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Abstract

We study incompressible systems ofmotile particles with alignment interactions. Unlike their

compressible counterparts, inwhich the order-disorder (i.e., moving to static) transition, tuned by

either noise or number density, is discontinuous, in incompressible systems this transition can be
continuous, and belongs to a new universality class.We calculate the critical exponents to ϵ ( ) in an

ϵ = − d4 expansion, and derive two exact scaling relations. This is the first analytic treatment of a

phase transition in a newuniversality class in an active system.

1. Introduction

Emergent properties of interacting non-equilibrium systems are of widespread and fundamental interest. One of

the simplest, butmost striking, of these is the self-organized phenomenon of ‘flocking’—that is, collective

motion (CM) in large groups ofmotile organisms [1–10]. This phemenon is fascinating in part because its

occurrence in two spatial dimensions requires the spontaneous breaking of a continuous symmetry, which is

forbidden in thermal equilibriumby theMermin–Wagner theorem [11]. It was initially hoped [2] that the

transition into this novel state could be a continuous one belonging to a newuniversality class. However, it was

subsequently realized, fromboth simulations and theoretical analysis [12–18] of the hydrodynamic equations

[3–6], that as this putative continuous transition is approached from the ordered side, but before it can be

reached, the homogeneous CM state becomes unstable tomodulation of the density along themean velocity.

The transition from the homogeneous CM state (i.e., the ordered state) to the disordered state proceeds via two

first order transitions: one fromhomogeneous to banded, the next frombanded to disordered.

Since this instability requires density variations, we reason that the instabilitymight be eliminated bymaking

the system incompressible. In this paper, we show that, indeed, the order-disorder transition is continuous in an

incompressible system, and belongs to a newuniversality class.We emphasize that the incompressibility is

crucial for the existence of this continuous transition; in a compressible system, as shown in the theoretical

analyses listed above [12–18], the continuous transition is always preempted by the aforementioned banding

instability. In an incompressible system, such bands cannot form, since the density cannot vary.We

demonstrate this by finding, in a dynamical renormalization group (DRG) analysis of the hydrodynamic

equations for an incompressible activefluid in d spatial dimensions, a novel stablefixed point that controls the

transition. This calculation is done to order ϵ ( ) in an ϵ = − d4 expansion; to the same order, we calculate the

critical exponents of the transition.We also obtain two scaling laws relating these critical exponents which are

valid to all orders in ϵ (i.e., exact).

Our results are testable in both experiments and simulations. Three potential realizations are:
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(i) Systemswith strong repulsive short-ranged interactions between the active particles. Incompressibility has,

in fact, been assumed in, e.g., recent experimental studies on cellmotility [19]. In such systems, the

compressibility will be non-zero, but small. Hence, our incompressible results will apply out to very large

length scales, or, equivalently, very close to the transition, butwill ultimately crossover to the compressible

behaviour (i.e., a smallfirst order transition driven by the banding instability).

(ii) Systems with long-ranged repulsive interactions; here, true incompressibility is possible. Long-ranged

interactions are quite reasonable in certain contexts: birds, for example, can often see all theway across a

flock [20].

(iii) Motile colloidal systems in fluid-filled microfluidic channels. The forces exerted by the active particles are,

of course, tiny compared towhat would be needed to compress the background fluid, so that fluid is

effectively incompressible. Since the active particles drag the background fluidwith them, theirmotion is

effectively incompressible aswell. Indeed, experiments [21] show these systems do not exhibit the banding

instability [12–18] found in all compressible active systems. This also suggests a numerical approach:

simulating active particlesmoving through an incompressible fluid [22].

2.Genericmodel of incompressible activefluids

We formulate themost general hydrodynamicmodel for systems lacking bothmomentum conservation, and

Galilean invariance, consistent with the symmetries of rotation and translation invariance, and the assumption

of incompressibility. As the number density cannotfluctuate (by the assumption of incompressibility), the

velocityfield is the only hydrodynamic variable in the problem,which becomes soft as the transition is

approached. Since the velocity is small near the transition, we can expand the equation ofmotion (EOM) in

powers of the velocity. The symmetry constraints of translation and rotation invariance force the EOMvalid at

longwavelengths and times to take the form: [3–6]5

  λ μ∂ + = − − + + + ( )a bv v v v v v f( · ) , (1)t
2 2

where the pressure  enforces the incompressibility condition  =v· 0, f is a Gaussian ‘white noise’with

spatio-temporally Fourier transformed statistics:

ω ω δ δ ω ω′ ′ = + ′ + ′f f DPk k k k k( , ) ( , ) 2 ( ) ( ) ( ), (2)m n mn

and δ≡ −P k k kk( )mn mn m n
2 is the transverse projection operator. The compressiblemodel [3–6] differs from

thismodel only in the pressure  term, which is in this case a specified function of the density, and in that

 ≠v· 0which allows a termproportional to ( · v)v aswell. One need also then give an EOM for the density,

which is just the usual continuity equation .

The EOMequation (1) reduces, when = =a b0 , to the classicmodel of afluid forced at zerowavenumber

treated by [23] (their ‘model B’). For λ = 0, it reduces to a simple, time-dependent Ginzburg–Landau [24, 25]

dynamicalmodel for an isotropic ferromagnet with long ranged dipolar interactions [26] 6.

