
Critical points of the Onsager functional on a sphere

I. Fatkullin1, V. Slastikov2

1 California Institute of Technology, ibrahim@acm.caltech.edu

2 Carnegie Mellon University, slastiko@andrew.cmu.edu

12 January 2005

Abstract: We study Onsager’s model of nematic phase transitions with orientation
parameter on a sphere. We consider two interaction potentials: the antisymmetric
(with respect to orientation inversion) dipolar potential and symmetric Maier-Saupe
potential. We obtain a complete classification and explicit expressions of all critical
points, analyze their stability, and construct the corresponding bifurcation diagrams.

A theory of phase transitions in rod-like polymers and nematic liquid crystals acquired
a solid mathematical background when Onsager introduced a variational model [11] re-
lating their equilibrium states to critical points of a free energy functional. Ever since,
his approach has become a standard way to describe many associated phenomena, both
static and dynamic [4,7]. However, the problem of rigorous analysis and classification of
all critical points of Onsager’s functional remained open, and only recently a significant
progress has been achieved. A detailed study of a reduced model, where the rod orientation
is assumed to lie on a circle, was accomplished in [5,2,3,9]. A full model (on a sphere) was
considered in [1], where the critical points were related to the solutions of a transcendental
matrix equation, and some of their properties were studied based on such representation.
In this work we extend the methods employed in [5] for the reduced model (on a circle) and
present explicit expressions for all critical points of the full model, analyze their stability
and bifurcations. In the outcome we produce a complete solution to this remarkable model
in statistical physics of polymers.

Let us review the Onsager model and outline our most important results. The state of
the system (generally a liquid-crystalline suspension) is described by a probability density
of rod orientations ρ(s). The orientation parameter s belongs to a unit sphere S2 in a
three-dimensional Euclidean space. Throughout the paper we routinely use alternative
notations for the points on the unit sphere, e. g., s ∈ S2 may be represented as a unit
vector in Cartesian coordinates: x = (x1, x2, x3) ∈ R3, |x| = 1; or as angles, ϕ ∈ [0, 2π),
θ ∈ [0, π] in a spherical coordinate frame. In the last case, unless the polar axis (θ = 0)
and the plane ϕ = 0 are prescribed explicitly, they may be chosen arbitrarily.

We may write the Onsager free energy functional as

F [ρ] :=
∫

S2

[
τρ(s) ln ρ(s) +

1

2
ρ(φ)

∫

S2
U(s, s′) ρ(s′) ds′

]
ds. (1)

The first term under the integral is the entropic term, the positive parameter τ is the
temperature. This term is minimized by the uniform density ρ̄(s) ≡ 1/4π and is dominant
when τ is large. The second term is the interaction term, the function U(s, s′) is called
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interaction potential. In this work we consider two interaction potentials: the dipolar po-
tential

Ud(x,x′) := − x · x′, (2)

and the Maier-Saupe potential [10]

Ums(x,x′) := − (x · x′)2 +
1

3
. (3)

The principal difference between these two potentials is that the Maier-Saupe potential
remains invariant when one of its arguments changes sign, thus it is indifferent to inversion
of the rod orientations. The dipolar potential, on the contrary, prefers that all rods have
the same orientation; in a sense, such interaction may be considered as an interaction of
“arrows” rather than “rods.” Physically this corresponds to the situation when the polymer
molecules possess dipole moment.

In our paper we fix the strength of the interaction and vary the temperature τ . It is
not hard to see that the uniform density ρ̄ ≡ 1/4π is a critical point of the free energy
functional (1) for any τ . It corresponds to the disordered phase. For the dipolar potential
we prove that ρ̄ is a unique critical point (and the global minimizer) when τ ≥ τc := 1/3.
At τ = τc, it loses stability as a result of a pitchfork bifurcation, and a family of critical
points given by (in a suitable spherical coordinate frame)

ρd(ϕ, θ) := Z−1 e−r(τ) cos θ (4)

appears. The function r(τ) is obtained inverting (20). These states become the global
(non-isolated) minimizers and correspond to the ordered phase. No other critical points
exist.

For the Maier-Saupe potential we prove that the uniform density is a unique critical point
when τ > τ ∗ ≈ 0.149 and an isolated minimizer for τ > τc = 2/15. At τ = τ ∗ a saddle-node
bifurcation (a fold) occurs (away from the uniform state) and two families of critical points
given by (in a suitable spherical coordinate frame)

ρms(ϕ, θ) := Z−1 e−r1,2(τ) (3 cos2 θ−1) (5)

emerge, the functions r1,2(τ) are obtained inverting (27). No other critical points exist.
When τ ∈ (τc, τ

∗) both families correspond to prolate nematic states, respective probability
densities are concentrated near the poles of the sphere. One of these families is stable,
another is unstable. The stable prolate states persist for τ ∈ (0, τc) and become global
(non-isolated) minimizers at some τ∗ ∈ (τc, τ

∗). At τ = τc the unstable prolate states
“collide” with the uniform state and a transcritical bifurcation occurs. As the result, the
uniform state loses stability and the unstable prolate states become unstable oblate states
(respective probability densities are concentrated near the big circles of the sphere). These
unstable oblate states persist for all τ ∈ (0, τc).
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1 Some properties of interaction potentials and critical points

Let us first discuss a few simple but important properties of interaction potentials and
critical points of the free energy functional. Some properties of spherical harmonics are
summarized in Appendix B.

