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Abstract

We consider the complete graph on n vertices whose edges are weighted by inde-
pendent and identically distributed edge weights and build the associated minimum
weight spanning tree. We show that if the random weights are all distinct, then the
expected diameter of such a tree is Θ(n1/3). This settles a question of Frieze and Mc-
Diarmid [15]. The proofs are based on a precise analysis of the behaviour of random
graphs around the critical point.
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1 Introduction

Given a connected graph G = (V,E), E = {e1, . . . , e|E|}, together with edge weights
W = {w(e) : e ∈ E}, a minimum weight spanning tree of G is a spanning tree T = (V,E′)
that minimizes ∑

e∈E′
w(e).

As we show below, if the edge weights are distinct then this tree is unique; in this case we
denote it by MWST(G,W ) or simply MWST(G) when W is clear.

Minimum spanning trees are at the heart of many combinatorial optimization problems.
In particular, they are easy to compute [5, 21, 22, 30], and may be used to approximate
hard problems such as the minimum weight traveling salesman tour [35]. (A complete
account on the history of the minimum spanning tree problem may be found in the surveys
of Graham and Hell [17], and Nešetřıl [27].) As a consequence, much attention has been
given to studying their structure, especially in random settings and under various models
of randomness. For instance, Frieze [14] determined the weight of the MWST of a complete
graph whose edges have been weighted by independent and identically distributed (i.i.d.)
[0, 1]-random variables. This result has been reproved and generalized by Frieze and
McDiarmid [16], Aldous [1], Steele [34] and Fill and Steele [11]. Under the same model,
Aldous [1] derived the degree distribution of the MWST. These results concern local
properties of minimum spanning trees. Questions concerning the global structure of the
minimum spanning tree remain mostly untouched.
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The distance between vertices x and y in a graph H is the length of the shortest path
from x to y. The diameter diam(H) of a connected graph H is the greatest distance
between any two vertices in H. We are interested in the diameters of the minimum weight
spanning trees of a clique Kn on n vertices whose edges have been assigned i.i.d. real
weights. We use w(e) to denote the weight of edge e. In this paper we prove the following
theorem, answering a question of Frieze and McDiarmid [15], Research Problem 23:

Theorem 1. Let Kn = (V,E) be the complete graph on n vertices, and let {Xe : e ∈ E}
be independent identically distributed edge-weights. Then conditional upon the event that
Xe 6= Xf for distinct edges e and f , it is the case that the expected value of the diameter
of MWST(Kn) is Θ(n1/3).

In the remainder of this section, we give some general properties of minimum spanning
trees and explain informally the intuition behind Theorem 1. Let T be some minimum
weight spanning tree of G. If e is not in T then the path between its endpoints in T
consists only of edges with weight at most w(e). If e = xy is in T then every edge f
between the component of T − e containing x and the component of T − e containing y
has weight at least w(e), since T − e+ f is also a spanning tree. Thus, if the edge weights
are distinct, e is in T precisely if its endpoints are in different components of the subgraph
of G with edge set {f : w(f) < w(e)}. It follows that if the edge weights are distinct,
T = MWST(G) is unique and the following greedy algorithm generates MWST(G):

(1) Order E as {e1, . . . , em} so that w(ei) < w(ei+1) for i = 1, 2, ...,m− 1.

(2) Let ET = ∅, and for i increasing from 1 to m, add edge ei to ET unless doing so
would create a cycle in the graph (V,ET ). The resulting graph (V,ET ) is the unique
MWST of G.

Kruskal’s algorithm [22] above lies at the heart of the proof of Theorem 1. It provides a
way to grow the minimum spanning tree that is perfectly suited to keeping track of the
evolution of the diameter of ET as the edges are processed. We now turn our attention to
this forest growing process and review its useful properties.

Observe first that, if the weights w(e) are distinct, one does not need to know {w(e), e ∈
E} to determine MWST(G), but merely the ordering of E in (1) above. If the w(e) are
i.i.d. random variables, then conditioning on the weights being distinct, this ordering is
a random permutation. Thus, for any i.i.d. random edge weights, conditional upon all
edge weights being distinct, the distribution of MWST(G) is the same as that obtained by
weighting E according to a uniformly random permutation of {1, . . . ,m}.

This provides a natural link between Kruskal’s algorithm and the Gn,m random graph
evolution process of Erdős and Rényi [10]. This well-known process consists of an increasing
sequence of |E| =

(
n
2

)
random subgraphs of Kn defined as follows. Choose a uniformly

random permutation e1, . . . , e|E| of the edges, and set Gn,m to be the subgraph of Kn

with edge set {e1, . . . , em}. If we let ei have weight i, 1 ≤ i ≤
(
n
2

)
, then em ∈ MWST(Kn)

precisely if em is a cutedge of Gn,m. It is well known that the random graph process is easier
analyzed via the model Gn,p where each edge is present with probability p, independently
of the others [3, 20]. This is mostly because Gn,p is amenable to an analysis based on
branching processes.

The graph on n vertices and with edge set {e : w(e) ≤ p} is distributed as Gn,p, and we
now consider this particular coupling between the Kruskal construction and the random
graph process. Recall that e ∈ MWST(G) precisely if e is a cutedge of Gn,w(e), hence the
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component structure of the forest Fn,p = MWST(Kn) ∩ {e : w(e) ≤ p} built by Kruskal’s
algorithm corresponds to that of Gn,p: for every p ∈ [0, 1], the connected components of
Fn,p and Gn,p have the same vertex sets. Observe that the minimum spanning tree is
nothing else than Fn,1. The evolution of the diameter of the minimum spanning forest
Fn,p exhibits three distinct phases that reflect the subcritical, critical and supercritical
phases of the random graph Gn,p. These three phases correspond to p ∼ c/n for c lower
than, equal to, or larger than one, respectively [3, 10, 20]. In the following a.a.s. stands
for asymptotically almost surely, i.e., with probability tending to one as n → ∞. We
first discuss the subcritical and supercritical phases, as the effect of these phases on the
expected diameter of MWST(Kn) is small and easily analyzed.

The subcritical phase. For p ∼ c/n, c < 1, Gn,p consists a.a.s. of small components of
size at most O(log n). In this phase, the diameter of the minimum spanning forest is at
most O(log n).

The supercritical phase. For p ∼ c/n, c > 1, a.a.s.,

(?) the largest component Hn,p of Gn,p has size Θ(n) and all the other have size O(log n).

In this phase, Hn,p is called the giant component. More precisely, a.a.s. (?) holds for all
p > c/n. This implies that a.a.s., for all p′ > p > (1+ε)/n, Hn,p ⊆ Hn,p′ . Restating this in
colourful but imprecise language, which component is the largest never changes, and simply
expands by gobbling up smaller ones. It turns out that in this last phase, the diameter of
the minimum spanning forest does not substantially change. To understand why, observe
that every edge added is uniform among those which do not create a cycle. In other words,
the places where the small components hook up to the giant are uniform, and we can think
of the increase in the diameter as roughly explained by a simplified process similar to the
construction of a random recursive tree: one starts with a single metanode (representing
the component Hn,c/n for any fixed c > 1); then further metanodes (representing the small
components at the moment they connect to the component containing Hn,c/n) are added
one at a time by choosing a uniformly random point of connection. (An intermediate
stage of this such a process is depicted in Figure 1.) Such a tree on n metanodes has
diameter O(log n) [9, 29, 33]. The discrepancy between this idealized process and the
real one relies in that the merging process involves components that are of order greater
than one, which biases the process. Second, the diameter in the actual tree is made of
edges between the metanodes, and edges internal to the metanodes. However, since the
non giant components have size and diameter O(log n) at the moment they connect to
the giant, this should nonetheless convince the reader that the increase in the diameter
during the supercritical phase is an additive term of order O(logα n), for some constant α.
A similar argument is made precise later (Lemma 4), in a weaker form that still suffices
to prove the upper bound we require.

