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1—INTRODUCTION

The exact measurements of the isotherms of gases have proved extremely
valuable in the determination of interatomic forces. For this purpose it
has been found necessary to express the p» values of a gas as a finite power
series in the density or in the pressure, and the coefficients so obtained have
been compared with theoretical expressions in terms of interatomic fields.
Many accounts of the method have been given and it is not necessary to
give further details here (cf. Lennard-Jones 1931).

While these methods are valid for gases at low densities where binary
encounters are predominant, they fail for gases at high densities such as
obtain in the neighbourhood of the critical point. Michels and his col-
laborators (Michels and others 1937) have recently studied the isotherms
of gases at pressures as high as 3000 atm., and they find that the usual
method of representing isotherms as simple functions of density or pressure
ceases to be useful. The equation of state of van der Waals was astonishingly
successful in accounting for the critical phenomena of gases and the form

of the isotherms for temperatures below the critical temperature. Other
empirical equations of state, for example that of Dieterici, were even more
successful in reproducing the observed relations between the critical
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pressure, volume and temperature, and their very success has often obscured
the fact that they were not logical theories of critical phenomena in gases,
based as they were on arguments which were valid only for gases of low
concentration. Thus the van der Waals equation, valuable as it has been
and useful as it still is, implies that the internal energy of a vapour and its
liquid phase is proportional only to the first power of the density, and this
cannot be true for gases or vapours at densities comparable with those of
liquids. The problem still remains of explaining why gases exhibit critical
properties and of correlating the observed values of the critical temperature
with the forces which atoms or molecules exert on each other.

Fowler, following the work of Bragg and Williams on order and disorder
in alloys (Bragg and Williams 1935), has recently made a definite advance
in the theory of the critical adsorption of atoms on surfaces. The essential
step in his treatment is that he takes the heat of adsorption to be a linear
function of the concentration of adsorbed atoms, and by statistical methods
finds a critical temperature below which adsorbed atoms would tend to
condense into a two-dimensional liquid phase (Fowler 1936). Another
interesting development in the theory of condensed phases has been made
by Tonks (1936), who has shown that the equation of state of a one-dimen-
sional gas can be obtained by considering the properties of a single atom
in a cell of length determined by the density. Similar considerations, applied
to two- and three-dimensional assemblies, lead to equations of state valid
for high concentrations, and suitable interpolation formulae are given which
yield the correct form at low and high concentrations. The treatment is
limited to hard elastic spheres, which exert no external forces on each other
and depends on the use of the virial theorem in a manner similar to that
used for gases of low concentration.

The object of this paper is to attempt to find an equation of state and
other properties of gases at high concentrations in terms of interatomic
forces of the same general type as has been used extensively by one of the
authors in other connexions. The main idea is that an atom in a dense gas
is to be regarded as confined for most of its time to a cell, and that its average
environment is something like that of an atom in a liquid or a crystal. This
picture can only be looked upon as a rough first approximation, for it neg-
lects the possibility of the migration or diffusion of atoms from one cell
to another, but it is probably better than attempts to deal with a dense gas
by methods which depend essentially only on binary encounters. We use
the methods of statistical mechanics and attempt to evaluate the partition
function for a dense gas for a field in which the repulsive and attractive
fields can be represented by inverse power laws, though the method is
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applicable to any law of force. The resulting equation of state has the right
kind of properties and in the particular cases of neon, argon, hydrogen
and nitrogen, using the interatomic fields previously determined, a direct
calculation of the critical temperature has been made.

2—(GASES AT SMALL AND LARGE DENSITIES

When the density of a gas is small, its equation of state can be represented
by the formula

pv=kNT(l+§), (1)

where, as usual, N is the total number of molecules in a gas of volume v,
and B is the virial coefficient; k is the usual gas constant. For moderate
densities it is necessary to take many more terms in the expression on the
right involving higher inverse powers of ». The equation (1) is valid under
the same conditions as the van der Waals equation which may be regarded
as a special form of it.

For molecules of spherical symmetry, which exert on each other a field
of potential ¢(r), the theoretical formula for B is

B = 27rNJ nt)7'2{1 — e~ kT dy, (2)
0
2nN (=
== 3 9 -¢(r)/kT
or 3I.‘Tfo rf(r)e dr, (3)

where f(r) is the force between two molecules.

