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Critical properties of a dissipative sandpile model on small world networks
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A dissipative sandpile model (DSM) is constructed and studied on small world networks (SWN).
SWNs are generated adding extra links between two arbitrary sites of a two dimensional square lat-
tice with different shortcut densities φ. Three different regimes are identified as regular lattice (RL)
for φ . 2−12, SWN for 2−12 < φ < 0.1 and random network (RN) for φ ≥ 0.1. In the RL regime, the
sandpile dynamics is characterized by usual Bak, Tang, Weisenfeld (BTW) type correlated scaling
whereas in the RN regime it is characterized by the mean field (MF) scaling. On SWN, both the
scaling behaviors are found to coexist. Small compact avalanches below certain characteristic size
sc are found to belong to the BTW universality class whereas large, sparse avalanches above sc are
found to belong to the MF universality class. A scaling theory for the coexistence of two scaling
forms on SWN is developed and numerically verified. Though finite size scaling (FSS) is not valid
for DSM on RL as well as on SWN, it is found to be valid on RN for the same model. FSS on RN
is appeared to be an outcome of super diffusive sand transport and uncorrelated toppling waves.

PACS numbers: 89.75.-k,05.65.+b,64.60.aq

I. INTRODUCTION

Complex networks describe a wide range of systems
in nature and society [1]. Frequently cited examples in-
clude coupled biological and chemical systems [2], neural
networks [3], internet [4], world wide web [5], social net-
works [6], networks of coauthors [7], citation network [8],
wealth network [9], etc. A small world network (SWN)
introduced by Watt and Strogatz [10] is a partially disor-
dered structure interpolating between the regular lattice
(RL) and random network (RN). An SWN with a speci-
fied shortcut density φ, number of shortcuts per existing
link, is generated adding extra links (or shortcuts) be-
tween two randomly chosen sites of the lattice keeping
all the original bonds of the lattice intact [11]. In this
process, φ = 0 corresponds to RL and φ = 1 corresponds
to a fully grown RN. A fully grown RN is characterized
by Poissonian degree distribution [12]. As φ increases
from 0 there will an onset of small world behavior around
φ ≈ 1/N where N is the number of nodes present in the
network [11, 13]. The small world behavior is character-
ized by the fact that the shortest distance ℓ between any
two nodes is small as that of a RN and at the same time
the concept of neighborhood is preserved as that of a RL
[14]. If φ is increased further, the small world behavior
will evolve to that of a RN around φ ≈ 0.1 [11]. There
exits a characteristic length ξ ∼ φ−1/d where d is the di-
mensionality of the lattice, below which SWN belongs to
“large world” regime (RL) and beyond which it behaves
as “small world” [15, 16]. Depending on the value of ξ,
the average shortest distance 〈ℓ〉 scales with the system
size L as

〈ℓ〉 = LF(L/ξ) = LF(φ1/dL) (1)
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where F(φ1/dL) is a universal scaling function [13, 17]
and is given by

F(x) ∝
{

constant, x ≪ 1
(log x)/x, x ≫ 1

(2)

It can be noted here that the scaling form was exactly
determined for one dimensional SWN by Newman et al.

[18] except for x = 1.
On the other hand, a commonly occurring phenomenon

in nature and society is self organized criticality (SOC)
[19] which refers to the intrinsic tendency of a wide class
of slowly driven systems to evolve spontaneously to a non
equilibrium steady state characterized by long range spa-
tiotemporal correlation and power law scaling behavior.
SOC is observed in many physio-chemical process such
as earthquake [20], forest fire [21], biological evolution
[22], droplet formation [23], superconducting avalanches
[24], etc. In order to study SOC, Bak, Tang and Weisen-
feld (BTW) [25] developed a simple lattice model called
sandpile. The model and its several different variants
have been extensively studied on RL and a large amount
of analytical and numerical results were reported in the
literature [26].
In nature, there exists many situations where self-

organization occurs in systems having complex structure
such as network. For example propagation of neural in-
formation inside the cervical cortex, earthquake dynam-
ics on the network of faults in the crust of the earth,
propagation of information through a network with mal-
functioning router and many others. Existence of such
phenomena triggered studies of SOC dynamics on com-
plex networks in recent time [27–34]. In this paper, a gen-
eralized dissipative sandpile model (DSM) with variable
critical height is developed on a series of SWNs in order
to examine the effect of different length scales present in
SWNs on the critical behavior of sandpile dynamics as
well as that of slowly driven dynamical systems in gen-
eral. It is found that the critical properties of DSM on
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the RL (φ = 0) characterized by BTW type multiscaling
[35] evolve to that of DSM on a RN (φ = 1) character-
ized by mean field (MF) scaling [36]. For intermediate
values of φ (0 < φ < 0.1), coexistence of both the criti-
cal behavior is observed corresponding to the presence of
neighborhood as well as long distance connectivity simul-
taneously on SWNs. In the following a scaling theory for
the coexistence scaling is proposed and verified by exten-
sive numerical simulation. It is also demonstrated that
finite size scaling (FSS) for BTW type models can only
be valid if the system on which the model is defined has
no spatial structure i.e. on RN and it will not be valid
if the concept of neighborhood persists i.e. on RL and
SWN.

II. DSM ON SWN

In this model, SWNs are generated by adding shortcuts
between two randomly chosen sites of a two dimensional
(2d) square lattice of size L. There are L2 nodes and 2L2

bonds present on the 2d square lattice if periodic bound-
ary condition is assumed. The number of nodes is kept
fixed to L2 throughout the simulation. RL is modified to
SWN by adding shortcuts between two arbitrary sites of
the RL with a specified density φ. The sites are chosen
uniformly from all over the lattice. The density of extra
link per existing bond of the original lattice is defined as

φ = Nφ/(2L
2) (3)

where Nφ is number of shortcuts added to the lattice.
Measure has been taken to avoid more than one link be-
tween any two nodes. There is no link which connects
a node itself. Each φ value corresponds to a particular
SWN. φ = 0 corresponds to RL and φ = 1 corresponds
to a fully grown RN. It is verified for φ = 1 that the
degree distribution of the network is given by a Poisson
distribution.
An SWN of a given φ is now driven by adding sand

grains, one at a time, to randomly chosen nodes. The
height of the sand column of each node is stored in an
integer variable hi, i = 1, 2, · · · , L2. For a given φ, the
nodes of the SWN will have a particular degree distribu-
tion. If the ith node has degree ki, the critical height or
the threshold value for toppling of the ith node is taken
to be its degree ki. If the height of the sand column at
any node becomes greater than or equal to the threshold
value (ki), it will be marked as unstable. The corre-
sponding sand column then topples and the height of the
sand column is reduced by its degree ki. The node then
becomes under critical. The sand grains flow from the
toppled node to its adjacent nodes which are connected
to the toppled node by links. Since there is no rigid
boundary exists for a network, the boundary sites of a
RL where sand dissipation used to occur are supposed to
be distributed among randomly selected nodes of the net-
work. Dissipation of sand to those nodes is made with an
appropriate dissipation factor ǫφ in an annealed manner.
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FIG. 1: Plot of 〈nφ〉 (◦) and ǫφ (2) against φ in log-normal
scale for L = 1024.

