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CRITICAL POINTS OF SOLUTIONS
TO THE OBSTACLE PROBLEM IN THE PLANE

SHIGERU SAKAGUCHI (坂口茂)
Tokyo Institute of Technology

\S 1. Introduction. In [1], Alessandrini considered solutions to the
Dirichlet problem for the elliptic equation without zero-order terms over
a bounded simply connected domain in $R^{2}$ , and he showed that if the set
of local maximum points of the boundary data consists of $N$ connected
components, then the interior critical points of the solution are finite in
number and the following inequality holds

(1.1) $\sum_{j=1}^{k}m_{j}+1\leq N$ ,

where $m_{1},$ $m_{2},$ $\ldots,$
$m_{k}$ denote the respective multiplicities of the interior

critical points of the solution. It was shown in Hartman &Wintner
[3] that the zeros of the gradient of the non constant solution (critical
points) are isolated and each zero has a finite integral multiplicity, if the
coefficients of the equation are sufficiently smooth (see [1, p. 231]).

In this paper we consider solutions to the obstacle problem over a
bounded simply connected domain in $R^{2}$ . Our purpose is to show that if
the number of the critical points of the obstacle is finite and the obstacle
has only $N$ local maximum points, then the same inequality as (1.1)
holds for the critical points of the solution in the noncoincidence set. We
note that the multiplicity of the critical point in the noncoincidence set is
well-defined if the solution is non constant near the critical point, since
the solution satisfies an elliptic equation without zero-order terms in
the noncoincidence set. Precisely, let $\Omega$ be a bounded simply connected
domain in $R^{2}$ with smooth boundary $\partial\Omega$ . Give a function $\psi\in C^{2}(\overline{\Omega})$

which is negative on $\partial\Omega$ and has a positive maximum in $\Omega$ . Let $a=$

$(a_{1}, a_{2})$ be a $c\infty$ vector field on $R^{2}$ satisfying

(1.2) $\lambda|\xi|^{2}\leq\sum_{i,j}\frac{\partial a_{i}}{\partial p_{j}}(p)\xi_{i}\xi_{j}\leq M|\xi|^{2}$ for all $p,$
$\xi\in R^{2}$
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for some positive constants $\lambda,$ $M$ . Consider the following variational
inequality:

Find $u\in K$ satisfying

(13)
$\int_{\Omega}a(\nabla u)\cdot\nabla(v-u)dx\geqq 0$ for all $v\in K$ ,

where $K$ $:=$ { $v\in H_{0^{1}}(\Omega)$ ; $v\geqq\psi$ in $\Omega$ } $.It$ is known that there exists
a unique solution $u$ to (1.3) and $u$ belongs to $C^{1,1}(\overline{\Omega})$ (see the book of
Kinderlehrer and Stampacchia [5]). Let $I$ be the coincidence set

(1.4) $I=\{x\in\Omega ; u(x)=\psi(x)\}$ .

Note that $u$ satisfies the following:

(1.5) $div(a(\nabla u))=0$ in $\Omega\backslash I$,

(1.6) $div(a(\nabla u))\leq 0$ in $\Omega$ ,

and

(1.7) $u(x)= \inf_{g\in G}g(x)$ for any $x\in\Omega$ ,

where $G$ is the set of Lipschitz continuous functions $g’s$ over S I each of
which satisfies

$div(a(\nabla g))\leq 0$ in $\Omega$ , $g\geqq\psi$ in $\Omega$ , and $g\geqq 0$ on $\partial\Omega$ ,

(see [5]).
Now our results are the following:

THEOREM 1. Suppose that the number of the critic$a1$ poin $ts$ of $\psi$ is
finite. If $\psi$ has only $N$ local maximum poin $ts$, then the number of
the critical points of $u$ is finite. Flurthermore, denote by $m_{1},$ $\ldots m_{k}$

multiplicities of th $e$ critical points in $\Omega\backslash I$ . Then the followin$g$ inequality
holds

(1.8) $\sum^{k}m_{j}+1\leq N$ .
$j=1$

THEOREM 2. If $\psi h$as only $Nglo$bal maximum points and $h$as no other
critical poin $ts$ in $\{x\in\Omega ; \psi(x)>0\}$ , then the equality holds in (1.8).

Letting $N$ be equal to 1, we have
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COROLLARY 3. If $\psi h$as only one critical point then $u$ has only one
critical point.