For any given law of force B can thus be evaluated as a function of
temperature, and compared with the values of B determined from the iso-
therms. In this way interatomic forces have been determined.

The internal potential energy of a gas can easily be derived from B, for,
if @ is the average potential energy of any one atom in the field of the rest,
we have

¢=v : drr? B(r) e~k dp, (4)

where » is the average concentration of the gas. From equation (2) or (3)

we then get ’
¢ = —2(v/N) kT*dB/dT), (5)

and the average potential energy of the whole assembly is

@ = Ng/2 = —vkT2dBJdT), (6)
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or, in terms of the volume,
NkT*dB

P T e a1t (7)

This relation can also be obtained by the use of the thermodynamic

formula
oU op
(%), = 7(37),~» (®)

and equation (1). This gives

U's

- (7)+ o, ©)

where U, is a constant of integration, independent of the volume but depen-
dent on temperature, and clearly refers to the value of U for an ideal gas.

It is instructive in passing to compare two alternative definitions of the
internal pressure of gases. The internal pressure p; of a gas is sometimes
defined by either side of equation (8), and so is given by

p; = (NkT?/v?) (dB/dT). (10)

On the other hand, equation (1) can be written as
p =vkT +p,, (11a)
where . pe = NkT B[v?, (11b)

and p, has been shown (Lennard-Jones 1924) to be equal to the stress across
unit area of a plane in the gas due to the interatomic forces and is positive
when the stress is one of repulsion. This has been called the statical pressure.
We see from (9) and (11) that p, and p, do not refer to the same thing; in fact

_ ma8(p,/T)
Pi = TL_dT' (1le¢)

Observations of the isotherms of gases show that B is negative at low
temperatures and increases to positive values at high temperatures (through
the Boyle point, where it vanishes); it has a maximum and then begins to
fall again. Hence from (7) we infer that @ behaves in a similar way. At
very high temperatures it becomes positive, implying that owing to the
high translational energies the atoms are penetrating deeply into each
other’s repulsive fields. We note also from (10) that at low temperatures p;
is positive, while from (114) p, is negative. This is a matter of definition;
P; is a measure of the tendency of the gas to compress itself, while p,, as
defined above, is a measure of its tendency to expand.
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Returning now to the discussion of internal energy we see from (9)
that 7 is a linear function of the density in the region in which this expression
is valid, viz.

U = Uy+ap. (12)
The curves given by Michels for the energy of CO, gas as a function of density
show clearly that while the energy is proportional to the density for small
enough densities, there are considerable deviations for larger pressures
(Michels 1937, fig. 1). There is no adequate theory at present to explain the
observations. We can see in a general way that (12) will cease to be valid.
In a dense gas an atom will be surrounded by a number of others and will
be moving in the field of several at the same time. Of course at high tempera-
tures there will be continual change of the immediate neighbours of the
complex, surrounding any one atom, but the average potential energy of
each will be of the same order of magnitude as that of an atom in a crystal.
The potential energy of any one in its position of equilibrium is given

approximately by
¢0 = C¢(r0):

where ¢ is the number of nearest neighbours, if we neglect the effect of more
distant atoms. If we adopt for ¢ a form of potential which has proved to
be a useful representation of the fields of inert gases, viz.
Ak
- (13)

— pn pm’

where » and m are integers, then we get for the potential energy of the
assembly

N Ne
D = 5 o =5 Pro), (14)
where 7, is the equilibrium value of the distance between nearest neighbours
when all are at rest. The relation between @ and the density, neglecting heat
motion, is then of the form

b = /\'p'u,'a -—/L',D'"/s. (15)

The temperature-dependent part of @ the energy is given by Einstein or
Debye expressions as long as the amplitude of vibration about the mean
position is small, but when the amplitude becomes large it is to be antici-
pated that @ will be a more complicated function of density, temperature
and the interatomic fields. Between these extremes of very low and very
high densities, the theory will be more difficult. It is the object of this paper
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to develop a method which may be regarded as a step towards a theory of
gases at moderate densities.