Representations of interaction potentials Observe that potentials (2) and (3) are
eigenfunctions of the Laplace-Beltrami operator (B.4) on S2:

∆U(s, s′) = λU(s, s′), (6)

∆ may act on either variable. For the dipolar interaction λ = −2, for the Maier-Saupe
potential λ = −6. The corresponding eigenspaces Λ1, and Λ2 are 3- and 5-dimensional,
and are spanned by spherical harmonics yl,m(s) of the first and second order respectively
(l = 1, 2, m = −l, . . . , l). Therefore, we may expand U(s, s′) in the corresponding bases:
using (B.7) we get

Ud(s, s
′) = −P1( e · e′ ) = ud

1∑

m=−1

y1,m(s) y∗1,m(s′), ud := − 4π

3
;

(7)

Ums(s, s
′) = −2

3
P2( e · e′ ) = ums

2∑

m=−2

y2,m(s) y∗2,m(s′), ums := − 8π

15
.

Euler-Lagrange equation The Euler-Lagrange equation for critical points of the free
energy functional (1) may be written as

τΦ(s) =
∫

S2
U(s, s′) ρ(s′) ds′, (8)

where we introduce the thermodynamic potential Φ(s) setting

ρ(φ) =:Z−1 e−Φ(s), Z =
∫

S2
e−Φ(s) ds. (9)

The normalizing constant Z is called the partition integral. In this paper we mainly deal
with the thermodynamic potential Φ(s), the properties of the corresponding probability
density ρ(s) may be reconstructed from the last relation (9).

Applying Laplace-Beltrami operator on both sides of (8) and using (6) we obtain

∆Φ(s) = λΦ(s), (10)

i. e., Φ(s) is an eigenfunction corresponding to the same eigenvalue as U(s, s′). This implies
that it may be expanded in the same basis {yl,m(s)}:

Φ(s) =
l∑

m=−l

φm yl,m(s). (11)
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We may regard the partition integral Z as a function of the coefficients φm satisfying
φ∗m = φ−m (this condition is assumed from now on, as we are interested in real solutions):

Z(φ) =
∫

S2
e−

∑
m

φm yl,m(s) ds. (12)

Hereafter summation over m is always taken over the whole range −l, . . . , l. Rewriting the
Euler-Lagrange equation in Fourier coordinates (for the coefficients φm) we obtain

τφm = uZ−1
∫

S2
y∗l,m(s) e−

∑
m′ φm′ yl,m′ (s) ds, (13)

the constant u is defined in (7). Note that y∗l,m(s) = yl,−m(s). Equations (13) are equiva-
lent to the original Euler-Lagrange equation (8): an arbitrary set of the coefficients, φm,
produces a solution of (8) if and only if for any m,

τ = − u

φm

∂

∂φ∗m
lnZ(φ). (14)

If φm = 0 for some m, we have to verify directly that respective integral in (13) produces
zero. Finally, let us note that the free energy of a critical point may be found (using the
Euler-Lagrange equation) as,

F [ρ] = − τ 2

2u
‖Φ‖2 − τ lnZ. (15)

Now let us consider individually the cases with dipolar and Maier-Saupe interaction po-
tentials in greater detail.

2 Critical points for dipolar interaction potential

For dipolar potential U(x,x′) = −x · x′ we may compute the partition integral (for any
values of the parameters φm) explicitly. Rewriting (12) in spherical coordinates (using
(B.6), l = 1) we get,

Z(φ) =
∫ π

0

∫ 2π

0
eα cos θ+(β cos ϕ+γ sin ϕ) sin θ sin θ dϕ dθ. (16)

The parameters, α, β, and γ, may be easily related to the coefficients φm, however it is
sufficient to observe that,

r2 := α2 + β2 + γ2 =
3

4π
|φ|2. (17)

Integral (16) becomes elementary after an appropriate rotation in R3 (see, e. g., [6]):

Z(φ) =
∫ 2π

0

∫ π

0
e r cos θ sin θ dϕ dθ = 4π

1

r
sinh r. (18)
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From the Euler-Lagrange equation (8) we may immediately deduce that for all tempera-
tures τ there exists a trivial solution, Φ ≡ 0 (corresponding to r = 0, Z = 4π). All other
critical points may be classified by means of the following theorem.

Theorem 1 A function Φ(s) is a nontrivial solution of the Euler-Lagrange equation (8)
with dipolar interaction potential if and only if it may be represented as

Φ(ϕ, θ) = r cos θ, r > 0 (19)

in some spherical coordinate frame. The parameter r and the temperature τ are related by

τ =
1

r2
(r coth r − 1). (20)

Remark A Freedom in the choice of a spherical coordinate frame reflects that a whole
family of equivalent solutions may be obtained by an arbitrary rotation of a given solution.