It is realized by dissipating a sand grain with probability
ǫφ in every attempt of sand transport from the critical
node. The adjacent nodes are then called sequentially
one by one and every time ǫφ is compared with a random
number r. If r ≤ ǫφ, the sand grain is dissipated out from
the system and the height of the sand column at the cor-
responding adjacent node remains the same otherwise it
is increased by one unit. The toppling rule then can be
represented as

hi → hi − ki
hj → hj if r ≤ ǫφ,
hj → hj + 1 otherwise

(4)

where j = 1, 2, 3 · · ·ki. If the toppling of a node causes
some of the adjacent nodes unstable, subsequent toppling
follow on these unstable nodes. The process continues
until there is no unstable node present in the system.
These toppling activities lead to an avalanche. During
an avalanche no sand grain is added to the system.
The critical properties of DSM are studied on SWNs

defined on the square lattice of different sizes varying φ
from 0 to 1 for each lattice size. It is now essential to
determine the dissipation factor ǫφ for an SWN of given
φ and system size L.

III. DETERMINATION OF ǫφ

Malcai et al. [35] defined the dissipation factor for a
DSM on RL by the inverse of time steps required for
a random walker to reach the lattice boundary starting
from an arbitrary site. Such a definition for the dissi-
pation factor on RL has been extend to SWN here. The
dissipation factor ǫφ on an SWN corresponding to a given
φ is then given by

ǫφ =
1

〈nφ〉
(5)
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where 〈nφ〉 is the average number of steps required for
a random walker to reach the lattice boundary starting
from an arbitrary node of the SWN. The average num-
ber of steps 〈nφ〉 required for such walks is calculated by
performing 2× 106 random walks in 16 different random
configuration of every SWN. In performing such walks
no periodic boundary condition is applied. In Fig.1, 〈nφ〉
and ǫφ are plotted against φ in semi-logarithmic scale
for L = 1024. It can be seen that 〈nφ〉 decreases rapidly
with increasing φ. This is because as φ increases the num-
ber of shortcuts also increases in the system and conse-
quently the walker needs lesser number of step to reach
the boundary starting from an arbitrary node. Conse-
quently, ǫφ increases rapidly as φ → 1. For the two ex-
treme values of φ, the dissipation factors are obtained as
ǫφ=0 = 6.7× 10−6 and ǫφ=1 = 0.002.
Using the estimated ǫφ, sandpile dynamics now can be

studied on SWNs at different φ on a given L.

IV. STEADY STATE OF DSM ON SWN

The steady state of DSM on an SWN corresponds to
equal current of incoming flux of sand grains into the sys-
tem to that of outgoing flux of the sand grains from the
system. Thus, at the steady state condition the average
height 〈h〉 of the sand columns should remain constant.
For L2 nodes, the average height is defined as

〈h〉 = 1

L2

L2
∑

i=1

hi. (6)

In Fig.2, 〈h〉 is plotted against the number of avalanches
for SWNs defined on a square lattice of size L = 1024
for φ = 0 (a), 2−8 (b) and 1 (c). It can be seen that
the steady state for DSM is achieved after initial 106

avalanches in all the SWNs considered. The saturated
average height hs is plotted against φ in Fig.2(d). The
value of hs on the regular lattice, φ = 0, is approximately
2.125 as it was conjectured in the context of absorbing
state phase transition of fixed energy sandpile model on
the square lattice [37]. As φ increases, the value of hs

remains almost independent of φ upto φ ≈ 2−3 and be-
yond this value of φ, hs increases rapidly with φ. Since
the avergae critical height of the sandpile model on an
SWN is defined by the average degree 〈k〉 of the network,
the variation of hs with φ must be due to the change of
〈k〉 with φ. A simple relationship between 〈k〉 and φ can
be obtained as

〈k〉 = 4+ 2
2L2φ

L2
= 4(1 + φ) (7)

where 2L2φ is the number of shortcuts added and the
factor 2 corresponds to increase of degree by one of two
nodes for addition of each shortcut. Therefore, for φ = 0,
〈k〉 = 4, for φ = 1, 〈k〉 = 8 and for φ = 2−3, 〈k〉 = 4.5.
Thus upto φ = 2−3, the increase in 〈k〉 is small because
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FIG. 2: Plot of average height 〈h〉 against number of
avalanches of DSM on SWNs generated on a square lattice
of size L = 1024 for φ = 0 (a), φ = 2−8 (b), and φ = 1(c).
In (d), plot of average saturated height hs against φ in log-
normal scale.

for φ < 0.1 the network corresponds to the small world
regime and the concept of neighborhood is preserved.
Since 〈k〉 is small in this region, the change in hs is ex-
pected to be small. For φ > 0.1, 〈k〉 increases rapidly
and hence the value of hs. It is also observed that as φ
increases, the steady state appear after an initial hump
in 〈h〉. For large φ, the dissipation in the system will
be mostly through the nodes with higher degrees. It
takes some time for those nodes to accumulate appro-
priate number of sand grains to become critical. During
the initial piling up of the sand columns in the higher de-
gree nodes, the average height of the sand columns may
increase beyond the saturation value hs corresponding to
the steady state.