3—A MopeL 0F A GAS AT MODERATE DENSITIES

If we adopt the hypothesis that for moderate densities each atom may
be considered to be enclosed by its neighbours in a box of definite dimensions,
then we have the following picture. At first the box is so large that the
potential within it is fairly uniform except near the boundary, where there
is a region of low potential energy; the enclosure is, in fact, like a box with
an adsorbing surface, and the enclosed atom will tend to be near it. As the
density of the gas increases and the size of the box diminishes, the fields of
the adsorbing surface will begin to overlap as in figs. 1(a,) and 1 (a,), giving
an energy barrier in the centre which diminishes with the density.

Finally, a stage is reached at which the barrier disappears, the minimum
of the potential energy is at the centre and remains there for all greater
densities as in fig. 1(b), but owing to the increasing overlap of the repulsive
fields the absolute minimum of potential begins to rise with increasing
concentration. We thus have two types of field, one of type («) and one of
type (b), depending on the density.

These features may be represented roughly by a simple model. We suppose
every atom to be confined to a spherical box in which the potential energy
is uniform for any given size but changes as the size changes. Thus we suppose
the potential energy to vary with the radius R according to a law such that
it is zero for large R, and then falls steadily as R decreases until it reaches
its greatest negative value at R = R, when it begins to rise again, eventually
becoming positive. We denote this function by y(R) or by x(v), where v
is the average volume occupied by each atom.

We now suppose that the partition function of the whole assembly can
be expressed as a product of the partition functions of the individual atoms.
We shall examine this assumption later in the paper. We assume that each
atom moves on the average in the same field and is confined to the same
volume. The partition function of each atom is then given by

R
= f f f e~ DDy +p Y 2mET f e~ XKD 4rp2 dr/h?
0

)4
_ (2amkT) - 4 R3

h3

2mm. []
( m;::cT)_ pe—XOKT (16)
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the value of y, as explained, being constant within the cell, and » being
taken now for the volume available for one atom.

We could improve upon this model by taking into account the finite size
of the atoms. Thus we could represent them by a diameter o and then,
supposing the centres of the surrounding atoms to be situated on the surface
of the cell, the above expression must be replaced by

fa (2mmkT)} " 4m(R—o)?
h? 3
_ @mmkT) _per _5)3
me— e av| 1 K (17)

where av = 47 R%/3 and « is a numerical constant; for example, if the atoms
were arranged regularly throughout space as a face-centred cubic crystal,
we should have a = 47,/3. For the above expression to be valid we must
have R > o and also the “available™ regions for neighbouring atoms must
not overlap: this latter condition implies that R < 20. Within these limits,
however, there lies the interesting range of densities near the critical point.

Equating the partition function of the whole assembly to fV, we then
get for the free energy A(= U —TXS)

A =—NkTlogf, (18)

and the pressure is given by

v
p = Nk T(a—v log f)

T

Using (16) we then get  p = Nk.’l";——; =¥ (19)

and using (17) we get for the second model (atoms of finite size)

NkT

B

—Nx'(v), (20)

an equation very similar to that of van der Waals’ when y(») has the
special form of —a/v.

It is not necessary for our purpose to deal with this more complex form
of the equation of state; the simple form (19) leads to critical phenomena
if a suitable form for y(v) be chosen. We have seen that y(v) must vanish



Downloaded from https://royalsocietypublishing.org/ on 05 August 2022

60 J. E. Lennard-Jones and A. F. Devonshire

for large », reach a minimum for a finite value of » and thereafter must
increase as v decreases. A suitable function with these properties is

X o= (21)

where v> . If the second term is to represent van der Waals attractive
fields we must have p~ 2.
Critical temperature, pressure and volume are given by

o\ _o__ 1 1 ppr+la wp+l)p
(a’l.’)T P v? kT{ e vt |? (22)
8‘3p\, a2 1 [=yr+])(v+2)a /l.(,u+l)(,u+2)ﬁ1
(5@5. v e ﬁ_ﬁ{ v+8 5 vuts ) (=8
These equations give the critical volume v, at once as
r+1)a
P o= —
e+ 1)p 4
while the critical temperature 7}, is given by
KT, = —2y"(v,) = wp+1)Byv—p (25)