REMARK 4: Kawohl [4] showed that in the case $\Omega\subset R^{n}(n\geqq 2)$ and
$a(p)=p$ , if $\Omega$ is starshaped with respect to the origin and $x\cdot\nabla\psi(x)<0$

for $x\in\overline{\Omega}\backslash \{0\}$ , then $x\cdot\nabla u(x)<0$ in $\overline{\Omega}\backslash \{0\}$ and $u$ has only one critical

$point.However,forgenerala(p),orfornonstarshapeddomainsimilarresultsarenotknown.Thetypicalcaseisthata(p)=\frac{\Omega,thep}{\sqrt{1+|p|^{2}}}$

(minimal surface case) and $\Omega$ is convex. We note that in this case we
can obtain the gradient estimate of the solution and we can modify this
$a(p)$ to have the condition (1.2). (see [5]).

REMARK 5: Since the critical point with multiplicity in the noncoinci-
dence set is always a saddle point, we get a generalization of Theorem
1 as follows:

THEOREM 6. Suppose that the $n$umber of the connected components
of local maximum points of $\psi$ is exactly N. Then the num $ber$ of the
saddle poin $ts$ of $u$ in $\Omega\backslash I$ is finite and the same inequality as (1.8) holds
for these saddle points.

In \S 2 we prove Theorem 1 and in \S 3 we prove Theorem 2. The proof
of Theorem 6 is almost similar to that of Theorem 1. \S 4 provides some
examples of Theorem 2.

\S 2. Proof of Theorem 1.
We begin with the following five basic lemmas.

LEMMA 2.1. $u$ is not a constant over any open $su$bset of $\Omega\backslash I$.

PROOF: By (1.6) and the strong maximum principle we see that $u$ is
positive in $\Omega$ . Suppose that there exists a connected open set $\omega$ contained
in $\Omega\backslash I$ over which $u$ is a constant. It follows from (1.5) and the theorem
of Hartman &Wintner, that $u$ is equal to the same constant over the
connected components $\tilde{\omega}$ of $\Omega\backslash I$ containing $\omega$ . Since $u=0$ on $\partial\Omega$ , then
$\partial\omega\subset I$ . This contradicts the assumption that the number of the critical
points of $\psi$ is finite. 1

LEMMA 2.2. For any $t \in(0, \max_{\Omega}\psi)$ we $h$ave the following: (I) The
set $\{x\in\Omega ; u(x)<t\}$ is connected. (2) Any connected component of
$\{x\in\Omega ; u(x)>t\}$ is simply connected.

PROOF: Since $\Omega$ is simply connected, the maximum principle and (1.6)
imply (2). Since $u=0$ on $\partial\Omega$ and $\partial\Omega$ is connected, there is only one
component of $\{x\in\Omega ; u(x)<t\}$ which reaches the boundary $\partial\Omega$ .
Suppose that there exists another component, say $\omega$ . Then $\partial\omega\subset\Omega$ .
This contradicts (1.6) and the maximum principle. This proves (1). 1
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LEMMA 2.3. (1) The interior critical points of $u$ in $\Omega\backslash I$ are isolated.
(2) $u$ has no local maximum point in $\Omega\backslash I$ .

PROOF: In view of Lemma 2.1, we obtain these from (1.5) and the
results of Hartman&Wintner [3] (see [1, p. 231]). 1

LEMMA 2.4. Any local maximum point of $u$ in $\Omega$ is also that of $\psi$ , and
the num $ber$ of the local $m$aximum points of $u$ in $\Omega$ is at most $N$ .

PROOF: This is a direct consequence of Lemma 2.3 (2). 1

LEMMA 2.5. Let $x_{0}\in\Omega\backslash I$ be the interior critical poin $t$ of $u$ in $\Omega\backslash I$ ,
and let $m$ be its respective $m$ultiplicity. Then $m+1$ distinct connected
components of the level set $\{x\in\Omega ; u(x)>u(x_{0})\}$ concentrate at the
point $x_{0}$ .

