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Critical point and supercritical regime of MgO
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The position of the critical point determines the top of the liquid-vapor coexistence dome, and it is a physical
parameter of fundamental importance in the study of high-energy shocks, including those associated with large
planetary impacts. For most major planetary materials, such as oxides and silicates, the estimated position of
the critical point is below 1 g/cm3 at temperatures above 5000 K. Here we compute the position of the critical
point of one of the most ubiquitous materials: MgO. For this we perform first-principles molecular dynamics
simulations. We find the critical density to be in the 0.45–0.6 g/cm3 range and the critical temperature in the
6500–7000 K range. We investigate in detail the behavior of MgO in the subcritical and supercritical regimes,
and we provide insight into the structure and chemical speciation. We see a change in Mg-O speciation toward
lower degrees of coordination as the temperature is increased from 4000 to 10 000 K. This change in speciation is
less pronounced at higher densities. We observe the liquid-gas separation in nucleating nanobubbles at densities
below the liquid spinodal. The majority of the chemical species forming the incipient gas phase consists of
isolated Mg and O atoms and some MgO and O2 molecules. We find that the ionization state of the atoms in the
liquid phase is close to the nominal charge, but it almost vanishes close to the liquid-gas boundary and in the gas
phase, which is consequently largely atomic.
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I. INTRODUCTION

Giant impacts are a characteristic of the early stages of the
evolution of planets, when chaotic trajectories of planets and
planetesimals oftentimes intersect. The impact processes can
be so energetic that they can produce partial or even total melt-
ing and/or vaporization of the bodies involved. The resulting
ejecta gather to form a disk. If the temperatures reached during
the peak of the impacts exceed the conditions of the critical
point (CP), the constituting materials of those celestial bod-
ies become supercritical. The resulting disks would then be
monophasic. Upon cooling of a supercritical disk, or in case
the supercritical conditions are not reached in the disk during
the impact, the system evolves toward a biphase system along
the liquid-vapor equilibrium curve. As the maximum of the
liquid-vapor equilibrium is fixed by the CP, the position of the
CP itself is of fundamental importance in understanding large
and giant planetary impacts. And even though giant impacts
may be considered rare events, they can be responsible for
the creation of planets and moons, or sometimes for their
destruction.
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Currently, the most widely accepted hypothesis for the
formation of our Moon is one such giant impact: a Mars-
sized impactor, called Theia, collided with the proto-Earth.
This giant impact melted, vaporized, and rendered supercrit-
ical a significant portion if not all of the impactor and of
the proto-Earth [1–5], creating a large accretion disk from
which the Moon formed. Using constitutive equations of the
materials involved in the impact, smoothed-particle hydro-
dynamics (SPH) simulations [6] can describe some of the
complex aspects of these giant impacts, and predict the out-
come of such planetary impacts as well as the formation of
protolunar disks. These SPH simulations are large consumers
of data from shock equations of state, like SESAME [7] or
ANEOS [8]. Additional meaningful data consist of super-
critical points, equations of state of supercritical fluids, and
liquid-vaporization equilibria.

Magnesium oxide, MgO, is one of the fundamental build-
ing blocks of rocky planets, being a ubiquitous component
that appears in most complex silicate minerals. It adds up
to roughly 38% [9] of the Earth’s and Moon’s composition.
Deep inside rocky telluric planets, a distinct layer may de-
velop where (Mg,Fe)O forms a mineral by itself, namely
magnesiowüstite. In the Earth this layer, containing also
(Mg,Fe)SiO3 bridgmanite, corresponds to the lower mantle,
which is the largest part of our planet by volume.

Moreover, MgO is an archetype of countless ionic AB
diatomic compounds, many of which are minerals or techno-
logical materials. Its face-centered-cubic B1 structure, stable
at ambient conditions, represents the most symmetric and
most common structure of AB materials.
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Because of its relevance for both planetary sciences and
materials science, MgO has been studied extensively, both
experimentally and theoretically, over a wide range of pres-
sures and temperatures. At ambient pressure, the melting
point lies at 3125 K and 3.6 g/cm3, and the boiling point
is at 3870 K. The first numerical predictions of the melt-
ing line [10,11] overestimated the temperatures, while the
first experimental results [12] underestimated them. Modern
molecular-dynamics simulations predicted the melting of the
B1 phase to occur at 3100 K and 0 GPa and at 9400 K and
240 GPa [13].

The high-pressure and high-temperature region was in-
vestigated extensively in the past [14–19]. A B1-B2 phase
transition was confirmed in an experimental setting [16,17]
and in more recent numerical studies [19,20]. The pressure-
volume equation of state was measured up to 600 GPa, and the
temperature and optical reflectivity to beyond 1400 GPa and
50 000 K in shock experiments [16]. These conditions, while
not relevant for the Earth, can be reached inside super-Earth
exoplanets, where this phase transition might induce further
layering in the rocky mantles of these planets [18].

At the other side of the phase diagram, the liquid-vapor
equilibrium line and the position of the critical point are so
far almost unknown. This is due to experimental difficul-
ties of sampling both low densities and high temperatures.
Theoretical [21] and experimental (molecular beam epitaxy
and vacuum thermogravity apparatus) [22,23] studies suggest
that the vaporization of MgO crystals is a congruent process,
the resulting gas obtained from heating MgO crystals being
formed of a stoichiometric mixtures of Mg and atomic O gas.
This behavior is expected because of the simple chemistry
and stoichiometry of magnesia. But these studies stop short at
relatively low temperature, and they fail to reach the CP and
to explore the supercritical regime. For the large majority of
rock-forming minerals, such as feldspars [24], MgSiO3, and
Mg2SiO4, the vaporization is incongruent [21,24–26].