The critical phase. The previous two paragraphs suggest that the contributions to
MWST(Kn) from the sub- and supercritical phases are polylogarithmic. Thus, it is around
p ∼ 1/n that we must look for the explanation of Theorem 1. For p = 1/n, Gn,p contains a
tree component T whose size is between n2/3/2 and 2n2/3 with positive probability (see [20],
Theorem 5.20). This tree is a subtree of MWST(Kn), so diam(MWST(Kn)) ≥ diam(T ).
Conditioned on its size, such a tree is a Cayley tree (uniform labeled tree), and hence has
expected diameter Θ(n1/3), as proved by Rényi and Szekeres [31] or Flajolet and Odlyzko
[12]. Therefore, E [diam(MWST(Kn))] = Ω(n1/3). Proving the matching upper bound is
far more technical, but the reader should be convinced by the following heuristic argument:
once p > 1/n, the pool of components of order Θ(n2/3) is essentially at its peak: these
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Hn, c
n

Figure 1: The “random recursive tree” picture of the growth of Tn,p in the supercritical
phase. The circled trees represent the metanodes of the idealized process.

components hook up together at a very fast pace, and the small ones are much more likely
to get glued to larger ones than merging to create new large ones. On the other hand, the
number of these component is never larger than ωn, for any function ωn → ∞. In other
words, we have a constant number of these components, and even if they were hooking up
in the worst possible way, the diameter of the resulting tree would still be Θ(n1/3).

2 Towards the upper bound

In this section, we give a detailed plan of our proof of the upper bound of Theorem 1. In
particular, we make formal the intuitive arguments presented above. We also discuss how
our proof techniques related to the work of other authors.

2.1 The critical phase

As suggested by the previous arguments, it turns out that when tracking the diameter of
Fn,p, 0 < p < 1, the action essentially occurs in the “critical window” around p = 1/n.
The correct parametrization to examine the critical window is p = 1/n+ λn−4/3.  Luczak
[23] showed that for any function λ→∞ a.a.s. for all p > 1/n+ λn−4/3,

• |Hn,p| = ω(n2/3), and all other components have size o(n2/3), and

• for all p′ > p, Hn,p ⊆ Hn,p′ .

This fact is crucial to our analysis. Essentially, rather than looking at the forest Fn,p, we
focus on the minimum spanning tree of the giant MWST(Kn)∩Hn,p for p = 1/n+Ω(n−4/3).
To track the diameter of this increasing (for inclusion) sequence of graphs, we use the
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following fact. For a graph G = (V,E), we write lp(G) for the length of the longest path
of G. The subgraph of G induced by a vertex set U ⊂ V is denoted G[U ].

Lemma 2. Let G,G′ be graphs such that G ⊂ G′. Let H ⊂ H ′ be connected components
of G,G′ respectively. Then diam(H ′) ≤ diam(H) + 2lp(G′[V − V (H)]) + 2.

Proof. For any w1 and w2 in H ′, let Pi be a shortest path from wi to H (i = 1, 2), and let P3

be a shortest path in H joining the endpoint of P1 in H to the endpoint of P2 in H. Then
P1∪P2∪P3 is a path of H ′ from w1 to w2 of length at most diam(H)+2lp(G′[V −V (H)])+2
(See Figure 2.1).

H H ′

P1

P2

P3

G′

w1

w2

Figure 2: The path P = P1 ∪ P2 ∪ P3 from w1 to w2 in H ′.

We consider an increasing sequence 1/n < p0 < p1 < . . . < pt < 1 of values of p at
which we take a snapshot of the random graph process. Specifically, we fix some large
constant f0, and for i ≥ 1, set fi = (5/4)if0, stopping at the first integer t for which
ft ≥ n1/3/ log n, and choose pi = 1/n + fi/n

4/3 (the reason for this choice will become
clear). This is similar to  Luczak’s method of considering “moments” of the graph process
[23]. For each pi, we consider the largest component Hn,pi of Gn,pi . We define Di to be the
diameter of MWST(Kn) ∩Hn,pi . We intend to control the increase in diameter between
any two successive pi and pi+1 using Lemma 2. For 1 ≤ i < t, we say Gn,pi is well-behaved
if

(I) |Hn,pi | ≥ (3/2)n2/3fi and the longest path of Hn,pi has length at most f4
i n

1/3, and

(II) the longest path of Gn,pi+1 [V − V (Hn,pi)] has length at most n1/3/
√
fi.

If Gn,pi is well-behaved then by Lemma 2, Di+1 −Di ≤ 2n1/3/
√
fi. Let i? be the smallest

integer for which Gn,pj is well-behaved for all i? ≤ j < t or i? = t if Gn,pt−1 is not
well-behaved. By Lemma 2, we have deterministically that

Dt −Di? ≤ 2
t−1∑
i=i?

n1/3/
√
fi ≤ 2f0n

1/3
t−1∑
i=1

(4/5)i/2 = O(n1/3). (1)

By definition, we have pt = 1/n + 1/(n log n), so pt is not quite supercritical in the
sense that npt → 1, as n → ∞. For such pt, we cannot prove the polylogarithmic bound
we claimed holds if pt had been c/n for c > 1. However, pt is far enough from 1/n that
we are able to prove that E [MWST(Kn)−Dt] = O(n1/3) (Lemma 4 below). This slight
modification in the extents of the phases permits us to even their contributions, and keep
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pt within the range 1/n + o(1/n), which happens to be crucial to analyze the events (I)
and (II). It follows that

E [MWST(Kn)] = E [Di? ] +O(n1/3), (2)

and the last stage in proving Theorem 1 consists in bounding E [Di? ]. The key to doing
so is to show that for all j between 0 and t− 1

P {i? = j + 1} ≤ 6e−
√
fj/8. (3)

Using (3) together with (1) and the fact that the longest path has length no longer than
n yields that

E [Di? ] ≤ f4
0n

1/3 + nP {i? = t}+
t−1∑
i=1

f4
i n

1/3P {i? = i}

≤ f4
0n

1/3 + n · 6e−(n1/3/8 logn)1/2
+

t−1∑
i=1

f4
i n

1/3 · 6e−(fi−1/8)1/2

≤ f4
0n

1/3 +O(
1
n

) + 6n1/3
t−1∑
i=1

f4
i e
−(fi−1/8)1/2

= O(n1/3).

Combining this with (2) completes the upper bound of Theorem 1. To prove (3), we note
that if i∗ = j + 1 and j > 0, then one of (I) or (II) fails for Gn,pj . We shall show that the
probability of any of these events happening is small enough:

Lemma 3. The following bounds hold for the events (I) and (II) defined above:
(a) P

{
(I) fails for Gn,pj

}
≤ e−

√
fj

(b) P
{

(II) fails for Gn,pj

}
≤ 5e−

√
fj/8.

Observe that Lemma 3 implies (3), and hence Theorem 1, since 5e−
√
f/8 + e−

√
f <

6e−
√
f/8 for all f > 0.

The key to Lemma 3 (b) is to prove tail bounds on the size of the giant Hn,p. We
then use existing knowledge about the diameter of Gn,p for subcritical p [25], together
with the fact that for p > 1/n, p − 1/n = o(1/n), the structure of Gn,p, minus its giant
component, is very similar to the structure of a subcritical random graph [4, 23]. (Our
choice of pt = 1/n + 1/(n log n) takes advantage of this fact.) To prove Lemma 3 (a), in
addition to tail bounds on the size of Hn,p we need information about its structure.

Given a connected graph G, the excess of G is the quantity |E(G)| − |V (G)|; trees, for
example, have excess −1. We study Hn,p by analyzing a branching process for growing
Gn,p and a random walk which can be associated to this branching process. Using this
approach, we are able to prove upper and lower tail bounds on the size and excess of Hn,p.
Rényi and Szekeres [31], Flajolet and Odlyzko [12], Flajolet et al. [13] have studied the
moments of the height of uniformly random labeled trees, and  Luczak [24] has provided
information about the precise number of such trees with a given height. The latter result
can be used to prove tail bounds on the lengths of longest paths in uniformly random
labeled graphs with small excess. We will prove Lemma 3 (a) by combining the bounds
on the size and excess of Hn,p with these latter bounds.
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The size and excess of the components of Gn,p for p near 1/n have been addressed by
several authors [2, 18, 19, 23, 26]. However, these authors were mostly interested in limit
probabilities, and did not derive the tail bounds we need. In this sense, our approach can
be viewed as providing complementary information on the birth of the giant component.
Further results on the size of the Hn,p during the critical phase appear in the recent paper
of Pittel [28], which proves a central limit theorem for the random variable measuring
the size of Hn,p and asymptotics for the tails of this random variable, together with an
interesting account of known results. Also, Armendáriz (personal communication) has
recently generalized the results of Aldous [2], proving that his construction is essentially
valid as a process as p varies inside the critical window, and not only for fixed p.