V. PROBABILITY DISTRIBUTIONS AND

CONDITIONAL EXPECTATION VALUES OF

AVALANCHE PROPERTIES

The critical behavior of different avalanche properties
like toppling size s, area a and lifetime t of an avalanche
are measured to characterize the DSM on SWNs. The
toppling size s is defined as the total number of toppling
which occurred in an avalanche, the avalanche area a is
equal to the number of distinct sites or nodes toppled
in an avalanche and the lifetime t of an avalanche is the
number of parallel updates to make all the nodes (sites)
under-critical. Sandpile dynamics is mostly characterize
the probability distribution of these avalanche proper-
ties and the conditional expectation values 〈xφ(y)〉 of a
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property x keeping another property y fixed at a certain
value [38]. At the steady state, the probability distri-
bution functions P (x, φ) on SWN generated on a large
lattice of fixed size with a given φ is expected to obey
power law scaling as

P (x, φ) ∼ x−τx(φ) (8)

where x ∈ {s, a, t} and τx(φ) is the critical exponent
corresponding to the given value of φ. The conditional
expectation 〈xφ(y)〉 is defined as

〈xφ(y)〉 =
∫ xmax

0

xP (x|y)dx (9)

where P (x|y) is the conditional probability of the prop-
erty x for a fixed value of y. The quantity 〈xφ(y)〉 is
expected to scale with the other property y as

〈xφ(y)〉 ∼ yγxy(φ) (10)

where x ∈ {s, a, t} and γxy(φ) is another φ dependent
critical exponent. The exponent γxy(φ) can also be ob-
tained in terms of the distribution exponents τx(φ) and
τy(φ) as given in [39],

γxy(φ) =
τy(φ)− 1

τx(φ)− 1
. (11)

Before analyzing the probability distributions and the
conditional probabilities, one should notice that there ex-
ists a length scale ξ for a given SWN below which the
SWN behaves as RL and above which it behaves as net-
work. It is then expected that there should exist a charac-
teristic value xc of every avalanche property correspond-
ing to the length scale ξ of SWN. For a given φ, below and
above xc the probability distributions and the conditional
probabilities are then expected to behave differently. In
two dimensions, ξ scales with φ as ξ ∼ φ−1/2 [13]. There-
fore, the characteristic area ac of the avalanches occurring
on RL must be proportional to ξ2. Hence, the sacling of
ac with φ should be given by

ac ∼ φ−αa (12)

with αa = 1. Knowing the scaling of ac with φ, one
can find the scaling of sc and tc with φ as well. From
the conditional expectation of avalanche size for fixed
avalanche area one expects sc ∼ aγsa

c on RL. Hence,

sc ∼ φ−γsa . (13)

Then, αs = γsa. Similarly, tc ∼ sγts
c or tc ∼ a

γsa/γst

c .
Therefore, one has

tc ∼ φ−γsa/γst . (14)

Hence, αt = γsa/γst. Since γsa = 1.06 and γst = 1.63 on
RL [39], the values of αs and αt are expected to be 1.06
and 0.65 respectively.
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FIG. 3: (Color online) (a) Distribution of avalanche size
P (s, φ) is plotted in double logarithmic scale for two different
values of φ: φ = 2−12 (#) and φ = 2−3 (2). Straight lines are
fitted through data points. The slope of the solid black line is
−1.11± 0.01 and that of the dashed red line is −1.50± 0.01.
(b) Plot of P (t, φ) against t. The slope of the solid black line
is −1.18±0.01 and the dashed red line has slope −1.98±0.02.

In order to estimate the probability distributions of
the avalanche properties and their conditional expec-
tion values, the following statistical averages are made.
Sixteen SWNs configurations are considered for a given
φ. On each SWN, after attaining the steady state 106

avalanches are neglected and next 2× 106 avalanches are
collected. Therefore, a total of 32 × 106 avalanches are
taken for data averaging. The value of φ is varied from 0
to 1 increasing Nφ in multiple of 2. The values of τx(φ)
are estimated determining the probability distributions
of the respective avalanche properties x ∈ {s, a, t}.
Probability distributions of avalanche size P (s, φ) and

that of lifetime P (t, φ) are estimated on SWNs gener-
ated for different values of φ for a given lattice size.
For φ = 2−12 (close to φ = 0) and φ = 2−3 (close to
φ = 1), P (s, φ) and P (t, φ) obtained on a lattice of size
L = 1024 are plotted in Fig.3(a) and Fig.3(b) respec-
tively. It can be seen that for both φ = 2−12 as well as
for φ = 2−3, P (s, φ) and P (t, φ) have power law behavior
almost over the whole extent of s and t but with differ-
ent critical exponents. The scaling behavior at φ = 2−12

is found to be characterized by the avalanche size ex-
ponent τs = 1.11 ± 0.01, and avalanche time exponent
τt = 1.18 ± 0.01, which are measured by the best fit-
ted straight line (black) through the data points. The
value of τs for φ = 2−12 is same as that of previously
reported for DSM on RL (φ = 0) [35, 40]. Note that the
value of τs of the BTW model (Dhar abelian sandpile
model [26]) was also reported to be ≈ 1.11 though in the
L → ∞ limit it is expected to be ≈ 1.29 [41–43]. There-
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FIG. 4: (Color online) (a) Distribution of avalanche size
P (s, φ) is plotted in double logarithmic scale for φ = 2−8

for three different system size L = 256(#), 512(2), 1024(△).
Vertical dotted line at s = sc seperates the two regimes. The
slope of the solid black line for s < sc is −1.11 ± 0.01 and
that of the dashed red line for s > sc is −1.50 ± 0.01. (b)
Plot of P (t, φ) versus t. Vertical dotted line at t = tc seper-
ates the two regimes. The black solid line for t < tc has the
slope −1.18 ± 0.01 and red dashed line for t > tc has slope
−1.98± 0.02.

fore the BTW type sandpile dynamics on RL remains
unperturbed when performed on a lattice with additional
Nφ = 512 shortcuts corresponding to φ = 2−12 on a lat-
tice of size L = 1024. On the other hand, the power law
scaling at φ = 2−3 is found to be characterized by a crit-
ical exponents τs = 1.5± 0.01 and τt = 1.98± 0.02. The
value of τs for DSM obtained by mean field (MF) theory
for lattices without spatial structure [36] as well as by
branching process for RN [27, 36] was known to be 3/2
and the exact value of τt on RN obtained by branching
process is 2 [27]. Hence, the measured value of τt = 1.98
for RN is close to the exact result. Therefore by the ad-
dition of Nφ = 218 shortcuts corresponding to φ = 2−3

on a lattice of size L = 1024, the RL evolves to a RN
and DSM scaling on it can be described by MF scaling
though the critical height is not taken as the mean degree
of nodes as it was taken in Ref.[36].