Here we characterize the high-temperature low-density re-
gion of MgO using ab initio molecular dynamics (MD) in
the density functional theory (DFT) framework. These con-
ditions cover the conditions of the liquid spinodal and the
critical point and expand into the supercritical regime. The
paper is organized in four main parts. Following the introduc-
tion, Sec. II details the methodology, the simulations, and the
postprocessing. Section III discusses in detail the results:
the position of the critical point, the structure of the fluids, the
transport properties, the vibrational spectrum, and the elec-
tronic atomic charges. The paper ends with a short discussion
and conclusions.

II. METHODOLOGY

A. First-principles molecular dynamics

We study MgO over a broad range of thermodynamic con-
ditions that cover the low pressures and high temperatures
characteristic of the liquid side of the liquid-vapor equilibrium
dome. For this, we perform first-principles molecular dy-
namics (MD) calculations based on density-functional theory
(DFT) using the Vienna Ab initio Software Package (VASP)
implementation [27–31].

We employ the planar augmented wave function
(PAW) [32] flavor of the DFT, with standard PAW pseu-
dopotentials for Mg and O, 3s2 with a core radius of 1.06 Å
for Mg, and 2s22p4 with a core radius of 0.80 Å for O. We use
the Perdew-Burke-Ernzerhof formalism of the generalized
gradient approximation [33] for the exchange-correlation
functional. The mass of the thermostat was set such that
the temperature fluctuations have approximately the same
frequencies as the typical phonon-frequencies of MgO, and
it was not adapted to the density. The temperature of the
system is controlled with a Nosé-thermostat [34]. We employ
a kinetic energy cutoff of the plane waves of 550 eV, and we
sample the reciprocal space in the � point. These parameters
ensure a precision of the calculations for the energy on the
order of 5 meV/at, and for the pressure on the order of 2 kbar.

As is customary in molecular-dynamics simulations of flu-
ids, the systems are modeled using cubic simulation boxes,
which are periodically repeated along the three directions of
the space. We start the simulations from a 3 × 3 × 3 supercell
of MgO with B1 structure, with lattice parameter a = 4.211 Å
[35]. These supercells contain 216 atoms, i.e., 108 formula
units. We heat this supercell up to 5000 K using a heating
rate of 0.5 K/fs. We monitor the diffusion of the atoms and
find that at this temperature and density, MgO is in a fluid
state, i.e., the self-diffusivity of atoms is finite and positive.
After thermalization for 1 ps at 5000 K, this configuration
constitutes the starting point of our simulations. We go from
one temperature to another as needed to follow the different
isotherms, increasing or decreasing the temperature in steps
of 0.5 K/fs. We sample the density space by changing the
unit-cell parameter in steps of 1 Å. The production runs at
any given point in pressure and temperature are started after
allowing for a thermalization period of 0.5–1 ps. The average
duration of the production simulations is on the order of 20 ps
for the lower temperatures and higher density systems, and
it decreases to a minimum of 5 ps for the high-temperature
low-density systems, which are considerably more computa-
tionally heavy.

To ascertain the magnitude of the finite-size effects, we
ran tests on systems of several densities at 5000 K, with 64
and 512 atoms. The results of these tests can be found in
the supplemental material. We find that already at system
sizes of 64 atoms, the results start to converge. Our simula-
tions with 216 atoms yield almost the same result, in terms
of energy, pressure, and equation of states, as the simula-
tions with 512 atoms. This is consistent with the analysis of
finite-size effects in forsterite (Mg2SiO4) melts [26], where
a system size of 56 atoms already approaches the critical
temperature within the accuracy range presented in this re-
search. Furthermore, employing the van der Waals correction
for the dispersive forces at the smallest density investigated
here caused no appreciable difference for bond lifetimes or
pressure.

B. Finding the position of the critical point

We compute the variation of the pressure as a function
of density along various isotherms. We start with the high-
density simulations, where the stable phase is the liquid. As
we decrease the density, the pressure continuously decreases.
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Under enough stretching, the pressure passes below the liquid-
vapor equilibrium value; the liquid becomes metastable. The
metastable region is where the vapor is thermodynamically
stable, but the liquid is mechanically stable. Under further
expansion, the pressure reaches a minimum, which marks
the liquid spinodal. At lower densities, the liquid is unstable
and a gas fraction spontaneously separates from the liquid.
As the density continues to decrease, the pressure builds up
due to the gas phase until the system reaches a local maxi-
mum of the pressure, which marks the gas spinodal [36–38].
Between the local pressure minimum and the local pres-
sure maximum, the fluid is a mechanical mixture of gas and
liquid, as they are both unstable as a single phase. Upon
further expansion, at densities lower than that of the gas
spinodal, the gas becomes metastable. The pressure starts to
decrease, passes again the gas-liquid equilibrium pressure,
and then asymptotically decreases to zero under infinite ex-
pansion. At densities lower than the gas-liquid equilibrium
line, the stable phase is the gas. This behavior is best de-
scribed using the van der Waals gas-liquid equilibrium model,
which employs third-order polynomials. We approximate this
model with a standard cubic polynomial least-squares fit re-
lating the pressure to the density in accordance with other
studies [3,39] (see the supplemental material for more de-
tails [40]). The cubic function allows us to quickly find
the local minimum and maximum of the polynomial, which
yields, respectively, the liquid and the gas spinodal points.
The curvature of the fit is influenced by the finite-size ef-
fect [41]. Upon increasing the system size, the amplitude of
the curves will decrease, and the pressures will all become
positive. Figure 1 illustrates the aforementioned features of
the polynomials and the construction of the spinodal lines.
The liquid and the gas spinodal lines intersect in the critical
point.

As the liquid is stable at high densities, the MD simulations
allow for the determination of the liquid spinodals at all tem-
peratures. But because of limited ergodicity, the simulations
cannot be reliably run at very low densities. This prevents
covering the gas spinodal points at low temperatures. Only
close to the critical point we can extend the simulations over
a density range that encompasses both the gas and the liquid
spinodals. Consequently, we approximate the van der Waals
model with a cubic function of the pressure as a function of
density. Then, as stated above, the local minimum yields the
liquid spinodal, and close to the critical point, the local maxi-
mum yields the gas spinodal. Hence the position of the critical
point is bracketed in density between the gas and the liquid
spinodal. In temperature, it lies between the last isotherm
whose pressure shows a local minimum and a local maximum,
and the first isotherm that shows a monotonous decrease of
pressure. This procedure was applied with success on various
other material in the same phase space [3,24,26,42].