PROOF: We obtain this lemma from Lemma 2.2 and the results of Hart-
man&Wintner [3] (see [l,p. 231]). 1

Since any connected component of a level set $\{x\in\Omega ; u(x)>t\}$ with
$t\in R$ has at least one local maximum point of $u$ , Lemma 2.4 and Lemma
2.5 suggest counting the number of disjoint components of a set such as
$\{x\in\Omega ; u(x)>t\}$ with $t\in R$ by using the multiplicities. The first step
is

LEMMA 2.6. Let $x_{1},$ $\ldots,$
$x_{n}\in\Omega\backslash I$ be the interior critical points of $u$

in $\Omega\backslash I$ and let $m_{1},$ $\ldots m_{n}$ be their respective multiplicities. Suppose
$tAatu(x_{1})=\cdots=u(x_{n})=t$ for some $t\in R$ , and $su$ppose that all
the points $x_{1},$ $\cdots x_{n}$ together with components of $\{x\in\Omega ; u(x)>t\}$

concentratin$g$ at these points make one connected figure. Then this
connected figure $just$ contains $\sum_{j=1}^{n}m_{j}+1$ connected components of
the level set $\{x\in\Omega ; u(x)>t\}$ .

PROOF: We prove $t$his by the induction on the number $n$ of critical
points. When $n=1$ , the result holds by Lemma 2.5. Assume that if
$n\leq k(k\geq 1)$ then the connected figure which consists of $n$ critical points
and components concentrating at these points contains just $\sum_{j=1}^{n}m_{j}+1$

components of the level set $\{x\in\Omega;u(x)>t\}$ . Let $\iota=k+1$ . By Lemma
2.2 (1) we see that this connected figure cannot surround a component of
$\{x\in\Omega;u(x)<t\}$ . Therefore, up to a renumbering, we may assume that
the points $x_{1},$

$\ldots,$
$x_{k}$ together with respective components concentrating

at these points make one connected figure. Since the points $x_{1},$ $\ldots x_{k+1}$

together with respective components make one connected figure, by the
same reason as above, we see that there is just one component which
concentrates at $x_{k+1}$ and $x_{j}$ for some $1\leq j\leq k$ . Hence it follows from
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the assumption of the induction that the connected figure which consists
of the points $x_{1},$

$\ldots,$ $x_{k+1}$ and respective components just contains

$( \sum_{j=1}^{k}m_{j}+1)+(m_{k+1}+1)-1$

connected compon$e$nts of the level set $\{x\in\Omega ; u(x)>t\}$ . This com-
pletes the proof. 1

Using this we obtain

LEMMA 2.7. Let $x_{1},$
$\ldots,$

$x_{k}\in\Omega\backslash I$ be the interior critical points of $u$ in
$\Omega\backslash I$ and let $m_{1},$ $\ldots,$

$m_{k}$ be their respective multiplicities. Then $u$ has
at least $\sum_{j=1}^{k}m_{j}+1$ loca1 maximum points in $\Omega$ .

PROOF: In case $u(x_{1})=\cdots=u(x_{k})=t$ , if the points $x_{1},$
$\ldots,$

$x_{k}$ to-
gether with respective components of $\{x\in\Omega ; u(x)>t\}$ concentrating
at these points make $n$ connected figures, then it follows from Lemma
2.6 that these figures contain just $\sum_{j=1}^{k}m_{j}+n$ connected components
of the level set $\{x\in\Omega ; u(x)>t\}$ . Therefore, in this case the level set
always has at least $\sum_{j=1}^{k}m_{j}+1$ connected components, and $u$ has at

least $\sum_{j=1}^{k}m_{j}+1$ local maximum points in $\Omega$ . Hence, without loss of
generality, we may assume that

$u(x_{1})=\cdots=u(x_{j_{1}})<u(x_{j_{1}+1})=\cdots=u(x_{j_{2}})<$

(2.1) . . . $<u(x_{j_{\epsilon}+1})=\cdots=u(x_{j_{*+1}})$

where $j_{s+1}=k$ and $s\geqq 1$ .
Let $I_{n}$ be the set of all components of open sets $\{x\in\Omega;u(x)>u(x_{j})\}$

for $1\leq j\leq n$ , and let $J_{n}$ be the subset of $I_{n}$ defined by

$\omega\in J_{n}\Leftrightarrow\omega$ does not contain any other component of

$\{x\in\Omega ; u(x)>u(x_{q})\}$ for $n\geqq q\geqq p$ with $u(x_{q})>u(x_{p})$
(2.2)

when $\omega$ is a component of $\{x\in\Omega ; u(x)>u(x_{p})\}$

for $1\leq p\leq n$ .

