walk on a tree imbedded in Z*. We leave this as an
exercise for the reader; consult [6] for help.

3. The Proof of Theorem (1.16). Our object here is to prove that the finite reversible
nearest particle systems die out if and only if A < A.. We think of w, as a reversible chain
on a complicated graph of configurations. The idea is to sandwich «, between two tractable
systems by appealing to the short-cut method of the previous section.

It will be convenient to identify « € @/ with the set B C Z of occupied sites: w = 15. We

will use the generic notation B = {x1,..., %,}, X1 < -+ < x,(n = 1). When we write
B —{x} it is understood that x = x, for some 1 < { < n. When we write B U {x), then x,
< x < x,+1 for some 0 = i < n, with the convention that xo = — o, x,,; = ». With this

notation, the Q-matrix [¢scls, ceqs of jump rates for w, has the form
dBBU (x} = ,B(x — Xiy Xuev1 — x), gBB—(x) = 1,

with all other rates 0.
Introduce an equivalence relation on 2,

B~C if C=B+x forsome x€Z,

i.e. two configurations are equi~valent if they are translates of one another. Write B for the
equivalence class of B, and let = { B: B € @/} be the space of all such “shapes”. Consider
the continuous time Markov chain W; on { given by

m = Gt.
Next, let X; be W, altered to have~ spontaneous birth from & to * (a singleton) at rate A.
We claim that X, is reversible on £. To see this, temporarily write f(%) = f,, and define
(3.1) ap = N [[i5] flxem — &), (ag=1).
Let @ = [§55] be the @-matrix of X,, and abbreviate §zg= dpc. If 1 =i =<n — 1, then

dBBU (%) _

qBU {x}B

Blx — xi, 2o — x) = AM(x — x) (i1 — x)/fxi1 — %)

_ NI f = 21 f(x = 2) Fonen = O [ — %]

(3.2) AN TTE f(x — )

= aByu () /aB,

with the same formula holding if i = 0 or n. Also, o0 /G0y = A = agy /aw. If we now
define A = [a55] by

QBE = dpc = &BYgBcC,
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then it follows that A is s symmetric and the discrete time imbedded chain X, corresponding
to X; has flow matrix A, Let P% % govern X, starting from B. Since

PX(Ty < ) = PA(T} < ).

To show that To < o P’-a.s., it suffices to prove that X,, is recurrent. To this end, we apply
Theorem (2.10). Let

Ar={(BeQ:|B|=

Clearly & = Y#=o Ax, and whenever X, € A, then X,.1 € Ay-1UA 4 since w; is a spin
system. Also, for £ =1,

A
infgen, Year §A6= 271 Af(£) =2 (A ) >0

and
Suppen, Léeaw §EC=k,
so an easy argument based on the Markov property gives
PX(Ty,<®)=1 forall m=1.
Next, we compute the a(k) defined by (2.9):
alk) = Y Ben,Cen . GBE = Y Ben, @B YLier,, dnc

(3.3) = Ygen, kap = kA* Va1, au=1 [[721 F(dr)

A k—1
= AT (Ba=1 f(d)) —kx<)\) :

Hence
YBen, G5 = Y Ben, 26 A5¢ = alk) + a(k + 1) < o,

which establishes (2.8). The hypotheses for (2.11) hold, so we get

k—17—1
(3.4) Pl(|w|=m forsome t)= P>‘(T,\,,‘<T+)<|:Z;E }—1<M> ] .

In particular, Ty < o P}-almost surely for A < A..

The “shape chain” X, introduced above is reversible on the graph {(B, Ns); Beld)
with € € N5 if shape C is obtained by adding or subtracting a particle from B. Applying
(2.10) amounts to shorting out the connection between each pair of shapes with the same
cardinality. To prove that Ty = o with positive PA-probability whenever A > A., we need
only show that X,, is transient in this case. As might be expected, we establish transience
by cutting edges. Namely, consider the graph { (B, N %}; B e {1, where

CE N}
if
C=BU({x} forsome x<ux; or x>x,

or

C=B—-{x1} or B-— {x.}.
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Define X? on this new graph to have @-matrix

Q= [(}%(7], where
0 - e A 0
955 = gBc if CENg’

=0 otherwise.