Because our system lacksGalilean invariance, λ need not (and in general will not) equal one, and the terms

− + ∣ ∣a b v v( )2 are allowed in the EOM.The latter terms are crucial as theymake possible the existance of a polar

ordered phase in an active system, which is not possible in a normal fluid.

3.Novel universality class

At themean field level, for < >a b0, 0 the system is in the ordered phase7with ∣ ∣ = −a bv , and for

> >a b0, 0 it is in the disordered phase with ∣ ∣ =v 0. To go beyond thismeanfield description, we employ the

DRGmethod [23] near the order-disorder transition. To do so, we spatio-temporally Fourier transform

equation (1), and project orthogonal towavevector k ; obtaining

5
This equation ofmotion is simplywhat onewould obtain from the equation ofmotion of references [3–6] by expanding for small v and

dropping all density-dependent terms.
6
The connection between our problem and the dipolarmagnet is that the long-ranged dipolar interaction inmagnetic systems couples to,

and therefore suppresses, the longitudinal component of themagnetization. See [26] formore details.
7
When <b 0, a higher order, stabilizing fifth order term ∣ ∣v v4 must be added to the right-hand side of ourmodel. In this case, the order-

disorder transition isfirst order even in the incompressiblemodel.
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∫ ∫λ
= − − − − −( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v G f P v v

b
Q v v vk k k k q k q k k q h q h˜ ˜ ˜ i

2
( ) ˜ ˜ ˜

3
( ) ˜ ˜ ˜ ˜ ˜ , (3)l l lmn m n lmnp m n p

q q h˜ ˜, ˜

⎡

⎣
⎢

⎤

⎦
⎥

wherewe have adopted the reduced notations ω≡k k˜ ( , ) and ∫ ∫ ∫= ≡
Ω π

Ω

π

q

q q˜ ,

d

(2 )

d

2

d

d
, andwe have defined

≡ +P P k P kk k k( ) ( ) ( )lmn lm n ln m, δ δ δ≡ + +Q P P Pk k k k( ) ( ) ( ) ( )lmnp lm np ln mp lp mn, and the ‘propagator’

ω μ≡ − + + −G k ak(˜) ( i )2 1. This propagator is just the linearized response function giving the velocity induced,

to linear order, by an external force.

Graphical representations of the various terms in equation (3) are shown infigure 1. For an excellent and

detailed exposition on themeaning and use of graphical techniques in the dynamical perturbative

renormalization group (DRG) approach, we refer the reader to [23].

We nowperform the standardDRGprocedure [23], averaging over short wavelength degrees of freedom,

and rescaling: → ℓer r, → ℓt e tz and → χℓev v . Here the dynamical exponent z and the roughness exponent χ

respectively relate time and velocity scales in the renormalized system to those in the physical problem. The

rescaling exponents z and χ are, of course, completely arbitrary. A very convenient choice of them, however, is

one that keeps the scale of velocityfluctuations in the renormalized system fixed. The values of z and χ that we

obtain by this criterionwill, by construction, then give the scaling of the physical time scales and velocity

fluctuationswith length scale (hence the terms ‘dynamical exponent’ and ‘roughness exponent’).

Our procedure is identical to the calculation formodel B in [23], except for amodified propagator, and some

additional Feynmann graphs due to the extra ∣ ∣b v v2 nonlinearity in our problem. At the one loop level, the non-

vanishing graphical contributions to the various coefficients in equation (3) are shown infigure 2.More details

of the calculation are given in the supplementalmaterials (stacks.iop.org/NJP/17/042002/mmedia).We obtain,

in d spatial dimensions, the following RG flow equations of the coefficients to one loop order and to linear order

in ϵ ≡ − d4 :

ℓ
μΛ= − −( )

a
za

g
a

d

d

9

2
, (4)

2 2

ℓ
χ= + −

b
z

g
b

d

d
2

17

2
, (5)

2
⎛

⎝
⎜

⎞

⎠
⎟

λ

ℓ
χ λ= − + −z

gd

d
1

5

3
, (6)

2
⎛

⎝
⎜

⎞

⎠
⎟

μ

ℓ
μ= − + +z

gd

d
2

4
, (7)

1
⎜ ⎟
⎛
⎝

⎞
⎠

ℓ
χ= − + −

D
z d D

d

d
( 2 ) , (8)

Figure 1.Graphical representations: (a) = Q Gk k( ) (˜)lmnp ; (b) = P Gk k( ) (˜)nij ; (c) =v k(˜)i ; (d) = ∣ ∣DP Gk k2 ( ) (˜)ij
2; (e) the nonlinear

termproportional to λ− i

2
; the line on the left represents v k(˜)i , while the two on the right represent v q(˜)m and −v k q(˜ ˜)n . (f) The

nonlinear termproportional to − b

3
; the line on the left represents v k(˜)i , while the three on the right represent − −v k q h(˜ ˜ ˜)m , v q(˜)n ,

and v h(˜)p .
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wherewe have defined dimensionless couplings:

λ

π μ
Λ

π μ
Λ≡ ≡ϵ ϵ− −g

S D
g

S Db

(2 )
,

(2 )
, (9)

d

d

d

d1

2

3 2 2

andwhere π Γ≡S d2 ( 2)d
d 2 is the surface area of a unit sphere in d dimensions, ϵ ≡ − d4 , andΛ is the

ultraviolet wavevector cutoff which is of order the inverse of some ‘microscopic’ length (e.g., the typical distance

between active particles). Since our interest is in the transition, we have, in the last four recursion relations (5)–

(8), set a= 0, and haveworked to linear order in a in (4). It is straightforward to verify that higher order terms in

a affect none of our results up to and including linear order in ϵ = − d4 .