By the definition, $J_{n}$ consists of disjoint components. Denote by $|J_{n}|$

the number of the elements of $J_{n}$ . Let us show that $|J_{j_{\ell}}| \geqq\sum_{j=1}^{j\ell}m_{j}+1$

by the induction on the number $p$ . When $\ell=1$ , we have already shown
this. Suppose that $|J_{j_{p}}| \geqq\sum_{j^{p}=1}^{j}m_{j}+1$ for $p\geqq 1$ . Let $l=p+1$ . Then
$\{x_{j_{p}+1}, \ldots, x_{j_{p+1}}\}\subset\bigcup_{\omega\in J_{j_{p}}}\omega$ , and each $x_{j}(j=j_{p}+1, \ldots,j_{p+1})$ belongs
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to some $\omega\in J_{j_{p}}$ which is a component of $\{x\in\Omega ; u(x)>u(x_{j_{p}})\}$ . Let
$\{x_{j_{p}+1}, \ldots , x_{j_{p+1}}\}$ be just contained in $q$ components $\omega_{1},$ $\ldots,\omega_{q}$ . Then,
counting the number of components of $\{x\in\Omega ; u(x)>u(x_{j_{p+1}})\}$ in
each $\omega_{j}(j=1, \ldots, q)$ , in view of the definition of $J_{n}$ we obtain

$|J_{j_{p+1}}| \geqq|J_{j_{p}}|+(\sum_{J=j_{p}+1}^{j_{p+1}}m_{j}+q)-q$

$=|J_{j_{p}}|+ \sum_{J=j_{p}+1}^{j_{p+1}}m_{j}$ .

Therefore, by the assumption of the induction, we get

$|J_{j_{p+1}}| \geqq\sum_{j=1}^{j_{p+1}}m_{j}+1$ .

This completes the proof. 1
By Lemma 2.7 and Lemma 2.4 we get

$\sum_{j=1}^{k}m_{j}+1\leq N$ .

This shows that the number of the interior critical points of $u$ in $\Omega\backslash I$

is finite and the proof of Theorem 1 is completed, since $u$ has no critical
point on $\partial\Omega$ by virtue of Hopf’s boundary point lemma (see the book of
Gilbarg and Trudinger [2, Lemma 3.4, p. 34]) and $\nabla u=\nabla\psi$ on $I$ .

\S 3. Proof of Theorem 2. Let $p_{1},$ $\ldots,p_{N}$ be the global maximum
points of $\psi$ . By considering $g(x) \equiv\max_{\Omega}\psi$ in (1.7) we get $(0<)u\leqq$

$\max_{\Omega}\psi$ in $\Omega$ . Then, all the points $p_{1},$ $\ldots,p_{N}$ belong to $I$ and are all the
local maximum points of $u$ .

Since the critical points of $u$ are finite in number, it follows from
Lemma 2.3 (2) and the hypotheses concerning $\psi$ , that there exists $r>0$

which satisfies the following:

(3.1) $\max u<\max_{\Omega}\psi$ for $j=1,$ $\ldots,$
$N$ ,

$\partial B_{f}(p_{j})$

(3.2) $\nabla u(x)\neq 0$ for any $x\in\overline{B}_{r}(p_{j})-\{p_{j}\}$ and for any $j$ ,

where each $B_{r}(p_{j})$ denotes an open ball with radius $r$ centered at $p_{j}$ for
$j=1,$ $\ldots,$

$N$ and these balls are disjoint.
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Therefore there exists a sufficiently small number $\delta>0$ such that
the set $\{x\in\Omega ; u(x)=\max_{\Omega}\psi-\delta\}$ consists of $N$ simple $C^{1}$ regular
closed curves. Note that $\nabla u\neq 0$ on $\partial\Omega$ by virtue of Hopf’s boundary
point lemma. Suppose that $\nabla u\neq 0$ in $\Omega\backslash I$ . Then $\nabla u\neq 0$ in $\{x\in$

$\overline{\Omega}$ ; $u(x) \leq\max_{\Omega}\psi-\delta$}. Therefore, by the implicit function theorem,
$\{x\in\Omega ; u(x)=\max_{\Omega}\psi-\delta\}$ is diffeomorphic to $\partial\Omega(=\{x\in\overline{\Omega}$ ; $u(x)=$

$0\})$ . This is a contradiction. Then, there exists at least one critical point
of $u$ in $\Omega\backslash I$ .

Let $x_{1},$ $\ldots$ , $x_{k}\in\Omega\backslash I$ be the critical points of $u$ and let $m_{1},$ $\ldots$ , $m_{k}$

be the respective multiplicities. We may assume that there is no other
critical point of $u$ in $\Omega$ except the points $x_{1},$ $\ldots$ , $x_{k},p_{1}\ldots$ , $p_{N}$ .