C. Postprocessing

We perform all of the postprocessing of the ab initio MD
runs using the Universal Molecular Dynamics (UMD) soft-
ware package [43]. We are analyzing structural, transport,
vibrational, thermodynamic, and electronic properties in the
subcritical and supercritical regimes.

FIG. 1. Construction of the phase stability fields and critical
point from pressure-density relations along several isotherms. The
maxima and minima of the isotherms coincide with the liquid and
gas spinodal points, respectively. The spinodal lines connect these
points. The Maxwell construction delimits regions of equal area
between the pressure-density curve and the liquid-vapor equilibrium
pressure at each temperature. The equal-area regions are represented
with hashed fields. The line joining the densities of the vapor, ρeq

v ,
in equilibrium with the liquid, ρ

eq
l , at all temperatures is the binodal

line. Both the spinodal and the binodal line have the critical point as
maximum in common. In the area between these lines (dark gray),
the liquid and gas phases are metastable. The light gray areas outside
of the binodal lines are where the individual phases are stable, and
the light gray area between the spinodal lines is the region where
the liquid and gas coexistence is stable. The area above the isotherm
of the critical temperature is where the supercritical fluid is stable.
Figure adapted from Kobsch and Caracas [24].

a. Pair distribution function

The average interatomic bonding and the coordination en-
vironment are important structural properties that stem from
the analysis of the pair distribution function, commonly re-
ferred to as g(r). The pair distribution function describes the
relative distribution of atoms as a function of distance. It
zeros out at the start since that is the region where atoms are
repulsing each other; the distance up to which the distribution
remains null defines the interatomic exclusion zone. The first
maximum is associated with the most common interatomic
distance, oftentimes referred to as the average bond length.
The first minimum of the pair distribution function represents
the limit of the first coordination sphere. The second minimum
is the limit of the second coordination sphere, and so on. In
calculations where the liquid is approximated by a periodic
box, the applicability of the distribution function is limited by
half the size of the edge of the simulation box, in order to
avoid artifacts related to the periodicity.

We take the radius of the first coordination sphere as the
threshold value of the interatomic bonds: if two atoms lie
closer than this radius, they are considered bonded. All the
bonded ligands to a central atom define the coordination
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FIG. 2. Variation of the pressure as a function of density for various isotherms (a). The solid lines are cubic function fits. Their local
minima and maxima yield, respectively, the liquid and the gas spinodal points, represented with thick black crosses. The spinodal lines are
represented with thin dashed black lines. The critical point lies between the liquid and gas spinodals in density, and between the last isotherm
where the pressure still reveals local extremes, and the first isotherm where the pressure is monotonously decreasing the decreasing density.
For MgO, this places the critical point at 0.45–0.6 g/cm3 in the density range and between 6500 and 7000 K in the temperature range. The
corresponding pressures are on the order of 0.1–0.2 GPa (b).

polyhedra. All the bonded atomic pairs define a connectivity
graph, building polymers that describe the structure of the
liquid.

b. Mean-squared displacement

The mean-squared displacement (MSD) is the square of the
average distance that an atom or cluster of atoms travels as a
function of time.

It is calculated using Eq. (1), where Nα is the number of
atoms of type α, T is the total time of the simulation, Ninit

is the number of initial times (the number of displacements

measured), and τ is the width of the time window,

MSDα (τ ) = 1

Nα

1

Ninit

Nα∑
i=1

T/2∑
t=0

[rα,i(τ + t ) − rα,i(t )]2. (1)

The slope of the MSD yields the self-diffusion coefficient,

Dα = lim
τ→∞

1

nt
MSDα, (2)

where n = 2, 4, 6 for one, two, and three dimensions,
respectively. A positive slope of the MSD is a clear

TABLE I. Computed pressure values for MgO obtained for each isotherm at various densities.

Pressure (GPa)

Density 4000 K 5000 K 6000 K 6500 K 7000 K 8000 K 9000 K 10 000 K

3.29 g/cm3 29.94 35.95 41.56 47.27 52.41 57.59 62.77
2.63 g/cm3 9.34 13.20 17.22 21.20 24.95 28.55 32.16
2.14 g/cm3 1.49 4.06 6.77 9.38 12.05 14.66 17.28
1.76 g/cm3 −0.80 0.73 2.32 3.36 4.17 6.10 8.10 9.93
1.24 g/cm3 −0.82 −0.53 0.13 0.50 1.02 1.96 3.07 4.10
0.90 g/cm3 −0.49 −0.34 −0.08 0.14 0.43 0.96 1.57 2.27
0.78 g/cm3 −0.33 −0.25 −0.04 0.12 0.32 0.79 1.29 1.85
0.68 g/cm3 −0.17 −0.01 0.10 0.27 0.65 1.07 1.52
0.59 g/cm3 −0.15 −0.01 0.13 0.26 0.56 0.92 1.30
0.52 g/cm3 0.03 0.11 0.22 0.51 0.82 1.14
0.37 g/cm3 0.07 0.12 0.20 0.40 0.60 0.84
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FIG. 3. The pair distribution function for Mg-O (a),(c),(e) and O-O (b),(d),(f) at three isotherms: 4000 (a),(b), 6000 (c),(d), and 10 000
(e),(f) K, and several densities. The first maxima yield a good approximation of the average bond distances. The first minima yield the radius
of the first coordination sphere. We use this radius further in the manuscript to define the threshold for interatomic bonding.

indication of the fluid nature of the system studied in the
simulation.

c. Velocity autocorrelation function

The general expression for a time correlation function,
such as the velocity self-correlation function, is shown in

Eq. (3):