For φ = 2−8 (an intermidiate value of φ), P (s, φ) and
P (t, φ) are plotted in Fig.4(a) and Fig.4(b) respectively
for different values of system size L. It is interesting to
note that for φ = 2−8, the distributions of P (s, φ) and
P (t, φ) follow two different power law scaling at different
regimes of s and t respectively, separated by a character-
istic value sc and tc as shown by dotted lines in Fig.4(a)
and Fig.4(b). The values of sc and tc are obtained from
Eq.13 and Eq.14 respectively. For s < sc, the scaling
behavior of P (s, φ) is characterized by τs = 1.11 ± 0.01
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FIG. 5: The values of the exponent τs(φ) against φ are given
in (a) and that of τt(φ) against φ are given in (b). The ex-
trapolated dashed lines indicate possible exponent values for
larger system sizes.

whereas for s > sc it is characterized by τs = 1.5± 0.01.
Therefore for SWNs corresponding to intermediate val-
ues of φ, both the scaling forms, BTW and MF, of DSM
coexist. It should also be noticed that the characteris-
tic size sc or characteristic time tc does not change with
system size L, as the characteristic length scale ξ does
not depend on L [13]. The values of the critical expo-
nent τs(φ) and τt(φ) obtained for different values of φ
are given in Fig.5(a) and Fig.5(b). It is important to
note that coexistence of both the scaling forms persists
over a wide range of φ given by 2−12 < φ < 2−3 for s
and 2−11 < φ < 2−3 for t. The upper limit corresponds
to crossover of SWN to RN at φ ≈ 0.1 [11]. Though the
crossover from RL to SWN occurs at φ ≈ 1/L2 [13], for
the finite system of size L = 1024 the sandpile dynamics
is able to recognize such a crossover only at φ = 2−12 (or
∼ 10−4). If the system size increases, such crossover is
expected to appear in the sandpile dynamics for smaller
values of φ and both exponents would be possible to mea-
sure in this regime as shown by a dashed line in Fig.3(c).
The avalanche area a also displays a similar co-existence
of scaling behavior over the same range of φ. For RL,
τa is found 1.12 as per the reported value for the BTW
model for finite systems [43]. However for RN, it is found
that the value of τa = 1.5 as that of τs on RN. In the
SWN regime, both the scaling forms are found to coexist.

The coexistance of scaling is also verified for the con-
diotional expectation value 〈sφ(t)〉. Its variation against
t for φ = 2−12 and 2−3 are shown in Fig.6. The critical
exponent γst are obtained as 1.62± 0.02 and 1.98± 0.03
for φ = 2−12 and φ = 2−3 respectively. Since on RL
τs = 1.11 and τt = 1.18, the expected value of γst from
the scaling relation Eq.11 is 1.63 on RL. Similarly for RN,
τs = 1.5 and τt = 2, the expected values of γst = 2 on
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FIG. 6: (Color online) Plot of 〈sφ(t)〉 against t for φ = 2−12

(◦) and φ = 2−3 (2). Solid lines are the best fitted straight
lines having slope 1.62 ± 0.02 (black solid line) for φ = 2−12

and 1.98 ± 0.03 (red dashed line) for φ = 2−3. In the inset
〈s(t)〉 against t for φ = 2−8 is plotted.

RN. The values of the critical exponents γst are within
the error bars of the expected values. In the inset of
Fig.6, 〈s(t)〉 is plotted against t for φ = 2−8. Two differ-
ent scaling of 〈sφ(t)〉 with t are shown by back solid line
and red dashed line respectively for t < tc and t > tc.
The coexistence scaling of 〈sφ(t)〉 is also observed for the
same range of φ as it was observed for the avalanche size
distribution.

It could be recalled that in an SWN there exists the
concept of neighborhood corresponding to RL at the
same time the shortest distance ℓ between two nodes is
vanishingly small corresponding to RN. Because of the
coexistence of both the characteristics of RL as well as
that of RN in an SWN, the sandpile avalanches are seg-
regated according to their sizes into two scaling forms.
It should be emphasized here that such coexistence of
two scaling behaviors is also observed on SWNs gener-
ated by removing the bonds emanating from a site of
a square lattice with probability φ and rewiring it to
a randomly selected lattice site. However, in contrary
to the present observation, Arcangelis and Hermann [28]
obtained a continuous crossover from BTW universality
class to MF universality class in the study of a BTW type
sandpile dynamics on SWNs constructed by rewiring a
fraction of bond of a square lattice keeping the critical
height same for all the nodes and having dissipation only
at the lattice boundary. No coexisting region of both the
scaling forms was observed in their study. On the other
hand, in the study of one dimensional sandpile model
on SWNs a transition from non-critical to critical regime
was demonstrated by Lahtinen et al. [31].

VI. SCALING OF COEXISTING PROBABILITY

DISTRIBUTIONS

As per the scaling form of the characteristic toppling
area ac, size sc, lifetime tc (obtained in Eqs.12,13 and 14
respectively), a general scaling of the charateristic prop-
erty xc with φ is assumed as

xc(φ) ≈ φ−αx (15)

where αxs correspond to different characteristic expo-
nents. The values of xc(φ) on RL (φ = 0), must corre-
spond to the cut off value of the distribution P (x, 0) for
a given system size L. As the network grows, the distri-
bution P (x, φ) will develop a part corresponding to MF
scaling. Consequently the part representing the BTW
type scaling will shrink. Hence, the value of xc should
decrease with increasing φ. Eventually, the value of xc

will be the one on RN when φ = 1. The existence of such
a characteristic value of toppling size as a function of
was noticed in the sandpile dynamics on one dimensional
SWN [31]. It is now possible to obtain a single proba-
bility distribution function for both the scaling forms for
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FIG. 7: (Color online) (a) Plot of scaled distribution
P (s, φ)φ−αsτ1s against a scaled variable zs = sφαs . (b)
Plot of P (t, φ)φ−αtτ1t against zt = tφαt . Different sym-
bols corresponding to different φ values are taken as: φ =
2−21(#), 2−16(2), 2−14(3), 2−12(△),2−10(⊳), 2−8(▽), 2−6(⊲),
2−4(+), 2−1(×), 20(A). Reasonable data collapse for both s
and t are observed. Solid lines with respective slopes are guide
to eye.
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the whole range of φ.
A new scaling form for the distribution functions with

respect to the characteristic value xc(φ) is now proposed
as

P (x, xc(φ)) =







x−τ1x f
(

x
xc(φ)

)

for x 6 xc

x−τ2xg
(

x
xc(φ)

)

for x > xc

(16)

where f and g are two different scaling functions in two
different regions and τ1x and τ2x are the corresponding
critical exponents in the respective regions. Since at
x = xc(φ) the values of P (x, xc(φ)) are same for both the
regions, then one should have f(1) = φ−(τ1x−τ2x)αxg(1).
The probability distribution then can be obtained in
terms of a single scaling function f or g as

P (x, φ) =

{

x−τ1x f(xφαx) for x 6 xc

x−τ2xφ−∆xαx f(xφαx ) for x > xc
(17)

where ∆x = (τ2x− τ1x). The φ independent scaling form
can be obtained by rescaling the probability distribution
as