As in the proof of Lemma 2.7, we first consider the case $u(x_{1})=\cdots=$

$u(x_{k})=t$ for some $t\in R$ . Since $\nabla u\neq 0$ in $\{x\in\overline{\Omega} ; u(x)<t\}$ , then $\{x\in$

$\overline{\Omega}$ ; $u(x)=s$ } is difFeomorphic to $\partial\Omega$ for any $0<s<t$ . Therefore, by the
continuity, all the points $x_{1},$

$\ldots,$
$x_{k}$ together with respective components

of $\{x\in\Omega ; u(x)>t\}$ concentrating at these points make one connected
figure, and there is no component of $\{x\in\Omega ; u(x)>t\}$ except these
components concentrating at the critical points. Hence the number of
connected components of $\{x\in\Omega ; u(x)>t\}$ is exactly $\sum_{j=1}^{k}m_{j}+1$ and
each component contains at least one point of $\{p_{1}\ldots,p_{N}\}$ . Of course all
the points $p_{1},$ $\ldots,p_{N}$ are contained in these components. Furthermore,
each component contains exactly one point of $\{p_{1}, \ldots,p_{N}\}$ . Indeed,
suppose that there exists a component containing more than two points
of $\{p_{1}, \ldots p_{N}\}$ , say $\omega$ . By Lemma 2.2 (2), we note that $\omega$ is simply
connected. Furthermore, using the results of Hartman &Wintner, we
see that there exists a small number $\epsilon>0$ which satisfies the following:

(3.3) $\{x\in\omega ; u(x)=t+\epsilon\}$ is a simple $C^{1}$ regular closed curve,

(3.4) $\{x\in\omega ; u(x)=\max_{\Omega}\psi-\delta\}$ consists of more than two-

$C^{1}$ simple regular closed curves.

On the other hand, since $\nabla u\neq 0$ in $\{x\in\omega ; t<u(x)<\max_{\Omega}\psi\}$ , by
using the implicit function theorem we get a contradiction against (3.3)

and (3.4). Consequently, we get $\sum_{j=1}^{k}m_{j}+1=N$ .
Consider the general case as in the proof of Lemma 2.7. We use the

same notation as in the proof of Lemma 2.7, (see (2.1)). We want to
prove $|J_{k}|= \sum_{j=1}^{k}m_{j}+1$ .

Therefore we prove $|J_{j_{t}}|= \sum_{j^{\ell}=1}^{j}m_{j}+1$ for $1\leq p\leq s+1$ by the
induction on the number $\ell$ . We remark that since all local maximum
points of $u$ are the same level global maximum points, $J_{n}$ consists of
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only components of $\{x\in\Omega ; u(x)>u(x_{n})\}$ . When $\ell=1$ , we have
already shown this as in the case $u(x_{1})=\cdots=u(x_{k})=t$ for some
$t\in R$ . Suppose that $|J_{j_{p}}|= \sum_{j=1}^{jp}m_{j}+1$ for $p\geqq 1$ . Let $P=p+1$ . Then
$\{x_{j_{p}+1}, \ldots, x_{j_{p+1}}\}\subset\cup,\in J_{ip}\omega$ and each $x_{j}(j=\gamma_{p}+1, \ldots,j_{p+1})$ belongs

to some $\omega\in J_{j_{p}}$ which is a component of $\{x\in\Omega ; u(x)>u(x_{j_{p}})\}$ .
Let $\{x_{j_{p}+1}, \ldots, x_{j_{p+1}}\}$ be just contained in $q$ components $\omega_{1}\ldots\omega_{q}$ . In

each $\omega_{i}(1\leq i\leq q),$ $x_{j}’s$ together with the respective components of $\{x\in$

$\Omega$ ; $u(x)>u(x_{j_{p+1}})$ } concentrating at $x_{j}’s$ must make one connected
figure. Indeed, since each $\omega$: is simply connected (see Lemma 2.2 (2)),
using Hartman &Wintner’s results, we see that { $x\in\omega_{i}$ ; $u(x)>$
$u(x_{j_{p}})+\epsilon\}$ is simple $C^{1}$ regular closed curve for small $\epsilon>0$ . Since
$\nabla u\neq 0$ for $\{x\in\omega_{i} ; u(x_{j_{p}})+\epsilon\leqq u(x)<u(x_{j_{p+1}})\}$ , by continuity we
get the above conclusion.