C(τ ) = 1

τ

T/2∑
t=0

A(τ + t ) ∗ A(t ), (3)

where τ is the width of the time interval, T is the total time
of the simulation, and A is a time-dependent variable. Here
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FIG. 4. The speciation of MgOx polyhedra at several densities and temperatures. The coordination polyhedra around each atom are obtained
using the analysis of the pair distribution function (Fig. 3). The MgO fluid is dominated by MgO5 and MgO6 at high densities. The coordination
decreases sharply as the density decreases toward and passes the spinodal density. Parts (a), (b), (c), and (d) correspond, respectively, to 2.63,
1.24, 0.90, and 0.52 g/cm3 densities.

we study the self-correlation function of the atomic velocities.
Just like with the MSD, we can use the velocity correlation
function to the determine the diffusion coefficient by taking
its integral, shown in Eq. (4), where again n = 2, 4, 6 for one,
two, and three dimensions, respectively,

Dα = 1

nmiN

∫ ∞

−∞
C(t )dt . (4)

d. Bader charge analysis

We apply the atoms-in-molecule approach of the Bader
analysis [44] to obtain the static atomic volumes and
charges, using a postprocessing code from the Henkelman
Group [45–48]. The procedure finds the saddle points of the
total electronic charge distribution around each atom, which,
when connected, build the zero flux surface of the charge.
These surfaces delimit the parts of the volume of the structure
that are assigned to each atom. The integrals of the electronic
density inside the atomic volumes yield the total negative
atomic charge. The atomic charges are obtained after subtract-

ing the positive charge of the nucleus from the total negative
charges.

III. RESULTS AND DISCUSSION

A. Critical point

We monitor the variation of the pressure as a function of
density at several isotherms in the 4000–10 000 K temperature
range (see Table I). These temperatures are above the melting
point at ambient pressure conditions, and they extend into the
gas and supercritical domains. Depending on the isotherm, we
cover the 0.37–3.29 g/cm3 density range. We approximate the
van der Waals model with a cubic function fit to the pressure-
density points, whose local extrema yield the two spinodals.

Figure 2(a) shows the pressure-density relation at all the
isotherms considered here. The liquid spinodals are also indi-
cated on the diagrams. The last two isotherms at which a local
minimum can be identified are the 6000 and 6500 K isotherms
[Fig. 2(b)]. For these two isotherms, the calculations can
reliably sample low enough densities, i.e., the local maxima
in the pressure variation can be identified, corresponding to

064105-6



CRITICAL POINT AND SUPERCRITICAL REGIME OF … PHYSICAL REVIEW B 105, 064105 (2022)

the gas spinodals. In particular, the 6500 K isotherm shows
a local maximum around 0.4 g/cm3 and a local minimum
around 0.7 g/cm3 density for pressures of about 1 kbar. On
the contrary, there is no local minimum or local maximum
along the 7000 K isotherm, but only a monotonous decrease
of the pressure with decreasing density. Consequently, the
position of the critical point can be constrained in temperature
by the isotherms 6500 and 7000 K, and in density by the gas
and liquid spinodals at 6500 K, i.e., in the 0.45–0.6 g/cm3

density interval. The pressure range corresponding to these
temperatures and densities is 1–2 kbars.

The computed position of the critical point of MgO lies
at higher temperatures than any phase in the MgO-SiO2

phase space, which is relevant for the bulk composition of
rocky planets. The critical points calculated for MgSiO3 [25],
Mg2SiO4 [26], and SiO2 [38] lie in the 6200–6500 K tem-
perature range and around 0.50 g/cm3 density. The higher
temperatures of MgO confirm its refractory character, while
its smaller range of density corresponds to the lighter mass of
MgO.

B. Structure of the fluids

Figure 3 shows the pair distribution functions as a function
of density at 4000, 6000, and 10 000 K. The average Mg-O
bond length, i.e., the first peak of the distribution function, is
on the order of 1.96 Å, weakly dependent on temperature and
density. Under compression up to 63 GPa, the bond length
decreases by only 0.02 Å along the same isotherm. The ra-
dius of the first coordination sphere, which is chosen as the
bonding criterion, shows a larger variability with both density
and temperature. Increasing the density reduces the bonding
threshold. The range of the threshold increases considerably
with increasing temperature. As a reference, at 30 GPa and
4000 K, the Mg-O bond length in the MgO fluid is slightly
larger than the Mg-O bond length in pyrolite [49].

At all temperatures, at 2.63 g/cm3 density, the MgO fluid
is dominated by MgO5, with the second most abundant co-
ordination being MgO6. Decreasing the density changes the
dominant species toward MgO4 and MgO3, and down to
MgO2 in the supercritical fluid at 0.5 g/cm3. This decrease
in coordination is natural, as it accompanies the decom-
pression of the fluid. Increasing the temperature broadens
the distribution of the coordination polyhedra. In the liquid,
the coordination number of Mg by O is similar to the one
encountered in liquid pyrolite [49]. Figure 4 shows the chem-
ical speciation in the MgO fluid at all densities at several
temperatures.

The O-O bond distances are sensitive to both density and
temperature. At subcritical temperatures, the first maximum
of the pair distribution functions lies around 3.5 Å for den-
sities below about 2 g/cm3. At higher densities, there is a
clear decrease of the O-O bond distance, which can be directly
related to the increase in coordination of the Mg-O polyhedra
from MgO2-3 to MgO4-5. At high temperatures and at densities
below 1.24 g/cm3, the O-O pair distribution function reveals
the presence of a peak around 1.3 Å, which corresponds to the
characteristic bond length of the O2 molecule. As observed in
various silicate systems, such as feldspars [24] or silica [38],
oxygen molecules are present right below the critical temper-
ature as well as in the supercritical fluid.