Let A° be the flow matrix for the imbedded chain X2 corresponding to X?. Then A° < A4,
so (2.4) applies. But | X?| is simply a random walk (with reflection at 0): for n = 1,

n—n+1 atrate 2\Yi. f(k) = 2(%))

n—n—1 atrate 2.

Clearly X? and X} are transient whenever A > A.. By Corollary (2.4), so is X,. 0

Remarks. We have seen that certain hitting probabilities for the PA-evolution of w,
are sandwiched between corresponding probabilities for a pair of birth-death processes.
The monotonicity of p4 therefore gives more detailed information: e.g., from (3.4) we get

for A <A,

Pi(lw|=n forsome ¢< Tp)=<e ®nD,
From (3.4) and the random walk comparison, we get
for A=A,

C C.
(3.5) Z= PX(|o| =n forsome < Ty =——.
7 logn

It would be interesting to improve the bounds in (3.5).

4. Critical exponents. In this section we compute some critical exponents for
Spitzer’s nearest particle system. General background on phase transitions, critical expo-
nents, universality and renormalization may be found in [23], [24], [27], and [30]. Our
object is simply to provide some elementary examples.

As we have already seen, the finite and infinite nearest particle systems exhibit critical
behavior at the same value A, = z7'. Correspondingly, there are critical exponents
associated with both the finite and infinite systems. One must also treat separately the
subcritical (A 1 A.) and supercritical (A | A.) asymptotics. Thus there are four cases.

1. Finite subcritical systems. Two quantities of interest here are:
xt = EX[T),

and

Xé =E} [ZxEZJ l(w/(x)=1) dt] .
[

x1 is the expected absorption time from a singleton. x2 represents the expected space-time
cluster size of the total particle production originating from a singleton. Clearly both
quantities diverge as A 1 A.. Analogues of x} are familiar from percolation (e.g. [3]) and
other physical models. In [2] a power series for the “generalized” susceptibility” x3 is
developed to 20 decimal places in order to estimate the critical value of a “reggeon
quantum spin model.” Various critical exponents are also estimated. It turns out [11] that
the reggeon model is isomorphic to the contact system, so they obtain an approximation
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for the contact critical value: A, = 1.649. This sort of numerical analysis abounds in the
physics literature; while it displays an intriguing internal consistency, the methodology is
not mathematically rigorous. As we mentioned earlier, the critical contact value is not
rigorously known to even one decimal place. Understandably, then, precise evaluation of
critical exponents for the contact process must be viewed as exceedingly difficult. Kesten’s
recent work [21] on a similar percolation problem gives some indication of the magnitude
of the problem. For Spitzer’s model, on the other hand, we can easily compute x} and x3
exactly. The universality mentioned in the Introduction is particularly striking here: the
critical exponents are entirely independent of the density function f.

(4.1) THEOREM. For any given f,
X>1\ = >\L‘(>\L‘ - >\)_1’ Xé = A%(Ac - >\)_2’ (}\ < >\c)

Proor. If X,is a continuous time recurrent Markov chain on S with invariant measure
o, then for any 2:S — R,

T
(42; Eo[f hX, dt—‘ = (q()a())_1 Zl alhl'
]

d

(here qo is the jump rate for leaving state 0.) Equation (4.2) follows from the familiar
representation of the invariant measures, a; = ¢E, [time in j before 7T 5] for some constant
c. We apply (4.2) to the shape chain X; introduced in Section 3; by (3.2) X, has the invariant
measure o = ap defined in (3.1). Take 2 =1, 0 = & in (4.2). Now compute as in (3.3) but
without the factor of 2 which occurs there to get

- - }\ k-1
X} = EA[To] = E3[T5] — ES[T.1=X"(S5 a5 — 1) = Sk (r) A=A
Similarly, taking Az = | B|, we calculate
o AV
= Eé[ j ™ dt] —\'351 B a5 = Yin k(r) —XNO-N O
o C

II. Finite supercritical systems. Here the simplest quantity of interest is the survival
probability

o = PA(Ty = x).