Nowwe derive coupled, closed recursion relations for g
1,2

from the recursion relations (4–8).We begin by

taking the natural logarithmof our definitions equation (9) of g
1,2
:

λ μ= + − +g D Cln( ) ln( ) 2 ln( ) 3 ln( ) ln( ), (10)1

μ= + − +g D b Cln( ) ln( ) ln( ) 2 ln( ) ln( ), (11)2

wherewe have defined the constant Λ≡
π

ϵ−C
S

(2 )

d

d
, which is ‘constant’ in the sense that it does not change upon

renormalization. Differentiating both sides of (10) and (11)with respect to RG timeℓ therefore gives

ℓ λ

λ

ℓ μ

μ

ℓ
= + −

g

g

l D

D1 d

d

1 d

d

2 d

d

3 d

d
, (12)

1

1

ℓ ℓ μ

μ

ℓ
= + −

g

g

l D

D

b

b1 d

d

1 d

d

1 d

d

2 d

d
. (13)

2

2

Plugging the recursion relations (5)–(8) on the right-hand side of (12) and (13), gathering terms, and

multiplying (12) by g1 and (13) by g2 gives two closed flow equations for g
1,2

for arbitrary χ and z:

ℓ
ϵ= − −

g
g g g g

d

d

3

4

10

3
, (14)

1

1 1

2
1 2

ℓ
ϵ= − −

g
g g g g

d

d

1

2

17

2
. (15)

2

2 1 2 2

2

Although not necessary, it is convenient tomake a special choice of z and χ such that μ andD are keptfixed

at their bare values (i.e, μ0 andD0, respectively). The advantage of the (completely arbitrary) choice to keep μ

fixed is that the correlation length ξ is determined by the ratio μ

a
(specifically, ξ = μ

a
). Hence, by keeping μ

Figure 2.Non-vanishing diagrams at the one-loop level. Diagrams (a)–(d) contribute to a, b, λ and μ respectively.
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fixed, we can determine the scaling of ξ directly from the scaling of a, without having toworry about μ (since it is

heldfixed) at all. Likewise, keepingDfixed in addition keeps thefluctuations at the critical point unchanged

(since those are controlled by the ratio μ

D
, whichwill, with this choice, be unchanged). This enables us to get the

scaling offluctuations at the critical point directly from thefield rescaling χ , which connects physical

fluctuations to those in the renormalized system.

Wewill hereafter adopt this choice of z and χ , which is

ϵ χ ϵ= − + =
−

+ ( ) ( )z g
z d

2 4 ,
2

. (16)1
2 2

Wewill also hereafter use the subscript 0 to denote the bare (i.e., unrenormalized) values of the parameters.

Equation (4) nowbecomes

ℓ
μΛ= − − +

a g
g a g

d

d
2

4

9

2

9

2
. (17)

1

2 2
2⎜ ⎟

⎛
⎝

⎞
⎠

Equations (14), (15), (17) have a non-Gaussian fixed point in <d 4:

ϵ ϵ

ϵ ϵ

ϵ ϵ μΛ

= +

= +

= − +







( )

( )

( )

g

g

a* , (18)

1
* 124

113

2

2
* 6

113

2

27

226

2 2⎡
⎣

⎤
⎦

which can be shown by analyzing the three recursion relations to be a stable attractor of all points on a two-

dimensional surface (the ‘critical surface’ ) in the three-dimensional parameter space g g a( , , )
1 2

, but to be

unstable with respect to displacements off this critical surface. Theflows on the critical surface are illustrated in

figure 3. This is exactly the topology of renormalization groupflows that corresponds to a continuous phase

transitionwith universal exponents controlled by the fixed point that’s stable within the critical surface. Hence,

we conclude that the order-disorder is generically continuous in incompressible active fluids. Furthermore, as

far as we know, the fixed point we have obtained is novel, and thus the critical behaviour of incompressible active

fluids belongs to a newuniversality class.

4. Critical exponents

As for equilibriumphase transitions [24, 25], there are a number of universal critical exponents associatedwith

the order-disorder transition thatwe can obtain from this RG analysis. Readers interested in amore thorough

discussion of these exponents, and their derivation from the renormalization group recursion relations, are

referred to any one of a number of excellent textbooks (e.g., [24, 25]) that discuss this topic in farmore detail

than space allows us here. Suffice it to say that all of the analysis we present here is entirely standard in the study

of critical phenomena.