FIG. 5. The speciation of fluid MgO as a function of temperature
at 0.68 g/cm3. Each dot represents one MgxOy cluster, and the
vertical axis indicates its size, i.e., x + y. At this density, increasing
the temperature takes the system from inside the liquid-vapor dome
to the supercritical state. The bimodal distribution of cluster sizes is
characteristic for a gas + liquid mixture, while a continuous distribu-
tion characterizes the supercritical state. The gap between the cluster
sizes closes as the system approaches supercritical temperatures; the
most stable clusters are always found at the two extremes.

The analysis of the · · · Mg-O-Mg-O-Mg· · · polymeriza-
tion in the fluid allows us to separate the gas phase from the
liquid phase. Indeed, the fluid is characterized by largely con-
nected [MgOx]n clusters, which represent branched polymers
of alternating cations, i.e., Mg, and anions, i.e., O. The gas
phase shows isolated clusters, of very limited size. Figure 5
shows the population distribution of all the [MgxOy] polymers
and gas clusters, at a density of 0.68 g/cm3 as a function
of temperature. At the lowest temperatures, i.e., 5000 and
6000 K, there is a clear separation between two groups of
cluster sizes. The highest values of x + y build the liquid MgO
phase, and the lowest values build the incipient gas species
escaping from the fluid. As the temperature increases, the
gap in the distribution of the cluster sizes closes up. This
is indicative of the continuous character of the gas to liquid
transition as the system reached the supercritical regime. The
supercritical feldspars show a similar behavior [24].

The simulations suggest that the dominant species that
form the incipient gas of our system are atomic Mg, atomic O,
and some MgO and O2 molecules. However, further quantifi-
cation of the gas phase, in terms of relative amounts of stable
component species, requires a better sampling of the config-
uration space, which requires both considerably longer and
larger simulations and exploring considerably lower densities.

C. Vibrational spectrum

At ambient conditions, the solid B1 phase of MgO has only
one infrared active phonon mode, whose transverse optical
(TO) component lies around 380 cm−1, and the longitudinal
optical (LO) one is around 700 cm−1, with the bulk of the
spectrum in the 300–500 cm−1 frequency range. Infrared re-
flectivity of B1 [50] shows the presence of a shoulder around
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FIG. 6. Total vibrational spectra at several densities of fluid MgO are obtained from the velocity-velocity self-correlation function. Only
the values computed at the lowest and the highest isotherms are shown. The noisy data, shown in the background, were filtered using the
Savitzky-Golay filter [51]. At high density and low temperature, the spectrum shows a broad peak around 300–500 cm−1. The peak is smoothed
out with decreasing density and increasing temperature. Parts (a), (b), (c), and (d) correspond, respectively, to 3.29, 2.63, 0.90, and 0.52 g/cm3

densities.

620 cm−1, corresponding to the tail of the LO-TO splitting.
Increasing temperature makes this shoulder disappear and
shifts the entire region toward lower frequencies.

The computed vibrational spectrum for the fluid at 4000 K
and a density of 3.29 g/cm3 (Fig. 6), corresponding to 30 GPa,
shows similarities with the B1 phase. There is a broad peak
around 300 cm−1 with a broad shoulder at higher frequencies.
Compared to the solid, the spectrum of the fluid is, as ex-
pected, more smoothed out, with no detailed features, because
of the temperature and the variety of the local coordinations.
Another important feature is the nonzero component at zero
frequency, which is due to the diffusion.

Decreasing the density to 0.5 g/cm3 and increasing the
temperature to 10 000 K smoothes out the main vibrationally
active region, albeit shifted toward lower frequencies. The
details in the spectrum become less and less pronounced.
Eventually, at even lower densities and/or higher tempera-
tures, the spectrum should asymptotically become featureless
and approach that of an atomic gas.

D. Transport properties

We determine the MSDs at all volume and temperature
points. The resulting MSDs for oxygen and for magnesium
at several isochores are shown in Fig. 7. At all conditions, the
MSDs of both atomic types show positive slopes, the systems
being in a fluid state.

The O atoms travel for longer distances than the Mg atoms
over the same amount of time. The differences between the
two atoms depend on both temperature and density, being
much more pronounced at higher temperatures and densities.
At 2.63 g/cm3, i.e., 9 GPa and 4000 K, the Mg and O atoms
travel, respectively, 10 and 10 Å over 10 ps. At the same
density and 6000 K they travel, respectively, 14 and 15 Å
over 10 ps, and at 10 000 K they travel, respectively, 20
and 24 Å over 10 ps. Inside the liquid-gas dome, at 4000 K
and 0.90 g/cm3, the Mg atoms travel 13 Å over 10 ps, and
the O atoms travel 14 Å over the same amount of time. The
net increase is due to the decompression associated with the
opening of the nanobubbles. There is also a clear increase
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FIG. 7. Mean-square displacements calculated at four isochores. (a),(b) 2.63 g/cm3; (c),(d) 1.24 g/cm3; (e),(f) 0.78 g/cm3; (g),(h)
0.52 g/cm3. The differences in lengths are the result of differences in the length of simulations, the shortest being 5 ps and the longest
20 ps. MgO is fluid at all conditions studied here.
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TABLE II. Comparison between the diffusion coefficients at
0.78 g/cm3 as a function of temperature, estimated from the slope
of the mean-square displacements as a function of time (MSD) and
obtained from the velocity autocorrelation function (VA).

Diffusion coefficient (m2/s)

Temperature Mg (VA) O (VA) Mg (MSD) O (MSD)

4000 4.87 × 10−8 4.34 × 10−8 3.22 × 10−8 3.25 × 10−8

5000 6.36 × 10−8 8.59 × 10−8 6.69 × 10−8 7.43 × 10−8

6000 1.51 × 10−7 1.35 × 10−7 1.39 × 10−7 1.29 × 10−7

7000 2.24 × 10−7 2.69 × 10−7 1.85 × 10−7 2.26 × 10−7

8000 2.83 × 10−7 3.32 × 10−7 2.37 × 10−7 2.50 × 10−7

9000 2.92 × 10−7 3.65 × 10−7 2.52 × 10−7 3.46 × 10−7

10000 2.98 × 10−7 4.09 × 10−7 2.86 × 10−7 3.85 × 10−7

in distance traveled by the atoms from 6000 to 7000 K for
1.24 g/m3 and 0.78 g/cm3 [Figs. 7(b) and 7(c)], which corre-
sponds to the passage to the supercritical fluid.