Remark B Equation (20) is solvable for r if and only if, 0 < τ ≤ 1/3. It has two solutions
which differ by sign, however it is sufficient to consider r > 0: the transformation r 7→ −r
corresponds to inversion of the polar axis and does not produce new critical points.

Proof As shown in Section 1, all solutions of (8) belong to the subspace Λ1 spanned by the
first-order spherical harmonics y1,m(s). Therefore, after a suitable rotation, any solution
may be represented as (19). Equivalently this may be obtained observing that (8) implies
(in Cartesian coordinates),

τΦ(x) = x · e, e := −
∫

|y|=1
x ρ(x) ds(x). (21)

Choosing e as the polar axis for a spherical coordinate frame, we obtain (19). Note that all
solutions are axially-symmetric (independent of the latitudinal angle ϕ in an appropriate
spherical coordinate frame).

Now let us verify that any function of the form (19) satisfies the Euler-Lagrange equation
and obtain a relation between r and the temperature τ . From the explicit formulae for
spherical harmonics (B.6) we conclude that

φ0 =
[
4π

3

] 1
2

r, φ±1 = 0. (22)

Using this in (13) we may see that equations for m 6= 0 are satisfied trivially (integrals
over the latitudinal angle ϕ produce zeroes). Equation for m = 0, e. g., in the form (14),
provides the value of the temperature τ (recollect, u = −4π/3):

τ =
1

r

d

dr
lnZ(r). (23)

Substituting an explicit expression for the partition integral (18) we obtain (20) ¤
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Fig. 1. Bifurcation diagram for the
dipolar interaction. The bell-shaped
curve (symmetric about zero) is the graph
of τ(r), given by (20). The thick solid line
corresponds to the stable branches: the
trivial state, Φ ≡ 0, for τ > 1/3; and
the family (19) for τ < 1/3. The hol-
low line marks the unstable state, Φ ≡ 0,
when τ < 1/3. The dashed lines represent
asymptotic expansions (25).

2.1 Stability and bifurcation of critical points

A straightforward analysis shows that τ(r) given by (20) is a positive symmetric bell-like
function with the maximum τc := τ(0) = 1/3, as displayed on Figure 1. Its range is (0, 1/3],
thus equation (20) has a unique positive solution r for any τ ∈ (0, 1/3). We conclude that
for τ > τc the only critical point is the trivial solution Φ ≡ 0, whereas for τ < τc there
also exists a family of rotation-equivalent solutions described by Theorem 1.

Let us analyze stability of critical points. Consider the trivial solution Φ ≡ 0 and the corre-
sponding probability density ρ̄ ≡ 1/4π. The second variation of the free energy functional
(1) may be written (expanding in terms of spherical harmonics) as

D2F|ρ̄[η] = 4πτ
∞∑

l=0

l∑

m=−l

|ηl,m|2 − 4π

3

2∑

m=−2

|η2,m|2 (24)

Here η is the variation of the probability density ρ̄. We see that the second variation
is positive for any η if and only if τ > 1/3 = τc. Consequently, the trivial solution is
the global (isolated) minimizer for τ > τc. At τ = τc a pitchfork bifurcation occurs and
stability is transferred to the family of nontrivial solutions, which become global (non-
isolated) minimizers. The same result may be obtained by direct comparison of the free
energies of respective critical points using formula (15). Summarizing all of the above we
obtain the following theorem.

Theorem 2 When τ ≥ τc = 1/3 the only critical point of the free energy functional (1)
with dipolar interaction potential is the uniform density ρ̄ ≡ 1/4π, which is the global
minimizer. When τ < τc this (trivial) state becomes unstable and there exists exactly one
family of rotation-equivalent nontrivial critical points, described by Theorem 1, which are
the global (non-isolated) minimizers ¤

For completeness, let us also present the leading-order asymptotic expansions of r as a

6



function of τ , they may be easily derived from (20). The corresponding graphs are displayed
on Figure 1.

r =
1

τ
+ O

(
1

τ

)2

, τ ↓ 0;

(25)

r2 = 45 (τc − τ) + O (τc − τ)2 , τ ↑ τc.

3 Critical points for Maier-Saupe interaction potential

Now we consider the Maier-Saupe interaction potential U(x,x′) = −(x · x′)2 + 1/3. Al-
though it is possible to compute the partition integral (for an arbitrary set of parameters
φm) in terms of hypergeometric series, such representation does not allow to extract much
of required information and we have to resort to a more delicate analysis.

As in the case of dipolar interaction, there exists a trivial solution Φ ≡ 0, valid for all
temperatures τ . All other solutions may be classified using the following theorem.

Theorem 3 A function Φ(s) is a nontrivial solution of the Euler-Lagrange equation (8)
with Maier-Saupe interaction potential if and only if it may be represented as

Φ(ϕ, θ) = r(3 cos2 θ − 1), r 6= 0 (26)

in some spherical coordinate frame. The parameter r and the temperature τ are related by

τ =
1

6r

[
1− 1

2r
+

[
3

πr

] 1
2 e−3r

erf
√

3r

]
. (27)

Remark A As in the case of dipolar interaction, a whole family of equivalent critical points
may be obtained by an arbitrary rotation of a given solution.