Figure 3.RGflows on the critical surface. Besides the unstableGaussianfixed point (black diamond) and the stablefixed described in

equation (18) (red square), there are two unstablefixed points: one at =g 0
1
* , = ϵ

g
2
*

2

17
, which is thefixed point of an isotropic

ferromagnet with long-ranged dipolar interactions [26] (purple circle), and one at =g 0
2
* , = ϵ

g
1
*

4

3
, which is the fixed point of afluid

forced at zerowavevector (model B of [23]) (blue triangle).
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All of these universal critical exponents are related to experimentallymeasurable correlation and response

functions of the activefluid. For example, several of them can be obtained from the two point velocity

correlation function 〈 + + 〉 ≡t T T C tv r R v R r( , ) · ( , ) ( , ), which depends on bare parameters b0, μ0,D0,

and λ0 and,most importantly, the proximity to the phase transition δ ≡ −a a a c
0 0 0 , where a0

c is the value of a0 at

the transition.Wewill show in amoment that the RGpredicts that this correlation function has a scaling form

for large rnear the transition:

ξ
= η− −

±C t r Y
r t

r
r( , ) , , (19)d

z
2

⎛

⎝
⎜

⎞

⎠
⎟

where the scaling functions ±Y in equation (19) are different on the disordered (+) and ordered (-) sides of the
transition, because the system is in different phases in the two cases. On the disordered side , we expect +Y x y( , )

to decay exponentially with both x and y, while on the ordered side, −Y x y( , )has amore complicated scaling

behaviour thatwewill discuss elsewhere [32]. Two of the universal critical exponents, η and z, are displayed

explicitly in (19). A third, the so called ‘correlation length exponent’ ν, is implicit in the correlation length ξ

appearing in (19), which diverges as the transition is approached. In an experiment or simulation, one can

approach the transition by tuning any one ofmanymicroscopic control parameters s (e.g., =s mean density or

noise strength). The RG then predicts that the correlation length ξ diverges algebraically with this control

parameter as the transition is approached:

ξ ∝ − ν−s s , (20)c

where ν is a universal exponent and sc is the value of the control parameter at which the transition occurs.

Another standard universal critical exponent is the ‘order parameter exponent’ β , which characterizes the

growth of the order parameter (in our case, themean velocity 〈 〉v ):

∝ − βs sv . (21)c

Thefinal two exponents characterize the response, near or at the transition, of the system to aweak external

field H; that is, simply adding a small constant vector H to the rhs of (1). On the disordered side of the transition,

we expect linear response:

χ= sv H( ) , (22)H

with the susceptibility χH (which should not be confusedwith the ‘roughness’ exponent χ introduced earlier)
divergingwith a universal exponent γ as the transition is approached from the disordered side:

χ ∝ − γ−s s s( ) . (23)cH

One can also ask about the response to this field right at the transition =s sc. This defines thefinal universal

exponent δ, via:

∝ δv H , (24)
1

where 〈 〉v is in the same direction as the externalfield H.

All of the scaling lawswe have just specified are, of course, the leading order behaviour near the transition.

Corrections to this themselves obey a scaling law, characterized by a ‘correction to scaling exponent’ <y 0
2

; for

example

χ ξΛ= − +γ−s A s s( ) 1 ( ) , (25)y
cH

2⎡
⎣

⎤
⎦

whereA is a non-universal constant.

Wewill nowuse the RG to derive all of these scaling laws, and calculate, to linear order in ϵ = − d4 , the

values of the universal exponents.

We begin by noting that the exponential runaway from the critical surface in the unstable direction near the

stablefixed point (18) grows like ℓe ya , with the exponent

ϵ ϵ= − + ( )y 2
58

113
. (26)a

2

This eigenvalue determines the critical exponent ν governing the critical behaviour of the velocity correlation

length ξ. In addition, the smaller (inmagnitude) of the two negative eigenvalues of the criticalfixed point gives

the ‘correction to scaling exponent’ y2 [24]; wefind ϵ ϵ= − + y ( ).
2

31

113

2

To showhow ya determines ν, and to derive the scaling law (19), we use theRG to connect the original

C tr( , ) to that of the rescaled system:

6
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δ λ δ ℓ ℓ λ ℓ= χℓ ℓ ℓ− −( ) ( )C t a b C t a br r, ; , , e e , e ; ( ), ( ), ( ) , (27)z
0 0 0

2

wherewe have not displayed μ0 andD0, since they are kept fixed in the RG. By choosing ℓ Λ= rln ( ), and using

δ ℓ δ≈ ℓa a( ) e y
0

a , we can obtain from this a scaling form for large r:

ξ
= η− −

±C t r Y
r t

r
r( , ) , . (28)d

z
2

⎛

⎝
⎜

⎞

⎠
⎟

In particular, the equal time correlation function scales as η− −r d2 . In equation (28), the exponent η is given by

η χ ϵ ϵ ϵ= − − = − + = + ( ) ( )d z2 2 2
31

113
, (29)2 2

the scaling functions ±Y by

Λ λ= ±±
−( )Y x y C y x b( , ) , ; , *, * , (30)y1 a

where b* and λ* are the nonzero fixed values of ℓb ( ) and λ ℓ( ), respectively, and the diverging correlation
length ξ by ξ Λ δ≡ ∣ ∣ ν− −a1

0 , where the correlation length exponent

ν ϵ ϵ= = + + ( )
y

1 1

2

29

226
. (31)

a

2

In our expression for the ϵ expansions for η, we have replaced χ and z by their values at the fixed point (18),

which is valid given that r is large and the system is sufficiently close to the transition.We do so consistently when

calculating other exponents aswell. Thefirst line of equation (29) is exact (i.e., independent of the ϵ-expansion),

as it is simply the definition of η.

