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CRITICAL POINTS AND SUPERSYMMETRIC VACUA, II:

ASYMPTOTICS AND EXTREMAL METRICS

MICHAEL R. DOUGLAS, BERNARD SHIFFMAN, AND STEVE ZELDITCH

Abstract. Motivated by the vacuum selection problem of string/M theory, we study a new
geometric invariant of a positive hermitian line bundle (L, h) → M over a compact Kähler
manifold: the expected distribution Kcrit

h
(z) of critical points d log |s(z)|h = 0 of a Gaussian

random holomorphic section s ∈ H0(M, L) with respect to h. It is a measure on M whose
total mass is the average number N crit

h
of critical points of a random holomorphic section.

We are interested in the metric dependence of N crit

h
, especially metrics h which minimize

N crit

h
. We concentrate on the asymptotic minimization problem for the sequence of tensor

powers (LN , hN ) → M of the line bundle and their critical point densities Kcrit

hN (z). We prove

that Kcrit

hN (z) has a complete asymptotic expansion in N whose coefficients are curvature

invariants of h. The first two terms in the expansion of N crit

hN are topological invariants
of (L, M). The third term is a topological invariant plus a constant βm

2
(depending only

on the dimension m of M) times the Calabi functional
∫

M
ρ2dV olh, where ρ is the scalar

curvature of the curvature form of h. We give an integral formula for βm
2

and show, by a
computer assisted calculation, that βm

2
> 0 for m ≤ 3, hence that N crit

hN is asymptotically
minimized by the Calabi extremal metric (when one exists). We conjecture that βm

2 > 0 in
all dimensions, i.e. that the Calabi extremal metric is always the asymptotic minimizer.
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1. Introduction

This paper is the second in a series of articles on the statistics of vacua in string/M theory
and associated effective supergravity theories. Mathematically, vacua are critical points of a
holomorphic section s ∈ H0(M, L) of a line bundle L → M over a complex manifold relative
to a connection ∇, which we always choose to be the Chern connection ∇h of a hermitian
metric h on L. In several papers [AD, D], M. R. Douglas has proposed a program of studying
the statistics of critical points of a random holomorphic section with respect to a physically
natural Gaussian measure γ on the space H0(M, L) of holomorphic sections, or on certain
distinguished subspaces S ⊂ H0(M, L). The basic idea is that the (supersymmetric) vacua
of string/M theory are critical points of a holomorphic section (known as a superpotential)
over the moduli space of complex structures on a Calabi-Yau manifold. But there exists
at this time no reasonable selection principle to decide which superpotential nor which of
its critical points gives the vacuum state which correctly describes our universe in string/M
theory. So it makes sense to study the statistics of vauca of random superpotentials.

In this article, we study a purely geometric simplification of the physical problem where
(L, h) is a positive Hermitian line bundle over a (usually compact) manifold M and where
the Gaussian measure on H0(M, L) is derived from the inner product induced by h. Our
aim is to understand the metric dependence of the statistics of the random critical point set

Crit(s, h) = {z : ∇h(s) = 0} = {z : d |s(z)|2h = 0, s(z) 6= 0}. (1)

of a Gaussian random section of H0(M, L) relative to the Chern connection ∇h of h.
From the probabalistic viewpoint, the critical points of random holomorphic sections rela-

tive to the Chern connection ∇h of a fixed hermitian metric on L define a point process on M ,
that is, a measure on the configuration space Conf(M) of finite subsets of M . Each holomor-
phic section gives rise to the almost surely discrete set Crit(s, h) of its critical points. The
critical point process is the measure on Conf(M) which gives the probability distribution of
X ⊂ M being the critical point set of a holomorphic section. It is determined by its n-point
correlations Kcrit

∇,γ,n(z1, . . . , zn) which give the probabilities of critical points occurring at the
points z1, . . . , zn ∈ M. They determine whether critical points tend to cluster or to repel
each other. Since both ∇, γ are determined by h in this article, we simplify the notation to
Kcrit

h .
In this paper, we focus on the simplest (1-point) correlation function, namely the expected

distribution of critical points

Kcrit
h (z) = E γ




∑

z∈Crit(s,h)

δz


 (2)
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where δz is the Dirac point mass at z, and where E γ denotes expectation relative to the
Gaussian measure γ on H0(M, L) (cf. Definition 2). We shall see that Kcrit

h is a smooth
measure on M . In particular, we are interested in the expected (average) number of critical
points

N crit
h =

∫

M

Kcrit
h (z) (3)

of a random section. This is a purely geometric invariant of (M, L). If we view Conf(M) =⋃∞
n=1 Symn(M) as the union of symmetric products of M , a model problem is to find the

values of n where the critical point process is concentrated.
It is important to realize that the number #Crit∇(s) is a (non-constant) random variable

on H0(M, L), unlike the number of zeros of m independent sections which is a topological
invariant of L. As indicated in (1), connection critical points ∇hs(z) = 0} are the same as
critical points of |s(z)|2h for which s(z) 6= 0, or equivalently as critical points of log |s(z)|h
(see [DSZ] for the simple proof). Hence, there are critical points of each Morse index ≥ m
(see [B, DSZ]), and only the alternating sum of the number of critical points of each index
is a topological invariant. Another way to understand the metric dependence of the number
of critical points is to write the covariant derivative in a local frame eL as

∇zj
s =

(
∂f

∂zj

− f
∂K

∂zj

)
eL = eK ∂

∂zj

(
e−K f

)
eL , ∇z̄j

s =
∂f

∂z̄j

eL , (4)

where we locally express a section as s = feL. Hence, the critical point equation
(

∂f

∂zj
− f

∂K

∂zj

)
= 0 (5)

in the local frame fails to be holomorphic when the connection form is only smooth.
Although Crit(s, h) and #Crit(s, h) depend on h, it is not clear at the outset whether

N crit
h is a topological invariant or whether it truly depends non-trivially on the metric h. To

investigate the metric dependence of Kcrit
h and N crit

h we consider their asymptotic behavior
as we take powers LN of L. As in [SZ, BSZ1], it is natural to expect that the density
and number of critical points will have simple asymptotic expansions which reveal their
metric dependence. The study of such asymptotics does not have a physical interpretation
at present, but is undertaken to gain insight into the nature of N crit

h as an invariant.
We therefore let Kcrit

N,h(z) denote the expected distribution of critical points of random

holomorphic sections s ∈ H0(M, LN ) with respect to the Chern connection and Hermitian
Gaussian measure induced by hN , as given by (13)–(14) in §2. We also let

N crit
N,h =

∫

M

Kcrit
N,h(z) (6)

denote the expected number of critical points. The covariant derivative associated to hN has
the semi-classical form

∇zj
sN =

(
∂f

∂zj
− Nf

∂K

∂zj

)
e⊗N

L = eNK ∂

∂zj

(
e−NK f

)
e⊗N

L , ∇z̄j
sN =

∂f

∂z̄j
e⊗N

L . (7)

Our first result is a complete asymptotic expansion for the distribution of critical points
and for the distribution of critical points for powers LN → M in terms of curvature invariants
of (L, h, M).
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Theorem 1.1. For any positive Hermitian line bundle (L, h) → (M, ω) over any compact
Kähler manifold with ω = i

2
Θh := i2∂̄∂K, the expected critical point distribution of sections

of LN relative to the Hermitian Gaussian measure induced by h has an asymptotic expansion
of the form

N−m Kcrit
N,h(z) ∼ {b0 + b1(z)N−1 + b2(z)N−2 + · · · }ωm

m!
,

where the coefficients bj = bj(m) are curvature invariants of order j of ω. In particular, b0

is the universal constant

b0 = π−(m+2
2 )
∫

Sym(m,C)×C

∣∣det(2HH∗ − |x|2I)
∣∣ e−〈(H,x),(H,x)〉 dH dx

b1 = β1ρ, where ρ is the scalar curvature of ω and β1 is a universal constant, and b2 is a
quadratic curvature polynomial. The values of the constant b0 for low dimensions are:

b0(1) =
5

3
, b0(2) =

59

33
, b0(3) =

637

35
, b0(4) =

6571

37
.

Here, Sym(m, C) is the space of m × m complex symmetric matrices. It follows that the
density of critical points is asymptotically uniform relative to the curvature volume form
with a universal asymptotic density.

With only minor changes in the proofs, our methods give refinements of the asymptotic
results which take the Morse indices of the critical points into account. By the Morse index
q of a critical point, we mean its Morse index as a critical point of log ‖s‖hN ; it is well
known that m ≤ q ≤ 2m for positive line bundles. Thus we let Kcrit

N,q,h(z) = Kcrit
N,q(z) denote

the expected distribution of critical points of log ‖s‖hN of Morse index q, and we let N crit
N,q,h

denote the expected number of these critical points. Thus we have

Kcrit
N,h(z) =

2m∑

q=m

Kcrit
N,q,h(z) , N crit

N,h =
2m∑

q=m

N crit
N,q,h . (8)

Then we have:

Theorem 1.2. Let M, L, h, ω,Kcrit
N,q,h be as above. Then

N−m Kcrit
N,q,h(z) ∼ {b0q + b1q(z)N−1 + b2q(z)N−2 + · · · }ωm

m!
, 0 ≤ q ≤ m ,

where the bjq = bjq(m) are curvature invariants of order j of ω. In particular, b0q is given
by the same formula as b0 except that the domain of integration Sym(m, C) × C is replaced
by

Sm,k := {(H, x) ∈ Sym(m, C) × C : index(HH∗ − |x|2I) = k} , (9)

with k = q − m.

Since each b0q is strictly positive and their sum equals b0 we have:

Corollary 1.3. b0 >
∑m

q=0(−1)m+q b0q = χ(L ⊗ T ∗1,0).

It follows that positive curvature causes sections to have substantially more critical points
on average than required by the topology. The integrals are very complicated to evaluate
except in dimension one, where we obtain a very precise formula:
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Theorem 1.4. Let (L, h) be a positive line bundle on a compact complex curve C of genus
g. Then

N crit
N,h =

5

3
c1(L) N +

7

9
(2g − 2) +

(
2

27π

∫

C

ρ2ωh

)
N−1 + O(N−2) ,

where ωh = i
2
Θh and ρ is the Gaussian curvature of the metric ωh.

Thus we gain a quantitative sense of how many additional critical points there are in the
metric sense by comparison with the classical sense of ∂f

∂z
= 0. In the case of O(N) → CP1,

whose sections are polynomials of degree N , we may view this classical critical point equation
as a connection critical point equation by viewing the derivative ∂

∂z
as a flat meromorphic

connection with pole at ∞. Alternately, it is the Chern connection of a singular hermitian
metric. The critical point equation being purely holomorphic, the number of critical points
of a generic section is a constant N − 1. All critical points relative to this connection are
saddle points. By comparison, critical points of s ∈ H0(CP1,O(N)) relative to a smooth
Chern connection have an additional ∼ N

3
local maxima and ∼ N

3
additional saddles. The

study of critical points relative to meromorphic connections (known as Minkowski vacua) is
simpler than that relative to Chern connections and will be explored further in a subsequent
work.

Next we observe that, as a corollary of Theorem 1.2, the asymptotics of the expected
number of critical points is universal to two orders.

Corollary 1.5. Let (L, h) → (M, ω) be a positive holomorphic line bundle on a compact
Kähler manifold, with ω = i

2
Θh. Then the expected total number of critical points of Morse

index q (m ≤ q ≤ 2m) on M is of the form

N crit
N,q,h ∼

[
πmb0q

m!
c1(L)m

]
Nm +

[
πmβ1q

(m − 1)!
c1(M) · c1(L)m−1

]
Nm−1

+

[
β2q

∫

M

ρ2dVolh + β ′
2q c1(M)2 · c1(L)m−2 + β ′′

2q c2(M) · c1(L)m−2

]
Nm−2 + · · · ,

where b0q, β1q, β2q, β
′
2q, β

′′
2q are universal constants depending only on the dimension m.