)/ v

on using (24). If we denote by v,, the value of » at which x(v) assumes its
minimum value, we have

it = valup, (26)
and X(om) = = 22E. (27)

Using these relations and (24) in (25), we find

kT, n+ 1

Further, the Kamerlingh Onnes constant K is given by

1 », X'(v,) 2%
==L -] = ~SEESNE GRS
E-NTL,™  Tox'®) " e 1) (29)

Taking v = 4 and pu = 2, corresponding to a repulsive potential varying
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as an inverse twelfth power of the distance and attractive potential varying
as an inverse sixth power, we find

U,[vy = 182, kT, = (1-8)| x(v,)|, K = 1-87. (30)

The Kamerlingh Onnes constant is actually about 3-7 for many gases,
and to obtain better agreement with experiment it would be necessary to
consider the finite size of the atom in its cell as was done in equation (20).
We note, however, that the model gives a simple linear relation between the
critical temperature and the maximum absolute value of the potential in
the cell. A somewhat similar relation is obtained by the more detailed
calculations below.

4—TuE EQUATION OF STATE OF A (GAS AT MODERATE DENSITIES—
CRITICAL PHENOMENA

Having seen that the simple considerations of the preceding section lead
to an equation of state with the right kind of properties, at any rate as
regards critical phenomena, we now proceed to consider the problem more
closely and to try to find an equation of state in terms of interatomic forces.
Instead of assuming the potential of an atom within its available volume
to be constant, we must endeavour to find its potential due to all its
immediate neighbours as a function of position and also as a function of
the size of the available volume.

We shall use as before the approximation that the partition function of
a dense gas can be expressed as a product of the partition functions of the
individual members of the assembly, each member being confined to a cell
from which all others are excluded. This approximation is probably the
more reasonable, the greater the density. Whereas in a sparse gas binary
encounters alone are important and an atom can migrate or diffuse rapidly
from one part of a vessel to another, in a dense gas an atom will be imprisoned
by its immediate neighbours and will make more multiple encounters than
binary ones and will escape from one environment to another the more
slowly the greater the density. We neglect this possibility of migration as
being an infrequent event compared with the time spent in any given cell.
None the less it is of interest to examine the error introduced for a case for
which the approximation is least justified, that is, for a perfect gas.

Let N be the number of atoms in a gas and v the total volume. Then if we
divide vinto N cells, each of volume »/N, the partition function for a particle
in such a cell will be given by

f(T) = [(2mm kT)}[1?] (v/N), (31)
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and the partition function for the whole system by

F(T) = [f(T)]Y, (32)
whereas the correct partition function is given by
F*(T) = [(2mem kT)t v[R*}N|N |, (33)
xr) . NI

so that the ratio is = (2Nm)te V.

F¥T) NN
When N is large the difference of the free energies is approximately

[ #
¥T{log F* ~log F} = k(1o %—) — kTN,

and the difference of the free energies per atom is A7. This difference,
depending only on N and the temperature, will thus not affect the equation
of state when it is derived by the usunal formula from the partition function.

We shall now suppose that the system consists of N particles moving
in a volume » which is divided in some regular way into N equal cells each
of volume »*, and that each particle is confined to one of these cells. Each
particle will be moving in the field of the others, which will vary with time,
and to obtain the partition functions for the individual particles we must
replace this field by some suitable average. The simplest assumption we
can make is that the average field in which any one atom moves is that due
to its immediate neighbours when each is in its equilibrium position, that is,
at the centre of its own cell; and we shall consider this case as a suitable
first approximation.

Since atomic fields fall off very rapidly with distance we shall consider
only nearest neighbours. The problem we have to deal with, therefore, is
that of a particle moving in the field of a number of other particles sym-
metrically arranged on the surface of a sphere. If the number of immediate
neighbours is large (it will generally be about twelve), the field within the
cell will have a high degree of symmetry, and it will be sufficient for our
purpose to replace the actual field by one which is spherically symmetrical
about the centre of the cell. This may be obtained by taking a suitable
average. We may take the average field, as the atom within the cell describes
a sphere about the centre. This is equivalent to the average potential
produced within the cell when the nearest neighbours take up all positions
with equal probability on the surface of a sphere.