As discussed earlier, the order-disorder transition can be driven by tuning any one ofmanymicroscopic

control parameters (e.g., density or noise strength).Whatever control parameter s is tuned, we expect

− ∝ −a a s s( )c
0 0 c by analyticity near sc, where sc is the value of the control parameter s at the transition. As a

result, the velocity correlation length ξ just defined diverges as ξ ∝ ∣ − ∣ ν−s sc as any control parameter s is tuned.

Nowwe calculate themagnitude of the order parameter in the ordered state near the critical point. The RG

connects the average velocity of the original system and that of the rescaled systemwith the relation

δ λ δ ℓ λ ℓ= χℓ ℓ( ) ( )a b a bv v, , e e , ( ), ( ) . (32)y
0 0 0 0 a

This relation holds for allℓ. Tomake the best possible use of it, wewill chooseℓ such that δ ℓa e y
0

a is of order 1.

Therefore,ℓ is large since δa0 is small near the critical point, and hence, both ℓb ( ) and λ ℓ( )flow to their

nonzerofixed values. Therefore, the quantity δ ℓ λ ℓ λ〈 〉 ≈ 〈 〉ℓ
( )( )a b bv ve , ( ), ( ) (1), *, *y

0
a should be  (1),

and is in any case independent of the bare parameters, in particular a0. Hence, all the singular dependence on

−s s( )c on the rhs of the equality (32) (indeed, all of the dependence on the bare parameters) is contained in the

exponential (which depends in particular on δa0 since the choice ofℓ thatmakes δ =ℓ
a e (1)y

0
a obviously

does). This implies ∣〈 〉∣ ∼ ∣ − ∣βs sv c with

β νχ ϵ ϵ= − = − + ( )
1

2

6

113
. (33)2

Thefirst equality in this expression, which is exact, can be rewritten in terms of η using the definition of η

embodied in the first equality of (29), giving the exact hyperscaling relation

β
ν

η= − +d
2

( 2 ). (34)

In this respect, our system is similar to equilibrium systems, inwhich (34) also holds [25].

We study next the response of the system to aweak externalfield H; that is, simply adding a small constant

vector H to the rhs of (1). In this case, the RG leads to the scaling relation

δ λ δ ℓ λ ℓ= χℓ ℓ ℓ( ) ( )a b H a b Hv v, , , e e , ( ), ( ), e , (35)y y
0 0 0 0 a H

where ≡ ∣ ∣H H and yH is the RG eigenvalue of the externalfieldH at thefixed point (18). As there are no one

loop graphical corrections to the externalfield, we can obtain yH to ϵ ( )by simple power counting, which gives

χ ϵ= − + ( )y z . (36)H
2
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Again choosingℓ such that δ ℓa e y
0

a is of order 1, we obtain

δ λ Λξ λ Λξ= χ ( )( )a b H b Hv v, , , ( ) 1, *, *, ( ) . (37)y
0 0 0 H

Since the expectation value on the right-hand side is evaluated in a system far from its critical region (since

δ =a 1), we expect linear response to the externalfield on that sidewith an order one susceptibility. Hence

δ λ Λξ Λξ ξ∼ ∝χ ℓ χ+( )a b H H Hv , , , ( ) ( ) , (38)y y
0 0 0 H H

which implies a linear susceptibility χH which diverges as ∣ − ∣ γ−s sc with

γ ν χ ν ϵ ϵ ϵ= + = + = + + ( ) ( ) ( )y z 1
27

226
. (39)H

2 2

Note that equations (29), (39) seem to suggest that η and γ satisfy Fisher’s scaling law γ η ν= −(2 ) . However,

since our system is out of equilibrium and thus the fluctuation dissipation theorem is not expected to hold, we
do not expect Fisher’s scaling law to hold; indeed, the ϵ ( )2 terms probably violate it. Thefirst line of

equation (39) is exact, however, and can be used to derive another scaling law, aswewill now show.

Turning on a smallfield right at the transition, we can again relate then the average velocities of the original

and the rescaled systems using equation (35).However, δ ℓa ( )nowflows to 0 for largeℓ since the system is right

at the critical point. Therefore, by choosing ℓ = H yln(1 ) H , we obtain theH-dependence of v :

δ λ λ=
χ

− ( )( )a b H H bv v, , , 0, *, *, 1 . (40)y
0 0 0 H

Again, all of the dependence on baremodel parameters is now contained in the prefactor − χ

H yH . Comparing (40)

with our definition (24) of the critical exponent δ reveals that δ = −
χ

yH . Combining this with the exactfirst

equalities in equations (33), (39), we obtainWidom’s scaling relation

γ β δ= −( 1), (41)

which is exact. Plugging the ϵ-expansions of γ and β into this relation, we find

δ ϵ ϵ= + + ( )3
51

113
. (42)2

5.Numerical estimation

Wecan estimate the numerical values of the exponents in spatial dimension d=3 as follows:We first choose a

scaling relation satisfied by any three exponents (e.g., equation (23) for η, β , and ν).We then determine

numerical values for two of them (e.g., ν and β) by simply setting ϵ = 1 in the ϵ-expansion for them, and

dropping the unknown ϵ ( )2 terms.Wenow get the value of the third exponent (e.g., η) by requiring that the

scaling law (i.e., equation (23) ) hold exactly in d=3. In this example, this gives β = − ≈1 2 6 113 0.447,

ν = + ≈1 2 29 226 0.628, and η β ν= − ≈2 1 0.424. Next, we take η and ν to be given by their respective ϵ-

expansionswith ϵ = 1, and get β from the exact scaling relation. This gives: ν = + ≈1 2 29 226 0.628,

η = ≈31 113 0.274, and β ν η= + ≈(1 ) 2 0.400. Finally, we take β and η from their ϵ-expansions, and get ν

from the exact scaling relation, obtaining η = ≈31 113 0.274, β = − ≈1 2 6 113 0.447, and

ν β η= + =2 (1 ) 0.702.