In §4, we obtain exact formulas for N crit
N,q,h for the case where M is projective space of

dimension ≤ 3 and (L, h) is the hyperplane section bundle with the Fubini-Study metric.
This renews the question raised above whether N crit

q,h is a topological invariant or at least

whether the asymptotic expansion of N crit
N,q,h is a topological invariant. We see from Corollary

1.5 that the expansion is not topological provided that the constant β2q = β2q(m) does not
vanish. Indeed from our computations in dimensions ≤ 3, we see that it is positive for these
cases, and we expect that β2q(m) > 0 for all m.

We pause to explain that the sign of β2q has a natural interpretation in terms of extremal
metrics [T, Don]. This interpretation is based on a notion of asymptotic minimality of N crit

N,h,

and we introduce it by revisiting the original problem of determining how N crit
h varies as h

varies over hermitian metrics on L. One could consider all hermitian metrics on L, but we
focus on the smaller class of metrics of concern in this article,

P (M, L) = {h :
i

2
Θh is a positive (1, 1)-form }.
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If we fix one such metric h0 = e−K0 , the others may be expressed as hϕ := eϕh0 with
ϕ ∈ C∞(M). It is plausible (though we do not have a proof) that N crit

hϕ
is unbounded

as hϕ varies over P (M, L). In view of the equation (5), the number of critical points of
a section should be ‘large’ if the ‘degree’ of the connection form −∂K is ‘large’. Here,
K = − log h = K0−ϕ in a local frame. The connection form is constrained by the positivity
condition that hϕ ∈ P (M, L), but eεϕh0 ∈ P (M, L) for any ϕ if ε is small enough, so it
is plausible that this constraint does not suffice to bound N crit

hϕ
from above. On the other

hand, N crit
h is bounded below by the Euler number of L ⊗ T ∗1,0, and that suggests it has a

smooth minimum. It would be interesting to determine this minimal metric, which would be
a least entropy metric for the physical problem in the sense of the uncertainty as to which
critical point is the correct vacuum. To study this minimization problem, one could study
the variation δN crit

h of N crit
h with respect to h. However, the equation δN crit

h = 0 has so far
resisted analysis.

The asymptotic problem is simpler and brings this question into contact with Calabi
extremal metrics. Since the first two leading coefficients in the expansion of N crit

N,h are topo-
logical, the issue is to find the metrics for which the first non-topological term is critical.
The first non-topological term is the Calabi functional

∫

M

ρ2
h dVolh ,

where ρh is the scalar curvature of the Kähler metric ωh = − i
2
∂∂̄ log h, and dVolh = 1

m!
ωm

h .
Thus the problem of finding metrics which are critical for the metric invariant N crit

N,h is
very closely related to the problem of find critical points (necessarily minima) of Calabi’s
functional.

Existence of critical metrics is one of the fundamental problems in complex geometry, and
we refer to [T, Don] for background. It is believed that such a canonical metric exists if and
only if L is stable in a suitable sense. One class of canonical metrics are hermitian metrics
h for which Θh is a Kähler metric of constant scalar curvature, i.e. for which ρ = C in
our notation. By a theorem due to S. Donaldson ([Don], Corollary 5), there exists at most
one Kähler metric of constant scalar curvature in the cohomology class of 2πc1(L). Hence
if there exists such a metric of constant scalar curvature, there exists a unique hermitian
metric minimizing Calabi’s functional.

This leads us to make the following definition:

Definition: Let L → M be an ample holomorphic line bundle over a compact Kähler
manifold. We say that h ∈ P (M, L) has asymptotically minimal critical numbers if for all
h1 6= h in P (M, L), there exists N0 = N0(h1) such that

N crit
N,q,h < N crit

N,q,h1
for N ≥ N0 , m ≤ q ≤ 2m . (10)

Assuming (M, L) has a hermitian metric h minimizing Calabi’s functional, we see from
Corollary 1.5 that h has asymptotically minimal critical numbers as long as β2q(m) > 0.
Since we believe this to be the case for all dimensions, we state the following conjecture.

Conjecture 1.6. A metric h ∈ P (M, L) has asymptotically minimal critical numbers if
and only if it minimizes Calabi’s functional.
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In Lemma 6.1, we show that

β2q(m) =
1

4 π(m+2
2 )

∫

Sm,q−m

γ(H)
∣∣det(2HH∗ − |x|2I)

∣∣ e−〈(H,x),(H,x)〉 dH dx , (11)

where

S′
m,k = {(H, x) ∈ Sym(m, C) × C : index(2HH∗ − |x|2I) = k} ,

and

γ(H) =
1

2
|H11|4 − 2|H11|2 + 1.

It is unfortunately not clear from this formula which sign β2q has. In §6, we give a final
integral formula for β2q (Lemma 6.2) which we evaluate using Maple to obtain:

Theorem 1.7. The constants β2q(m) are positive for m ≤ 3, and hence Conjecture 1.6 is
true for dim M ≤ 3.

In particular, we have:

Corollary 1.8. Suppose that dim M ≤ 3 and that L possesses a metric h for which the
scalar curvature of Θh is constant. Then h is the unique metric on L with asymptotically
minimal critical numbers.

Thus, for instance, the Fubini-Study metric h on the hyperplane section bundle O → CPm

is the unique metric with asymptotically minimal critical numbers on this bundle, at least
for m ≤ 3.

We close the introduction with some comments on the organization of the paper. The
proof of Theorems 1.1 and 1.2 are based on the Tian-Yau-Zelditch asymptotic expansion of
the Szegö kernel ΠN (z, w) [Ze, Lu] and on formulas from [DSZ] for the density of critical
points. We then need to evaluate the coefficients explicitly to obtain concrete results linking
geometry to numbers of critical points. Once we know the leading coefficient is universal, we
may calculate it for O(N) → CPm and this is done in §4. We further obtain an exact formula
for N crit

hF S,N for the Fubini-Study metric on O(N) → CPm in any dimension. Unfortunately,
Fubini-Study is not useful for finding the sign of β2 since it is impossible to separate out
the topologically invariant terms from the Calabi functional in an example. Hence in §6,
we analyze this term in the case of M = CP1 × Em−1 for E an elliptic curve, where the
topological terms vanish. This leads to an explicit integral which we analyze by a variant of
the Itzykson-Zuber formula in random matrix integrals.

2. Background

Let (L, h) → M be a Hermitian holomorphic line bundle over a complex manifold M ,
and let ∇ = ∇h be its Chern connection, i.e. the unique connection of type (1, 0) on
compatible with both the metric and complex structure of L. Thus, it satisfies ∇′′s = 0
for any holomorphic section s where ∇ = ∇′ + ∇′′ is the splitting of the connection into its
L ⊗ T ∗1,0, resp. L ⊗ T ∗0,1 parts. It follows that

Crit(s, h) = {z : ∇′
hs(z) = 0}. (12)

We denote by Θh = d∂ log h = −∂∂̄ log h the curvature of h and ωh = i
2
Θh.
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We now introduce the Gaussian measures γh, called Hermitian Gaussian measures in [DSZ]
which we use exclusively in this paper. They are determined by the inner product

〈s1, s2〉 =

∫

M

h(s1(z), s2(z))dVh(z) (13)

on H0(M, L), where dVh = 1
m!

ωm
h . By definition,

dγh(s) =
1

πd
e−‖c‖2

dc , s =
d∑

j=1

cjej , (14)

where dc is Lebesgue measure and {ej} is an orthonormal basis basis for S relative to 〈, 〉.
We also denote the expected value of a random variable X on with respect to γh by Eγh

or
simply by E.

Definition: The expected distribution of critical points of s ∈ S ⊂ H0(M, L) with respect
to γh is defined by

Kcrit
h (z) = E γh




∑

z∈Crit(s,h)

δz


 , (15)

where δz is the Dirac point mass at z; i.e.,

∫

M

ϕ(z)Kcrit
h (z) =

∫

H0(M,L)




∑

z:∇hs(z)=0

ϕ(z)


 dγh(s). (16)

The density of Kcrit
h with respect to dVh is denoted Kcrit

h (z); i.e.,

Kcrit
h = Kcrit

h (z) dVh .

2.1. Formulas for the expected distribution of critical points. Let (L, h) → (M, ω)
be a Hermitian holomorphic line bundle on an m-dimensional Kähler manifold. We say that
H0(M, L) has the 2-jet spanning property if all possible values and derivatives of order ≤ 2
are attained by the global sections s ∈ H0(M, L) at every point of M In [DSZ] we obtained an
integral formula for Kcrit

h (z0) in terms of the Szegö kernel Π(z, w̄) of H0(M, L) with respect
to h. To describe this formula, we choose normal coordinates about z0 ∈ M and define the
following matrices:

A(z0) =
(
∇zj

∇w̄j′
Π
)
, (17)

B(z0) =
[(

τj′q′ ∇zj
∇w̄q′

∇w̄j′
Π
) (

∇zj
Π
)]

, (18)

C(z0) =

[ (
τjqτj′q′ ∇zq

∇zj
∇w̄q′

∇w̄j′
Π
) (

τjq ∇zq
∇zj

Π
)

(
τj′q′ ∇w̄q′

∇w̄j′
Π
)

Π

]
, (19)

τjq =
√

2 if j < q , τjj = 1 , (20)

1 ≤ j ≤ m , 1 ≤ j ≤ q ≤ m , 1 ≤ j′ ≤ q′ ≤ m ,
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where Π and its derivatives are evaluated at the point (z0, 0; z0, 0). In the above matrices, j, q
index the rows, and j′, q′ index the columns. Note that A, B, C are m×m, m×dm, dm ×dm

matrices, respectively, where

dm = dimC(Sym(m, C) × C) =
m2 + m + 2

2
.

We then let
Λ(z0) = C(z0) − B(z0)

∗A(z0)
−1B(z0) . (21)

The matrices A, B, C give the second moments of the joint probability distribution of the
random variables ∇s(z0) and ∇2s(z0) on S.

Theorem 2.1. [DSZ] Let (L, h) → M denote a positive holomorphic line bundle with the 2-
jet spanning property. Give M the volume form dV = 1

m!

(
i
2
Θh

)m
induced from the curvature

of L. Then the expected density of critical points relative to dV is given by

Kcrit
h (z) =

π−(m+2
2 )

det A(z) det Λ(z)

∫

Sym(m,C)×C

∣∣det(HH∗ − |x|2I)
∣∣ e−〈Λ(z)−1(H,x),(H,x)〉 dH dx .

Here, H ∈ Sym(m, C) is a complex symmetric matrix, dH and dx denote Lebesgue mea-
sure, and Λ−1 is the Hermitian operator on the complex vector space Sym(m, C)×C described
as follows:

Let Sjq, 1 ≤ j ≤ q ≤ m, be the basis for Sym(m, C) given by

(Sjq)j′q′ =

{
1√
2
(δjj′δqq′ + δqj′δjq′) for j < q

δjj′δqq′ for j = q.

I.e., for j < q, Sjq is the matrix with 1√
2

in the jq and qj places and 0 elsewhere, while Sjj

is the matrix with 1 in the jj place and 0 elsewhere. We note that {Sjq} is an orthonormal
basis (over C) for Sym(m, C) with respect to the Hilbert-Schmidt Hermitian inner product

〈S, T 〉HS = Tr(ST ∗). (22)

For H = (Hjq) ∈ Sym(m, C), we have

H =
∑

1≤j≤q≤m

Ĥjq Ejq , Ĥjq = τjqHjq , (23)

where τjq is given by (20). Lebesgue mesure dH (with respect to the Hilbert-Schmidt norm)
is given by

dH =
∏

j≤q

dReĤjq ∧ dImĤjq

Writing

Λ =



(
Λj′q′

jq

) (
Λ0

jq

)

(
Λj′q′

0

)
Λ0

0


 ,

we then define

〈Λ(z)−1(H, x), (H, x)〉 =
∑

(Λ−1)j′q′

jq ĤjqĤj′q′ + 2Re
∑

(Λ−1)0
jqĤjqx̄ + (Λ−1)0

0|x|2. (24)

To study the asymptotics, we consider powers LN and we use the following result.
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Corollary 2.2. With the same notation and assumptions as above, the density of the
expected distribution Kcrit

N,h of critical points of random sections sN ∈ H0(M, LN) relative to
dVh is given by

Kcrit
N,h(z) =

π−(m+2
2 )

det AN (z) det ΛN(z)

∫

Sym(m,C)×C

∣∣det(HH∗ − |x|2I)
∣∣ e−〈ΛN (z)−1(H,x),(H,x)〉 dH dx .

where

ΛN(z0) = CN(z0) − BN (z0)
∗AN(z0)

−1BN(z0) , (25)

AN (z0) =
[(
∇zj

∇w̄j′
ΠN

)]
, (26)

BN (z0) =
[(

τj′q′ ∇zj
∇w̄q′

∇w̄j′
ΠN

) (
N ∇zj

ΠN

)]
, (27)

CN(z0) =

[ (
τjqτj′q′ ∇zq

∇zj
∇w̄q′

∇w̄j′
ΠN

) (
τjqN ∇zq

∇zj
ΠN

)

(
τj′q′N ∇w̄q′

∇w̄j′
ΠN

)
N2 ΠN

]
, (28)

τjq =
√

2 if j < q , τjj = 1 ,

1 ≤ j ≤ m , 1 ≤ j ≤ q ≤ m , 1 ≤ j′ ≤ q′ ≤ m ,

where ΠN and its derivatives are evaluated at the point (z0, 0; z0, 0).