Remark B Equation (27) is solvable for r if and only if 0 < τ ≤ τ ∗, where τ ∗ is the unique
extremum (maximum) of τ(r) — see discussion following the proof. For any τ ∈ (0, τ ∗)
there exist exactly two solutions r1,2(τ) which, unlike in the case of dipolar interaction,
produce non-equivalent critical points.

Remark C From (26) we may see that Φ(ϕ, θ) does not depend on the latitudinal angle
ϕ. This immediately implies the axial symmetry of all critical points.

Remark D When r < 0 the probability density ρ(s) = Z−1 exp{−Φ(s)} is concentrated
near the poles of the sphere, such states are called prolate. When r > 0, ρ(s) is concentrated
on a big circle (equator), these states are called oblate.

The proof of this theorem is less trivial than in the case of dipolar interaction. We proceed
in two steps: first, by direct computation (analogous to the dipolar case) we prove that
any axially-symmetric function from Λ2 (a subspace spanned by second-order spherical
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harmonics) is a solution, and this accounts for all axially-symmetric solutions. Second, we
prove that no other solutions exist. The second part of the proof relies on Lemma 6 which
is stated and proved in Appendix A.

Proof Let us first find all axially-symmetric solutions. As shown in Section 1, the ther-
modynamic potential Φ(s) belongs to the subspace Λ2, spanned by second-order spherical
harmonics. Using Lemma 9 (Appendix B) we conclude that any axially-symmetric solution
may be represented in the form (26).

Now let us show that a function in the form (26) solves the Euler-Lagrange equation and
obtain the corresponding temperature. From the explicit formulae for spherical harmonics
(B.6) we find

φ0 =
[
16π

5

] 1
2

r, φ±1 = φ±2 = 0. (28)

Substituting into (13), we may verify that all equations with m 6= 0 are trivially satisfied
(integrals over the latitudinal angle ϕ, again, produce zeroes). Equation for m = 0 provides
an expression for the temperature τ . Indeed, computing the partition integral (for this
particular combination of φm, we may express it via elementary functions) we get

Z =
∫ π

0

∫ 2π

0
e r(1−3 cos2 θ) sin θ dϕ dθ = 2π3/2 er

√
3r

erf
√

3r. (29)

From (14) (u = −8π/15) we obtain

τ =
1

6r

d

dr
lnZ(r). (30)

An explicit calculation produces (27).

This concludes the first part of the proof: we showed that any axially-symmetric function
from Λ2 satisfies Euler-Lagrange equation, and established relation between r and the
temperature τ , i. e., we have accounted for all axially-symmetric solutions. Now we will
prove that there exist no other solutions.

Let us employ a different representation of solutions, such as was used in [1]. In Cartesian
coordinates the Euler-Lagrange equation (8) may be written as

τΦ(x) = −
3∑

i,j=1

Rij xi xj +
1

3
, Rij :=

1

Z
∫

|x|=1
xi xj ρ(x) ds(x). (31)

The matrix Rij is symmetric and may be diagonalized by an appropriate rotation. Let us
convert to the corresponding coordinate frame. In this case the thermodynamic potential
may be represented as

Φ(x) = −1

τ

[
λ1x

2
1 + λ2x

2
2 + λ3x

2
3 −

1

3

]
. (32)
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Fig. 2. Bifurcation diagram
for the Maier-Saupe interac-
tion. The bell-shaped curve is
the graph of τ(r), given by (27).
The thick solid line corresponds
to the stable branches: the triv-
ial state, Φ ≡ 0, for τ > 2/15;
and the stable prolate family for
τ < τ∗. The hollow line marks
the unstable states. The dashed
lines represent asymptotic ex-
pansions (37).

We may rewrite the Euler-Lagrange equation as equations for the eigenvalues {λi}:

λi =
1

Z
∫

|x|=1
x2

i exp
{

1

τ

3∑

j=1

λj x2
j

}
ds(x), Z :=

∫

|x|=1
exp

{
1

τ

3∑

i=1

λi x
2
i

}
ds(x). (33)

Solutions to this equation are in one-to-one correspondence (up to rotation in R3) with
solutions of the original equation (8), see [1] for a complete proof. From (33) it is easy to
see that any solution necessarily satisfies 0 < λ1, λ2, λ3 < 1, λ1 + λ2 + λ3 = 1. However,
there exists a more subtle property which is proven in Lemma 6 (Appendix A): equation
(33) is only solvable if λi = λj for some i 6= j. Assuming (without loss of generality) that
λ1 = λ2, we may observe that the thermodynamic potential (32) is invariant with respect
to rotations around the x3 axis, i. e., it is axially-symmetric ¤

3.1 Stability and bifurcations of critical points

A thorough stability analysis for the model with Maier-Saupe interaction potential is quite
cumbersome. The reason is that here (unlike in the dipolar case) at low temperatures there
exist three families of critical points (see below), and thus we cannot simply compare their
free energies to deduce their stability. A detailed study would be a matter of a whole
different paper, thus here we will omit all technical calculations and will only state the
essential results.