The slope of the MSD with respect to time yields the
diffusion coefficients. The results obtained from integrating
the velocity self-correlation function confirm these results.
Table II lists the values obtained from both methods for
comparison. Figure 8 shows the diffusion coefficients as a
function of density or different isotherms, as obtained from
the self-correlation function.

Below the critical temperature, the dependence of the diffu-
sion coefficients displays a clear separation into two regimes;
a linear trend on a log scale at higher densities, and a roughly
constant diffusion at lower densities. The point of the slope
change corresponds to the density at which the first nanobub-
bles start to nucleate in the system. As the volume of the
simulation box increases, it is the density of the entire system,
liquid + gas, that decreases. But the density of the liquid is
roughly constant. As the liquid is the dominant phase in these
systems at these conditions, the diffusion of both Mg and O
atoms reflects their behavior in the liquid phase.

As the temperature increases above the supercritical point,
the system is monophasic, so the diffusion coefficient reflects
the behavior of the atoms in the total homogeneous system.
Here the increase of the volume of the simulation box induces
a decrease of the density of the entire system. As the atoms
lie farther apart, their diffusion continues to increase with
decreasing density.

Consequently, the temperature variation of the diffusion
coefficients yields another way of quantifying the transition
towards the liquid + vapor dome, and/or the passage to su-
percritical conditions.

E. Atomic charges

Finally we analyze the atomic charges of all the atoms
in our simulations using the atoms-in-molecule approach, as
mentioned in Sec. II. We select several snapshots inside the
liquid-vapor dome, which show atoms in both liquid and gas
phases, and one snapshot from the supercritical phase.

The values of the Bader charges correlate with the coordi-
nation number for both Mg and O. This correlation is visible
in Fig. 9. The trend indicates that decreasing the coordination
numbers makes the atoms more neutral.

FIG. 8. Diffusion coefficients for Mg atoms (a) and O atoms
(b) as calculated from the velocity autocorrelation function plotted
in log scale against the density. Below the critical temperature, the
diffusion coefficients exhibit a change of slope corresponding to the
passage inside the liquid-vapor dome. Above the critical temperature,
the diffusion changes monotonously with density.

The isolated atoms in the gas phase all have charges ap-
proaching zero. This suggests that the gas is close to an
atomic-gas model and is not ionized. Indeed, these tempera-
tures are far below the first ionization energy of monatomic
magnesium, while the monatomic oxygen does not carry a
supplementary electronic charge. The atoms in the liquid,
which lie on or close to the interface with the cavities, are
ionized, but to a significantly lesser extent than the atoms in
the bulk. This suggests that the surface of the bubbles tends to
become neutral, and does not carry dipoles. Both Mg and O
atoms that lie inside the bulk liquid phase have large charges,
between 1 and 2 in absolute values, negative for O and positive
for Mg. This suggests an ionic liquid.

The charges in the supercritical fluid show a smaller spread
than for the subcritical conditions. Their values are close to
the nominal values for Mg2+ and O2−. This suggests that the
supercritical fluid preserves the ionic character of the homo-
geneous liquid.
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FIG. 9. Atomic charges for all Mg (blue) and O (red) atoms for a representative snapshot inside the liquid-vapor dome (a). The order of
the coordination polyhedron around each atom (b). Charge values close to the nominal correspond to highly coordinated atoms, which lie in
the bulk liquid. Charge values close to zero correspond to low coordination numbers, as encountered on the liquid-gas interface and in the gas.

IV. CONCLUSION

We explore an as-yet uncharted area of the phase space of
MgO. We provide a thorough analysis of the behavior of fluid
MgO at the low-density and high-temperature conditions typ-
ically occurring around the supercritical point, using ab initio
molecular dynamics. We apply a wide range of postprocessing
tools to describe different facets of the MgO system in the
phase space.

We determine the critical point to be in the density range
of 0.45–0.6 g/cm3 and between 6500 and 7000 K. That puts
it in the refractory category when compared to other major
rock-forming compounds. We characterize a series of trans-
port and structural properties and find similarities to other
Mg-rich natural fluids [49]. From the atomic charge analysis
we ascertain that the bulk liquid and the supercritical fluid are
ionic. For conditions inside the liquid-vapor dome, we find
that the surface of the gas bubbles does not carry charge, and
that any incipient gas is not charged.

Future studies should address the process of vaporization at
much larger time and space scales, and they should determine
the liquid-vapor equilibrium curve. For this, more computa-
tionally efficient methods will need to be applied, such as
machine learning potentials, as they are beyond the scope of
the present work. Comparison to other B1-B2 diatomic phases
would be interesting as well. Our work contributes to the
characterization of an archetypal material, which is also one
of the primary constituents of all rocky planets, at conditions
typically encountered during planetary formation.

ACKNOWLEDGMENTS

We acknowledge support from the European Research
Council under EU Horizon 2020 research and innovation pro-
gram (Grant Agreement No. 681818–IMPACT to R.C.), the
Research Council of Norway, Project No. 223272, and access
to supercomputing facilities via the eDARI stl2816 grants, the
PRACE RA4947 grant, and the Uninet2 NN9697K grant.

[1] R. M. Canup, Dynamics of lunar formation, Annu. Rev. Astron.
Astrophys. 42, 441 (2004).

[2] S. Stewart, E. Davies, M. Duncan, S. Lock, S. Root, J.
Townsend, R. Kraus, R. Caracas, and S. Jacobsen, in The Shock
Physics of Giant Impacts: Key Requirements for the Equations
of State, AIP Conf. Proc. No. 2272 (AIP, New York, 2020), p.
080003.