Let a be the average distance between nearest neighbours and let ¢(a)
be their mutual potential energy at this distance apart. We suppose one
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particle kept fixed while the other is moved about a sphere of radius r,
described by the vector a +r. The average potential of the particles is then

given by
é(r) = ij”¢{(r2 +a*—2ar cos.0)} sinf do. (34)
0

If ¢ is the number of nearest neighbours, the average potential energy
within a cell for » <@ may be written as

Y(r) = ed(r). (35)

In order to make further progress it is necessary to take particular forms
of ¢(r). For a monatomic gas a convenient function is

@(r) = Ar—"— Br—m, (36)

ke
S ] |

For the special case of n = 12, m = 6, which has been found to represent
the fields of some of the inert gases satisfactorily (Lennard-Jones 1931),
we get

and then

v =3 i3 - (2) )= (@8-

which may be written in the form

Y(r) =y (0) = c[da="*I(y) — Ba~*m(y)], (38)

where y = ri/a?, (39)
Uy) = [1+12y+(25:2) y* + 129+ y*] (1 —y) 10— 1, (40)

and m(y) = (1+y)(1-y)™*-1. (41)

Since a? is proportional to v* the specific volume, we may write the equation
for yr(r) in the form

P (r) =9 (0) = A{(vf/v*)* Uy) — 2(vf v*)2m(y)}, (42)
where A and »§ are constants, chosen so that

A(vy [v*) = c4a—12, 2A(v§/v*)2 = cBa"s, (43)
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Putting v, = Nvg, and » = Nv*, we also have

Yr(r) = Y(0) = A{(ve/v)* Uy) — 2(vo/v)* m(y)}. (43a)

Some representative curves for () for certain values of (v,/v) are shown
in fig. 1. Curves (a,) and (a,) have a potential barrier at the centre while
(b) has not. It is found that the field ceases to have this central hump when
(v/vy) is of the order of 1:6. At the critical volume (v/v, = 2-2), the height
of the hump is approximately £7,/2; at v/v, = 3-16 it is (0-9) k7...

A AT Af
= ©_aja—ofs o Q. ajpmioisug S aja]=ods
At AT “AF

(a) (ap) (b)

F16. 1—The potential field within a cell; curves (ay), (a,) and (b)
correspond to (v,/v)?=0-10, 0-30, and 0-70 respectively.

The partition function for a particle moving in this field, when the energy
zero is taken to be that of a particle at » = 0, is given by

AT) = (2amkT)t b2 r:/? dmr2exp{[(r) — y(0)/k T} dr

w

= (2mmkT)! h-3 27ra® f: y? ezn:pl:%1 { - (%’)4 ly)+ 2(%’)2 m(y)}] dy, (44)

whex_'e we have neglected the contribution to the partition function from
portions of the cell outside the sphere of radius @/2, but this is certainly small
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owing to the repulsive field except at high temperatures. The partition
function for the whole system, when the energy zero is that of an atom at
rest at infinity, is then

F(T) = f(T)Nepr:le 1 ::2/1(%?)2— 1(%")4 +a(v)::| : (45)

where «(v) is an extra term inserted to take account of the interaction of
particles which are not nearest neighbours. For a face-centred cubic struc-
ture the interaction between such particles increases the attractive term
in the potential energy by about 20 9% and has a negligible effect on the
repulsive term (Lennard-Jones and Ingham 1925, Table I). We have
therefore

F(T) = f(T)xexp[l T{l zA( ) -()01(%0)4,] (46)

The expression  *(0) = { 24/1(%) 1(9‘—’)‘il (47)

v)] |

is the potential energy of each atom when the atoms are at the centres of

their cells. It has a maximum value equal to 1-44 when (%—’)~ = 1-2;

vy (= vy/N) is thus approximately 1-1 times the specific volume v* of the
crystal at the absolute zero, and A is 1-39 times the heat of sublimation at
the absolute zero.

The equation for the partition function may be written

A ommikT
log F(T) = {13( )—05( )‘+1og()n‘\ )+loag+ log (";"Z )

(48)
where ¢ is a function of (A/k7") and of (»,/v) only, viz.