In order to analyze randomized algorithm for sparse instances of Max Cut and Max
2-CSP, Scott and Sorkin [32] elegantly derived upper bounds on the size and excess of
Gn,p. They also proceed by analyzing Karp’s process, and the resulting bounds are quite
similar to ours but are stated for the component containing a given vertex rather than the
largest component. Starting from their results, we could easily derive the upper bounds we
require. However, deriving corresponding lower bounds using their method would require
a substantial reworking of their arguments (Scott, personal communication), and to do so
would neither shorten nor conceptually simplify our paper.

2.2 The supercritical phase

We now return to a description of the final stage of the proof, and establish the following
lemma.

Lemma 4. Let t be the first integer for which f0(5/4)t ≥ n1/3/ log n. Then,

E [MWST(Kn)]−E [Dt] = O(n1/6(log n)7/2).

It is convenient to think of growing the MWST in a different fashion at this point.
Consider an arbitrary component C of Gn,pt [V −V (Hn,pt)]. The edge e with one endpoint
in C and the other endpoint in some other component of Gn,pt and which minimizes w(e)
subject to this is a cutedge of Gn,w(e), and therefore e is necessarily an edge of MWST(Kn).

Let E be the event that |Hn,pt | > n/ log n and every other component of Hn,pt has
longest path of length at most n1/6

√
log n. If E does not occur then one of (I) or (II) fails

for Gn,pt , so Lemma 3 tells us that

P
{
Ē
}
≤ e−(n1/3/ logn)1/2

+ 3e−(n1/3/8 logn)1/2
= O(1/n). (4)

If E holds, then since the edge weights are i.i.d., the second endpoint of e is uniformly
distributed among vertices not in C. In particular, with probability at least |Hn,pt |/n >
1/ log n, the second endpoint is in Hn,pt , and C gets hooked to the largest component.
If the second endpoint is not in Hn,pt , we can think of C joining another component to
create C ′. The component C ′ has longest path of length at most 2n1/6

√
log n.

(As an aside, note that MWST(C ′) is not necessarily a tree created by Kruskal’s
algorithm, as there may well be edges leaving C ′ which have weight less than w(e). The
technique of growing the MWST of a graph by focussing on the cheapest edge leaving a
specific component, rather than the cheapest edge joining any two components, is known
as Prim’s tree growing method [21, 30].)

Conditional upon this choice of e, the edge e′ leaving C ′ which minimizes w(e′) is
also in MWST(Kn). Again, with probability at least 1/ log n the second endpoint lies
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in Hn,t. If not, C ′ joins another component to create C ′′ with longest path of length at
most 3n1/6

√
log n. Continuing in this fashion, we see that the probability the component

containing C has longest path of length greater than rn1/6
√

log n when it joins to Hn,pt

is at most (1 − 1/ log n)r. In particular, the probability that it has length greater than
n1/6(log n)7/2 is at most (1− 1/ log n)log3 n = O(1/n2).

Since C was chosen arbitrarily and there are at most n such components, with prob-
ability 1 − O(1/n) none of them has longest path of length greater than n1/6(log n)7/2

before joining Hn,pt . Recall that we are building a tree, and the diameter may only go
through two such components. It follows from Lemma 2 that with probability 1−O(1/n),
diam(MWST(Kn))−Dt ≤ 2n1/6(log n)7/2 + 2. Since diam(MWST(Kn)) never exceeds n,
and recalling (4), we obtain

E [diam(MWST(Kn))−Dt] ≤ E [ diam(MWST(Kn))−Dt | E ] + nP
{
Ē
}

= O(n1/6(log n)7/2) +O(1), (5)

proving Lemma 4. The remainder of the paper is devoted to proving Lemma 3, which is
the only missing ingredient to the proof of Theorem 1. In Section 3 we explain a breadth-
first-search-based method for creating Gn,p. This is the core of the paper, where we derive
finer information about the component structure of Gn,p, improving on the previous known
results. In Section 5 we use these results to prove Lemma 3 (b). In Section 6 we derive
tail bounds on the diameters of random treelike graphs. Finally, in Section 7 we use these
tail bounds to prove Lemma 3 (a).

3 Understanding Gn,p through breadth-first search.

3.1 An exploration process

We analyze the component structure of Gn,p using a process similar to breadth-first search
(BFS) [8] and to a process used by Aldous [2] to study random graphs in the critical
window from a weak limit point of view. We highlight that Gn,p is a labeled random
graph model with vertex set {v1, v2, . . . , vn}. For i ≥ 0, we define the set Oi of open
vertices at time i, and the set Ai of the vertices that have already been explored at time
i. We set O0 = v1, A0 = ∅, and construct Gn,p as follows:

Step i (0 ≤ i ≤ n − 1): Let v be an arbitrary vertex of Oi and let Ni be the random set
of neighbours of v in V \ Ai. Set Oi+1 = Oi ∪ Ni − {v} and Ai+1 = Ai ∪ {v}. If
Oi+1 = ∅, then reset Oi+1 = {u}, where u is the element of {v1, v2, . . . , vn} − Ai
with the smallest index.

Each time Oi+1 = ∅ during some Step i, then a component of Gn,p has been created. To
get a handle on this process, we now further examine what may happen during Step i.
The number of neighbours of v not in Ai∪Oi is distributed as a binomial random variable
Bin(n− i− |Oi|, p). By the properties of Gn,p, the distribution of edges from v to V −Ai
is independent of what happens in the previous steps of the process. Furthermore, if
Oi+1 = ∅ does not occur during Step i, then w ∈ Oi+1 −Oi precisely if w /∈ Ai ∪ Oi and
we expose an edge from v to w during this step. It follows that |Oi+1| is distributed as
max(|Oi|+ Bin(n− i−|Oi|, p)−1, 1). An advantage of this method of construction is that
if Oj+1 = ∅ during Step j, instead of thinking of the process continuing to construct Gn,p
we may think of restarting the process to construct Gn−j,p.
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We can thus analyze the growth of the components of Gn,p, created by the above BFS-
based process, by coupling the process to the following random walk. Let S0 = 1. For
i ≥ 0, let

Xi+1 = Bin(n− i− Si, p)− 1 and Si+1 = max(Si +Xi+1, 1).

With this definition, for all i < n− 1, Si is precisely |Oi|, and any time Si−1 +Xi = 0, a
component of Gn,p has been created. We will sometimes refer to such an event as {Si = 0}
or say that “S visits zero at time i”.

An analysis of the height of the random walk S and its concentration around its
expected value will form a crucial part of almost everything that follows. We will prove
matching upper and lower bounds that more-or-less tie down the behavior of the random
variable Si for i in a certain key range, and thereby imply bounds on the sizes of the
components of Gn,p. In analyzing this random walk, we find it convenient to use the
following related, but simpler processes:

• S′ is the walk with S′0 = 1 and S′i+1 = S′i+X
′
i+1, where X ′i+1 = Bin(n−i−|Oi|, p)−1,

for i ≥ 0. This walk behaves like Si but is allowed to take non-positive values.

• Sind is the walk with Sind0 = 1 and Sindi+1 = Sindi + Bin(n− (i+ 1), p)− 1, for i ≥ 0.

• Sh is the walk with Sh0 = 1 and Shi+1 = Shi + Bin(n− (i+ 1)− h, p)− 1, for i ≥ 0.

Note that all of these walks are allowed to go negative. We couple all the above walks to
S; we emphasize that until the first visit of S to 0, S′ agrees with S while Sind strictly
dominates it. Finally, S dominates Sh until the first time that S exceeds h+ 1.

As a preliminary exercise, consider what happens to the random walk S which corre-
sponds to the random graph process Gn,1/n. It is known that at this point, the largest
component has size Θ(n2/3) [10]. In our warmup, we prove a bound of O(n2/3 log1/3 n).
To do so, we focus on the size of the component containing v1.

Note that this component has size greater than t precisely if Si 6= 0 for all i ≤ t. We
know that the probability of this event is bounded above by the probability that Sind

exceeds 0 for all i ≤ t. This is at most the probability that Sindt > 0. Now,

Sindt = 1 +
t∑
i=1

(Bin(n− i, 1/n)− 1) = Bin
(
nt−

(
t+ 1

2

)
,

1
n

)
− (t− 1).