Note that each exponent gets two possible values in this approach: one fromdirectly setting ϵ = 1 in the ϵ-

expansion, and another by obtaining the exponent from the exact scaling relation in d=3.

Applying the same approach toWidom’s exact scaling relation (i.e., equation (30)) and the three associated

exponents γ , β , and δ gives the possible values: β ≈ 0.447 or β ≈ 0.457, δ ≈ 3.451or δ ≈ 3.503, and γ ≈ 1.119

or γ ≈ 1.096.

So if we look at the range of values we have found for each of the exponents, we have η⩽ ⩽0.274 0.424,

ν⩽ ⩽0.628 0.702, β⩽ ⩽0.400 0.457, δ⩽ ⩽3.451 3.503, and γ⩽ ⩽1.096 1.119. Assuming, as seems

reasonable (and as is true for, e.g., the critical exponents for the equilibrium  n( )model [25]), that the correct

values lie within the range spanned by the different approaches we have used here, we can conclude that, in

spatial dimension d=3, the critical exponents are as shown in the second columnof table 1.

Comparing the critical exponents with the known values for the two equilibrium analogs of our system: the

three-dimensional, three componentHeisenbergmodel (i.e., the  (3)model) with andwithout dipolar

interactions (third and fourth columns respectively in table 1), we see that ν and β are very close in all three

models. The situation is a little better for γ and δ. The biggest difference, however, is clearly in η, which ismuch

larger in the incompressible activefluid. Thus experiments to determine this exponent, which, as can be seen
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from equation (17), can be deduced fromvelocity correlations right at the critical point, will provide the clearest

andmost dramatic evidence for the non-equilibriumnature of this system, and the novelty of its universality

class.

The values of the exponents in d=2obviously can not be reliably estimated quantitatively from the ϵ−4

expansion.We do note, however, that the ordered state is expected to exist and to have true long-ranged order.

This is clear since true long-ranged order exists even in the compressible problem,which obviously hasmore

fluctuations than the incompressible problemwehave studied here.Hence, we do not expect this problem to be

like the equilibrium d2 XYmodel, inwhich [28] the ordered state only has quasi-long-ranged order (i.e.,

algebraically decaying correlations).We therefore do not expect 2d incompressible activefluids to exhibit any of

the singular behaviour of exponents found in the 2d equilibriumXYmodel; in particular, there is no reason to

expect ν = ∞. Beyond this, there is little we can say quantitatively about d=2 beyond the expectation that the

critical exponents β , ν, η, δ, and γ should be further from theirmeanfield values β ν= = 1 2, η = 0, δ = 3,

and γ = 1 than they are in d=3. This implies that in d=2, β will be smaller, and the four other exponents will be

bigger, than the values quoted above for d=3.We also note that the exact scaling relations equations (34), (41)

will hold in d=2, and that all of the exponents will be universal (i.e., the same for all incompressible activefluids)

in d=2.

6. Conclusion and outlook

Wehave studied the order-disorder transition in incompressible activefluids using a dynamical ϵ = − d4

expansion. This is the first study of the static tomoving phase transition in activematter to go beyondmean-field

theory, and include the effects offluctuations on the transition.Wefind a stable non-Gaussian fixed point,

which implies a continuous transition, whose critical exponents were calculated to ϵ ( ). This fixed point is new,

and all of the critical exponents differ from those found for any previously knownphase transition. Therefore,

the universality class of this transition is new. In addition, we found that among the five critical exponents we

calculated, there are two exact scaling relationswhich are the same as those in equilibrium ferromagnetic

transitions. This is despite the fact that our system is fundamentally nonequilibrium, and that the universality

class of its transition is new. Furthermore, we connected ourmodel with two classic universality classes

discovered in the early days of the renormalization group, namely the randomly stirred fluidmodel [23], and the

dipolar ferromagnetmodel [26] (see figure 3). Specifically, we nowknow that the twofixed points associated to

the two classic universality classes are unstable in the combinedmodel we considered here.

Our predictions on the critical exponents can be tested inmotile systems (both experimental and simulated)

with strong repulsive interactions between the particles, e.g., in bacterial suspensions like those studied in

[19, 29], provided that the system can be tuned to reach the critical point. The exponent β can be determined by

measuring the average velocity. The exponents η and the correlation length (which determines ν) can be

obtained by the velocity correlation functions. The exponents γ and δ can be obtained bymeasuring the

response of the average velocity to an external perturbation. Inmagnetotactic bacteria; the perturbation can be a

magnetic field [30], in chemotactic bacteria, it can be a nutrient gradient [31].

Future theoretical work [32] on this problemwill includeworking out in quantitative detail the cutoff of the

continuous transition by the banding instability in systemswith a small, but non-zero, compressibility.