Let us first describe a function τ(r) given by (27). A straightforward calculation shows that
this function is positive and has a unique extremum (maximum) τ ∗ := τ(r∗). The values of
τ ∗ and r∗ may be obtained solving the transcendental equation τ ′(r) = 0 and seem to have
no representation in quadratures. The approximate numerical values are: r∗ ≈ −0.726,
τ ∗ ≈ 0.149. The graph of τ(r) is displayed on Figure 2.

We conclude that when τ > τ ∗ the trivial state Φ ≡ 0 is the only critical point of the
free energy functional (1), whereas when τ < τ ∗ there exist two more families of rotation-
equivalent critical points corresponding to the two branches of the inverse function r(τ).
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Let us use the subscript indices ‘1’ and ‘2’ to distinguish between these branches, setting
r1(τ) ≤ r2(τ) (equality is achieved only when τ = τ ∗). Observe that r1(τ) < 0, whereas
r2(τ) < 0 for τ > 2/15 =: τc; and r2(τ) > 0 for τ < 2/15. An important difference from the
dipolar case is that the critical points Φ1(s) and Φ2(s), corresponding to the branches r1

and r2 are not equivalent, i. e., may not be matched by rotations. Φ1(s) is always a prolate
state, whereas Φ2(s) is a prolate state for τ > τc and an oblate state for τ < τc.

Now let us study stability of the critical points. Consider the trivial solution Φ ≡ 0 and the
corresponding probability density ρ̄ ≡ 1/4π. Expanding in terms of spherical harmonics
we may write the second variation (Hessian) of the free energy functional (1) as

D2F|ρ̄[η] = 4πτ
∞∑

l=0

l∑

m=−l

|ηl,m|2 − 8π

15

2∑

m=−2

|η2,m|2. (34)

Here η is the variation of the probability density ρ̄. We see that it is positive for any η if
and only if τ > 2/15 = τc. Thus the trivial solution is an isolated minimizer for τ > τc.

Stability analysis for the other branches ρ1,2(s) may be carried out in the similar manner.
However, estimating variations of the entropic term near nontrivial solutions is rather
tedious. A different approach utilizes the following property.

Proposition 4 Consider a τ -dependent family of rotation-equivalent critical points of the
functional (1). Stability of this family may not change (when τ is varied) while it remains
isolated, i. e., no other critical points exist in its sufficiently small neighborhood.

Remark This statement implies that a stable solution branch may only lose stability if
some other branch bifurcates from it (or a fold occurs). Since we know all possible solution
branches and thus all bifurcation points, we may deduce stability of any branch analyzing
its arbitrary point. We do not provide a detailed proof here. Let us only comment that this
proposition is a direct consequence of Krasnosel’skii’s theorems for bifurcation points of
nonlinear integral operators [8], see [12] for refinements in the case of potential operators.

A straightforward computation using formula (15) shows that

F [ρ1] < F [ρ2]; F [ρ2] < F [ρ̄] if and only if τ < τc. (35)

Thus the critical points corresponding to r1(τ) are the global minimizers when τ < τc, in
fact, this happens at some τ∗ ≈ 0.148 ∈ (τc, τ

∗). Employing Proposition 4 we conclude that
the whole branch is stable for τ ∈ (0, τ ∗). At τ = τ ∗ the two prolate branches merge and
the corresponding state is unstable: its energy is greater than that of the trivial solution
(since at this temperature there exist only two nonequivalent critical states this is sufficient
to conclude instability). We may classify the bifurcation at τ = τ ∗ as a saddle-node (or a
fold) bifurcation.

Similarly we may show that the whole branch r2(τ) is unstable for all τ ∈ (0, τ ∗). For that
we only need to present variations η of the probability density ρ(s), which yield negative
values for the Hessian of the free energy functional. By straightforward calculation we may
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show that when |r| is sufficiently small (r 6= 0),

D2F|ρ2 [ 3 cos2 θ − 1 ] < 0 for r < 0; D2F|ρ2 [ sin
2 θ cos 2ϕ ] < 0 for r > 0. (36)

The first variation, η = 3 cos2 θ−1, stretches the prolate state even more in the direction of
the polar axis. It is a variation towards the stable prolate (r1) state. The second variation,
η = sin2 θ cos 2ϕ, stretches the oblate state in the direction of some axis which crosses the
corresponding big circle. It is also a variation towards a stable prolate state whose axis
is rotated by π/2 (with respect to the axis of the given oblate state). Since the family
of critical points corresponding to r2(τ) is isolated when τ ∈ (0, τc) and τ ∈ (τc, τ

∗),
employing Proposition 4 once again, we conclude that it is unstable for all τ ∈ (0, τ ∗).
When τ = τc this branch “collides” with the trivial solution and its energy is greater than
that of ρ1(s), thus it is unstable (again, we may use the energy comparison because at
this temperature there exist only two nonequivalent critical states). The bifurcation at
τ = τc is transcritical, however, note that the states do not exchange stability: both of
them become unstable after collision. Summarizing all of the above we may formulate the
following theorem.