Thus, its mean is ESindt = 1−
(
t+1

2

)
/n. The following theorem states that binomial random

variables are very concentrated around their mean:

Theorem 5 (6). If Y = Bin(m, q), then denoting E [Y ] (which is mq) by λ, we have:

P {Y −E [Y ] > r} ≤ e−r2/2(λ+r/3), (6)

and
P {Y −E [Y ] < −r} ≤ e−r2/2λ. (7)

Let α be a real number greater than 0. Setting t = αn2/3 and applying Theorem 5 to
Sindt + (t− 1) yields

P
{
Sindt > 0

}
≤ 2 exp

(
−

((
t+1

2

)
/n
)2

2
(
t−

(
t+1

2

)
/n+

(
t+1

2

)
/3n

)) ≤ 2e−α
3/8.
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In particular, letting r = n2/3(16 log n)1/3, it follows that P
{
Sindr > 0

}
≤ 2/n2. Since v1

is arbitrary, the size of the largest component Hn,1/n may be bounded using the union
bound:

P
{
|Hn,1/n| > r

}
≤ 2

n
.

As a consequence, the expected size of the largest component is

E|Hn,1/n| ≤ r + nP {|Hn,p| > r} = O(n2/3 log1/3 n).

We could prove that the expected size of the largest component at the threshold p = 1/n
is O(n2/3) by strengthening our argument in either of the following ways:

• by considering the probability not just that Sind exceeds 0 at time t, but the prob-
ability that in addition Sind has remained above 0 until time t. It turns out that
this latter probability is about 1

t times the former in the crucial range, which can be
used to obtain the desired sharpening. Or,

• by noting that as our process continues, the probability that we get large components
decreases. Specifically, if Si = 0 and Oi+1 = {u}, then the probability that the
component containing u has size at least t is at most the probability that Sindj+t−Sindj >

0. This is also the probability that Bin(tn− tj −
(
t+1

2

)
, 1
n) exceeds t− 1.

The preceding argument and remarks lend credence to two claims: first that the largest
component of Gn,1/n has size O(n2/3), and second that any component of this size must
arise early in the branching process. The main goal of the rest of this section is to state
and prove precise versions of these claims which hold for Gn,p when p− 1/n = Ω(1/n4/3)
and p − 1/n = o(1/n log n). To do so, we need to tie down the behavior of S. First,
however, we analyze Sind,Sh and S′, as they buck a little less wildly.

3.2 The height of the tamer walks

We can handle Sind for p = 1/n+ δ using the analysis discussed above, which consists of
little more than standard results for the binomial distribution. Specifically, we have that
for t ≥ 1, Sindt + (t− 1) is distributed like Bin(nt−

(
t+1

2

)
, p), so by linearity of expectation,

we have:

Fact 6. For p = 1/n+ δ with δ < 1/n,

ESindt = δnt− t(t+ 1)
2n

− t(t+ 1)δ
2

+ 1 ≤ t+ 1.

Using the fact that the variance of a Bin(m, p) random variable is m(p− p2), we have:

Fact 7. For p = 1/n+ δ with δ = o(1/n) and t = o(n),

Var
{
Sindt

}
= Var

{
Sindt + (t− 1)

}
= (1 + o(1))t

Intuitively, Sindt has a good chance of being negative if the variance exceeds the square
of the expectation and a tiny chance of being negative if the expectation is positive and
dwarfs the square root of the variance. Indeed, we can formalize this intuition using the
[6] bounding method.

10



We are interested in the critical range, p = 1/n+δ for δ = o(1/n). For such δ, t(t+1)δ/2
is o(t(t + 1)/2n), so we see that ESindt goes negative when δnt ' t(t + 1)/2n, i.e., when
t ' 2δn2. Furthermore, for any α ∈ (0, 1), there exist a1 = a1(α) > 0 and a2 = a2(α) > 0
such that ESindt is sandwiched between a1δnt and a2δnt, for αδn2 ≤ t ≤ (2−α)δn2. As a
consequence, (ESindt )2 = Θ(δ2n2t2) = Θ(δ3n4t) for such p and t.

Also, Fact 7 states that Var
{
Sindt

}
= (1 + o(1))t, so the square of the expectation

dwarfs the variance in this range provided δ3n4 is much greater than 1, i.e., provided δ is
much greater than 1/n4/3.

Writing δ = f/n4/3 = f(n)/n4/3, we will focus on the case where f > 1 and f = o(n1/3).
We assume for the remainder of Section 3, and in particular as a hypothesis in all lemmas
and theorems of this section, that p = 1/n+ f/n4/3 and that f satisfies these constraints.
In the lemma that follows we use Chernoff bounds to show that Sindt is close to its expected
value for all such f .

Lemma 8. For all 1 ≤ t ≤ n− 1 and 0 ≤ x ≤ t,

P
{∣∣∣Sindt −ESindt

∣∣∣ > x
}
≤ 2e−x

2/5t.

Furthermore, for any 1 ≤ i < j ≤ t,

P
{∣∣∣(Sindj − Sindi )−E

[
Sindj − Sindi

]∣∣∣ > x
}
≤ 2e−x

2/5t.

Proof. The tail bound on Sindj −Sindi follows by applying Theorem 5 to (Sindj −Sindi )+(j−i),
which is a binomial random variable. Before applying it, we observe that by Fact 6,
E
[
Sindj − Sindi + (j − i)

]
≤ 2j ≤ 2t. Thus

P
{∣∣∣(Sindj − Sindi )−E

[
Sindj − Sindi

]∣∣∣ > x
}
≤ 2e−x

2/(4t+2x/3) ≤ 2e−x
2/5t,

which establishes the latter claim. The former is obtained by applying an identical argu-
ment to St + (t− 1), which is also a binomial random variable with mean at most 2t.

We turn now to Sh, which is also easier to handle than S.

Lemma 9. For all 1 ≤ t ≤ n− 1,

ESht =
tf

n1/3
− t(t+ 1 + 2h)

2n
− t(t+ 1 + 2h)f

2n4/3
+ 1.

Furthermore, for all integers 0 ≤ i < j ≤ t and for all 0 ≤ x ≤ t,

P
{∣∣∣(Shj − Shi )−E

[
Shj − Shi

]∣∣∣ > x
}
≤ 2e−x

2/5t.

We omit the proof of this lemma as it is established just as Fact 6 and Lemma 8. The
above lemmas yield tail bounds on the value of some of the random walks associated with
S at some specific time t. These bounds rather straightforwardly yield bounds on the
probability that S is far from its expected value at any time up to some fixed time t:

Lemma 10. Fix 1 ≤ t ≤ n− 1 and 1 ≤ x ≤ t. Then

P
{
|Sindi −ESindi | ≥ x for some 1 ≤ i ≤ t

}
≤ 4e−x

2/5t.

Furthermore, an identical bound holds for Sh, for any h for which t+ h ≤ n.
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Proof. Let A be the event that there is i ≤ t for which |Sindi − ESindi | ≥ 2x - we aim to
show bounds on P {A}. We consider the first time i? at which |Sindi? − ESindi? | ≥ 2x (or
i? = t+ 1 if this never occurs).

For i ≤ t, let Ai be the event that i? = i and let Bi be the event that Ai occurs and
|Sindt −ESindt | ≤ x. Finally, let B be the event that |Sindt −ESindt | > x. If A occurs then
either one of the events Bi occurs or B occurs. As i? is a stopping time, for any i ≤ t,

P {Bi | Ai} ≤ P
{
|(Sindt − Si)− (ESindt −ESi)| ≥ x

}
.

Furthermore, the Ai are disjoint so the P {Ai} sum to at most 1. It follows that

P {A} ≤ P {B}+
t∑
i=1

P {Bi} = P {B}+
t∑
i=1

P {Bi | Ai}P {Ai}

≤ P {B}+ max
1≤i≤t

P
{∣∣∣(Sindt − Si)−E

[
Sindt − Si

]∣∣∣ ≥ x}
≤ 2 max

1≤i≤t
P
{∣∣∣(Sindt − Si)−E

[
Sindt − Si

]∣∣∣ ≥ x}
≤ 4e−x

2/5t,

by applying Lemma 8. An identical bound holds for Sh by mimicking the above argument
but applying Lemma 9 at the last step.

3.3 The height of S

We now turn to the walk we are really interested in. For all i it is deterministically the
case that Si ≤ Sindi + i, so we may use Lemma 10 to bound Si (equivalently, |Oi|) for
1 ≤ i ≤ t ≤ n− 1. Letting x = εt in Lemma 10 yields:

Corollary 11. Fix 1 ≤ t ≤ n− 1 and 0 < ε ≤ 1. Then

P {|Oi| ≥ (1 + ε)t for some 1 ≤ i ≤ t} ≤ 4e−ε
2t/5.