: A ) e Vo\2
g =jo yiexp[m, {—(%0) l('z/)+2("-f-’) m(y)}:lcly. (49)

We have used the relation a3 = v2v* for a face-centred cubic structure.
All the equilibrium properties of the system may now be readily derived.
For example, the pressure is given by

0
pi= I\.I‘ETvlogF(T)

_Nkr A ofo\* 44 ((v, ~J,,. 9:!
= ) —20) )~ - ()] e

Vol. CLXIITI—A. F
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where g,, and g, are also functions of (A/k7") and (v,/v) only, given by

g = [ myexe] i~ (%) wr+2(2) mf Jay 60

4
Yy

and g = J: yl(y) expl:ﬁ { — (;) l(y)+ 2(%’)2m(y)}:|dy. (52)

Similarly the mean energy per atom is given by

SN

. A:o-s(%?)‘ 3 1-2("3?)2 + A(%)‘ ol — 2A(%°)2 (@/9) +ng} . (53)

and the specific heat by
= L[ ( ) < vo) (@2__—912)_4(29)"(%9—9;9".)
g v ¢
TP oo

where Tu fﬁl (y)exp l:lT{ (%‘9)4l(y)+2(%’)2m(y)}] dy, (55)

and ¢;,,, mm are given by similar expressions.
We note that the average value of the potential energy of each atom in its
cell is

= al2 a/2
Y(v, T) =J Yr(r) 4mr2 expl[ — yr(r) [k T] dr/fo 4mriexp[ — Y (r)/kT)] dr

. alogg
- I/T) '//(0

A 3o 5w

Hence the average potential energy in a cell, referred to the potential
at the centre as zero, is

x(v, T) = Pi(v, T)_¢(0)=A[(%9)‘§‘—2(%)2 g?"']. (57)

We see from (53), using (47) and (57), that the mean energy per atom is

B = 3*(0)+ x(v, T)+ 3k T, (58)
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and the total energy is NE. The factor § in the first term is due to the fact
that this term arises from the mutual potential energy of atoms, and it
might be expected that a similar factor should appear in the second term,
since this also is due to the extra mutual potential when the atoms are
disturbed from the centres of their cells. Some justification for the non-
appearance of this factor may be made as follows.

Let P and @ be the mean positions of two atoms and P’ and Q' be
simultaneous positions of the atoms near P and @ respectively. Let PQ = a,
PP' = r,, and Q@' = r,. Then we have for the mean potential of the two
atoms as they describe spheres of radii r, and r, about P and @ respectively
(to the second order)

H(P'Q) = dla)+2(x, —x3) ¢, + L¥(w; — 23)* Py

$(a) + 3{23 bp + i byy + 2 Puc) + 2k B + YR By + 2 D)

1 o*p 20
= ¢(a)+5(ri+rd) (é£+5£)

= ¢(@)+ X1+ Xa» (59)

where y, is the extra average energy of one atom due to its disturbance from
the centre and y, the corresponding energy of the other atom. Hence we
get two y terms for each ¢ term.

The values of g, g, and g, calculated by numerical integration for two
values of A/kT and a range of values of v/v, are given in Table I. The iso-
therms, deduced from them, are shown in fig. 2.

TaBLE I-—THE FUNOTIONS OF g, §; AND ¢,,

ART =9 AT =10

vy (vp/v)? g T TIm g 9 Im
11195 0-7 0-00180 0:000910 0-000173 000161 0-:000747 0-000139
1-291 0-6 0-00295 0-002042 0-:000372 0-00269 0:001723 0-000316
1-414 05 0-00515 0-00511 0-000875 0-00478 0-00441 0-:000762
1:581 0-4  0-00964 0-:01462 0-00228 0-00916 0-:01315 0-00208

1:826 03 0-01957 0:0495 0-00670 0:01920 0-0468 0-00643
2:236 02 0-0437 0-2211 0:02366 0:0445 0-2156 0:02347
2:575  0-15 0:0676 0:543 0-0482 0-:0700 0:546 0:0493
3162 0-1  0-1069 1-635 0-1084 0-1125 1-667 0-1126

From these functions we deduce the equation of state from equation (50),
the values of pv/NET being given in Table II. The isotherm for A/kT =9

F2
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appears to be close to the critical one, so far as can be judged from its graph.
From the relations (43) we have

A = cB?[44, (60)

I'OF

05 f

f
4473 -

RT
00
10 o R 30

Fi.. 2—Calculated isotherms. Curve I corresponds to k7'=1/9, and curve II to
kT =A/10 with the saturated vapour phase shown dotted. The upper curve is the
isotherm of a perfect gas.