Proof. Rescale zj = z̃j/
√

N . Then the curvature of LN is given by

ΘhN = NΘh =
1

2

∑
dz̃j ∧ dz̃j,

so that the z̃j are normal coordinates (at a point z0) for the curvature of LN . Apply The-

orem 2.1, using the coordinates {z̃j} to obtain A, B, C, Λ . Since dṼ = Nm dV and the
transformation (A, Λ) 7→ (NA, N2Λ) introduces a factor N−m, we let AN = NA, BN =
N3/2B, CN = N2C to obtain the desired formula. �

We also have a formula for the density of critical points of specific Morse indices:

Theorem 2.3. Under the above assumptions, the density relative to dVh of the expected
distribution Kcrit

N,q,h of critical points of Morse index q of log ‖sN‖h for random sections sN ∈
H0(M, LN ) is given by

Kcrit
N,q,h(z) =

π−(m+2
2 )

det AN(z) det ΛN(z)

∫

Sm,q−m

∣∣det(HH∗ − |x|2I)
∣∣ e−〈ΛN (z)−1(H,x),(H,x)〉 dH dx .

where

Sm,k = {(H, x) ∈ Sym(m, C) × C : index(HH∗ − |x|2I) = k} .

Proof. The case N = 1 is given as Theorem 6 in [DSZ]. The general case follows immediately
by rescaling as in the proof of Corollary 2.2. �

Recall that the index of a nonsingular Hermitian matrix is the number of its negative
eigenvalues, and the Morse index of a nondegenerate critical point of a real-valued function
is the index of its (real) Hessian.
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2.2. The Szegö kernel. As in our previous work, it is useful to lift the analysis on positive
line bundles L → M to the associated principal S1 bundle X → M . Sections then become
scalar functions and it is simpler to formulate various asymptotic properties for powers
LN [BSZ1, BSZ2]. The same analysis is also useful for general line bundles although the
asymptotic results no longer hold.

Given a holomorphic line bundle L and a Hermitian metric h on L, we obtain a Hermitian
metric h∗ on the dual line bundle L∗ and we define the associated circle bundle by X = {λ ∈
L∗ : ‖λ‖h∗ = 1}. Thus, X is the boundary of the disc bundle D = {λ ∈ L∗ : ρ(λ) > 0},
where ρ(λ) = 1 − ‖λ‖2

h∗ . When (L, h) is a positive line bundle, the disc bundle D is strictly
pseudoconvex in L∗, hence X inherits the structure of a strictly pseudoconvex CR manifold.
When L is negative, as is the case for the line bundles relevant to string theory, X is pseudo-
concave. We endow X with the contact form α = −i∂ρ|X = i∂̄ρ|X and the associated volume
form

dVX =
1

m!
α ∧ (dα)m = α ∧ π∗dVM . (29)

We define the Hardy space H2(X) ⊂ L2(X) of square-integrable CR functions on X, i.e.,
functions that are annihilated by the Cauchy-Riemann operator ∂̄b and are L2 with respect
to the inner product

〈F1, F2〉 =
1

2π

∫

X

F1F2dVX , F1, F2 ∈ L2(X) . (30)

We let rθx = eiθx (x ∈ X) denote the S1 action on X and denote its infinitesimal generator by
∂
∂θ

. The S1 action on X commutes with ∂̄b; hence H2(X) =
⊕∞

N=0 H2
N (X) where H2

N (X) =

{F ∈ H2(X) : F (rθx) = eiNθF (x)}. A section sN of LN determines an equivariant function
ŝN on L∗ by the rule

ŝN(λ) =
(
λ⊗N , sN(z)

)
, λ ∈ L∗

z , z ∈ M ,

where λ⊗N = λ⊗ · · ·⊗ λ. We henceforth restrict ŝ to X and then the equivariance property
takes the form ŝN(rθx) = eiNθ ŝN(x). The map s 7→ ŝ is a unitary equivalence between
H0(M, LN ) and H2

N(X).
We let eL be a nonvanishing local section, or local frame, of L. As above, we write

‖eL(z)‖2
h = e−K(z,z̄) . (31)

Thus, a positive line bundle L induces the Kähler form ω = i
2
∂∂̄K with Kähler potential K.

The Szegö kernel ΠN (x, y) is the kernel of the orthogonal projection ΠN : L2(X) →
H2

N(X); it is defined by

ΠNF (x) =

∫

X

ΠN(x, y)F (y)dVX(y) , F ∈ L2(X) . (32)

Let {sN
j = fje

⊗N
L : j = 1, . . . , dN} be an orthonormal basis for H0(M, LN). Then {ŝN

j } is

an orthonormal basis of H2(X), and the Szegö kernel can be written in the form

ΠN (x, y) =

dN∑

j=1

ŝN
j (x)ŝN

j (y) . (33)
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It is the lift of the section

Π̃N (z, w̄) := FN(z, w̄) e⊗N
L (z) ⊗ e⊗N

L (w) , (34)

where

FN (z, w̄) =

dN∑

j=1

fj(z)fj(w) . (35)

We let (z, θ) denote the coordinates of the point x = eiθ‖eL(z)‖he
∗
L(z) ∈ X. The equivari-

ant lift of a section s = fe⊗N
L ∈ H0(M, LN ) is given explicitly by

ŝ(z, θ) = eiNθ‖e⊗N
L ‖hf(z) = eN[− 1

2
K(z,z̄)+iθ]f(z) . (36)

The Szegö kernel is then given by

ΠN(z, θ; w, ϕ) = eN[− 1
2
K(z,z̄)− 1

2
K(w,w̄)+i(θ−ϕ)]FN(z, w̄) . (37)

2.2.1. The connection. We denote by H = ker α and obtain a splitting TX = H ⊕ C
∂
∂θ

into horizontal and vertical spaces. The Chern connection ∇ on LN then lifts to X as the
horizontal derivative dH , i.e.

(∇sN )̂ = dH ŝN . (38)

To describe the connection explicitly, we choose local holomorphic coordinates {z1, . . . , zm}
in M , and we write

∇ = ∇′ + ∇′′, ∇′sN =
∑

dzj ⊗∇zj
sN , ∇′′sN =

∑
dz̄j ⊗∇z̄j

sN .

In particular, (∇′′sN )̂ = ∂̄bŝN , which vanishes when the section sN is holomorphic, or
equivalently, when ŝN ∈ H2

N(X).
For a section sN = fe⊗N

L of LN , we have

∇zj
sN =

(
∂f

∂zj

− Nf
∂K

∂zj

)
e⊗N

L = eNK ∂

∂zj

(
e−NK f

)
e⊗N

L , ∇z̄j
sN =

∂f

∂z̄j

e⊗N
L . (39)

We also write

dHΠN (z, θ; w, ϕ) =
∑

dzj ⊗∇zj
ΠN +

∑
dw̄j ⊗∇w̄j

ΠN , (40)

where dH is the horizontal derivative on X × X. (We used the fact that the horizontal
derivatives of ΠN with respect to the z̄j and wj variables vanish.) By (37)–(39), we have

∇zj
ΠN = eN[− 1

2
K(z,z̄)− 1

2
K(w,w̄)+i(θ−ϕ)]

(
∂

∂zj
− N

∂K

∂zj
(z, z̄)

)
FN(z, w̄) , (41)

∇w̄j
ΠN = eN[− 1

2
K(z,z̄)− 1

2
K(w,w̄)+i(θ−ϕ)]

(
∂

∂w̄j
− N

∂K

∂w̄j
(w, w̄)

)
FN (z, w̄) . (42)
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3. Alternate formulas for the density of critical points

The integrals in Theorems 2.1–2.3 are difficult to evaluate because of the absolute value
sign, which prevents a direct application of Wick methods. To compute the densities, we
shall replace our integral by another one which can be evaluated by residue calculus in certain
cases. This new integral is given by the following lemma:

Lemma 3.1. Let Λ be a positive definite Hermitian operator on Sym(m, C) × C. Then

1

πdm det Λ

∫

Sym(m,C)×C

∣∣det(HH∗ − |x|2I)
∣∣ e−〈Λ−1(H,x),(H,x)〉 dH dx

=
(−i)m(m−1)/2

(2π)m
∏m

j=1 j!
lim

ε′→0+
lim

ε→0+

∫

Rm

∫

Rm

∫

U(m)

∆(ξ) ∆(λ) |∏j λj | ei〈ξ,λ〉e−ε|ξ|2−ε′|λ|2

det
[
iD̂(ξ)ρ(g)Λρ(g)∗ + I

] dg dξ dλ,

where

• ∆(λ) = Πi<j(λi − λj),
• dg is unit mass Haar measure on U(m),

• D̂(ξ) is the Hermitian operator on Sym(m, C) ⊕ C given by

D̂(ξ)
(
(Hjk), x

)
=

((
ξj + ξk

2
Hjk

)
, −

(∑m
q=1 ξq

)
x

)
,

• ρ is the representation of U(m) on Sym(m, C) ⊕ C given by

ρ(g)(H, x) = (gHgt, x) .

The integrand is analytic in ξ, g but rather complicated. Its principal features are:

• ∆(ξ), ∆(λ) are homogeneous polynomials of degree m(m − 1)/2, and |∏j λj | is ho-
mogeneous of degree m;

• Pg,z(ξ) = det
[
iD̂(ξ)ρ(g)Λ(z)ρ(g)∗ + I

]
is a (family of) polynomial(s) in ξ of degree

m(m + 1)/2 + 1 with no real zeros ξ ∈ Rm. But the polynomials are not elliptic
(or even hypo-elliptic), that is, do not satisfy |P (ξ)| ≥ C|ξ|m(m+1)/2+1 (or any other
power |ξ|µ). Indeed, for large |ξ| we may drop the second term I and find that the

growth at infinity is that of det
[
iD̂(ξ)

]
. Since D̂(ξ) is a diagonal matrix as described

in Theorem 3.2, its determinant is a product of linear polynomials in ξ, and hence
vanishes along a union of real hyperplanes.

• The ratio pg(ξ) = ∆(ξ)

det[iD̂(ξ)ρ(g)Λ(z)ρ(g)∗+I]
is thus a rational function in ξ which is a

‘symbol’ of order −m− 1, i.e. each ξ-derivative decays to one extra order. Repeated
partial integrations in dξ using 1

1+|λ|2 [I − ∆ξ]e
i〈λ,ξ〉 = ei〈λ,ξ〉 simultaneously lowers

the order in both ξ and λ by two and renders the dλ integral absolutely convergent
without the Gaussian factor.