The above crude bound on |Oi| is a result of bounds on Sind and the fact that Si−Sindi ≤
i. To get more precise information on the height of Si, we need to improve our bound
on Si − Sindi . To this end, we note that letting Zt be the number of times that Si hits
zero up to time t, we have St = S′t + Zt. Since S′t hits a new minimum each time St
hits zero, Zt = −min{S′i − 1|1 ≤ i ≤ t}. Since Sind strictly dominates S′, we thus have
Si ≤ Sindi + Zi for all 1 ≤ i ≤ n − 1, which will turn out to yield considerably better
bounds than Si ≤ Sindi + i once we have obtained bounds on Zi. Such bounds follow from
the following lemma:

Lemma 12. For all 1 ≤ t ≤ n− 1

P
{
S′i ≤

if

n1/3
− 2t2

n
for some 1 ≤ i ≤ t

}
≤ 8e−t

3/100n2
.

Proof of Lemma 12. By Corollary 11, the probability |Oi| ≥ (5/4)t for some 1 ≤ i ≤ t is
at most 4e−t/80. On the other hand, as long as |Oi| ≤ 5t/4 for all 1 ≤ i ≤ t, S′i+1 − S′i ≥
Bin(n − i − 5t/4, p) − 1, so S′i ≥ S

5t/4
i for all 1 ≤ i ≤ t. Furthermore, it follows from

12



Lemma 9 and the fact that f = o(n1/3) that for any ε > 0, for n large enough, for all
1 ≤ i ≤ t,

ES5t/4
i ≥ if

n1/3
−
(

1 +
f

n1/3

)
i(i+ 1 + 5t/2)

2n
≥ if

n1/3
− (7/4 + ε)t2

n
.

Thus, if S′i ≤ if/n1/3 − 2t2/n for some 1 ≤ i ≤ t, then either

(a) |Oj | ≥ 5t/4 for some 1 ≤ j ≤ t, or

(b) ES5t/4
i − (1/4− ε)t2/n ≥ S′i ≥ S

5t/4
i .

We have already seen that (a) occurs with probability at most 4e−t/80 ≤ 4e−t
3/100n2

. By
choosing ε = 1/40, say, and applying Lemma 10 with x = (1/4 − ε)t2/n = 9t2/40n, it
follows that for n large enough (b) occurs for some 1 ≤ i ≤ t with probability at most
4e−81t3/8000n2 ≤ 4e−t

3/100n2
. The lemma follows.

Corollary 13. Let t = 3fn2/3 – then for n large enough, the probability that Zt > 18f2n1/3

is at most 8e−f
3/4.

Proof. This follows from Lemma 12 applied with t = 3fn2/3.

We are now able to derive much stronger upper tail bounds on Si:

Theorem 14. For n large enough, the probability that Si > 20f2n1/3 for some 1 ≤ i ≤
3fn2/3 is at most 12e−f

3/15.

Proof. Let t = 3fn2/3. If Si ≥ 20f2n1/3 for some 1 ≤ i ≤ t then either Zt ≥ Zi ≥ 18f2n1/3

or Sindi ≥ 2f2n1/3. Corollary 13 yields that the former event has probability at most
8e−f

3/4. Furthermore, using Fact 6 it is straightforward to see that ESindi ≤ f2n1/3 for
all i, so applying Lemma 10 with x = f2n1/3 yields that the probability Sindi is more than
2f2n1/3 for some 1 ≤ i ≤ t is at most 4e−x

2/5t = 4e−f
3/15. Combining these bounds yields

the result.

4 The structure of Gn,p inside the critical window

Using these bounds information about S we have gathered in Section 3, we are able to
determine the structure of the giant component of Gn,p for p in the range we are focussing
on. Recall that the excess of a connected graph H is equal to |E(H)| − |V (H)|. In this
section we prove:

Theorem 15. There is F > 1 such that for f > F and n large enough, with probability at
least 1− e−f , the random graph Gn,p contains a component H of size between (3/2)fn2/3

and (5/2)fn2/3 and of excess at most 150f3.

The proof of Theorem 15 goes in two natural steps. We first bound the probability
that we obtain a component of the desired size (Section 4.1), and then bound the excess
of this component (Section 4.2). Observe that Theorem 15 is actually a result about the
giant component. Indeed, with high probability there is only one component of such a
size, which is therefore, the giant. To prove Theorem 15, rather than considering the
largest component, we consider H?

p , the component Gn,p alive at time fn2/3. Properties
of H?

p are easier to derive, and as it will become clear later, H?
p happens to be the largest

component Hn,p with high probability (Theorem 20 below). We start by giving bounds
on the size and excess of H?

p , then we prove that H?
p is actually the giant component with

high probability.
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4.1 The size of the giant component

To begin, we strengthen the argument used in Lemma 12 to tighten the bounds on the size
of H?

p . This is done by using the stronger bound on the height of S given by Theorem 14.
Theorem 16 provides a lower bound on the size of H?

p . This lower bound is completed by
an upper bound of Theorem 17.

Theorem 16. Fix 0 < α ≤ 1. Then for n large enough, the probability that Si = 0 for
some αfn2/3 ≤ i ≤ (2− α)fn2/3 is at most 13e−α

4f3/50. Hence,

P
{
|H?

p | ≤ (2− 2α)fn2/3
}
≤ 13e−α

4f3/50.

Proof. As Si ≥ S′i for all i, it suffices to prove that the probability S′i ≤ 0 for some such i

is at most e−α
4f3/50. Letting h = 20f2n1/3, we have that S′ is at least Sh until the first

time i that Si ≥ h. From Lemma 9,

EShi = ESindi −
(

1 +
f

n1/3

)
hi

n
≥ ESindi − 40f2i

n2/3
,

for n large enough. For αfn2/3 ≤ i ≤ (2 − α)fn2/3 and n large enough, it follows from
Fact 4 that ESindi ≥ (α2/2)f2n1/3, so

EShi ≥
α2f2n1/3

2
− 40f2i

n2/3
.

Furthermore, since f = o(n1/3), for n large enough and i ≤ (2−α)fn2/3 we have i/n2/3 ≤
(2− α)f ≤ α2n1/3/800, so

EShi ≥ α2f2n1/3

2
− 40α2f2n1/3

800
=

9α2f2n1/3

20
.

Therefore, if S′i ≤ 0 for some αfn2/3 ≤ i ≤ (2 − α)fn2/3, either Sj ≥ h for some j ≤ i
or Shi ≤ EShi − 9α2f2n1/3/20. By Theorem 14, the former event has probability at most
12e−f

3/15 < 12e−α
4f3/50. Letting t = (2 − α)fn2/3 and x = 9α2f2n1/3/20 and applying

Lemma 10 yields that the latter event has probability at most

4e−x
2/5t ≤ 4e−81α4f4n2/3/2000(2−α)fn2/3 ≤ e−α4f3/50.

This completes the proof.

The above theorem tells us that with high probability, S does not visit zero between
times αfn2/3 and (2 − α)fn2/3. Furthermore, Si ≤ Sindi + Zαfn2/3 until the first time
after αfn2/3 that S visits zero. Combining this fact with our tail bounds on Sind and
Zαfn2/3 , we can show that S very likely does visit zero around time 2fn2/3. This entails
the following upper bound on the size of H?

p .

Theorem 17. Fix 0 < α ≤ 1. Then for n large enough, the probability that S does not
visit zero between time (2 − α)fn2/3 and (2 + 2α)fn2/3 is at most 23e−α

4f3/100. As a
consequence,

P
{
|H?

p | ≥ (2 + 2α)fn2/3
}
≤ 23e−α

4f3/100.

Theorem 15 is very similar to Corollary 5.6 of Scott and Sorkin [32], though, as men-
tioned in the introduction, that result is stated for the component containing a specified
vertex.
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Proof. For simplicity, let t = (2− α)fn2/3, t̄ = (2 + 2α)fn2/3 and let N be the event that
S does not visit zero between time t and t̄. If Sindt̄ < −Zt then S′t̄ < −Zt, so S has visited
0 between times t and t̄. Therefore,

P {N} ≤ P
{
Sindt̄ ≥ −Zt

}
.