P (x, φ)φ−αxτ1x =

{

z−τ1x
x f(zx) for zx 6 1
z−τ2x
x f(zx) for zx > 1

(18)

where zx = xφαx is a scaled variable. Such scaling behav-
ior was also observed in context of anomalous roughening
of fractured surface [44].
The above scaling forms are now verified. The

rescaled probabilities P (x, φ)φ−αxτ1x are plotted against
the scaled variable zx = xφαx for s and t in Fig.7(a) and
(b) respectively. It can be seen that a good data col-
lapse is obtained for both s and t using αs = 1.06 and
αt = 0.65. The critical exponents τx corresponding to
two different regions are also verified. The straight lines
with required slopes in the respective regions are guide to
eye. It confirms the proposed scaling form of the proba-
bility distribution functions on SWNs. Such coexistence
scaling in the SWN regime is also verified for a stochastic
sandpile model [45].
Since the probability distributions are now represented

by a single scaling form, the average avalanche properties
can also be scaled in a similar fashion. For example, the
average cluster size is now expected to scale as

〈sφ(t)〉 = tγstfst(tφ
αt) (19)

where fst is a new scaling function and the value of γst
correspond to that on RL. The form of the scaling func-
tion is verified by plotting 〈sφ(t)〉φγstαt against the scaled
variable tφαt in Fig.8 taking γst = 1.63. It can be seen
that there is a good data collapse and the scaling func-
tion represents two different scaling behaviors with two
different exponents as 1.63 and 2, indicated by straight
lines with respective slopes. Such scaling behavior can
also be obtained between avalanche size s and area a.
Since αa = 1 and γsa = 1.06, the change in slope in the
scaling function is difficult to observe in the numerical
data collected here.
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FIG. 8: (Color online) Plot of 〈sφ(t)〉φ
αtγst against a scaled

variable tφαt . The same symbol set of Fig.7 is used. A good
data collapse is observed. Two solid lines having slopes 1.63
and 2 indicating two different scaling forms are guide to eye.

It is now important to understand the origin of co-
existence of both the critical behaviors of the avalanche
properties on an SWN. Since for an avalanche property x
there is BTW type scaling for x < xc and MF type scal-
ing for x > xc, it is intriguing to look into the avalanche
cluster morphology for the avalanches following two dif-
ferent scaling behaviors.

VII. AVALANCHE CLUSTER MORPHOLOGY

Morphology of avalanche clusters obtained in the
steady state of DSM on SWNs corresponding to differ-
ent φ values are shown in Fig.9. These avalanches are
obtained on SWNs defined on a square lattice of size
512× 512 for φ = 2−12, φ = 2−8 and φ = 2−3. Different
colors correspond to different numbers of toppling of a
node. A typical avalanche cluster in the RL regime with
φ = 2−12, is shown in Fig.9(a). The avalanche cluster
(of size s = 63774) is isotropic and mostly compact. It
consists of concentric zones of lower and lower number of
toppling around the node with maximum number of top-
pling (in purple) as expected for a BTW type avalanche
cluster [36, 46]. Few clusters of compact structure appear
here and there because of the presence of a small number
of shortcuts in the system a few sands grains are trans-
ported to the remote parts of the lattice. However such
a small distortion in the morphology of avalanche cluster
with respect to a single compact BTW type cluster is not
able to modify the scaling behavior.
In Fig.9(b), a typical avalanche cluster (s = 33567)

obtained on RN corresponding to φ = 2−3 is shown. In
this case, the avalanche cluster is completely scattered
all over the network. A large number of shortcuts are
added to RL to make it RN and hence sand grains from
a toppled node of RN are transported to almost all other
nodes of the network through the shortcuts. The com-
pact BTW type cluster is therefore found scattered all
over the lattice or the network. Small patches of sites
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(a) φ = 2−12 (b) φ = 2−3

(c) φ = 2−8, (s < sc) (d) φ = 2−8, (s > sc)

FIG. 9: (Color online) Morphology of avalanche clusters of
DSM on SWN generated on L = 512 square lattice for dif-
ferent values of φ. (a) For φ = 2−12, almost a BTW type
cluster. (b) For φ = 2−3, avalanche cluster on a RN com-
pletely scattered all over the lattice. (c) For φ = 2−8, a small
avalanche cluster of size (352) less than sc(≈ 360) is shown.
Enlarged version of the same avalanche cluster is given in the
inset. (d) For φ = 2−8, a large avalanche cluster (a different
realization than (c)) of size (16872) greater than sc. Different
colors correspond to different numbers of toppling of a node:
red for 1, green for 2, blue for 3, black for 4, skyblue for 5
and purple for more than 5 toppling. No color corresponds
to the nodes that did not topple at all during the avalanche.
The black border represents the lattice boundary.

toppled only once are still present. As φ approaches 1,
the size of such patches reduces.

The morphology of avalanche cluster of DSM on SWN
with intermediate φ is found either as that of BTW type
cluster on RL or as sparse clusters on RN. Two such
avalanche clusters on SWN with φ = 2−8 are shown in
Fig.9(c) and (d). It is already seen that the avalanche
clusters on SWNs with intermediate φ follow two different
scaling forms below and above a characteristic toppling
size sc. For φ = 2−8, it is given by sc = φ−1.06 ≈ 360.
A cluster of size 352 (< sc) is shown in Fig.9(c) and
a cluster of size 16872 (> sc) is shown in Fig.9(d). The
larger cluster in Fig.9(d) is broken into patches consisting
of nodes mostly toppled once and scattered over most of
the network whereas the smaller cluster in Fig.9(c) is still
isotropic and compact. An enlarged version of the small
cluster is shown in the inset of Fig.9(c). Therefore, on an
SWN two types of clusters appear. The smaller compact
clusters (s < sc) naturally follow BTW type scaling and
the large sparse clusters (s > sc) follow MF type scaling.
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FIG. 10: Plot of P (a, φ) and P (an, φ) for n = 1, 2, 3 in double
logarithmic scale for different values of φ: For φ = 0 (a),
φ = 2−8 (b) and φ = 1 (c) for the system size L = 1024.

The coexistence of two scaling forms on an SWN is then
due to the presence of both the clusters on the same
network. As φ decreases (goes toward RL), sc becomes
larger and consequently all clusters are of BTW type. On
the other hand as φ increases to 1 (RN), sc goes down
to 1 and all the clusters are sparse and scattered over all
the nodes.
Sandpile dynamics then can be used as an useful tool

to probe different length scales present in the underlying
structure on which it is performed. The avalanches are
expected to display appropriate scaling behavior corre-
sponding to different length scales.