The proof of Lemma 3.1 is given in §3.1 below.
As a consequence, we have the following alternative formula for the expected critical point

density:



14 MICHAEL R. DOUGLAS, BERNARD SHIFFMAN, AND STEVE ZELDITCH

Theorem 3.2. Under the hypotheses of Theorem 2.1 and notation of Lemma 3.1, the density
of the expected distribution of critical points of sections of H0(M, LN ) is also given by:

Kcrit
N,h(z) =

cm

det AN
lim

ε′→0+

∫

Rm

lim
ε→0+

∫

Rm

∫

U(m)

∆(ξ) ∆(λ) |∏j λj | ei〈ξ,λ〉e−ε|ξ|2−ε′|λ|2

det
[
iD̂(ξ)ρ(g)ΛN(z)ρ(g)∗ + I

] dg dξ dλ,

where

cm =
(−i)m(m−1)/2

2m π2m
∏m

j=1 j!
.

Proof. Corollary 2.2 and Lemma 3.1. �

In §4 we shall use Theorem 3.2 to calculate the density of critical points for random
sections sN ∈ H0(CPm,O(N)) of the N -th power of the hyperplane bundle. In this case the
U(m) integral drops out, and the integral can be evaluated as an iterated integral without

the Gaussian factor e−ε|ξ|2−ε′|λ|2.
We also have an alternative formula for the Morse index densities, which follows by a

similar argument (given in §3.2):

Theorem 3.3. Under the above assumptions, the density of the expected distribution of
critical points of Morse index q of log ‖sN‖h is also given by:

Kcrit
N,q,h(z) =

m! cm

det AN
lim

ε′→0+

∫

Y2m−q

lim
ε→0+

∫

Rm

∫

U(m)

∆(ξ) ∆(λ) |∏j λj| ei〈ξ,λ〉e−ε|ξ|2−ε′|λ|2

det
[
iD̂(ξ)ρ(g)ΛN(z)ρ(g)∗ + I

] dg dξ dλ,

where

Yp = {λ ∈ R
m : λ1 > · · · > λp > 0 > λp+1 > · · · > λm} .

3.1. Proof of Lemma 3.1. We write

I(z0) =
1

πdm det Λ(z0)

∫

Sym(m,C)×C

∣∣det(HH∗ − |x|2I)
∣∣ exp

(
−〈Λ(z0)

−1(H, x), (H, x)〉
)
dHdx .

(43)
Here, H (previously denoted by H ′) is a complex m×m symmetric matrix, so H∗ = H. The
proof is basically to rewrite (43) using the Itzykson-Zuber integral and Gaussian integration.

We first observe that

I(z0) = lim
ε′→0

lim
ε→0

Iε,ε′(z0) ,

where Iε,ε′(z0) is the absolutely convergent integral,

Iε,ε′(z0) =
1

(2π)m2πdm det Λ

∫

Hm

∫

Hm

∫

Sym(m,C)×C

|det P | e−εTrΞ∗Ξ−ε′TrP ∗P ei〈Ξ,P−HH∗+|x|2I〉

× exp
(
−〈Λ−1(H, x), (H, x)〉

)
dH dx dP dΞ. (44)

Absolute convergence is guaranteed by the Gaussian factors in each variable (H, x, Ξ, P ). If
the dΞ integral is done first, we obtain a dual Gaussian which converges (in the sense of
tempered distributions) to the delta function δHH∗− 1

2
|x|2(P ) as ε → 0. Then, as ε′ → 0, the

dP integral then evaluates the integrand at P = HH∗ − |x|2I and we retrieve the original
integral I(z0).
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We next conjugate P in (44) to a diagonal matrix D(λ) with λ = (λ1, . . . , λm) by an
element h ∈ U(m). Recalling that

∫

Hm

ϕ(P ) dP = c′m

∫

Rm

∫

U(m)

ϕ(hD(λ)h∗)∆(λ)2 dh dλ , c′m =
(2π)(

m
2 )

∏m
j=1 j!

(45)

(see for example [ZZ, (1.9)]), we then obtain

Iε,ε′ =
c′m

(2π)m2 πdm det Λ

∫

U(m)

∫

Sym(m,C)×C

∫

Hm

∫

Rm

|det(D(λ))|

× e−ε(TrD(λ)∗D(λ)+TrΞ∗Ξ)ei〈Ξ,hD(λ)h∗+|x|2I−H∗H〉∆(λ)2

× exp
(
−〈Λ−1(H, x), (H, x)〉

)
dλ dΞ dH dx dh

Since the factor
∫
U(m)

ei〈Ξ,hD(λ)h∗〉dh is invariant under the conjugation Ξ → g∗Ξg with g ∈
U(m), we apply the same identity (45) in the Ξ variable. We write Ξ = g−1D(ξ)g where
D(ξ) is diagonal. This replaces dΞ by ∆(ξ)2dξ. The inner product is bi-invariant so we may
transfer the conjugation to HH∗. We thus obtain:

Iε,ε′ =
(c′m)2

(2π)m2 πdm det Λ

∫

U(m)

∫

U(m)

∫

Sym(m,C)×C

∫

Rm

∫

Rm

|det(D(λ))| e−ε(|ξ|2+|λ|2)

× exp
[
i〈D(ξ), hD(λ)h∗ + |x|2I − gHH∗g∗〉 − 〈Λ−1(H, x), (H, x)〉

]

× ∆(λ)2∆(ξ)2 dξ dλ dH dx dg dh . (46)

Next we recognize the integral
∫
U(m)

ei〈D(ξ),hD(λ)h∗〉dh as the well-known Itzykson-Zuber-

Harish-Chandra integral [Ha] (cf., [ZZ]):

J(D(λ), D(ξ)) = (−i)m(m−1)/2
(∏m−1

j=1 j!
) det[eiλjξk ]j,k

∆(λ)∆(ξ)
. (47)

We note that both numerator and denominator are anti-symmetric in ξj and λj under per-
mutation, so that the ratio is well-defined.

We substitute (47) into (46) and expand

det[eiξjλk ]jk =
∑

σ∈Sm

(−1)σ ei〈ξ,σ(λ)〉,

obtaining a sum of m! integrals. However, by making the change of variables λ′ = σ(λ)
and noting that ∆(σ(λ)) = (−1)σ∆(λ), we see that these integrals are equal, and (46) then
becomes

Iε,ε′ =
(−i)m(m−1)/2

(2π)m(
∏m

j=1 j!)πdm det Λ

∫

U(m)

∫

Sym(m,C)×C

∫

Rm

∫

Rm

∆(λ)∆(ξ) |det(D(λ))|

× ei〈λ,ξ〉e−ε(|ξ|2+|λ|2)ei〈D(ξ),|x|2I−gHH∗g∗〉−〈Λ−1(H,x),(H,x)〉 dξ dλ dH dx dg . (48)

Further we observe that the dHdx integral is a Gaussian integral. We simplify the phase by
noting that

〈D(ξ), gHH∗g∗−|x|2I〉 = Tr(D(ξ)gHgtḡH∗g∗)−TrD(ξ) |x|2 =
〈
D̂(ξ)ρ(g)(H, x), ρ(g)(H, x)

〉
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where D̂(ξ) and ρ(g) are as in the statement of the theorem. Thus,

1

πdm det Λ

∫

Sym(m,C)×C

exp
[
i〈D(ξ), |x|2I − gHH∗g∗〉 − 〈Λ−1(H, x), (H, x)〉

]
dH dx

=
1

det Λ det
[
iρ(g)∗D̂(ξ)ρ(g) + Λ−1

]

=
1

det
[
iρ(g)∗D̂(ξ)ρ(g)Λ + I

]

=
1

det
[
iD̂(ξ)ρ(g)Λρ(g)∗ + I

] . (49)

Substituting (49) into (48), we obtain the desirred formula. �

3.2. Proof of Theorem 3.3. By the proof of Lemma 3.1, we also see that

1

det Λ

∫

Sm,k

∣∣det(HH∗ − |x|2I)
∣∣ e−〈Λ−1(H,x),(H,x)〉 dH dx

=
(−i)m(m−1)/2

(2π)m
∏m

j=1 j!
lim

ε′→0+

∫

Y ′

m−k

lim
ε→0+

∫

Rm

∫

U(m)

∆(ξ) ∆(λ) |∏j λj| ei〈ξ,λ〉e−ε|ξ|2−ε′|λ|2

det
[
iD̂(ξ)ρ(g)Λρ(g)∗ + I

] dg dξ dλ,

where Y ′
p denotes the set of points in R

m with exactly p coordinates positive. Since the
integrand on the right is invariant under identical simultaneous permutations of the ξj and
the λj , it follows that the integral equals m! times the corresponding integral over over Ym−k.
The desired formula then follows from Theorem 2.3. �

4. Exact formula for CPm

To illustrate our results for fixed N , we compute the density Kcrit
N,q(z) of the expected

distribution of critical points of Morse index q of log ‖sN‖hN for random sections sN ∈
H0(CPm,O(N)), where hN is the Fubini-Study metric on O(N). Here, the probability
measure on H0(CPm,O(N)) is the Gaussian measure induced from hN and the volume form
V = 1

m!
ωm

FS on CPm. Since this Hermitian metric and Gaussian measure are invariant under
the SU(m + 1) action on CP

m, the density is independent of the point z ∈ CP
m, and hence

the expected number of critical points of Morse index q is given by

N crit
N,q (CP

m) =
πm

m!
Kcrit

N,q(z) .

These numbers turn out to be rational functions of N , which we state explicitly in §4.2
for m ≤ 4. The following lemma is the starting point for our computation.

Lemma 4.1. We have:

Kcrit
N,q(z) = im+1 m! |cm|

Nm
lim

ε′→0+

∫

Y2m−q

dλ
∣∣∣
∏

j λj

∣∣∣ ∆(λ) e−ε′|λ|2

× lim
ε→0+

∫

Rm

∆(ξ) ei〈λ,ξ〉e−ε|ξ|2 dξ

(N2
∑

ξj + i)
∏

1≤j≤k≤m{i − N(N − 1)(ξj + ξk)}
,
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where cm and Y2m−q are as in Theorems 3.2 and 3.3.

Proof. Since the critical point density Kcrit
N,qis constant, it suffices to compute it at z = 0 ∈

C
m ⊂ CP

m, using the local frame eL corresponding to the homogeneous (linear) polynomial
z0. We recall that the Szegö kernel is given by

ΠH0(CPm,O(N))(z, w) =
(N + m)!

πmN !
(1 + z · w̄)NeL(z) ⊗ eL(w) .

(See, for example, [BSZ1, §1.3].) Since the formula in Theorem 2.1 is invariant when the
Szegö kernel is multiplied by a constant, we can replace the above by the normalized Szegö
kernel

Π̃N(z, w) := (1 + z · w̄)N (50)

in our computation.
We notice that

K(z) = − log ‖eL(z)‖2
h = log(1 + ‖z‖2) ,

K(0) =
∂K

∂z
(0) =

∂2K

∂2z
(0) = 0 .

Hence when computing the (normalized) matrices ÃN , B̃N , C̃N , we can take the usual

derivatives of Π̃N . Indeed, we have

∂Π̃N

∂zj
= N(1 + z · w̄)N−1w̄j ,

∂2Π̃N

∂zj∂w̄j′
= δjj′N(1 + z · w̄)N−1 + N(N − 1)(1 + z · w̄)N−2zj′w̄j ,

∂4Π̃N

∂zj∂zq∂w̄j′∂w̄q′
(0, 0) = N(N − 1)(δjj′δqq′ + δj′qδjq′) .

It follows that

ÃN = NI , B̃N = 0 , Λ̃N = C̃N =

(
2N(N − 1)Î 0

0 N2

)
, (51)

where Î is the identity matrix of rank
(

m+1
2

)
.

The stated formula now follows from Theorem 3.3 by observing that ρ(g)Λ̃N ρ(g)∗ = Λ̃N ,
and

det
[
iD̂(ξ)Λ̃N + I

]
= (−i)

m2+m+2
2

(
N2
∑

ξj + i
) ∏

1≤j≤k≤m

{i − N(N − 1)(ξj + ξk)} .