Acknowledgments

JT thanksNicholasGuttenberg for explaining how to simulate systemswith long-ranged interactions. He also

thanks theDepartment of Physics, University of California, Berkeley, CA; theMax Planck Institute for the

Physics of Complex Systems (MPI-PKS), Dresden, Germany; the AspenCenter for Physics, Aspen, CO; the Isaac

Newton Institute, Cambridge, UK; theKavli Institute for Theoretical Physics, Santa Barbara, CA; and the

Department of Bioengineering, Imperial College, London,UK for their hospitality while this workwas

Table 1.Comparisons between the critical exponents obtained in this work and othermodels in spatial dimen-
sion d=3.

Exponents Incomp. active fluids Heisenbergmodel [26] Heisenbergwith dipolar interactions [27]

η 0.35 ± 0.08 0.033 ± 0.004 0.023 ± 0.015

β 0.43 ± 0.03 0.3645 ± 0.0025 0.38 ± 0.02

δ 3.48 ± 0.03 4.803 ± 0.037 4.45 ± 0.04

γ 1.11 ± 0.01 1.386 ± 0.004 1.37 ± 0.02

ν 0.67 ± 0.04 0.705 ± 0.003 0.69 ± 0.02

9

New J. Phys. 17 (2015) 042002



underway.He also thanks theUSNSF for support by awards #EF-1137815 and #1006171; and the Simons

Foundation for support by award #225579. LC acknowledges support by theNational Science Foundation of

China (underGrantNo. 11474354) and the Fundamental Research Funds for theCentral Universities (under

GrantNo. 2013XK04). CFL thanks theMPI-PKSwhere the early stage of this workwas performed.

References

[1] Reynolds C 1987 Flocks, herds, and schools: a distributed behavioralmodelComput. Graph. 21 25

Deneubourg J L andGoss S 1989Collective patterns and decision-making Ethology Ecol. Evol. 1 295

HuthA andWissel C 1990Themovement of fish schools: a simulationmodelBiologicalMotion (LectureNotes in Biomathematics) ed

WAlt and EHoffmann (Berlin: Springer) pp 577–95

Partridge B L 1982The structure and function offish schools Sci. Am. 114–23

[2] Vicsek T, CzirókA, Ben-Jacob E, Cohen I and ShochetO 1995Novel type of phase transition in a system of self-driven particles Phys.

Rev. Lett. 75 1226

Czirok A, StanleyHE andVicsek T 1997 Spontaneously orderedmotion of self-propelled particles J. Phys. A:Math. Gen. 30 1375

[3] Toner J andTuY-H 1995 Long-range order in a two-dimensional dynamical XYmodel: howbirds fly togetherPhys. Rev. Lett. 75 4326

[4] Tu Y-H, Toner J andUlmM1998 Soundwaves and the absence ofGalilean invariance inflocks Phys. Rev. Lett. 80 4819

[5] Toner J andTuY-H 1998 Flocks, herds, and schools: a quantitative theory of flockingPhys. Rev.E 58 4828

[6] Toner J, TuY-H andRamaswamy S 2005Hydrodynamics and phases offlocksAnn. Phys. 318 170

[7] LoomisW1982TheDevelopment of Dictyostelium discoideum (NewYork: Academic)

Bonner J T 1967Cellular SlimeMolds (Princeton,NJ: PrincetonUniversity Press)

[8] RappelW J,Nicol A, Sarkissian A, LevineH and LoomisWF1999 Self-organized vortex state in two-dimensional Dictyostelium

dynamics Phys. Rev. Lett. 83 1247

[9] Voituriez R, Joanny J F and Prost J 2005 Spontaneous flow transition in active polar gelsEurophys. Lett. 70 404

[10] Kruse K, Joanny J F, Jülicher F, Prost J and SekimotoK 2005Generic theory of active polar gels: a paradigm for cytoskeletal dynamics

Eur. Phys. J.E 16 5

[11] MerminNDandWagnerH1966Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropicHeisenberg

models Phys. Rev. Lett. 17 1133

Hohenberg PC1967 Existence of long-range order in one and two dimensions Phys. Rev. 158 383

[12] Bertin E,DrozMandGregoire G 2006 Boltzmann andhydrodynamic description for self-propelled particles Phys. Rev.E 74 022101

[13] Bertin E,DrozMandGregoire G 2009Hydrodynamic equations for self-propelled particles:microscopic derivation and stability

analysis J. Phys. A:Math. Theor. 42 445001

[14] Mishra S, BaskaranA andMarchettiMC2010 Fluctuations and pattern formation in self-propelled particles Phys. Rev.E 81 061916

[15] Farrell FDC,MarchettiMC,MarenduzzoD andTailleur J 2012 Pattern formation in self-propelled particles with density-dependent

motility Phys. Rev. Lett. 108 248101

[16] Yamanaka S andOhta T 2014 Formation and collision of traveling bands in interacting deformable self-propelled particles Phys. Rev.E

89 012918

[17] Bialké J, LöwenH and Speck T 2013Microscopic theory for the phase separation of self-propelled repulsive disksEurophys. Lett. 103

30008

[18] Ihle T 2013 Invasion-wave-induced first-order phase transition in systems of active particles Phys. Rev.E. 88 040303