VIII. DISTRIBUTION OF AREA OF VARIOUS

TOPPLING SITES

From the morphologies of avalanche clusters, it is seen
that on RL the avalanches are consisting of sites toppled
multiple times whereas on RN they are mostly consisting
of nodes toppled only once. On SWN with intermediate
φ, clusters of both types appear. In order to understand
the type of sites present in an avalanche, the distribution
of area an of sites those are toppled a fixed n number
of times should be analyzed. Such area distributions for
BTW model on RL were found to obey power law scaling
with exponents close to that of the total area distribution
exponent [47, 48]. The idea of studying distributions of
an is extended here to the avalanches obtained on SWNs.
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The scaling behavior of number of sites or nodes that
toppled n-times is then assumed to be

P (an, φ) ≈ a
−τ (n)

a (φ)
n (20)

where n = 1, 2, 3, · · · corresponding to sites toppled only
once, only twice, only thrice, etc. In Fig.10, distribution
functions P (an, φ) corresponding to only once (a1), only
twice (a2), only thrice (a3) are plotted and compared
with the distribution of total area a for three different
values of φ, (a) φ = 0, (b) φ = 2−8 and (c) φ = 1 for
L = 1024. On RL, all three distributions are extended
over a long range of an, almost as large as total area a.

The distribution of a1 has an exponent τ
(1)
a = 1.12±0.01

same as τa. As the network grows to an intermediate
regime, say for φ = 2−8, the distributions of a and a1 are
found to be almost same for all values of area as given
in Fig.10(b) whereas the distributions of a2 and a3 are
shrunk toward smaller areas. It can also be noticed that
the distribution of a or a1 has two different scaling forms
corresponding to two different regimes as it is seen in
the case of distribution of s and t (Fig.4(a), Fig.4(b)).
For φ = 1, the distribution of a1 and that of a become
inseparable as shown in Fig.10(c) and they have same
distribution exponent ≈ 1.5 as that of the avalanche size
s on a RN. This means that the avalanches are consisting
of singly toppled nodes and the difference between the
avalanche area a and avalanche size s disappears. The
distribution of a2 reduces to a point and there is no node
that toppled thrice or more. It can be noted that a2 = 1,
i.e.; only one node has toppled twice. The probability of
occurrence of such an event is also very small, P (a2, φ =
1) ≈ 1/220. It had already been noted that the possibility
of formation of loop in a branching process of toppling
events on a RN is vanishingly small and usually goes as
1/L2, inverse of the number of nodes [27, 36]. Thus the
present observation is consistent with the prediction of
branching process.
Not only the probability distributions of a and s are

same but also the magnitude of a and s are found to
be same on RN. This is verified by calculating the ratio
〈(a/s)φ〉 and 〈(a1/a)φ〉 for several values of φ. The varia-
tion of 〈(a/s)φ〉 against φ is shown in Fig.11 and compare
with that of 〈(a1/a)φ〉. It can be seen that for φ ≥ 0.1
both the ratios are one. They decrease as φ decreases.
For φ < 0.1, the ratio 〈(a/s)φ〉 < 1 indicates that s > a
and the ratio 〈(a1/a)φ〉 < 1 indicates that a > a1. It can
also be noted that 〈(a/s)φ〉 and 〈(a1/a)φ〉 are same for
φ ≥ 0.1 whereas for φ < 0.1 they are different.

IX. TIME AUTOCORRELATION OF

TOPPLING WAVES

A toppling wave is the number of toppling during the
propagation of an avalanche starting from a critical site
without toppling the same site further. Each toppling of
the critical site creates a new toppling wave. The total
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FIG. 11: Plot of 〈(a/s)φ〉 (#) and 〈(a1/a)φ〉 (2) against φ for
the system size L = 1024.

number of toppling s in an avalanche can be considered
as

s =

m
∑

k=1

sk (21)

where sk is the number of toppling in the kth wave and
m is the number of toppling waves in an avalanche. The
time evolution of toppling dynamics then can be studied
coarsening the avalanches into a series of toppling waves
[49]. The toppling waves generated in the BTW model
on RL were found to be correlated [50]. As a consequence
of such correlation in the toppling waves, it was observed
that the model does not obey finite size scaling (FSS)
[51]. It is then interesting to study the time autocorre-
lation of the toppling waves for DSM on SWNs to get a
limiting value of φ at which FSS would be obeyed for this
model. Following Menech and Stella [50], a time auto-
correlation function for an SWN with given φ is defined
as

Cφ(t) =
〈sk+tsk〉 − 〈sk〉2
〈s2k〉 − 〈sk〉2

(22)

where t = 1, 2, · · · and 〈· · · 〉 represents the time aver-
age. Cφ(t) is calculated for four different values of φ,
φ = 0, φ = 2−13, φ = 2−8 and φ = 1 on a system of
size L = 1024, generating 2 × 106 toppling waves in the
steady state for each φ. Cφ(t)s obtained for the above φ
values are plotted against t in Fig.12. It can be seen that
the toppling waves in DSM on the original lattice (φ = 0)
is positive (shown by a black solid line) and hence highly
correlated. Whereas on RN (φ = 1) it is always zero and
hence completely uncorrelated (shown by a blue dashed
dotted line). As φ increases from 0 to 1, the strength
of positive correlation decreases and vanishes at φ ≈ 0.1
corresponding to the onset of RN. Zero autocorrelation
in the toppling waves on RN is consistent with the fact
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FIG. 12: Plot of Cφ(t) against t for different values of φ: φ = 0
(in black solid line), φ = 2−13 (in red dotted line), φ = 2−8

(in green dashed line), and φ = 1 (in blue dashed dotted line)
for L = 1024.

that the avalanches on such a network are consisting of
nodes mostly toppled only once. Since almost no node in
an avalanche toppled twice, an avalanche is then repre-
sented by a single toppling wave. The toppling wave time
series then consists of sequence of toppling numbers of a
single toppling wave of independent avalanches. Hence,
the toppling waves become uncorrelated. On the other
hand, the toppling waves of DSM on RL remain corre-
lated as in the case of BTW. It should be emphasized
here that Karmakar et al. [51] had shown that the top-
pling wave correlation in BTW type sandpile model on a
RL is essentially due to precise toppling balance. Though
in the present model on RN precise toppling balance is
present in the toppling rule, the toppling waves become
uncorrelated. Because on RN, the probability of forma-
tion of loop in the toppling sequence is vanishingly small
and hence the concept of precise toppling balance become
ineffective.
Since an avalanche cluster on RN consists of a single

toppling wave, the feedback to the original toppled node
remains so low that in most of the cases it never become
upper critical again. Hence, in the context of informa-
tion propagation, the critical RN behaves like a one way
network. May be due to the fact that the RN already
behaves like a one way network, the sandpile on directed
small world network [52] is found to belong to the same
MF universality class.