By using the random walk comparison from Section 3 and estimate (3.4), one can show
that for any density f,

AN — A = 0 = | log AMA — A

for A above A.. It would be interesting to know the true asymptotics for ¢* as A | A, and
whether the rate of decay is independent of f.

III. Infinite subcritical systems. Virtually nothing is known in this case. For A < A,
presumably p} = P{w,(0) = 1) | 0 exponentially in £ If this were proved, then perhaps the
simplest critical asymptotics would be for

xé=f ebdt as AT
0

IV. Infinite supercritical systems. When a physical system has an equilibrium state
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v*, two of the most basic quantities of interest are the density and susceptibility:
p* =vMw(0) =1} and xi= Y.z covir(w(0), w(x))

respectively. Understanding these quantities near the critical value is one of the main
objects of the study of phase transitions. For Spitzer’s nearest particle model »* is a renewal
measure, and so p* and x% can be computed explicitly in terms of the moments of the
underlying renewal probability density f} = Afis*. Let u, vy be the mean and variance of
f*. By the Renewal Theorem,

(4.3) pt =il

To compute the susceptibility we use a formula from Feller [9, page 340]: if u) is the
renewal sequence generated by f*, then

Y=o (uh — px ) = (va — i + pd/ (2u).

Thus
Xi = 2px [Bnar (wh — )] + (un' — pid
Un — i+l B =
(4.4) =2m{lLé%rﬂl—u—ufﬁ+wm‘—m%
A

= u/pi

Thus the computation of critical exponents for p* and x% as A | A, is reduced to routine
analysis. Set A = A — A.. Write /(A) oc A if ) is regularly varying of order y as A | 0; slowly
varying terms are typically ignored in the study of phase transitions. For simplicity,
suppose that

fr=Fk" (6>1).
In the following table we have computed the critical exponents v, and y: given by
P oc Ah’ X4 oC A*Yz

as functions of the decay rate 6.

0 n 23
€ (1, 2] 2-6)y/60-1) (20 —-3)/(0—-1)
€ (2, 3] 0 3-0
€ (3, x) 0 0

For 6 > 2, y, = 0 because p* | p*> 0, i.e. the critical system is nonergodic. When 8 € (1, 2],
v: interpolates between o and 0. For 8 > 3, y» = 0 because the correlations of »* are weak.
Note that when 6 < 3/2, y. < 0 also; this curious phenomenon occurs because p* — 0 very
rapidly. If an equilibrium »* is nondegenerate, one is also interested in the critical scaling
exponent. Letting w be v*-distributed, this is the value ys such that

n™ i [wlx) — p™]

converges weakly to a nondegenerate limit. In our examples y; is simply the normalization
exponent in the central limit theorem for the number of renewals up to time n. The
relevant results are in Feller [10, page 373-374]. If f. = £~°, then

Y3 = (0 - 1)_1’ 0 € (2) 3)’
=% 0=3.

For 6 = 3 the limit is Gaussian; see [17] for more detailed central limit phenomena in this
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case. When 6 € (2, 3) the limit is stable with index § — 1. The latter situation arises because
the susceptibility diverges at A, and v’ has,strong correlations. Physical systems with non-
Gaussian limits and what Feller calls “extremely violent” fluctuations about the expecta-
tion are the subject of extensive study in contemporary mathematical physics. Of course,
in the systems of most physical interest », is inmensely more complicated than a renewal
measure. Finally, a word about universality. For the infinite supercritical systems the
universality classes consist of all those f which are regularly varying of order 8. Although
the critical values for different f of order 8 typically will differ, the critical exponents yi, v»
and y; will agree with those for 2~ computed above.

ADDED IN PROOF. The correct asymptotics in (3.5) and II of Section 4 are obtained
under a moment assumption in a forthcoming paper by T. M. Liggett.
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