We bound the right hand side of this equation by writing

P
{
Sindt̄ ≥ −Zt

}
≤ P

{
Sindt̄ ≥ −r

}
+ P {Zt̄ > r} , (8)

and deriving bounds on the two terms of the right-hand-side of (8) for suitably chosen r.
For any r,

P
{
Zt > r

}
≤ P

{
Zαfn2/3 > r

}
+ P

{
Zt > Zαfn2/3

}
. (9)

Since Zt > Zαfn2/3 occurs precisely if S visits zero between times αfn2/3 and t, Theorem 16
yields that

P
{
Zt > Zαfn2/3

}
≤ 13e−α

4f3/50. (10)

By its definition, Zαfn2/3 > 2α2f2n1/3 precisely if Si ≤ −2α2f2n1/3 for some i ≤ αfn2/3.
Applying Lemma 12 with t = αfn2/3 thus yields that

P
{
Zαfn2/3 > 2α2f2n1/3

}
≤ P

{
Si ≤

if

n1/3
− 2t2

n
for some 1 ≤ i ≤ t

}
≤ 8e−t

3/100n2

≤ 8e−α
3f3/100. (11)

Letting r = 2α2f2n1/3, (9), (10), and (11) yield

P
{
Zt > 2α2f2n1/3

}
≤ P

{
Zt > Zαfn2/3

}
+ P

{
Zαfn2/3 > 2α2f2n1/3

}
≤ 13e−α

2f3/50 + 8e−α
3f3/100 < 21e−α

4f3/100. (12)

Furthermore,

ESindt̄ ≤ t̄f

n1/3
− t̄2

2n
≤ −(2α+ 2α2)f2n1/3,

so −2α2f2n1/3 ≥ ESindt̄ + 2αf2n1/3. By applying Lemma 8 with x = 2αf2n1/3, it follows
that

P
{
Sindt̄ ≥ −2α2f2n1/3

}
< 2e−x

2/5t̄ = 2e−4α2f4n2/3/5t̄ ≤ 2e−α
2f3/5. (13)

Combining (8), (12) and (13) yields that

P
{
Sindt̄ ≥ −Zt

}
≤ 23e−α

4f3/100.

This completes the proof.
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4.2 The excess of the giant

Theorems 16 and 17 tell us about the size of the giant component of Gn,p. We now turn
to its excess. Rather than studying the actual largest component, We prove:

Lemma 18. Let Exc be the event that H?
p has excess at most 150f3. Then for n large

enough,
P
{
Exc

}
≤ 32e−f

3/(24·100). (14)

Proof. For simplicity in coming calculations, we define the net excess of a connected graph
H to be equal to the excess of H, plus 1. The net excess of components of Gn,p can be
analyzed much as we have just analyzed their size. In the process defined at the beginning
of Section 3, each element of the random set Ni of neighbours of vi that is in the set
Oi contributes exactly 1 to the net excess of the component alive at time i. Thus, if a
component is created between times t1 and t2 of the process (precisely, if St1 − 1 = 0 and
the first time greater than t1 − 1 at which S visits 0 is t2), then the net excess of this
component is precisely

∑t2−1
i=t1

Bin(|Oi| − 1, p) = Bin(
∑t2−1

i=t1
Si − 1, p). Our upper bound

on S in Theorem 14 can be thus used to prove upper bounds on the net excess of H?
p .

Let α = 1/2 and let Big be the event that H?
p has size more than 3fn2/3, let High be

the event that Si ≥ 20f2n1/3 for some i ≤ 3fn2/3. If Big occurs then S does not return
to zero between time (2− α)fn2/3 and time (2 + 2α)fn2/3, so by Theorem 17,

P {Big} ≤ 23e−α
4f3/100 = 23e−f

3/(24·100).

By Theorem 14, P {High} ≤ 8e−f
3/15. If neither Big nor High occurs, then the net excess

of H?
p is at most Bin(M,p), where M =

∑3fn2/3

i=1 (Si − 1) ≤ 60f3n. For any m ≤ 60f3n,
E [Bin(m, p)] ≤ 120f3, so by Theorem 5, P

{
Bin(m, p) ≥ 150f3

}
≤ e−f3

. Combining these
bounds yields

P
{
Exc

}
≤ P {Big}+ P {High}+ e−f

3 ≤ 32e−f
3/(24·100).

4.3 The Giant Towers Over the Others

As discussed in the introduction, the probability of growing a large component which
starts in iteration t of the process decreases as t increases. This is what allows us to show
that very likely there is a unique giant component and all the other components are much
smaller. In the following, we call a connected component complex if it contains at least
two cycles.

To be precise, let T1 be the first time that S visits zero after time (2−α)fn2/3. Then the
remainder of Gn,p has n′ = n−T1 vertices and each pair of vertices is joined independently
with probability p. If α = 1/4, say, then

p =
1
n

+
(2− α)f
n4/3

≤ 1
n′

(
1− (2− α)f

n1/3

)
+

f

n4/3

<
1
n′
− (f/2)

(n′)4/3
. (15)

Thus the final stages of the process look like a subcritical process on n′ vertices. We
could analyze how this procedure behaves by looking at the behaviour of our random walks
as in the last three subsections but instead we find it convenient to quote results of  Luczak
who did obtain tail bounds for the subcritical process.
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The following theorem is a reformulation of  Luczak [23], Lemma 1 and  Luczak [25],
Theorem 11. Those results are stated for the case f = f(n) → ∞, but in both cases the
proof is easily adapted to our formulation; the details are omitted.

Theorem 19. For all fixed K > 1, there exists F > 1 such that for all f > F , n large
enough and p = 1/n−f/n4/3, for all k > K the probability that Gn,p contains a component
of size larger than (k + log(f3))n2/3/f2 or a complex component of size larger than 2k is
at most 3e−k. Furthermore, the probability there is a tree or unicyclic component of Gn,p
with size at most n2/3/f and longest path at least 12n1/3 log f/

√
f is at most e−

√
f .

Using this result we easily obtain the following two theorems:

Theorem 20. There is F > 1 such that for f > F and n large enough, with probability at
least 1− e−f , the component alive at time fn2/3 is the largest component, i.e., H?

p = Hn,p.

Theorem 21. For any ε > 0 there is F = F (ε) > 1 so that for all f > F and p =
1/n + f/n4/3, the expected number of components of Gn,p of size exceeding (3/2)fn2/3 is
at most 1 + ε.

Theorems 20 and 21 are simple consequences of Theorem 19 and of the above branching
process. Letting T1 be the first time after (7/4)fn2/3 that S visits 0, there is at most one
component of size at least (3/2)fn2/3 that is grown up to time T1, and with high probability
there is exactly one such component. Note that any such component must be alive at
time fn2/3. We restart the branching process to grow the graph Gn−T1,p. Theorem 19
guarantees that the probability a component of size exceeding n2/3 ever occurs is at most
e−f

2/2, which is at most e−f for f large enough. This proves Theorem 20.

If a component of size exceeding n2/3 does occur after time T1, then once it dies
we again restart the branching process to grow the remainder of the graph; again, and
independently, the probability a component of size exceeding n2/3 ever occurs is at most
e−f

2/2. Continuing in this manner yields the geometric upper bound (e−f
2/2)i on the

probability there are precisely i large components grown after time T1; by making f large
we may thus make the expected number of such components arbitrarily close to zero,
which proves Theorem 21

We are now ready to prove Theorem 15.

Proof of Theorem 15. Theorems 16 and 17, applied with α = 1/4, yield that

P
{

3
2
fn2/3 ≤ |H?

p | ≤
5
2
fn2/3

}
≥ 1− 36e−f

3/(44·100).

On the other hand, Lemma 18 shows that excess of H?
p is at most 150f3 with probability

at least 1−32e−f
3/(24·100). Thus, the probability both hold is at least 1−68e−f

3/(44·100) ≥
1−e−f for f large enough. (We note that this establishes something slightly stronger than
Theorem 15; namely, we have shown that the component H?

p has such size and excess with
the desired probability.)

5 The proof of Lemma 3 (b)

Let H be the set of all labeled connected graphs H with vertex set V (H) ⊂ {v1, . . . , vn}
for which H has between (3/2)fn2/3 and (5/2)fn2/3 vertices. For H ∈ H, let CH be the
event that in the random graph process, H is a connected component of Gn,p, and let Bad
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be the event that in the random graph process, no element of H is a connected component
of Gn,p. For any event E we may write

P {E} ≤ P {Bad}+
∑
H∈H

P {E | CH}P {CH} .