X. DIFFUSIVE TO SUPER DIFFUSIVE SAND

TRANSPORT

The critical behavior of sandpile models on RL is be-
lieved to be governed by the diffusive sand transport dur-
ing avalanches. Since the avalanche size (the total num-
ber of toppling) is equivalent to the number of steps of
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FIG. 13: (Color online) Average avalanche size 〈sφ(L)〉 (sym-
bols in black) and 〈nφ(L)〉 (symbols in red) is plotted against
system size L for φ = 0 (#) and φ = 1 (2). Solid line through
the circles has slope 2 and that through the squares has slope
1.

a random walker starting from an arbitrary site to reach
the lattice boundary of a RL [40, 53], their scaling be-
havior with lattice size (or number of nodes) on SWNs
is now important to characterize. For a given φ and sys-
tem size L, the average number of steps 〈nφ(L)〉 required
for a random walker to reach the lattice boundary start-
ing from an arbitrary node of an SWN and the average
avalanche size can be defined as

〈nφ(L)〉 =
∫ nmax

0

nPφ(n, L)dn (23)

and

〈sφ(L)〉 =
∫ smax

0

sPφ(s, L)ds (24)

where Pφ(n, L) is the probability to find a random walk
with n steps that reaches the lattice boundary starting
from an arbitrary node and Pφ(s, L) is the probability to
have an avalanche of size s for the given φ and L. The
scaling of 〈nφ(L)〉 and 〈sφ(L)〉 with L is assumed to be

〈nφ(L)〉 ∼ Lσn(φ) and 〈sφ(L)〉 = Lσs(φ) (25)

where σn(φ) and σs(φ) are two exponents. In order to
verify such a scaling forms for 〈nφ(L)〉 and 〈sφ(L)〉, they
are estimated as a function of L for φ = 0 and φ = 1.
In Fig.13, 〈nφ(L)〉 and 〈sφ(L)〉 are plotted against L in
double logarithmic scale for both the values of φ. The
values of the exponents σn(φ) and σs(φ) are obtained as
σn = σs ≈ 2 for φ = 0 and σn = σs ≈ 1 for φ = 1. The
solid lines are guide to eye with respective slopes. Since
at φ = 0, both 〈nφ(L)〉 and 〈sφ(L)〉 scale as ∼ L2, the
random walk or the sand transport both are of diffusive
nature whereas at φ = 1 they scale as ∼ L, therefore
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they are of super diffusive nature. It is observed that
the super diffusive nature sustains over the whole RN
region φ ≥ 0.1. But the diffusive nature quickly dies out
as the number of shortcuts increases in the system. For
intermediate values of 0 < φ < 0.1, no definite values
of σn(φ) or σs(φ) was possible to estimate because the
data did not represent a linear relationship on double
logarithmic scale. The curvature in the data is due to
the fact that in the intermediate region of φ both the
scaling forms of P (s, φ) coexists. Therefore a crossover
from diffusive to super diffusive sand transport occurs as
RL is evolved to RN. It can be seen that not only the
scaling of 〈nφ〉 and 〈sφ〉 are same but also the magnitude
of 〈nφ〉 is just twice of 〈sφ〉 for both φ = 0 and φ = 1 on a
given L. On RL it was already known that 〈nφ〉 = 2〈sφ〉
[35, 40]. Such a relationship is then also valid on RN. It
is also interesting to note that the absolute values of 〈sφ〉
(or 〈nφ〉) is much smaller on RN than on RL for a given
L. It could be recalled that the avalanches on RN consist
of nodes that toppled only once whereas on RL there
exist sites that toppled multiple times. The cut off of
the distribution P (s, φ) on RN is much smaller than that
on RL (see Fig.3). Therefore, on RN occurrence of an
avalanche cluster with nodes toppled only ones, consists
of a single toppling wave, super diffusive sand transport
during an avalanche all are inter connected phenomena.
Since the shortest distance ℓ between two nodes of an

SWN follows two different scaling behavior given in Eq.1
and 2, it would be interesting to verify whether 〈nφ(L)〉
and 〈sφ(L)〉 follow a similar scaling behavior on SWN or
not. Following the scaling of 〈ℓ〉 given in Eq.2, general
scaling forms of 〈nφ(L)〉 and 〈sφ(L)〉 are proposed as

〈nφ(L)〉 = L2G(φ1/2L) (26)

and

〈sφ(L)〉 =
1

2
L2G(φ1/2L) (27)

where G(x) is a universal scaling function given by

G(x) ∝
{

constant, x ≪ 1
1/x, x ≫ 1

(28)

Verification of the above scaling form is performed by es-
timating 〈nφ(L)〉 and 〈sφ(L)〉 for different L for the whole
range of φ between 0 and 1. In Fig.14, 〈nφ(L)/L

2〉 and
2〈sφ(L)〉/L2 are plotted against the scaled variable x =

φ1/2L. Reasonable data collapses are observed for both
〈nφ(L)〉 and 〈sφ(L)〉. It should be noted here that on a
two dimensional regular square lattice 〈nφ〉 ≈ aL+ bL2,
where a = 0.56 and b = 0.14 for small L [40]. However
in the limit L → ∞, such a scaling can be approximated
as 〈nφ(L)〉 ≈ 0.14L2. In the limit φ → 0, the scaling
function approaches 0.14. On the other hand, the 1/x
scaling would be valid on RN, i.e. for φ ≥ 0.1. For the
lowest lattice size the corresponding value of the scaled
variable is marked by a cross on the horizontal axis be-
yond which 1/x scaling is expected to be valid. It should
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scaled variable φ1/2L. Different symbols for 〈sφ(L)〉 for dif-
ferent system size are: # for L = 256, 2 for 512 and 3 for
1024. For 〈nφ(L)〉 they are: △ for L = 256, ⊳ for 512 and ⊲
for 1024. A reasonable data collapse is observed.

also be noted here that the number of distinct nodes S(n)
visited by a random walker in n time steps on a 1d SWN
for a fixed L and φ represents a crossover in scaling from
S(n) ∼ √

n for n ≪ ξ2 to S(n) ∝ n for n ≫ ξ2 [54–56].