�

4.1. Evaluating the inner integral by residues. We first evaluate

IN,λ := lim
ε→0+

1

Nm

∫

Rm

∆(ξ) ei〈λ,ξ〉e−ε|ξ|2 dξ

(N2
∑

ξj + i)
∏

1≤j≤k≤m{i − N(N − 1)(ξj + ξk)}
.
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To simplify the constant factors, we make the redefinitions ξj = (tj + i)/2N(N − 1) and
λj → 2N(N − 1)λj , after which

IN,λ = (−1)
m(m+1)

2 2
(m+1)(m+2)

2
(N − 1)m+1

N
e−

∑
λj I(λ; c) ,

with

I(λ; c) = lim
ε→0+

∫

(R−i)m

I(λ, t; c) e−ε
∑

|tj |2 dt ,

where

I(λ, t; c) =
∆(t) ei〈λ,t〉

(
∑

tj + ic)
∏

1≤j≤k≤m(tj + tk)
dt , c = m + 2 − 2/N . (52)

We note that
∫
(R−i)m I(λ, t; c) dt is a tempered distribution (in λ). Furthermore, the map

(ε1, . . . , εm) 7→
∫

(R−i)m

I(λ, t; c) e−
∑

εj |tj |2 dt

is a continuous map from [0, +∞)m to the tempered distributions. Hence

I(λ; c) =

∫

(R−i)m

I(λ, t; c) dt = lim
εm→0+

· · · lim
ε1→0+

∫

(R−i)m

I(λ, t; c) e−
∑

εj |tj |2 dt . (53)

We now use (53) evaluate I(λ; c) by iterated residues. We assume that λ ∈ Y2m−q, and we
let p = 2m − q, so that

λ1 > · · · > λp > 0 > λp+1 > · · · > λm .

We first suppose that p > 0, and we start by doing the integral over t1. Since the t1
integral is absolutely convergent when ε1 = 0, we can set ε1 = 0 and do the integral by
residues. If p > 0 we close the contour in the upper half plane, and pick up poles at t1 = 0,
and at t1 = −tj for j 6= 1. The pole at t1 = −ic −∑j 6=i tj is below the contour.

The residue of I(λ, t; c) at the pole t1 = 0 is

(−1)m−1

2
I(λ2, . . . , λm, t2, . . . , tm; c) . (54)

The residue at the pole t1 = −t2 is

±ei[(λ2−λ1)t2+λ3t3+···λmtm]2t2(t2 + t3) · · · (t2 + tm)∆(t2, . . . , tm)

(t3 + · · ·+ tm + ci) 2t2(−t2 + t3) · · · (−t2 + tm)
∏

2≤j≤k≤m(tj + tk)

=
±ei(λ2−λ1)t2 e−ε2|t2|2

2t2
I(λ3, . . . , λm, t3, . . . , tm; c) .

When we then do the t2 integral and let ε2 → 0+, we get zero. Indeed,

lim
ε→0+

∫

R−i

ei(λ2−λ1)t2 e−ε2|t2|2

2t2
dt2 = 0 ,

since λ2 − λ1 < 0 and the pole at t2 = 0 is above the contour. Similarly, when we compute
the residue of the pole t1 = −tj , j > 2, and then perform the tj integration, we also get zero.
Hence we can ignore the residues of the poles t1 = −tj .
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Applying (54) recursively, the integral with p > 0 can be reduced to the case with all λ’s
negative:

I(λ; c) = (−1)(m−1)+(m−2)+···+(m−p)(πi)p I(λp+1, . . . , λm; c) . (55)

We now treat the case p = 0 (i.e., 0 > λ1 > · · · > λm). This time, we do the tm
contour integral first. We close it in the lower half plane, picking up the residue at tm =
−ic −∑1≤k<m tk, which is

∆(t1, . . . , tm−1)
∏

k<m(ic +
∑

l<m tl + tk)e
cλm+i

∑
j(λj−λm)tj

2(−ic −∑l<m tl)
∏

1≤j≤k≤m−1(tj + tk)
∏

k<m(−ic −∑l<m,l 6=k tl)
. (56)

(To simplify the discussion, we set ε = 0, and regard the intgrals as distributions, as above.)
Next we perform the t1 integration. Since λm is the most negative eigenvalue, we close the
contour in the upper half plane. The terms in the denominator with ic all give poles in the
lower half plane, so can be ignored. And, the poles t1 = −tj will be ignorable, by the same
type of reasoning we saw earlier. Indeed, after computing the residue at t1 = −tj we find
that tj appears in the exponent as ei(λj−λ1)tj with λj − λ1 < 0 and the only factor of the
denominator with a zero below the contour is ic + t2 + · · ·+ tm; but this factor also appears
in the numerator and hence the tj integral gives zero.

This leaves the residue at all tj = 0 with 1 ≤ j ≤ m − 1. The residue at t1 = 0 of

R(λ1, . . . , λm−1, t1, . . . , tm−1; c) := (56)

is
(−1)m−1

2
R(λ2, . . . , λm−1, t2, . . . , tm−1; c) .

Continuing recursively, for the case p = 0, we obtain (remembering that the tm pole below
the contour contributes negatively):

I(λ; c) = (−1)m(m−1)/2 (πi)m

(−i

c

)
ecλm . (57)

Combining (57) (with m replaced by m − p) and (55), we find

I(λ; c) =





im
2−1 πm

c
ecλm for p < m ,

im
2−1 πm

c
for p = m .

(58)

(Note that the sign im
2−1 = −i or 1 if m is even or odd, respectively.)

4.2. Exact formulas for dimensions ≤ 4. The resulting λ integrals were computed using
Maple 7.1 For m = 1, we reproduce the result from [DSZ]:

N crit
N,1(CP

1) =
4(N − 1)2

3N − 2
, N crit

N,2(CP
1) =

N2

3N − 2
; hence N crit

N (CP
1) =

5N2 − 8N + 4

3N − 2
.

For m = 2, we obtain:

N crit
N,2(CP2) = 3 (N−1)3

(2 N−1)
, N crit

N,3(CP2) = 16 (N−1)3N2

(3 N−2)3
, N crit

N,4(CP2) = N5(5 N−4)

(3 N−2)3(2 N−1)
.

1The Maple programs are included in the source files of the arXiv.org posting.
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Hence, the expected total number of critical points is:

N crit
N (CP

2) =
59 N5 − 231 N4 + 375 N3 − 310 N2 + 132 N − 24

(3 N − 2)3 .

To check the computation, we note that

N crit
N,2(CP

2) −N crit
N,3(CP

2) + N crit
N,4(CP

2) = N2 − 3N + 3 = χ(T ∗1,0
CP2 ⊗O(N)) .

Similarly, for m = 3, we obtain:

N crit
N,3(CP3) = 8 (N−1)4

(5 N−2)
, N crit

N,4(CP3) =
(N−1)4N2(63 N2−50 N+10)

(2 N−1)4(5 N−2)
,

N crit
N,5(CP3) = 256 (N−1)4N5

(5 N−2)(3 N−2)5
, N crit

N,6(CP3) =
N9(451 N4−1248 N3+1280 N2−576 N+96)

(2 N−1)4(3 N−2)5(5 N−2)
.

The expected total number of critical points is:

N crit
N (CP3) = 637 N8−3978 N7+11022 N6−17608 N5+17736 N4−11552 N3+4768 N2−1152 N+128

(3 N−2)5
.

To check the computation:

6∑

q=3

N crit
N,q (CP

3) = N3 − 4N2 + 6N − 4 = χ(T ∗1,0
CP3 ⊗O(N)) .

Finally, for m = 4, we obtain:

N crit
N,4(CP

4) = 5 (N−1)5

(3 N−1)
, N crit

N,5(CP
4) =

16 (N−1)5N2(183 N2−120 N+20)
(5 N−2)5

,

N crit
N,6(CP4) =

(N−1)5N5(396227 N7−1078546 N6+1261212 N5−821326 N4+321695 N3−75780 N2+9940 N−560)
(5 N−2)5(2 N−1)7(3 N−1)

,

N crit
N,7(CP4) =

4096 (N−1)5N9(109 N2−102 N+24)
(5 N−2)5(3 N−2)7

,

N crit
N,8(CP4) = α

(5 N−2)5(3 N−2)7(2 N−1)7(3 N−1)
,

α=N14(14251551 N10−86984891 N9+237134546 N8−380216704 N7+397067360 N6−282219280 N5+138269792 N4

−46114432 N3+10020608 N2−1281280 N+73216) .

The expected total number of critical points is:

N crit
N (CP

4) = (6571 N11−56373 N10+221376 N9−524190 N8+831075 N7−926382 N6+741276 N5−426392 N4

+173200 N3−47520 N2+8000 N−640)/(3 N−2)7 .

Again, to check the computation:

8∑

q=4

N crit
N,q (CP

4) = N4 − 5N3 + 10N2 − 10N + 5 = χ(T ∗1,0
CP4 ⊗O(N)) .

Remark: From these computations, we guess that

N crit
N,m(CP

m) =
2(m + 1)(N − 1)m+1

(m + 2)N − 2
.
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5. Asymptotics of the expected number of critical points

In this section, we compute the asymptotics of the expected density and number of critical
points of sections of powers LN of a positive holomorphic line bundle. In particular, we prove
Theorems 1.1, 1.4, and 1.2 as well as Corollary 1.5.

5.1. Proof of Theorem 1.1. We begin with some further background on the Szegö kernel.

5.1.1. Szegö kernel asymptotics. We first use the asymptotic expansion of the Szegö kernel
to show that Kcrit

N (z) has an expansion of the type given in Theorems 1.1–1.2. It is evident
from Theorem 2.1 and Theorem 2.3, respectively, and from formulas (26)–(25) for A and Λ
that the asymptotics of the critical-point densities Kcrit

N (z) and Kcrit
N,q(z), respectively, can be

determined by canonical algebraic operations on the asymptotics of the following derivatives
of the Szegö kernel ( 1 ≤ j ≤ m , 1 ≤ j ≤ q ≤ m , 1 ≤ j′ ≤ q′ ≤ m ,)

• ∇zj
ΠN(z, w)|z=w;

• ∇zj
∇w̄j′

ΠN(z, w)|z=w;

• ∇zq
∇zj

ΠN (z, w)|z=w and ∇w̄q′
∇w̄j′

ΠN(z, w)|z=w;

• ∇zj
∇w̄q′

∇w̄j′
ΠN (z, w)|z=w;

• ∇zq
∇zj

∇w̄q′
∇w̄j′

ΠN(z, w)|z=w

(Here we write Π(z, w) = Π(z, 0; w, 0).) We can obtain their asymptotics by differentiating
the following expansion:

Theorem 5.1. [Ze] Let (L, h) → M be a positive Hermitian holomorphic line bundle over
a compact complex manifold M of dimension m with Kähler form ω = i

2
Θh. Then there is

a complete asymptotic expansion:

ΠN (z, z) ∼ Nm

πm

[
1 + a1(z)N−1 + a2(z)N−2 + · · ·

]
, (59)

for certain smooth coefficients aj(z).

To apply (59) to the differentiated Szegö kernel, we use (41)–(42). By a change of frame
in L, we can assume that K and its holomorphic derivatives up to any fixed order, as well
as the anti-holomorphic derivatives, vanish at z0. Writing ∂j = ∂/∂zj , we then have:

∇zj
ΠN(z0, z0) =

∂FN

∂zj
(z0, z̄0) = ∂jFN (z, z̄)|z0 = ∂j

[
eNK(z)ΠN (z, z)

]∣∣
z0

,

∇zj
∇w̄j′

ΠN(z0, z0) =
∂2FN

∂zj∂w̄j′
(z0, z̄0) = ∂j ∂̄j′FN (z, z̄)|z0 = ∂j ∂̄j′

[
eNK(z)ΠN(z, z)

]∣∣
z0

,

... (60)

∇zj
∇zq

∇w̄j′
∇w̄q′

ΠN(z0, z0) = ∂j∂q∂̄j′ ∂̄q′
[
eNK(z)ΠN (z, z)

]∣∣
z0

.

Here, we used the fact that FN (z, w̄) is holomorphic in z and anti-holomorphic in w. (In
these expressions, we have no ∇z̄k

or ∇wj
derivatives of ΠN(z, w).)