[19] WensinkHH et al 2012Meso-scale turbulence in living fluids Proc. Natl Acad. Sci. 109 14308

[20] PearceD JG,Miller AM,RowlandsG andTurnerMS 2014Role of projection in the control of birdflocks Proc. Natl Acad. Sci. 111

10422

[21] Bricard A, Caussin J-B, DesreumauxN,DauchotO andBartoloD 2013Emergence ofmacroscopic directedmotion in populations of

motile colloidsNature 503 95

[22] Zöttl A and StarkH2014Hydrodynamics determines collectivemotion and phase behavior of active colloids in quasi-two-

dimensional confinement Phys. Rev. Lett. 112 118101

[23] See, e.g., ForsterD,NelsonDR and StephenM J 1977 Large-distance and long-time properties of a randomly stirred fluidPhys. Rev.A

16 732

[24] Ma S-K 2000Modern Theory of Critical Phenomena (Boulder, CO:Westview)

[25] Chaikin PMand Lubensky TC1995Principles of CondensedMatter Physics (Cambridge: CambridgeUniversity Press)

[26] FisherME andAharonyA 1973Dipolar interactions at ferromagnetic critical points Phys. Rev. Lett. 30 559

Aharony A and FisherME1973Critical behavior ofmagnets with dipolar interactions: I. Renormalization group near four-

dimensions Phys. Rev.B 8 3323

Aharony A 1973Critical behavior ofmagnets with dipolar interactions: II. Feynman-graph expansion for ferromagnets near four-

dimensions Phys. Rev.B 8 3342

Bruce ADandAharony A1974Critical exponents of ferromagnets with dipolar interactions: second-order ϵ expansion Phys. Rev.B

10 2078

[27] Guida R andZinn-Justin J 1998Critical exponents of theN-vectormodel J. Phys. A:Math. Gen. 31 8103

Zinn-Justin J 2001 Precise determination of critical exponents and equation of state byfield theorymethodsPhys. Rep. 344 159

[28] Kosterlitz JM andThouless D J 1973Ordering,metastability and phase transitions in two-dimensional systems J. Phys. C: Solid State

Phys. 6 1181

Kosterlitz JM1974The critical properties of the two-dimensional xymodel J. Phys. C: Solid State Phys. 7 1046

Kosterlitz JM andThouless D J 1978Physics in Two-Dimensions (Progress in LowTemperature PhysicsVol VII-B) edDFBrewer

(Amsterdam:North-Holland)

[29] Sokolov A, Aranson I, Kessler J andGoldstein R 2007Concentration dependence of the collective dynamics of swimming bacteria Phys.

Rev. Lett. 98 158102

[30] Blakemore R 1975Magnetotactic bacteria Science 190 377

[31] Adler J 1966Chemotaxis in bacteria Science 153 708

[32] Chen L, Toner J and LeeC F 2015 unpublished

10

New J. Phys. 17 (2015) 042002

http://dx.doi.org/10.1145/37402.37406
http://dx.doi.org/10.1080/08927014.1989.9525500
http://dx.doi.org/10.1038/scientificamerican0682-114
http://dx.doi.org/10.1038/scientificamerican0682-114
http://dx.doi.org/10.1038/scientificamerican0682-114
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1088/0305-4470/30/5/009
http://dx.doi.org/10.1103/PhysRevLett.75.4326
http://dx.doi.org/10.1103/PhysRevLett.80.4819
http://dx.doi.org/10.1103/PhysRevE.58.4828
http://dx.doi.org/10.1016/j.aop.2005.04.011
http://dx.doi.org/10.1103/PhysRevLett.83.1247
http://dx.doi.org/10.1209/epl/i2004-10501-2
http://dx.doi.org/10.1140/epje/e2005-00002-5
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRevE.74.022101
http://dx.doi.org/10.1088/1751-8113/42/44/445001
http://dx.doi.org/10.1103/PhysRevE.81.061916
http://dx.doi.org/10.1103/PhysRevLett.108.248101
http://dx.doi.org/10.1103/PhysRevE.89.012918
http://dx.doi.org/10.1209/0295-5075/103/30008
http://dx.doi.org/10.1209/0295-5075/103/30008
http://dx.doi.org/10.1103/PhysRevE.88.040303
http://dx.doi.org/10.1073/pnas.1202032109
http://dx.doi.org/10.1073/pnas.1402202111
http://dx.doi.org/10.1073/pnas.1402202111
http://dx.doi.org/10.1038/nature12673
http://dx.doi.org/10.1103/PhysRevLett.112.118101
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1103/PhysRevLett.30.559
http://dx.doi.org/10.1103/PhysRevB.8.3323
http://dx.doi.org/10.1103/PhysRevB.8.3323
http://dx.doi.org/10.1103/PhysRevB.10.2078
http://dx.doi.org/10.1088/0305-4470/31/40/006
http://dx.doi.org/10.1016/S0370-1573(00)00126-5
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1103/PhysRevLett.98.158102
http://dx.doi.org/10.1126/science.170679
http://dx.doi.org/10.1126/science.153.3737.708

	1. Introduction
	2. Generic model of incompressible active fluids
	3. Novel universality class
	4. Critical exponents
	5. Numerical estimation
	6. Conclusion and outlook
	Acknowledgments
	References