TaBLE II—CALCULATED ISOTHERMS OF (GASES
IN THE CRITICAL REGION

AT =10 AT=9
v/v, (vg/v)2 pv/NET  puy/NkT  pv/NET  pvy/NkT
1-195 0-7 0-675 0565 1-202 1-006
1-291 0-6 0-218 0-169 0-765 0-593
1-414 0-5 0-046 0-033 0573 0-406
1-581 0-4 0-149 0-094 0-568 0:359
1-826 0-3 0-348 0-191 0-644 0-353
2-236 0-2 0:531 0-237 0:-788 0-352
2-575 0-15 0-642 0-249 0-825 0-320
3162 0-1 0-721 0-224 0:877 0-277

and so, adopting the value ¢ = 12 for a face-centred cubic arrangement, we
can derive the critical temperature from the formula

kT, = ¢B2[364 = B*3A4. (61)
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Now from the potential function given in (36) for two atoms for n = 12,
m = 6 we have

| 6(7) [max = B*/44, (62)
and so KT, = (4/3)| $(r) | max. (63)

which is similar to the result obtained in equation (30) by the simple model.
The values of the critical temperature, calculated from this formula using
the force fields given elsewhere by Lennard-Jones (1931, p. 475, Table I
or p. 476, fig. 3), are given in Table III, and they are remarkably close to
those observed.

TABLE III—CRiTicAL TEMPERATURES

| ¢ |max/k T (cale.) T.(obs.)
H, 31 41 34
Ne 36 48 44
N, 96 128 126
Ar 121 161 150

It is difficult to determine the critical volume accurately from the calcu-
lated curves without excessive labour, but it seems to be about 2v§, which
is equal to 2-2 times the specific volume at the absolute zero. This value is
rather too small. The calculated value of p,v,/kT, is about 0-7, whereas the
experimental value for many gases is about 0-27.

We have not included helium in this table because throughout this paper
we have used classical statistics, and quantum effects are likely to be appre-
ciable in this case. The formula does, however, give the order of magnitude
of the critical temperature even for helium. The method used in this paper
could be extended to include quantized vibrations. We may conclude that
the method reproduces the essential features of gases at high concentrations
and encourages further investigations on similar lines. It is hoped in a later
paper to calculate by similar methods the critical temperature of a film or
two-dimensional gas with a view to finding whether it is higher or lower than
that of the three-dimensional gas.

One of the authors is indebted to the Department of Scientific and Indus-
trial Research: for a grant.

SUMMARY

An attempt is made to find an equation of state of a gas at large densities
in terms of interatomic forces. The main idea is that an atom in a dense gas
is to be regarded as confined for most of its time to a cell, and that its average
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environment is something like that of an atom in a liquid or erystal. This
method abandons the attempt to calculate the properties of a dense gas
from binary encounters only but considers an atom as subject to a multiple
encounter all the time. The methods of statistical mechanics are used to
derive an equation of state and the formulae are applied to the inert gases,
for which the interatomic fields are known. The calculated values of the
critical temperature are found to be close to those observed.
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Reaction Kinetics in Films. The Hydrolysis of
Long-Chain Esters

By A. E. ALexaNDpER AND E. K. Ripear, F.R.S.
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INTRODUCTION

The hydrolysis of the simple esters of the short-chain fatty acids in the
bulk phase has been investigated under a variety of conditions (Moelwyn-
Hughes 1933, pp. 87, 245). This has now been extended to the insoluble
esters of the long-chain acids and alcohols. These are also of interest bio-
logically, since the natural breakdown and resynthesis of fats are probably
interfacial reactions.

The work of Hughes and Rideal (1933) on the oxidation of the unsaturated
fatty acids, and of Fosbinder and Rideal (1933) on the alkaline hydrolysis
of y-stearolactone, has shown that these interfacial or two-dimensional
reactions may differ from those in homogeneous solution; chiefly in the