XI. FSS ON RANDOM NETWORK

Since SWNs are generated on finite systems of size L
with a given φ, the probability distributions of avalanche
quantities then should depend on L. The scaling form of
the distribution function is assumed to be

Pφ(x, L) = x−τx(φ)f [x/LDx(φ)] (29)

where x ∈ {s, a, t} andDx(φ) is the capacity dimension of
the avalanche property x on SWN with a given φ. It was
observed that the avalanche properties like s or t of BTW
type models do not follow FSS ansatz on RL [42, 57]. In
the following, the FSS analysis is performed for s and t
on RN as well as on SWNs employing moment analysis
[42, 51, 57]. The average qth moment of an avalanche
property x for a given φ can be obtained as

〈xq
φ(L)〉 =

∫ xmax

0

xqPφ(x, L)dx

=

∫ xmax

0

xq−τ(φ)f [x/LDx(φ)]dx. (30)

Hence, the system size dependence of 〈sqφ(L)〉 and 〈tqφ(L)〉
are expected to be

〈sqφ(L)〉 ∼ Lσs(q,φ) and 〈tqφ(L)〉 ∼ Lσt(q,φ) (31)
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where,

σx(q, φ) = [q + 1− τx(φ)]Dx(φ). (32)

for x ∈ {s, t} and q = 1 corresponds to the average
values of the respective avalanche properties such as
〈sφ〉, 〈tφ〉, etc. For Pφ(x, L) to obey FSS for a given
φ value, the moment exponent σx(q, φ) should have a
constant gap between two successive values of q, i.e.;
σx(q + 1, φ) − σx(q, φ) = Dx(φ) for the respective φ
value. For avalanche properties it was usually found that
the gap converge to the respective capacity dimension as
q → ∞. In order to determine Ds(φ) and Dt(φ), se-
quences of exponents σs(q, φ) and σt(q, φ) are obtained
for 400 equally spaced values of q between 0 and 4 for
several φ values. The constant gap between two suc-
cessive σx(q, φ)s is then verified by estimating the slope
∂σx(q, φ)/∂q using finite difference method.
For φ < 0.1, the finite differences ∂σs(q, φ)/∂q and

∂σt(q, φ)/∂q for both the sequences of σs(q, φ) and
σt(q, φ) did not converge to any finite value upto q = 4.
Hence, Pφ(x, L), x ∈ {s, t} does not follow FSS ansatz
in the SWN regime. Note that on SWN both the scaling
coexist. Since Pφ(x, L) for x < xc does not follow FSS,
the distribution functions for the full range of x is then
expected not to follow FSS.
For 0.1 ≤ φ ≤ 1, FSS is expected to be valid and it

is verified for several values of φ in this region. Data
for φ = 1 is presented below. The variation of σs(q, φ)
and σt(q, φ) for φ = 1 are plotted against moment q
in Fig.15(a) and that of ∂σs(q, φ)/∂q and ∂σt(q, φ)/∂q
against moment q are shown in Fig.15(b). It can be seen
that for φ = 1 the derivatives saturate to Ds ≈ 2 and
Dt ≈ 1 for higher values of q. The value of Ds for φ = 1
is expected to be 2 because on RN all avalanches are
constituted of sites toppled only once, that is to say the
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FIG. 16: Plot of scaled distribution Pφ(x,L)L
Dxτx against

the scaled variable x/LDx for φ = 1 in (a) for x = s and in
(b) for x = t. Different symbol correspond to different system
size as L = 256(#), 512(2) and 1024(△). A reasonable data
collapse is obtained for both s and t.

avalanche area and avalanche size have no difference. On
the other hand, the value of Dt for φ = 1 is expected
to be 1 because on RN all avalanches are constituted of
single toppling wave, that is to say the number of parallel
updates in a single toppling wave is proportional to the
system size L (see Fig.3(b)). On the RL it was known
that Ds/Dt = γst. Such a scaling relation is also valid on
RN. Since Ds = 2 and Dt = 1 for φ = 1, the value of γst
is expected to be two as it is estimated in section V. For
q = 1 and φ = 1, the scaling relations σs = (2 − τs)Ds

and σt = (2 − τt)Dt are expected to be satisfied. Since
τs = 3/2 and Ds = 2 for φ = 1, the value of σs must be
one as measured on RN. Similarly, from the other scal-
ing relation σt for q = 1 is expected to be zero because
τt = 2. Numerically a small finite value of σt for q = 1 is
estimated. However, for q = 2, σt = 1 as expected.

Finally the scaling function forms of Pφ(s, L) and
Pφ(t, L) for φ = 1 on RN are verified by data col-
lapse. In Fig.16(a), the scaled probability distribution
Pφ(s, L)L

Dsτs for φ = 1 is plotting against the scaled
variable s/LDs taking τs = 3/2 and Ds = 2 as for RN.
In Fig.16(b), Pφ(t, L)L

Dtτt for φ = 1 is plotting against
the scaled variable t/LDt taking τt = 2 and Dt = 1 as
for RN. It can be seen that a reasonable data collapse
is obtained for RN generated on three different systems
sizes L = 256, 512 and 1024. The assumed FSS form
of Pφ(x, L) on the RN is then rightly chosen. There-
fore, FSS would be valid even for a sandpile model with
deterministic and conservative toppling rules along with
complete toppling balance if it is defined on a system in
which concept of neighborhood does not exist and has
long distance connectivity.
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XII. CONCLUSION

A generalized DSM is constructed and studied on
SWNs. Apart from BTW type correlated scaling for
φ . 2−12, two important characteristic features of DSM,
one on SWN for 2−12 < φ < 0.1 and the other on RN
for 0.1 ≤ φ ≤ 1 are identified and characterized. First,
DSM on SWNs exhibits two scaling behaviors simulta-
neously. One is that of BTW type scaling on RL and
the other is that of MF scaling on RN corresponding to
existence of strong neighborhood as that of RL as well as
vanishingly small shortest distance between two nodes as
that of RN on an SWN. A characteristic value of every
avalanche property was possible to identify around which
coexistence scaling of probability distribution functions
are proposed and numerically verified. The avalanche
clusters following BTW scaling are compact BTW type
clusters whereas those following MF scaling are sparse
and scattered all over the network. Since avalanche clus-
ters segregate as per the length scales of the SWN, sand-
pile dynamics can be used as a probe to identify differ-
ent length scales present in the underlying structure on
which it is performed. Second, FSS is found to be valid

for DSM on RN in contrary to the fact that DSM does
not follow FSS on RL or on SWN. The validity of FSS
on RN for DSM is due to the fact that the avalanches
on RN are consisting of nodes toppled only once. The
probability of appearance of a node that toppled more
than once is vanishingly small on RN as the number of
nodes N → ∞. As a consequence, precise toppling bal-
ance becomes ineffective as well as toppling waves become
uncorrelated. Because of the presence of long distance
connections, sand transport becomes super diffusive on
RN though it was diffusive on RL. Super diffusive sand
transport is found to be essential in order to satisfy finite
size scaling relations. Therefore, BTW type correlated
sandpile models would also follow FSS if they are stud-
ied on systems without spatial structure and have long
distance connections.
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