If Bad occurs then Gn,p has no component of size between (3/2)fn2/3 and (5/2)fn2/3, so
by Theorem 15, P {Bad} ≤ e−f for f large enough. Therefore,

P {E} ≤ e−f +
∑
H∈H

P {E | CH}P {CH} .

≤ e−f + E [|{H : CH holds }|] ·max
H∈H

P {E | CH} .

Applying Theorem 21 with ε = 1 to bound the above expectation, we have that for f and
n large enough,

P {E} ≤ e−f + 2 max
H∈H

P {E | CH} . (16)

Let p = 1/n+ f/n4/3 and let p′ = 1/n+ (5/4)f/n4/3. Recall also that Hn,p is the largest
component of Gn,p. We will apply equation (16) to the event Long that some component
of Gn,p′ [V − V (Hn,p)] has longest path of length at least n1/3/f1/4.

For any graph H ∈ H, the graph Gn,p′ [V −V (H)] is Gn′,p′ for some n′ ≤ n−(3/2)fn2/3,
and so

p′ =
1
n

+
(5/4)f
n4/3

≤ 1
n′

(
1− (3/2)f

n1/3

)
+

(5/4)f
n4/3

<
1
n′
− (1/4)f

n4/3
≤ 1

n′
− (1/8)f

(n′)4/3
, (17)

for n large enough. Let Large(H) be the event that either

(a) Gn,p′ [V−V (H)] has a component of size larger than 8n2/3/f , or a complex component
of size greater than f , or

(b) Gn,p′ [V − V (H)] has a tree or unicyclic component of size at most 8n2/3/f and
longest path of length at least 36n1/3 log f/

√
f .

Gn,p′ [V − V (H)] is a subcritical random graph by (17). For f large enough, Theorem
19 applied with k = f/10, say, therefore yields that (a) occurs with probability at most
3e−f/10. Theorem 19 also yields that (b) occurs with probability at most e−

√
f/8. As

3e−f/10 ≤ e−
√
f/8 for f large enough, this yields, for f large enough,

P {Large(H)} ≤ 2e−
√
f/8.

If CH occurs but (a) does not then Gn,p certainly has no component of size larger
than H so H = Hn,p. Also, note that for f large enough 36n1/3 log f/

√
f < n1/3/f1/4.

For such f , assuming CH occurs and Large(H) does not occur then Long does not occur.
To see this, observe that (a) does not occur, so no component other than H has size at
least 8n2/3/f . Using this fact, and since (b) does not occur either and no tree or unicyclic
component has a large enough longest path. Finally, the complex components have size
at most f , hence the length of their longest path is also bounded by f . So overall, no
component of Gn,p′ [V −V (H)] contains path with length at least n1/3/f1/4 and Long does
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not occur. Furthermore, Large(H) is independent of CH as the two events are determined
by disjoint sets of edges. Therefore,

P {Long | CH} ≤ P {Large(H) | CH} = P {Large(H)} ≤ 2e−
√
f/8,

which combined with (16) applied with E = Long yields

Lemma 22. There exists F > 1 such that for f > F , for n large enough, P {Long} ≤
5e−
√
f/8.

This proves the bound of Lemma 3 (b).

6 Longest paths in random treelike graphs

As mentioned before, information about the excess of a random connected graph gives us
information about its diameter. This is, in essence, because a random graph with only a
few more edges than vertices is “treelike”; in this section we make this idea precise.

6.1 The diameter of uniform trees

We first collect the required bounds on the diameter of trees. A uniform random rooted
tree of size s is a tree chosen uniformly at random from among all rooted labeled trees
with s nodes. Rényi and Szekeres [31] and Flajolet and Odlyzko [12] have calculated the
asymptotics of the moments of the height Hs of a uniform random rooted tree Rs of size
s and provided sharp information about the number of uniformly random rooted trees of
size s and height c

√
s for constant c. (This notation Hs is only used in this section and

should not affect the readability of the remainder of the document where Hn,p denotes the
largest component of Gn,p.) Through combinatorial arguments,  Luczak [24] has extended
these results to count the number of such trees when c = c(s) is ω(1). The version of
 Luczak’s result that we need can be stated as:

Theorem 23 ([24], p. 299). There is C > 0 such that for s large enough, for all t ≥ C
√
s,

P {Hs = t} ≤ e−t
2/4s

√
s

.

In fact, this theorem is weaker than what  Luczak proved, but it is easier to state and
suffices for our purposes. We have as an immediate consequence:

Corollary 24. There is C > 0, such that for s large enough, for all c ≥ C,

P
{
Hs ≥ c

√
s
}
≤ 2e−c

2/4.

Proof. By Theorem 23, we have that for c ≥ C,

P
{
Hs ≥ c

√
s
}
≤

s∑
t=dc

√
se

1√
s
e−t

2/4s

≤
d
√
s−ce∑
i=0

d(c+i+1)
√
se−1∑

t=d(c+i)
√
se

1√
s
e−t

2/4s

≤
√
s+ 1√
s

d
√
s−c−1e∑
i=0

e−(c+i)2/4

≤ 2e−c
2/4,
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as long as c and s are large enough.

There is a natural s-to-1 map from rooted trees of size s to unrooted trees of size s,
obtained by “unrooting”. Clearly, if Ts is an unrooted tree corresponding to Rs via this
map, then lp(Ts) = lp(Rs) ≤ 2Hs. As a consequence,

Lemma 25. Let Ts be a uniformly random unrooted tree (a Cayley tree) on s nodes. Then
there is C > 0 such that for s large enough, for all c > C

P
{

lp(Ts) ≥ 2c
√
s
}
≤ P

{
Hs > c

√
s
}
≤ 2e−c

2/4. (18)

Lemma 25 is the key fact about random trees that allows us to bound the lengths
of the longest paths of uniformly random connected tree-like graphs. We now focus our
attention on bounding longest paths in such graphs. In doing so, it is useful to describe
them in a way that emphasizes some underlying tree structures.

6.2 Describing graphs with small excess

Given a connected labeled graph G with excess q, define the core C = C(G) to be the
maximum induced subgraph of G which has minimum degree 2. To see that the core is
indeed unique, we note that it is precisely the graph obtained by repeatedly removing
vertices of degree 1 from G until no such vertices exist (so in particular, if G is a tree
then C is empty). It is clear from the latter fact that G[V − V (C)] is a forest, so if
vi ∈ V − V (C), then there is a unique shortest path in G from vi to some vj ∈ V (C). We
thus assign to each vertex vj ∈ V (C) the set of labels

Lvj = {j} ∪ {i : the shortest path from vi to C ends at vj}.

We next define the kernel K = K(G) to be the multigraph obtained from C(G) by
replacing all paths whose internal vertices all have degree 2 in C and whose endpoints
have degree at least three in C by a single edge [see, e.g., 20]. If q < 1 we agree that the
kernel is empty; otherwise the kernel has minimum degree 3 and precisely q more edges
than vertices. It follows that the kernel always has at most 2q vertices and at most 3q
edges. We denote the multiplicity of edge e in K by m(e). We think of K as a simple
graph in which edge e has positive integer weight m(e), to emphasize the fact that parallel
edges are indistinguishable. We may keep track of what vertices correspond to edges of
K(G) as we did for vertices of C(G): if P1, . . . , Pm(e) are paths of C(G) corresponding to
edge e = xy of K(G), we let Lie =

⋃
v∈V (Pi)−x−y Lv (if Pi = xy then Lie = ∅) and assign

a set of sets of labels {L1
e, . . . , L

m(e)
e } to e. We emphasize that permuting the order of

P1, . . . , Pm(e) does not change the label of e.

Given a labeled graph G, the above reduction yields a labeled multigraph K and
sets Lv for each vertex of K, {L1

e, . . . , L
m(e)
e } for each edge of K. Conversely, any graph

with nonempty labeled kernel K to which such sets have been assigned can be described
uniquely in the following way:

• For all vi ∈ V (K), let Tvi be a labeled tree with labels from Lvi .

• For all e = xy ∈ V (K), and all i = 1, 2, . . . ,m(e), let T ie be a labeled tree with labels
from Lie (if Lie = ∅ then Te = ∅ - this can occur for at most one i ∈ {1, 2, . . . ,m(e)}).
If Lie 6= ∅, our description depends on whether e is a loop, i.e., on whether y = x:
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– If x 6= y then mark an element of Lie with an X and mark an element of Lie
with a Y. We allow that the same element of Lie receives both markers.