It follows by substituting (59) into (60) that the components of A and Λ have asymptotic
expansions in powers of N , and hence by Theorem 2.1, resp. Theorem 2.3, that Kcrit

N (z),
resp. Kcrit

N,q(z), does. Next we study the coefficients b0, b1, b2 of the expansion of Kcrit
N (z).
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5.1.2. The first three terms of the expansion. Integrating the density of critical points, we
find that the expected total number of critical points has the expansion

N−m N crit
N,h =

πm

m!
b0 c1(L)m + N−1

∫

M

b1dVh + N−2

∫

M

b2dVh + O(N−3) .

The leading order term is universal.
We will use Theorem 2.1 and the following result of Z. Lu [Lu] to calculate the coefficients

in these expansions:

Theorem 5.2. [Lu] With the notation as in Theorem 5.1, each coefficient aj(z) is a poly-
nomial of the curvature and its covariant derivatives at x. In particular,

{
a1 = 1

2
ρ

a2 = 1
3
∆ρ + 1

24
(|R|2 − 4|Ric|2 + 3ρ2)

where R, Ric and ρ denotes the curvature tensor, the Ricci curvature and the scalar curvature
of ω, respectively, and ∆ denotes the Laplace operator of (M, ω).

We now calculate AN and ΛN to two orders. The key point is to calculate the mixed
derivatives of ΠN on the diagonal. It is convenient to do the calculation in Kähler normal
coordinates about a point z0 in M .

It is well known that in terms of Kähler normal coordinates {zj}, the Kähler potential K
has the expansion:

K(z, z̄) = ‖z‖2 − 1

4

∑
Rjk̄pq̄(z0)zj z̄k̄zpz̄q̄ + O(‖z‖5) . (61)

(In general, K contains a pluriharmonic term f(z) + f(z), but a change of frame for L
eliminates that term up to fourth order.)

We further use the notation Kj = ∂jK, Kj̄ = ∂̄jK. We first claim that

A = NI + a1I + N−1
{
a2I +

(
∂j ∂̄j′a1

)}
+ · · · . (62)

Indeed, by (60),

∂j

[
eNK(z)ΠN(z, z)

]
= eNK

[
NKj(1 + a1N

−1 + a2N
−2) + ∂ja1N

−1 + ∂ja2N
−2 + · · ·

]

∂j ∂̄j′
[
eNK(z)ΠN(z, z)

]
= eNK

[
N2KjKj̄′(1 + a1N

−1 + a2N
−2) + Kj̄′∂ja1 + Kj̄′∂ja2N

−1

+NKjj̄′(1 + a1N
−1 + a2N

−2) + Kj ∂̄j′a1 + Kj ∂̄j′a2N
−1

+∂j ∂̄j′a1N
−1 · · ·

]
.

Evaluating at z0 using (61), we then obtain (62).
We now compute the expansion of Λ. Continuing the above computation,

∂j ∂̄j′ ∂̄q′
[
eNK(z)ΠN(z, z)

]
= eNK

[
N2(Kjq̄′Kj̄′ + Kjj̄′Kq̄′)(1 + a1N

−1 + a2N
−2)

+Kj̄′∂̄q′a1 + Kq̄′∂j ∂̄j′a1 + Kjj̄′∂̄q′a1 + Kjq̄′∂̄j′a1

+NKjj̄′q̄′(1 + a1N
−1) · · ·

]
+ unimportant terms.
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(The ‘unimportant terms’ are those which vanish at z0 and whose holomorphic derivatives
also vanish at z0.) We have

B(z0) =
[(
∇zj

∇w̄j′
∇w̄q′

ΠN (z0, z0)
) (

N∇zj
ΠN(z0, z0)

)]

=
[(

δjj′∂̄q′a1 + δjq′ ∂̄j′a1

) (
δja1

)]
+ O(N−1) . (63)

Differentiating again and evaluating at z0 using (61), we obtain

∂j ∂̄j′ ∂̄q∂̄q′
[
eNK(z)ΠN (z, z)

] ∣∣
z0

=
[
N2(δjj′δqq′ + δjq′δqj′)(1 + a1N

−1 + a2N
−2)

+δjj′∂q∂̄q′a1 + δqq′∂j ∂̄j′a1 + δjq′∂q∂̄j′a1 + δqj′∂q∂̄j′a1

+NKjj̄′qq̄′(1 + a1N
−1) · · ·

]∣∣
z0

.

Noting that Kjj̄′qq̄′|z0 = −Rjj̄′qq̄′(z0), and recalling that Λ = C − B∗A−1B, where

C =

[ (∇zq
∇zj

∇w̄q′
∇w̄j′

ΠN

) (
N∇zq

∇zj
ΠN

)

(
N∇w̄q′

∇w̄j′
ΠN

)
N2ΠN

]
,

we obtain

Λ(z0) = N2Λ
1
2
0

(
I + N−1Λ−1 + N−2Λ−2 + · · ·

)
Λ

1
2
0 ,

with

Λ0 =

(
2Î 0
0 1

)
, (64)

Λ−1 =

(
a1Î − 1

2

(
Rjj̄′qq̄′

)
0

0 a1

)
, (65)

Λ−2 =

(
a2Î + P − a1

2

(
Rjj̄′qq̄′

)
1√
2

(
∂j∂qa1

)
1√
2

(
∂̄j ∂̄qa1

)
a2

)
, (66)

where Î is the identity operator on Sym(m, C), and

P =
1

2

(
δjj′∂q∂̄q′a1 + δqq′∂j ∂̄j′a1 + δjq′∂q∂̄j′a1 + δqj′∂q∂̄j′a1

)
.

We want the asymptotics of

Kcrit
N (z0) =

π−(m+2
2 )Nm

det AN det ΛN

∫

Sym(m,C)×C

∣∣det(H ′H ′∗ − |x|2I)
∣∣ e−〈ΛN (z0)−1(H′,x),(H′,x)〉 dH ′ dx .

Making the change of variables H ′ 7→
√

2NH ′, x 7→ Nx, the integral is transformed to

Kcrit
N (z0) =

π−(m+2
2 )Nm

det Ã det Λ̃

∫

Sym(m,C)×C

∣∣det(2H ′H ′∗ − |x|2I)
∣∣ e−〈Λ̃−1(H′,x),(H′,x)〉 dH ′ dx , (67)

where

Ã = N−2AN(z0), Λ̃ = N−2Λ
− 1

2
0 ΛN(z0)Λ

− 1
2

0 =
(
I + N−1Λ−1 + N−2Λ−2 + · · ·

)
. (68)

Next we observe that

Λ̃−1 = I − 1

N
Λ−1 +

1

N2
[−Λ−2 + Λ2

−1] + · · ·
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hence

e−〈Λ̃−1H,H〉 ∼ e−〈H,H〉e〈[ 1
N

Λ−1+
1

N2 (Λ−2−Λ2
−1)]H,H〉

= e−〈H,H〉{1 + 1
N
〈Λ−1H, H〉

+ 1
N2 [〈Λ−2H, H〉 + 1

2
〈Λ−1H, H〉2 − 〈Λ2

−1H, H〉]}.
Furthermore

det Λ̃−1 = 1 − (TrΛ−1)N
−1 +

[
1

2
Tr(Λ2

−1) +
1

2
(TrΛ−1)

2 − TrΛ−2

]
N−2 · · · ,

and similarly for det A−1. Altogether, we obtain:

Kcrit
N (z) ∼ π−(m+2

2 )Nm
{
1 + 1

N
[−TrA−1 − TrΛ−1]

+ 1
N2

[
1
2
Tr(Λ2

−1) − TrΛ−2 + 1
2
Tr(A2

−1) − TrA−2 + 1
2
(TrA−1 + TrΛ−1)

2
]}

×
∫
Sym(m,C)×C

|det(2H ′H ′∗ − |x|2I)| e−〈H,H〉{1 + 1
N
〈Λ−1H, H〉

+ 1
N2 [〈Λ−2H, H〉 + 1

2
〈Λ−1H, H〉2 − 〈Λ2

−1H, H〉]} dH ′ dx .

Expanding, we obtain

Kcrit
N (z) ∼ b0N

m + b1N
m−1 + b2N

m−2 + · · · ,

b0 =
∫

dµ ,

b1 =
∫

[〈Λ−1H, H〉 − TrA−1 − TrΛ−1] dµ ,

b2 =
∫ [

1
2
Tr(Λ2

−1) − TrΛ−2 + 1
2
Tr(A2

−1) − TrA−2 + 1
2
(TrA−1 + TrΛ−1)

2

−(TrA−1 + TrΛ−1)〈Λ−1H, H〉 + 〈(Λ−2 − Λ2
−1)H, H〉 + 1

2
〈Λ−1H, H〉2

]
dµ ,

(69)
where

dµ = π−(m+2
2 ) ∣∣det(2H ′H ′∗ − |x|2I)

∣∣ e−〈H,H〉 dH ′ dx . (70)

Recalling (62) and (64)–(66), we see that b1 is of the form

b1 =
∑

cjj̄′qq̄′Rjj̄′qq̄′ ,

where cjj̄′qq̄′ is universal. Since b1 is also invariant under the unitary group, we must have

b1 = β1ρ , (71)

where β1 is a universal constant (depending only on the dimension m of M). Similarly, b2 is
of the form

b2 = Q(R, R) + γ0∆ρ ,

where Q(R, R) is a universal quadratic form in the curvature tensor R. But b2 is also U(m)-
invariant and hence is a curvature invariant (of order 2). Thus,

b2 = γ0∆ρ + γ1ρ
2 + γ2|R|2 + γ3|Ric|2 , (72)

where the γk are universal constants depending only on m. This, together with the exact
formulas of §4.2, completes the proof of Theorem 1.1.
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5.2. Asymptotic expansions on Riemann surfaces: Proof of Theorem 1.4. We wish
to prove that on a positive line bundle (L, h) over a compact complex curve C of genus g,

N crit
N,h =

5

3
c1(L) N +

7

9
(2g − 2) +

(
2

27π

∫

C

ρ2ωh

)
N−1 + O(N−2) ,

where ωh = i
2
Θh and ρ is the Gaussian curvature of the metric ωh.

On a Riemann surface, Kcrit
N has a universal expansion of the form

Kcrit
N ∼ b0 N + β1ρ + (β2ρ

2 + γ0∆ρ) N−1 + · · · .

There are several ways to compute the constants. A quick way to find b0, β1, β2, is to consider
the case of CP1 with the Fubini-Study metric on L = O(1). By an elementary computation
in [DSZ] (or by §4), we showed that for this case

N crit
N,h =

5N2 − 8N + 4

3N − 2
=

5

3
N − 14

9
+

8

27
N−1 · · · . (73)

Note that
∫

CP1 ω = πc1(L) = π, where ω is the Fubini-Study Kähler form on CP1. Therefore,

Kcrit
N (z) ≡ 1

π
N crit

N,h .

Furthermore, since c1(CP
1) = 1

π

∫
ρωFS = 2, we have ρ ≡ 2. (This can be checked directly

as follows: the Kähler potential K = log(1 + |z|2) = |z|2 − 1
2
|z|4 + · · · , where z is the affine

coordinate, and hence by (61), ρ(0) = R11̄11̄(0) = 2.) Hence, for a Riemann surface, we have

b0 =
5

3π
, β1 = − 7

9π
, β2 =

2

27π
. (74)

5.3. Number of critical points: Proof of Corollary 1.5. In particular, the N−1 term
in the expansion of N crit

N,h is a topological invariant, hence independent of the metric h.
Furthermore, it is well known (see, e.g., [Ko, pp. 112–113]) that for any Kähler metric ω on
M , we have

(ρ2−|Ric|2)Ω = c1(M, ω)2∧ωm−2 , (|Ric|2−|R|2)Ω = [c1(M, ω)2−2c2(M, ω)]∧ωm−2 , (75)

where Ω = 1
4π2m(m−1)

ωm. Therefore

b2 = γ0∆ρ + (γ1 + γ2 + γ3)ρ
2 + const.

c1(h)2 ∧ ωm−2
h

ωm
h

+ const.
c2(h) ∧ ωm−2

h

ωm
h

, (76)

where we now write cj(h) = c1(M, ωh) for the j-th Chern form of the Kähler metric ωh =
− i

2
∂∂̄ log h.