Theorem 5 When τ > τ ∗ ≈ 0.149 the only critical point of the free energy functional (1)
with Maier-Saupe interaction potential is the uniform density ρ̄ ≡ 1/4π, which is the global
minimizer. It remains the global minimizer when τ > τ∗ ≈ 0.148 and a local minimizer
when τ ∈ (τc, τ∗], it loses stability when τ ≤ τc. For τ < τ ∗ there exist exactly two families
of rotation-equivalent nontrivial critical points described by Theorem 1, corresponding to
the two branches of the function r(τ) (these branches merge at τ = τ ∗). One of these
families consists of stable (local non-isolated minimizers) prolate states which also become
global (non-isolated) minimizers when τ ∈ (0, τ∗). The other family consists of unstable
prolate states when τ ∈ (τc, τ

∗] and unstable oblate states when τ ∈ (0, τc) ¤

As in the case of dipolar interaction we also present the leading-order asymptotic expan-
sions of r as a function of τ , the corresponding graphs are displayed on Figure 2.

r1 = − 1

3τ
+ O

(
1

τ

)2

, r2(τ) =
1

6τ
+ O

(
1

τ

)2

, τ ↓ 0;

(37)

r2 =
105

4
(τc − τ) + O (τc − τ)2 , τ → τc.

4 Discussion

We obtained explicit expressions for all critical points of the Onsager free energy functional
(1) with dipolar (2) and Maier-Saupe (3) interaction potentials. The first step in our
approach is an observation that the thermodynamic potential Φ(s) belongs to the same
eigenspace of Laplace-Beltrami operator as interaction potential U(s, s′). It turns out that
for the dipolar interaction, any function from the corresponding eigenspace is a solution
of the Euler-Lagrange equation (8) for some value of the temperature τ . Thus this case is
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completely analogous to the reduced model on a circle [5]. However, this is not true for the
Maier-Saupe interaction: only axially symmetric functions from the respective eigenspace
are solutions. We proved this fact via careful analysis of the Euler-Lagrange equation using
semi-explicit representation of the partition integral by means of Bessel functions. Although
our proof is not very technical, we believe that a simpler proof, based exclusively on the
symmetry properties of the model, is possible; however we were not able to find it. Following
classification of critical points we analyzed their stability and studied bifurcations which
occur as the temperature is decreased.

On a final note let us mention that the calculation for the dipolar interaction potential may
be straightforwardly generalized to a sphere in a Euclidean space of an arbitrary dimension
d. In this case the trivial solution is the unique critical point when τ ≥ 1/d. When τ < 1/d
it loses stability as a result of a pitchfork bifurcation, and a family of rotation-equivalent
critical points (global non-isolated minimizers) appears. The latter are given by

ρ(s) = Z−1 e−r cos θ, Z = 2π
[
2π

r

] d
2
−1

I d
2
−1(r), τ =

1

r

d

dr
lnZ. (38)

Here θ is the polar angle with respect to an arbitrarily chosen polar axis, r > 0 is deter-
mined uniquely for an arbitrary τ ∈ (0, 1/d). No other critical points exist.

A Axial symmetry of thermodynamic potential for Maier-Saupe interaction

In this section we prove the main lemma which implies the axial symmetry of solutions
for the model with Maier-Saupe interaction potential. Consider the following equations
(τ > 0 is a parameter):

Zλi = τ
∂Z
∂λi

, Z :=
∫

|x|=1
exp

{
1

τ

3∑

i=1

λi x
2
i

}
ds(x) (A.1)

Lemma 6 Let a set of real numbers, {λ1, λ2, λ3}, be a solution of (A.1). Then necessarily:
(i) 0 < λ1, λ2, λ3 < 1; (ii) λ1 + λ2 + λ3 = 1; (iii) λi = λj for some i 6= j.

Proof Conditions (i) and (ii) follow directly from (A.1). Thus it only remains to prove
(iii). Without loss of generality, let us label the eigenvalues so that

λ1 ≤ λ2 < λ3, λ1 <
1

3
< λ3. (A.2)

Indeed, if λ2 = λ3, (iii) already holds; the second inequality is then implied by (ii). We
will prove that under stated conditions, a solution of (A.1) may only occur if λ1 = λ2.

Our method is to construct a function which turns to zero whenever (A.1) is satisfied.
We then show that, in a suitable range of parameters, this function has at most one
zero, which corresponds to λ1 = λ2. (Note that λ1 = λ2 = (1 − λ3)/2, is a solution,

12



which may be verified either by a direct calculation, or using equivalence of (A.1) and
the Euler-Lagrange equation (33), for which this combination of eigenvalues produces an
axially-symmetric solution.)

Let us make a change of variables in the λ-space, introducing parameters a, b, and c:

a :=
λ2 + λ3

6τ
− λ1

3τ
, b :=

λ3 − λ2

2τ
, c :=

λ1 + λ2 + λ3

3τ
;

(A.3)

λ1 = τ(c− 2a), λ2 = τ(c + a− b), λ3 = τ(c + a + b).