Therefore, in view of this, counting the number of components of
$\{x\in\Omega ; u(x)>u(x_{j_{p+1}})\}$ in each $\omega_{i}(i=1, \ldots q)$ we get

$|J_{j_{p+1}}|=|J_{j_{p}}|+( \sum_{J=j_{p}+1}^{j_{p+1}}m_{j}+q)-q$

$=|J_{j_{p}}|+ \sum_{J=j_{p}+1}^{j_{p+1}}m_{j}$ .

This shows that $|J_{k}|= \sum_{j=1}^{k}m_{j}+1$ . Finally, since $\nabla u\neq 0$ in $\{x\in$

$\Omega$ ; $u(x_{k})<u(x)< \max_{\Omega}\psi$ }, as in the case $u(x_{1})=\cdots=u(x_{k})=t$

for some $t\in R$ , we obtain a one to one correspondence between $J_{k}$ and
$\{p_{1}, \cdots , p_{N}\}$ . Therefore we get $|J_{k}|=N$ and complete the proof. 1

\S 4. Some examples. Finally we give a few examples in the situations
of Theorem 2. The first example shows that there exists a critical point
with an arbitrary greater multiplicity.

Precisely, let $\Omega$ be a unit open ball in $R^{2}$ centered at the origin. Con-
sider $a(p)$ defined by $a(p)=b(|p|)p$ for some real valued positive function
$b(\cdot)$ . We introduce the polar coordinate $(r, \theta)$ . Give an integer $m\geqq 1$ .
Put $\alpha=2\pi/(m+1)$ . Consider $m+1$ balls $B_{k}(k=0,1, \ldots, m)$ centered
at $P_{k}=(1/2, k\alpha)$ with radius $r>0$ . We choose $r$ sufficiently small
to make every $B_{k}$ be disjoint. Let $\varphi$ be a radially symmetric smooth
function on $B=\{x\in R^{2} ; |x|\leqq r\}$ which satisfies the following:

(4.1) $\max_{B}\varphi>0$ and $\varphi<0$ on $\partial B$ ,

(4.2) $\varphi(0)=\max_{B}\varphi$ and $\nabla\varphi\neq 0$ in $B-\{0\}$ .
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EXAMPLE 1: Consider the obstacle $\psi\in C^{2}(\overline{\Omega})$ which satisfies the fol-
lowing:

(4.3) $\psi(x)=\varphi(x-P_{k})$ for $x\in B_{k}$ $(k=0,1, \ldots, m)$ ,

(4.4) $\psi(x)<0$ in $\Omega\backslash \bigcup_{k=0}^{m}B_{k}$ .

Then, by symmetry the origin is a critical point of the solution $u$ . Fur-
thermore, by Theorem 2 and the symmetry the origin is a unique critical
point of $u$ in $\Omega\backslash I$ and the multiplicity of the origin is exactly $m$ . Here
$N=m+1$ in Theorem 2.

EXAMPLE 2: Consider the obstacle $\psi\in C^{2}(\overline{\Omega})$ satisfying (4.3) and the
following:

(4.5) $\psi(x)=\varphi(x)$ for $x\in B$ ,

(4.6) $\psi(x)<0$ in $\Omega\backslash \{\bigcup_{k=0}^{m}B_{k}\cup B\}$ .

Then by symmetry there exist $m+1$ critical points $(r_{1}, k\alpha)(k=0, \ldots, m)$

for some $0<r_{1}<1/2$ , and the multiplicity of each point is equal to
one. Here $N=m+2$ in Theorem 2.

EXAMPLE 3: Let $Q_{j,k}=(j/3, k\alpha)$ in the polar coordinate for $j=1,2$
and $k=0,1,$ $\ldots,$

$m$ . Let $B_{j,k}$ be a ball in $R^{2}$ centered at $Q_{j,k}$ with radius
$r$ for each $j$ and $k$ . Of course we choose $r$ sufficiently small. Consider
the obstacle $\psi\in C^{2}(\overline{\Omega})$ which satisfies the following:

(4.7) $\psi(x)=\varphi(x-Q_{j,k})$ for $x\in B_{j,k}$ and for any $j,$ $k$ ,

(4.8) $\psi(x)<0$ in $\Omega\backslash \bigcup_{j=1}^{2}\bigcup_{k=0}^{m}B_{j,k}$ .

Then, by symmetry the set of all the critical points of the solution in
$\Omega\backslash I$ consists of the origin with multiplicity $m$ and $m+1$ points $(r_{2}, k\alpha)$

with multiplicity 1 $(k=0,1, \ldots, m)$ for some $1/3<r_{2}<2/3$ . Here
$N=2m+2$ in Theorem 2.
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