Integrating (71) and (76), we see that

N crit
N,h ∼

[
b0

πm

m!
c1(L)m

]
Nm +

[
β1

πm

(m − 1)!
c1(M) · c1(L)m−1

]
Nm−1

+

[
β2

∫

M

ρ2dVolh + β ′
2 c1(M)2 · c1(L)m−2 + β ′′

2 c2(M) · c1(L)m−2

]
Nm−2 + · · · ,

(77)

where β2 = γ1 + γ2 + γ3, β ′
2, β ′′

2 are constants depending only on m.
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5.4. Morse index density asymptotics: Proof of Theorem 1.2. The computation
of the expansion of Kcrit

N,q is exactly as above, except we integrate over Sm,q instead of
Sym(C, m) × C.

As a consequence, the expected number of critical points of Morse index q has an asymp-
totic expansion of the form:

N crit
N,q,h ∼

[
b0q

πm

m!
c1(L)m

]
Nm +

[
β1q

πm

(m − 1)!
c1(M) · c1(L)m−1

]
Nm−1

+

[
β2q

∫

M

ρ2dVolh + β ′
2q c1(M)2 · c1(L)m−2 + β ′′

2q c2(M) · c1(L)m−2

]
Nm−2 + · · · ,

(78)

where the coefficients depend only on m. �

6. Proof of Theorem 1.7: evaluating the coefficient β2q(m)

We have already shown that

•
∫

M
b1qdVh is topological;

•
∫

M
b2qdVh is the sum of a topological term plus a positive multiple of

∫
M

ρ2
hdVh.

To complete the proof of Theorem 1.7 and show that the metric with asymptotically
minimal N crit

N,h is the one for which ωh has minimal L2 norm of the scalar curvature, we must
show that β2q is positive.

The proof consists of a sequence of Lemmas giving ever simpler expressions for β2. We
first summarize the key results. The first is:

Lemma 6.1. In all dimensions,

β2q(m) =
1

4 π(m+2
2 )

∫

S′

m,q−m

γ(H)
∣∣det(2HH∗ − |x|2I)

∣∣ e−〈(H,x),(H,x)〉 dH dx , (79)

where
S′

m,q−m = {(H, x) ∈ Sym(m, C) × C : index(2HH∗ − |x|2I) = q − m} .

After a sequence of manipulations as in the proof of Lemma 3.1, the integral (79) will be
rewritten in the following form:

Lemma 6.2.

β2q(m) =
(−i)m(m−1)/2

4 π2m
∏m−1

j=1 j!

∫

Y2m−q

∫

R

· · ·
∫

R

∆(λ) ∆(ξ)

m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) dξ1 · · · dξm dλ ,

where

I(λ, ξ) =

F (D(λ)) +
[

4
∑m

j=1 λj

m(m+1)(m+3)
− 2

m+1

]
1

(1− i
2

∑
j ξj)

+ 2

(m+1)(m+3)(1− i
2

∑
j ξj)

2

(
1 − i

2

∑
j ξj

)∏
j≤k

[
1 + i

2
(ξj + ξk)

] . (80)

Here, D(λ) is the diagonal matrix with diagonal entries λ = (λ1, . . . , λm), ∆(λ) = Πi<j(λi −
λj) is the Vandermonde determinant and

F (P ) = 1 − 4 TrP

m(m + 1)
+

4(Tr P )2 + 8 Tr(P 2)

m(m + 1)(m + 2)(m + 3)
,
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for (Hermitian) m×m matrices P . The iterated dξj integrals are defined in the distribution
sense.

The final step is the evaluation of β2q(m) and the proof that it is positive. Having simplified
the integral as far as we could, we complete the compution for the cases m ≤ 3 using Maple 7,
and find that it is positive for these cases, thus completing the proof of Theorem 1.7.

The resulting values of the constants β2q(m), m ≤ 3, are given in §6.4.

6.1. Proof of Lemma 6.1. We use the case of M = CP1 × Em−1 where E is an elliptic
curve, and L is the product of degree 1 line bundles on the factors (with the Fubini-Study
metric on OCP1(1) and the flat metric on E). (The manifold M is a homogeneous space with
respect to SU(2) × T 2m−2, so the critical point density is invariant and hence constant.)

Since c1(h)2 = c2(h) = 0, it follows from (76) that the coefficient b2q of the expansion
N−mKcrit

N (z) = b0q + b1qN
−1 + b2qN

−2 + O(N−3) is given by b2q = β2qρ
2, and hence

β2q =
1

ρ2
b2q =

1

4
b2q . (81)

The Szegö kernel for (M, L) is the product of the Szegö kernels on CP1 and Em−1. Since
the universal cover of Em−1 is Cm−1, the Szegö kernel on Em−1 is given by the Heisenberg
Szegö kernel on Cm−1 (see [BSZ1, §1.3.2]) modulo an O(N−∞) term, and we have:

ΠCP 1×Em−1(z, w) =
(N + 1)Nm−1

πm
(1 + z1w̄1)

NeN(z2w̄2+···+zmw̄m) eL(z) ⊗ eL(w) + O(N−∞) .

As in §4, we consider the normalized Szegö kernel

Π̃N (z, w) := (1 + z1w̄1)
NeNz′w̄′

, z′ = (z2, . . . , zm), w′ = (w2, . . . , wm) . (82)

We have:

∂Π̃N

∂z1
= N(1 + z1w̄1)

N−1eNz′w̄′

w̄1 ,

∂Π̃N

∂zα

= N(1 + z1w̄1)
NeNz′w̄′

w̄α ,

∂2Π̃N

∂z1∂w̄1

= {N(1 + z1w̄1)
N−1 + N(N − 1)(1 + z1w̄1)

N−2z1w̄1}eNz′w̄′

,

∂2Π̃N

∂zα∂w̄α′

= {Nδαα′ + N2zα′w̄α}(1 + z1w̄1)
NeNz′w̄′

,

∂2Π̃N

∂z1∂w̄α
= N2(1 + z1w̄1)

N−1eNzαw̄αzαw̄1 ,

∂2Π̃N

∂zα∂w̄1
= {N2(1 + z1w̄1)

N−1z1w̄α}eNz′w̄′

,

2 ≤ α, α′ ≤ m .

It suffices to compute the density at 0. From the above, we have:

∂4Π̃N

∂zj∂zq∂w̄j′∂w̄q′
(0, 0) =





2N(N − 1), j = q = j′ = q′ = 1
2N2, j = q = j′ = q′ > 1
N2, j = j′ 6= q′ = q

. (83)
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Recalling (26)–(28), we then have:

ÃN(0) =

(
∂2Π̃N

∂zj∂w̄j′
(0, 0)

)
= NI (84)

B̃N(0) =

[(
τjq

∂3Π̃N

∂zj∂w̄q′∂w̄j′
(0, 0)

) (
N

∂Π̃N

∂zj
(0, 0)

)]
= 0 , (85)

C̃N(0) =




(
τjqτj′q′

∂4Π̃N

∂zq∂zj∂w̄q′∂w̄j′
(0, 0)

) (
τjqN

∂2Π̃N

∂zj∂zq

(0, 0)

)

(
τj′q′N

∂2Π̃N

∂w̄q′∂w̄j′
(0, 0)

)
N2 Π̃N (0, 0)




, (86)

1 ≤ j ≤ m , 1 ≤ j ≤ q ≤ m , 1 ≤ j′ ≤ q′ ≤ m .

It follows that

Λ̃N(0) = C̃N(0) = D(2N(N − 1),

(m−1)(m+2)/2︷ ︸︸ ︷
2N2, . . . , 2N2, N2) , (87)

i.e. the diagonal matrix with diagonal entries 2N(N − 1), 2N2 repeated (m − 1)(m + 2)/2
times, N2.

We want to compute

Kcrit
N,q(0) =

π−(m+2
2 )

det ÃN (0) det Λ̃N(0)

∫

Sm,q−m

∣∣det(HH∗ − |x|2I)
∣∣ e−〈Λ̃N (0)−1(H,x),(H,x)〉 dH dx .

Making the change of variables H ′ 7→
√

2NH ′, x 7→ Nx, the integral is transformed to

Kcrit
N,q(0) =

π−(m+2
2 )Nm

det Λ̂

∫

S′

m,q−m

∣∣det(2HH∗ − |x|2I)
∣∣ e−〈Λ̂−1(H,x),(H,x)〉 dH dx , (88)

where

Λ̂ = I − 1

N
E , E = D(1, 0, . . . , 0) .

Therefore

N−mKcrit
N,q(0) = π−(m+2

2 )
(

1 +
1

N
+

1

N2
+ · · ·

)∫

S′

m,q−m

∣∣det(2HH∗ − |x|2I)
∣∣

× exp

(
−‖H‖2 − |x|2 − 1

N
|H11|2 −

1

N2
|H11|2 − · · ·

)
dH dx

=

(
1 +

1

N
+

1

N2
+ · · ·

)∫
exp

(
− 1

N
|H11|2 −

1

N2
|H11|2 − · · ·

)
dµ̃

=

∫ [
1 +

1

N
(1 − |H11|2) +

1

N2

(
1 − 2|H11|2 +

1

2
|H11|4

)]
dµ̃ + O

(
1

N3

)
,

where

dµ̃ = π−(m+2
2 ) ∣∣det(2HH∗ − |x|2I)

∣∣ e−〈(H,x),(H,x)〉 dH dx .
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Therefore

b2q =

∫

S′

m,q−m

(
1 − 2|H11|2 +

1

2
|H11|4

)
dµ̃ ,

and the desired formula then follows from (81). �

6.2. U(m) symmetries of the integral. As an intermediate step between Lemmas 6.1 and
6.2, we prove:

Lemma 6.3.

β2q(m) =
1

4 π(m+2
2 )

∫

S′

m,q−m

F (HH∗)
∣∣det(2HH∗ − |x|2I)

∣∣ e−〈(H,x),(H,x)〉 dH dx , (89)

where

F (P ) = 1 − 4 TrP

m(m + 1)
+

4(Tr P )2 + 8 Tr(P 2)

m(m + 1)(m + 2)(m + 3)
, (90)

for (Hermitian) m × m matrices P .

Proof. Since the change of variables H 7→ gHgt (g ∈ U(m)) is unitary on Sym(m, C) (with
respect to the Hilbert-Schmidt inner product), we can make this change of variables in (79),
and then integrate over g ∈ U(m) to obtain

β2q(m) =
1

4 π(m+2
2 )

∫

S′

m,q−m

(∫

U(m)

γ(gHgt) dg

) ∣∣det(2HH∗ − |x|2I)
∣∣ e−〈(H,x),(H,x)〉 dH dx .

(91)
We now evaluate the integral

∫
U(m)

γ(gHgt) dg;

Claim: For H ∈ Sym(m, C),
∫

U(m)

|(gHgt)11|2 dg =
2

m(m + 1)
Tr(HH∗) , (92)

∫

U(m)

|(gHgt)11|4 dg =
8 (TrHH∗)2 + 16 Tr(HH∗HH∗)

m(m + 1)(m + 2)(m + 3)
. (93)

To prove the claim, we write v = (v1, . . . , vm) = (g11, . . . , g1m) so that (gHgt)11 = vHvt,
and we replace

∫
U(m)

dg with
∫

S2m−1 dν(v), where dν is Haar probability measure on S2m−1.

Next we recall that if if p is a homogeneous polynomial of degree 2k on R2m,
∫

S2m−1

p(v) dν(v) =
(m − 1)!

(m − 1 + k)!

∫

R2m

p(v) dγ(v) , dγ(v) =
1

πm
e−‖v‖2

dv . (94)

We easily see using Wick’s formula that∫

Cm

|vHvt|2 dγ =
∑

j,k,j′,k′

HjkH̄j′k′

∫

Cm

vjvkv̄j′ v̄k′ dγ

=
∑

j

|Hjj|2
∫

Cm

|vj |4 dγ + 2
∑

j 6=k

|Hjk|2
∫

Cm

|vj|2|vk|2 dγ

= 2 Tr(HH∗) .

Formula (92) then follows from (94) with k = 2.
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Although the above approach can also be used to verify (93), we find it easier to use
invariant theory, since the integral in (93) is a U(m)-invariant function of H ∈ Sym(m, C),
under the U(m) action H 7→ gHgt. Indeed, it is a U(m)-invariant Hermitian inner product
on S2(Sym(m, C)) ≈ S2(S2(Cm)).