Our convention regarding the labelling of λi translates into a, b > 0. This will be assumed
from now on. We may write (A.1) in terms of the new variables a, b, c as

6τZ a =
∂Z
∂a

, 2τZ b =
∂Z
∂b

, 3τZ c =
∂Z
∂c

. (A.4)

We may also derive the partial derivatives of Z from its explicit representation: introducing
spherical coordinates (ϕ ∈ [0, 2π), θ ∈ [0, π]) such that

x1 = cos θ, x2 = sin θ sin ϕ, x3 = sin θ cos ϕ, (A.5)

we obtain
1

τ

3∑

i=1

λi x
2
i = c− 2a + sin2 θ

[
3a + b cos 2ϕ

]
. (A.6)

Using this relation in (A.1) and integrating over the ϕ-variable (employing Sommerfeld’s
representation of Bessel functions, see [6]) we get

Z = 2π ec−2a
∫ π

0
e3a sin2 θ I0(b sin2 θ) sin θ dθ = 2π ec−2a

∫ 1

0

e3aγ I0(bγ)√
1− γ

dγ. (A.7)

From here we deduce,

∂Z
∂a

= 6π ec−2a
∫ 1

0
γ

e3aγ I0(bγ)√
1− γ

dγ − 2Z,

∂Z
∂b

= 2π ec−2a
∫ 1

0
γ

e3aγ I1(bγ)√
1− γ

dγ, (A.8)

∂Z
∂c

= Z.

Comparing with (A.4) we obtain the following equalities (expressions for 3τZ e2a−c/π):

1

a

∫ 1

0
(3γ − 2)

e3aγ I0(bγ)√
1− γ

dγ =
3

b

∫ 1

0
γ

e3aγ I1(bγ)√
1− γ

dγ =
2

c

∫ 1

0
γ

e3aγ I0(bγ)√
1− γ

dγ. (A.9)

The first equality implies that whenever (A.1) is satisfied, the function

J (a, b) :=
∫ 1

0

e3aγ

√
1− γ

[
(3γ − 2) I0(bγ)− 3aγ

b
I1(bγ)

]
dγ, (A.10)
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turns to zero. Using Proposition 7 we know that for a given a > 0 there exists at most one
zero of J (a, b) when b is varied over (0,∞). Then this zero necessarily occurs at b = 3a,
or equivalently, λ1 = λ2 (since we know that such a set of λ-s produces a solution). We
may also verify that J (a, 3a) = 0 directly: the corresponding integral may be computed
explicitly (see [6]). This completes the proof ¤

Let us now state a few inequalities that will be employed in the following analysis. We
do not provide the proofs, as the latter may be obtained from the definitions and basic
properties of the corresponding Bessel functions (see, e. g., [6]). We assume z ≥ 0; equalities
are achieved if and only if z = 0.

I21(z) ≥ I0(z) I2(z); (A.11)

2 I0(z) I1(z) ≥ z
[
I20(z)− I21(z)

]
; (A.12)

d

dz

[
z

I1(z)

I0(z)

]
≥ 0. (A.13)

Proposition 7 Fix a > 0. The function, J (a, b) defined by (A.10) has at most on zero
when b ∈ (0,∞).

Proof We prove this demonstrating that ∂J (a, b)/∂b > 0, whenever J (a, b) = 0, b > 0.
After a few manipulations with Bessel functions, we obtain

∂J (a, b)

∂b
=

∫ 1

0

γ e3aγ

√
1− γ

[
(3γ − 2) I1(bγ)− 3aγ

b
I2(bγ)

]
dγ. (A.14)

Using (A.11) we get

b
∂J (a, b)

∂b
>

∫ 1

0

e3aγ

√
1− γ

[
(3γ − 2) I0(bγ)− 3aγ

b
I1(bγ)

]
I1(bγ) bγ

I0(bγ)
dγ. (A.15)

Using Proposition 8 we see that the function

f(γ) := b(3γ − 2) I0(bγ)− 3aγ I1(bγ), (A.16)

has at most one zero, γ = γ∗, in the interval 0 ≤ γ ≤ 1 (it has to have a zero if J (a, b) = 0).
Now let J (a, b) = 0. From the definition (A.10) we then obtain

∫ γ∗

0

γ e3aγ

√
1− γ

f(γ) dγ = −
∫ 1

γ∗

γ e3aγ

√
1− γ

f(γ) dγ. (A.17)

Taking into account relation (A.13) and the fact that f(γ) is negative for γ < γ∗ and
positive for γ > γ∗, we conclude that

∫ γ∗

0

γ e3aγ

√
1− γ

f(γ)
I1(bγ) bγ

I0(bγ)
dγ > −

∫ 1

γ∗

γ e3aγ

√
1− γ

f(γ)
I1(bγ) bγ

I0(bγ)
dγ. (A.18)
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(This follows if we note that the integral term on the left-hand side is multiplied by a
positive function which is is uniformly less than the respective multiplier on the right-
hand side.) Collecting both terms on the left-hand side and comparing with (A.15) we
obtain

∂J (a, b)

∂b
>

1

b2

∫ 1

0

γ e3aγ

√
1− γ

f(γ)
I1(bγ) bγ

I0(bγ)
dγ > 0, (A.19)

which concludes the proof ¤

Proposition 8 Take any a, b > 0. The function f(z) := b(3z − 2b) I0(z) − 3az I1(z) has
at most one zero within [0, b].