[3] Z. Li, R. Caracas, and F. Soubiran, Partial core vaporiza-
tion during Giant Impacts inferred from the entropy and the

critical point of iron, Earth Planet. Sci. Lett. 547, 116463
(2020).

[4] R. G. Kraus, S. T. Stewart, D. C. Swift, C. A. Bolme, R. F.
Smith, S. Hamel, B. D. Hammel, D. K. Spaulding, D. G. Hicks,
J. H. Eggert, and G. W. Collins, Shock vaporization of silica and
the thermodynamics of planetary impact events, J. Geophys.
Res. E 117, E09009 (2012).

[5] R. G. Kraus, S. Root, R. W. Lemke, S. T. Stewart,
S. B. Jacobsen, and T. R. Mattsson, Impact vaporization of

064105-11

https://doi.org/10.1146/annurev.astro.41.082201.113457
https://doi.org/10.1016/j.epsl.2020.116463
https://doi.org/10.1029/2012JE004082


T. F. J. BÖGELS AND R. CARACAS PHYSICAL REVIEW B 105, 064105 (2022)

planetesimal cores in the late stages of planet formation, Nat.
Geosci. 8, 269 (2015).

[6] J. J. Monaghan, Smoothed particle hydrodynamics and its di-
verse applications, Annu. Rev. Fluid Mech. 44, 323 (2011).

[7] J. D. McHardy, An introduction to the theory and use of
SESAME equations of state, Tech. Rep., Report No. LA-14503
(Los Alamos National Laboratory, Los Alamos, NM, 2018).

[8] S. L. Thompson, ANEOS—Analytic equations of state for
shock physics Codes—Input Manual Report SAND89-2951
(Sandia National Laboratories, 1990), https://www.osti.gov/
biblio/6939284.

[9] A. E. Ringwood, Phase transformations and their bearing
on the constitution and dynamics of the mantle, Geochim.
Cosmochim. Acta 55, 2083 (1991).

[10] I. Jackson and R. Liebermann, Melting and elastic shear insta-
bility of alkali halides, J. Phys. Chem. Solids 35, 1115 (1974).

[11] E. Ohtani, Melting temperature distribution and fractionation in
the lower mantle, Phys. Earth Planet. Inter. 33, 12 (1983).

[12] A. Zerr and R. Boehler, Constraints on the melting temperature
of the lower mantle from high-pressure experiments on MgO
and magnesioüstite, Nature (London) 371, 506 (1994).

[13] T. Taniuchi and T. Tsuchiya, The melting points of MgO up to
4 TPa predicted based on ab initio thermodynamic integration
molecular dynamics, J. Phys.: Condens. Matter 30, 114003
(2018).

[14] A. J. Cohen and R. G. Gordon, Modified electron-gas study of
the stability, elastic properties, and high-pressure behavior of
MgO and CaO crystals, Phys. Rev. B 14, 4593 (1976).

[15] M. J. Mehl, R. E. Cohen, and H. Krakauer, Linearized aug-
mented plane wave electronic structure calculations for MgO
and CaO, J. Geophys. Res. 93, 8009 (1988).

[16] R. S. McWilliams, D. K. Spaulding, J. H. Eggert, P. M. Celliers,
D. G. Hicks, R. F. Smith, G. W. Collins, and R. Jeanloz, Phase
transformations and metallization of magnesium oxide at high
pressure and temperature, Science 338, 1330 (2012).

[17] F. Coppari, R. F. Smith, J. H. Eggert, J. Wang, J. R. Rygg,
A. Lazicki, J. A. Hawreliak, G. W. Collins, and T. S. Duffy,
Experimental evidence for a phase transition in magnesium
oxide at exoplanet pressures, Nat. Geosci. 6, 926 (2013).

[18] K. Umemoto, R. M. Wentzcovitch, S. Wu, M. Ji, C. Z. Wang,
and K. M. Ho, Phase transitions in MgSiO3 post-perovskite in
super-Earth mantles, Earth Planet. Sci. Lett. 478, 40 (2017).

[19] F. Soubiran and B. Militzer, Anharmonicity and Phase Diagram
of Magnesium Oxide in the Megabar Regime, Phys. Rev. Lett.
125, 175701 (2020).

[20] R. Musella, S. Mazevet, and F. Guyot, Physical properties of
MgO at deep planetary conditions, Phys. Rev. B 99, 064110
(2019).

[21] B. Fegley, N. S. Jacobson, K. B. Williams, J. M. C. Plane, L.
Schaefer, and K. Lodders, Solubility of rock in steam atmo-
spheres of planets, Astrophys. J. 824, 103 (2016).

[22] J. Vassent, A. Marty, B. Gilles, and C. Chatillon, Thermo-
dynamic analysis of molecular beam epitaxy of MgO(s) II.
Epitaxial growth of MgO layers on Fe(001) substrates, J. Cryst.
Growth 219, 444 (2000).

[23] N. Jacobson, N. Ingersoll, and D. Myers, Vaporization coeffi-
cients of SiO2 and MgO, J. Eur. Ceram. Soc. 37, 2245 (2017).

[24] A. Kobsch and R. Caracas, The critical point and the super-
critical state of alkali feldspars: Implications for the behavior

of the crust during impacts, J. Geophys. Res.: Planets 125,
e2020JE006412 (2020).

[25] B. Xiao and L. Stixrude, Critical vaporization of MgSiO3, Proc.
Natl. Acad. Sci. (USA) 115, 5371 (2018).

[26] J. P. Townsend, G. Shohet, and K. R. Cochrane, Liquid-vapor
coexistence and critical point of Mg2SiO4 from ab initio simu-
lations, Geophys. Res. Lett. 47, e2020GL089599 (2020).

[27] G. Kresse and J. Hafner, Ab initio molecular dynamics for
liquid metals, Phys. Rev. B 47, 558 (1993).

[28] G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseu-
dopotentials for first-row and transition elements, J. Phys.:
Condens. Matter 6, 8245 (1994).