The action of U(m) on symmetric complex matrices defines a representation equivalent to
S2(Cm) where Cm is the defining representation of U(m). It is well known from Schur-Weyl
duality that S2(Cm) is irreducible. We then consider the U(m) representation

S2(S2(Cm)) = C{H1 ⊗ H2 + H2 ⊗ H1, H1, H2 ∈ S2(Cm)},
with the diagonal action. Henceforth we put

H1 · H2 :=
1

2
[H1 ⊗ H2 + H2 ⊗ H1].

We then regard F (H) as the value on H ⊗ H of the quadratic form

Q(H1 · H2) =

∫

U(m)

|〈gH1g
t · gH2g

t e1 ⊗ e1, e1 ⊗ e1〉|2dg.

This defines the Hermitian inner product

〈〈H1 · H2, H2 · H4〉〉 =

∫

U(m)

〈gH1g
t · gH2g

t e1 ⊗ e1, e1 ⊗ e1〉〈gH3gt · gH4gt e1 ⊗ e1, e1 ⊗ e1〉dg.

We next recall that S2(S2(Cm)) decomposes into a direct sum of two U(m) irreducibles,
one corresponding to the Young diagram Y1 with 1 row of four boxes and one corresponding
to the diagram Y2 with 2 rows each with two boxes. See for instance Proposition 1 of [Ho].
The Young projectors are respectively,





PY1(H ⊗ H)i1i2i3i4 =
∑

σ∈S4
Hiσ(1)iσ(2)

Hiσ(3)iσ(4)

PY2(H ⊗ H)i1i2i3i4 =
∑

σ∈S2×S2
(−1)σHiσ(1)iσ(2)

Hiσ(3)iσ(4)
.

For Y2 the S2 × S2 permutes 1 ⇐⇒ 3, 2 ⇐⇒ 4.
Since an irreducible U(m) representation has (up to scalar multiples) a unique invariant

inner product, it follows that

〈〈, 〉〉 = c1〈, 〉Y1 + c2〈, 〉Y2,

where 〈, 〉Yj
are the invariant inner products

〈A, B〉Yj
= TrΠYj

(A)B∗

for the irreducibles corresponding to the Young diagrams Yj as above.
We now calculate these inner products on H ⊗ H . We have





||H ⊗ H||2Y1
=
∑

σ∈S4

∑m
i1,i2,i3,i4=1 Hiσ(1)iσ(2)

Hiσ(3)iσ(4)
H̄i1i2H̄i3i4

||H ⊗ H||2Y2
=
∑

σ∈S2×S2

∑m
i1,i2,i3,i4=1(−1)σHiσ(1)iσ(2)

Hiσ(3)iσ(4)
H̄i1i2H̄i3i4 .

It is easy to see that each of these expressions is a linear combination of the two quadratic
forms

H ⊗ H 7→ Tr{[H ⊗ H ] ◦ [H∗ ⊗ H∗]}, H ⊗ H 7→ [TrH ◦ H∗]2.
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Hence ∫

U(m)

|(gHgt)11|4 dg = c1 (Tr HH∗)2 + c2 Tr(HH∗HH∗) .

To determine the constants c1, c2, it suffices to consider the case where H is diagonal. Let
s1, . . . , sm denote the eigenvalues of H . Then by Wick’s formula we obtain

∫

Cm

|vHvt|4 dγ =
∑

j,k,j′,k′

sjsks̄j′s̄k′

∫

Cm

v2
j v

2
kv̄

2
j′ v̄

2
k′ dγ

=
∑

j

|sj|4
∫

Cm

|vj|8 dγ + 2
∑

j 6=k

|sj |2|sk|2
∫

Cm

|vj |4|vk|4 dγ

= 4!
∑

j

|sj|4 + 8
∑

j 6=k

|sj|2|sk|2

= 8 (TrHH∗)2 + 16 Tr (HH∗)2 .

Formula (93) now follows from (94) with k = 4.
Having proved the claim, the formula stated in Lemma 6.3 now follows from (91) and

Lemma 6.2. �

6.3. Proof of Lemma 6.2. We proceed exactly as in the proof of Lemma 3.1. We rewrite
the integral (79) as

β2q(m) =
1

4 πm (2π)m2 lim
ε′→0

lim
ε→0

Iε,ε′ , (95)

where

Iε,ε′ =
1

πdm

∫

Hm

∫

Hm(m−q)

∫

Sym(m,C)×C

F (P + 1
2
|x|2I) |det(2P )| ei〈Ξ,P−HH∗+ 1

2
|x|2I〉

× exp
(
−TrHH∗ − |x|2

)
exp (−εTr ΞΞ∗ − ε′TrPP ∗) dH dx dP dΞ , (96)

Hm(m − q) = {P ∈ Hm : index P = m − q} .

Recall that dm = dimC(Sym(m, C)×C) = 1
2
(m2 + m + 2). As in §3.1, we note that absolute

convergence is guaranteed by the Gaussian factors in each variable (H, x, P, Ξ). Evaluating∫
ei〈Ξ,P−HH∗+ 1

2
|x|2〉e−εTrΞΞ∗

dΞ first, we obtain a dual Gaussian, which approximates the delta
function δHH∗− 1

2
|x|2(P ). As ε → 0, the dP integral then yields the integrand at P = HH∗ −

1
2
|x|2I; then letting ε′ → 0 we obtain the original integral stated in Lemma 6.3.
Continuing as in §3.1, we conjugate P to a diagonal matrix D(λ) with λ = (λ1, . . . , λm)

by an element h ∈ U(m) and we replace dP with ∆(λ)2 dλ dh. Recalling (45), we obtain:

Iε,ε′ =
2m c′m
πdm

∫

U(m)

∫

Hm

∫

Y ′

2m−q

∫

Sym(m,C)×C

∆(λ)2
m∏

j=1

|λj|F
(
D(λ) + 1

2
|x|2I

)

× ei〈Ξ, hD(λ)h∗+ 1
2
|x|2I−HH∗〉e−[TrHH∗+|x|2+εTrΞΞ∗+ε′

∑
λ2

j ] dH dx dλ dΞ dh .
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Again using (45) applied this time to Ξ, we obtain:

Iε,ε′ =
2m(c′m)2

πdm

∫

U(m)

∫

U(m)

∫

Rm

∫

Y ′

2m−q

∫

Sym(m,C)×C

∆(λ)2 ∆(ξ)2

m∏

j=1

|λj|F
(
D(λ) + 1

2
|x|2I

)

× ei〈gD(ξ)g∗, hD(λ)h∗+ 1
2
|x|2I−HH∗〉e−TrHH∗−|x|2−

∑
(εξ2

j +ε′λ2
j ) dH dx dλ dξ dh dg ,

We then transfer the conjugation by g to the right side of the 〈, 〉 in the first exponent and
make the change of variables h 7→ gh, H 7→ gHgt to eliminate g from the integrand:

Iε,ε′ =
2m(c′m)2

πdm

∫

U(m)

∫

Rm

∫

Y ′

2m−q

∫

Sym(m,C)×C

∆(λ)2 ∆(ξ)2
m∏

j=1

|λj| F
(
D(λ) + 1

2
|x|2I

)

× ei〈D(ξ), hD(λ)h∗+ 1
2
|x|2I−HH∗〉e−TrHH∗−|x|2−

∑
(εξ2

j +ε′λ2
j ) dH dx dλ dξ dh .

Next we substitute the Itzykson-Zuber-Harish-Chandra integral formula (47) into the
above and expand

det[eiξjλk ]jk =
∑

σ∈Sm

(−1)σ ei〈ξ,σ(λ)〉,

obtaining a sum of m! integrals. However, by making the change of variables λ′ = σ(λ) and
noting that ∆(λ′) = (−1)σ∆(λ), we see as before that the integrals of these terms are equal,
and so we obtain

Iε,ε′ = (−i)m(m−1)/2 c′′m
πdm

∫

Rm

∫

Y ′

2m−q

∫

Sym(m,C)×C

∆(λ) ∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉

× F
(
D(λ) + 1

2
|x|2I

)
exp

(
i
〈
D(ξ), 1

2
|x|2I − HH∗〉− TrHH∗ − |x|2

)

× exp
(
−ε
∑

ξ2
j − ε′

∑
λ2

j

)
dH dx dλ dξ . (97)

where

c′′m =
2m2

πm(m−1)

∏m
j=1 j!

.

The phase

Φ(H, x; ξ) := i

〈
D(ξ),

1

2
|x|2I − HH∗

〉
− TrHH∗ − |x|2

= −
[
‖H‖2

HS + i

m∑

j,k=1

ξj|Hjk|2 +

(
1 − i

2

∑

j

ξj

)
|x|2
]

= −
[
∑

j≤k

(
1 +

i

2
(ξj + ξk)

)
|Ĥjk|2 +

(
1 − i

2

∑

j

ξj

)
|x|2
]

. (98)

Thus,

Iε,ε′ = (−i)m(m−1)/2c′′m

∫

Y ′

2m−q

∫

Rm

∆(λ) ∆(ξ)
m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) e−ε
∑

ξ2
j−ε′

∑
λ2

j dξ dλ ,

(99)
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where,

I(λ, ξ) =
1

πdm

∫

C

∫

Sym(m,C)

F

(
D(λ) +

1

2
|x|2I

)
eΦ(H,x;ξ) dH dx

=
1∏

j≤k

(
1 + i

2
(ξj + ξk)

)
∫

C

F

(
D(λ) +

1

2
|x|2I

)
e−(1− i

2

∑
j ξj)|x|2 dx .

To evaluate the dx integral, we first expand the amplitude:

F

(
D(λ) +

1

2
|x|2I

)
= F (D(λ)) +

[
4
∑m

j=1 λj

m(m + 1)(m + 3)
− 2

m + 1

]
|x|2

+
1

(m + 1)(m + 3)
|x|4 ,

and then integrate to obtain (80).
To evaluate limε,ε′→0+ Iε,ε′, we first observe as in §4 that the map

(ε1, . . . , εm) 7→
∫

Rm

∆(ξ) ei〈λ,ξ〉 I(λ, ξ) e−
∑

εjξ2
j dξ

is a continuous map from [0, +∞)m to the tempered distributions. Hence by (95) and (99),
we have:

β2q(m) =
(−i)m(m−1)/2

4 π2m
∏m

j=1 j!
lim

ε′→0+
lim

ε1,...,εm→0+
m!

∫

Y2m−q

dλ

×
∫

Rm

∆(λ) ∆(ξ)

m∏

j=1

|λj| ei〈λ,ξ〉 I(λ, ξ) e−
∑

εjξ2
j −ε′

∑
λ2

j dξ . (100)

Letting ε1 → 0, . . . , εm → 0, ε′ → 0 sequentially, we obtain the formula of Lemma 6.2. �

6.4. Values of the constants β2q. We use the integral formula of Lemma 6.2 to compute
the constants β2q. The ξj integrals can be evaluated using residues as in §4.2; the resulting
λ integrand is a polynomial function of the λj . The integrals were evaluated in dimensions
≤ 3 using Maple 7.2

In dimension 1, we reproduce the result from [DSZ]:

β21(1) =
1

33 · π , β22(1) =
1

33 · π .

In dimension 2, we have:

β22(2) =
1

23 · 5 · π2
, β23(2) =

24

34 · 5 · π2
, β24(2) =

47

23 · 34 · 5 · π2
.

In dimension 3, we have:

β23(3) =
22

53 · π3
, β24(3) =

11 · 23

25 · 53 · π3
, β25(3) =

29 · 7
36 · 53 · π3

, β26(3) =
23563

25 · 36 · 53 · π3
.

This completes the proof of Theorem 1.7. �

2The Maple programs are included in the source files of the arXiv.org posting.
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Remark: The values of the β2 coefficient for the expected total number of critical points
are:

β2(1) =
2

33 · π , β2(2) =
32

405π2
=

25

34 · 5 · π2
, β2(3) =

104

729π3
=

23 · 13

36 · π3
.
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