Proof It is sufficient to consider 2b/3 ≤ z ≤ b, since f(z) is strictly negative when
0 ≤ z < 2b/3. Let us introduce an auxiliary function g(z) := f(z)/[ z I1(z) ]. Observe that
zeroes of f(z) and g(z) coincide. We will prove that g(z) is an increasing function when
z ∈ [2b/3, b] and thus has at most one zero within this interval. By direct computation

g′(z) =
3b

z

I0(z)

I1(z)
+ b(3z − 2b)

I21(z) − I20(z)

z I21(z)
>

3b

z

I0(z)

I1(z)
− 2b(3z − 2b)

z2

I0(z)

I1(z)
. (A.20)

For the inequality we used that 3z − 2b ≥ 0 and relation (A.12). Rearranging the terms
we obtain

g′(z) >
b(4b− 3z)

z2

I0(z)

I1(z)
> 0, (A.21)

where z < b was used for the second inequality. Thus g(z) is a strictly increasing function
on [2b/3, b] and consequently has at most one zero within this interval. Since f(z) has no
zeroes in [0, 2b/3) and the same zeroes as g(z) in [2b/3, b], we conclude that f(z) has at
most one zero in [0, b] ¤

B Some properties of spherical harmonics and related functions

Let us summarize a few properties of spherical harmonics yl,m(s), that we employ in this
work. In a spherical coordinate frame (ϕ ∈ [0, 2π), θ ∈ [0, π]) we may represent the
functions yl,m(s) as

yl,m(ϕ, θ) :=

[
2l + 1

4π

(l − |m|)!
(l + |m|)!

] 1
2

P
|m|
l (cos θ) eimϕ, l = 0, 1, . . . , m = −l, . . . , l. (B.1)

The associated Legendre functions Pm
l (z) (for positive integer m) are given by

Pm
l :=

(
1− z2

)m
2 dm

dzm
Pl(z), (B.2)

where Pl(x) are the Legendre polynomials

Pl(z) :=
1

2ll!

dl

dzl

(
z2 − 1

)l
, l = 0, 1, . . . (B.3)
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Note that harmonics yl,m(s) with positive index m are sometimes defined with (−1)m sign;
we do not use this convention for notational simplicity, in this case y∗l,m(s) = yl,−m(s).

The spherical harmonics are the eigenfunctions of the Laplace-Beltrami operator on S2

∆ :=
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2
. (B.4)

Namely, we have
∆ yl,m(s) = −l(l + 1) yl,m(s). (B.5)

The l-th eigenvalue is 2l + 1 -degenerate and the corresponding eigenspace Λl, a subspace
of L2(S2), is spanned by yl,m(s), m = −l, . . . , l. Harmonics with different indices are
orthogonal; the normalizing coefficients in (B.1) are chosen so that yl,m(s) comprise an
orthonormal basis.

In our work we use harmonics of the orders l = 1, 2. For instructive purpose let us write
them down explicitly:

y1,0(ϕ, θ) :=
[

3

4π

] 1
2

cos θ, y1,±1(ϕ, θ) :=
[

3

8π

] 1
2

sin θ e±iϕ

y2,0(ϕ, θ) :=
[

5

16π

] 1
2

( 3 cos2 θ − 1 ), (B.6)

y2,±1(ϕ, θ) :=
[

15

32π

] 1
2

sin 2θ e±iϕ, y2,±2(ϕ, θ) :=
[

15

32π

] 1
2

sin2 θ e±2iϕ.

An essential property is the so-called addition theorem for spherical harmonics. Consider
two unit vectors x and x′ in R3. Let s and s′ denote respective points on the unit sphere
with center at the origin, then

Pl(x · x′) =
4π

2l + 1

l∑

m=−l

yl,m(s) y∗l,m(s′). (B.7)

Finally, we prove a useful lemma regarding axially-symmetric functions on the sphere.

Lemma 9 A function Ψ ∈ L2(S2) is axially-symmetric (invariant with respect to rotations
around some axis) if and only if it may be expanded in terms of the spherical harmonics
with index m = 0:

Ψ(s) =
∞∑

l=0

ψl yl,0(s). (B.8)

Proof Let Ψ(s) be axially symmetric. Choosing the axis of symmetry as the polar axis
and expanding Ψ(s) in terms of respective spherical harmonics we get that for any ϕ′

∞∑

l=0

l∑

m=−l

ψl,m yl,m(ϕ, θ) = Ψ(ϕ, θ) = Ψ(ϕ + ϕ′, θ) =
∞∑

l=0

l∑

m=−l

eimϕ′ψl,m yl,m(ϕ, θ). (B.9)

Since {yl,m(ϕ, θ)} is a basis in L2, ψl,m = 0 for any m 6= 0. The converse statement is
obvious: Ψ(s) is clearly invariant with respect to all rotations around the polar axis ¤
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