[29] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996).

[30] G. Kresse and J. Furthmüller, Efficient iterative schemes for
ab initio total-energy calculations using a plane-wave basis set,
Phys. Rev. B 54, 11169 (1996).

[31] G. Kresse and D. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758
(1999).

[32] P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B
50, 17953 (1994).

[33] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[34] S. Nosé, A unified formulation of the constant temperature
molecular dynamics methods, J. Chem. Phys. 81, 511 (1984).

[35] R. M. Hazen, Effects of temperature and pressure on the cell
dimension and X-ray temperature factors of periclase, Am.
Mineral. 61, 266 (1976).

[36] P. Aursand, M. A. Gjennestad, E. Aursand, M. Hammer, and
Ø. Wilhelmsen, The spinodal of single- and multi-component
fluids and its role in the development of modern equations of
state, Fluid Phase Equilib. 436, 98 (2017).

[37] P. Carlès, A brief review of the thermophysical properties of
supercritical fluids, J. Supercrit. Fluids 53, 2 (2010).

[38] E. C. Green, E. Artacho, and J. A. Connolly, Bulk properties
and near-critical behaviour of SiO2 fluid, Earth Planet. Sci. Lett.
491, 11 (2018).

[39] V. V. Vasisht, S. Saw, and S. Sastry, Liquid-liquid critical point
in supercooled silicon, Nat. Phys. 7, 549 (2011).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.105.064105 for more details on the finite-
size effect, van der Waals interaction, and EOS fitting.

[41] K. Binder, B. J. Block, P. Virnau, and A. Tröster, Beyond the
Van Der Waals loop: What can be learned from simulating
Lennard-Jones fluids inside the region of phase coexistence,
Am. J. Phys. 80, 1099 (2012).

[42] G. Faussurier, C. Blancard, and P. L. Silvestrelli, Evaluation of
aluminum critical point using an ab initio variational approach,
Phys. Rev. B 79, 134202 (2009).

[43] R. Caracas, A. Kobsch, N. V. Solomatova, Z. Li, F. Soubiran,
and J.-A. Hernandez, Analyzing melts and fluids from ab ini-
tio molecular dynamics simulations with the UMD package,
J. Visual Exp. (175), e61534 (2021).

[44] R. F. Bader, S. G. Anderson, and A. J. Duke, Quantum topology
of molecular charge distributions, J. Am. Chem. Soc. 101, 1389
(1979).

064105-12

https://doi.org/10.1038/ngeo2369
https://doi.org/10.1146/annurev-fluid-120710-101220
https://www.osti.gov/biblio/6939284
https://doi.org/10.1016/0016-7037(91)90090-R
https://doi.org/10.1016/S0022-3697(74)80129-0
https://doi.org/10.1016/0031-9201(83)90003-1
https://doi.org/10.1038/371506a0
https://doi.org/10.1088/1361-648X/aaac96
https://doi.org/10.1103/PhysRevB.14.4593
https://doi.org/10.1029/JB093iB07p08009
https://doi.org/10.1126/science.1229450
https://doi.org/10.1038/ngeo1948
https://doi.org/10.1016/j.epsl.2017.08.032
https://doi.org/10.1103/PhysRevLett.125.175701
https://doi.org/10.1103/PhysRevB.99.064110
https://doi.org/10.3847/0004-637X/824/2/103
https://doi.org/10.1016/S0022-0248(00)00632-1
https://doi.org/10.1016/j.jeurceramsoc.2016.12.042
https://doi.org/10.1029/2020JE006412
https://doi.org/10.1073/pnas.1719134115
https://doi.org/10.1029/2020GL089599
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1088/0953-8984/6/40/015
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.447334
https://doi.org/10.1016/j.fluid.2016.12.018
https://doi.org/10.1016/j.supflu.2010.02.017
https://doi.org/10.1016/j.epsl.2018.03.015
https://doi.org/10.1038/nphys1993
http://link.aps.org/supplemental/10.1103/PhysRevB.105.064105
https://doi.org/10.1119/1.4754020
https://doi.org/10.1103/PhysRevB.79.134202
https://doi.org/10.3791/61534
https://doi.org/10.1021/ja00500a006


CRITICAL POINT AND SUPERCRITICAL REGIME OF … PHYSICAL REVIEW B 105, 064105 (2022)

[45] W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader
analysis algorithm without lattice bias, J. Phys.: Condens.
Matter 21, 084204 (2009).

[46] E. Sanville, S. D. Kenny, R. Smith, and G. Henkelman,
Improved grid-based algorithm for Bader charge allocation,
J. Comput. Chem. 28, 899 (2007).

[47] G. Henkelman, A. Arnaldsson, and H. Jónsson, A fast and
robust algorithm for Bader decomposition of charge density,
Comput. Mater. Sci. 36, 354 (2006).

[48] M. Yu and D. R. Trinkle, Accurate and efficient algorithm for
Bader charge integration, J. Chem. Phys. 134, 064111 (2011).

[49] N. V. Solomatova and R. Caracas, Pressure-induced coordina-
tion changes in a pyrolitic silicate melt from ab initio molecular
dynamics simulations, J. Geophys. Res.: Solid Earth 124, 11232
(2019).

[50] J. R. Jasperse, A. Kahan, J. N. Plendl, and S. S.
Mitra, Temperature dependence of infrared dispersion
in ionic crystals LiF and MgO, Phys. Rev. 146, 526
(1966).

[51] A. Savitzky and M. J. E. Golay, Smoothing and differentiation
of data by simplified least squares procedures, Anal. Chem 36,
1627 (1964).

064105-13

https://doi.org/10.1088/0953-8984/21/8/084204
https://doi.org/10.1002/jcc.20575
https://doi.org/10.1016/j.commatsci.2005.04.010
https://doi.org/10.1063/1.3553716
https://doi.org/10.1029/2019JB018238
https://doi.org/10.1103/PhysRev.146.526
https://doi.org/10.1021/ac60214a047