– If x = y then place two markers of type X on elements of Lie. Again, we allow
that the same element of Lie receives both markers.

Observe that in marking elements of Lie, if e = xy and x 6= y then there are |Lie|2 ways to
place the markers. If e = xx then there are |Lie|+

(|Li
e|

2

)
= (|Lie|+ 1)|Lie|/2 ways to place

the markers as we may either choose an element of Lie and place both X markers on it, or
we may choose two distinct elements of Lie and place an X marker on each.

We obtain G from this description as follows:

1. for all vj ∈ V (K), identify the vertices vj ∈ V (K) and vj ∈ Tvj , then

2. for all loops e = xx ∈ E(K), choose a copy of e for each nonempty tree T ie , 1 ≤ i ≤
m(e). Remove this edge and let x be adjacent to the vertices in T ie marked with X.

3. for all e = xy ∈ E(K) with x 6= y, choose an edge xy for each nonempty tree T ie ,
1 ≤ i ≤ m(e). Remove this edge, then let x (respectively y) be adjacent to the vertex
in T ie marked with X (respectively Y).

Clearly labeled graphs with distinct labeled kernels are not identical. Now, let G,
G′ be graphs with the same labeled kernel K. If for some v ∈ V (K), Lv 6= L′v or for
some e ∈ E(K), {L1

e, . . . , L
m(e)
e } 6= {L′1e , . . . , L

′m(e)
e }, then G,G′ are not identical. Hence,

given a labeled kernel K, and sets of labels {Lv|v ∈ V (K)},
⋃
e∈E(K){L1

e, . . . , L
m(e)
e }, and

distinguished elements of the nonempty sets Lie as described above, there are∏
v∈V (K)

|Lv||Lv |−2
∏

e∈E(K)

∏
i:Li

e 6=∅

|Lie||L
i
e|−2

possible graphs, corresponding to the choices of a tree for each set Lv and for each set Lie.
It follows that if G is a uniformly random connected labeled graph with p vertices and
excess q ≥ 1 specified by its kernel K and a description as above, then conditional on the
sizes of their elements, the sets TV = {Tv|v ∈ V (K)} and TE =

⋃
e∈E(K){T 1

e , . . . , T
m(e)
e }

must be uniformly random amongst all such sets. As a consequence, conditional on their
sizes, the unrooted labeled trees in TV and in TE must be uniformly random; i.e., they are
simply Cayley trees.

Labeled unicyclic graphs (graphs with excess 1) have empty kernels but nonempty
cores; they can be described in a similar but simpler way. Suppose we are given a labeled
graph G with unique cycle C. We let T1 be the unique maximal tree containing vertex
v1 and containing exactly one element v∗ of C – set TV = {T1} and mark v∗. The vertex
v∗ has exactly two distinct neighbours w∗, x∗ in the tree T2 induced by the vertices in
V (G)−V (T1); we let TE = {T2} and mark w∗, x∗. Given trees T1, T2 such that v1 ∈ V (T1),
T1 contains one marked vertex v∗ and T2 contains two marked vertices w∗, x∗, we may
construct a unicyclic graph G by letting w∗ and x∗ be adjacent to v∗. The only difference
between this bijection and that given for graphs with nonempty kernel is that now we
need to mark a vertex in the tree in TV . As above, this bijection shows that conditional
on their sizes, the trees T1 and T2 are Cayley trees.
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6.3 The diameter of graphs with small excess

With this latter fact in hand, it is easy to prove bounds on lp(G). Recall that the net
excess of a connected graph G is equal to the excess of G, plus 1.

Lemma 26. Let G be a uniformly random labeled connected graph on s vertices and with
net excess q. Then there is C such that for s large enough, for all c ≥ C,

P
{

lp(G) ≥ 2(5q + 1)c
√
s+ 10q

}
≤ 10qe−c

2/4. (19)

Proof. The bound holds by (18) if q = 0. If q > 0 then let the sets TV and TE be defined as
above, and let T = TV ∪ TE - then |T | ≤ 5q as if q ≥ 2, the kernel has at most 2q vertices
and at most 3q edges, counting multiplicity, and if q = 1 then |TV | = |TE | = 1. Trivially,
any path P in G is composed of paths from the trees in T together with edges of G that
are not edges of some tree in T . For a given tree T , if P does not have an endpoint in T
then it must enter and exit T at most once, i.e., the intersection of P with T , if nonempty,
is itself a path. P may also enter one or two of the trees without leaving them – such trees
must contain an endpoint of P . If the endpoints are in distinct trees then the intersection
of these trees with P are both paths; if the endpoints are in the same tree then that tree’s
intersection with P consists of two paths.

(In fact, P can not enter every tree. If q > 1, for example, then the set of vertices
and edges of the kernel that have trees intersecting P can not itself contain a cycle in the
kernel. We crudely bound the length of P by supposing that it may contain a path from
every tree and two paths from at most one tree, so at most (5q+ 1) paths from trees of T
in total.)

Each time the path P enters or exits a tree, it uses an edge of G that is not an edge
of a tree in T . By the definition of the trees in T , there are precisely two such edges for
each nonempty tree T ie ; thus there are at most 10q such edges in total. We thus have

P
{

lp(G) ≥ 2(5q + 1)c
√
s+ 10q

}
≤ P

{
max
T∈T

lp(T ) ≥ 2c
√
s

}
. (20)

We choose C large enough so that if |T | ≥ C
√
s and c ≥ C then Lemma 25 applies

to T with this choice of c. For c ≥ C, for all T ∈ T either |T | < C
√
s, in which case

P {lp(T ) ≥ 2c
√
s} = 0, or |T | ≥ C

√
s, in which case since |T | ≤ s, there is c′ ≥ c such that

2c
√
s = 2c′

√
|T |. In the latter case, P {lp(T ) ≥ 2c

√
s} = P

{
lp(T ) ≥ 2c′

√
|T |
}
≤ 2e−c

2/4

by Lemma 25. Therefore, by a union bound applied to the right-hand-side of (20) we have

P
{

lp(G) ≥ 2(5q + 1)c
√
s+ 10q

}
≤ 5q(2e−c

2/4) = 10qe−c
2/4.

7 Proof of Lemma 3 (a)

We apply Lemma 26 to bound lp(Hn,p). First, let D be the event that Hn,p has size greater
than (5/2)fn2/3, which we denote by s, or excess greater than 150f3, which we denote by
q. If D occurs then either

(a) H?
p has size greater than s or excess greater than q or

(b) H?
p 6= Hn,p.
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The event (a) occurs with probability at most e−f . By Theorem 20, the probability
that (b) occurs is also at most e−f , so P {D} ≤ 2e−f . Letting Ep be the event that
lp(Hn,p) > f4n1/3 we have

P {Ep} ≤ P
{
Ep

∣∣ D}+ P {D}
≤ P

{
Ep

∣∣ D}+ 2e−f .

Furthermore, 2(5q+1)c
√
s+10q < 5000cf7/2n1/3 for f large enough. It follows by applying

Lemma 26 with c = f1/2/5000 (which is at least C for f large enough) that

P
{
Ep

∣∣ D} ≤ 1500f3
r e
−c2/4 ≤ 1500f3

r e
−f/(100002) ≤ e−f/2

30
,

for f large enough. By this bound and (21), we have P {Ep} ≤ 2e−f + e−f/2
30

, which is
at most e−

√
f for f large enough. This proves Lemma 3 (a).

8 Conclusion

We have pinned down the growth rate of the diameter of the minimum spanning tree of Kn

whose edges are weighted with i.i.d. [0, 1]-uniform random variables. We did so using prob-
abilistic arguments relying on a random walk approach to Gn,p. Theorem 1 raises a myriad
of further questions. Two very natural questions are: does E [diam(MWST(Kn))] /n1/3

converge to a constant? What constant? What about the behavior of the random variable
diam(MWST(Kn))/n1/3 ? Theorem 1 seems related not only to the diameter of minimum
spanning trees, but also to the diameter of Gn,p itself. This latter problem still seems
difficult when p gets closer to 1/n [7]. A key difference between the analysis required for
the two problems is captured by the fact that there is some p∗ such that for p ≥ p∗, the
expected diameter of Gn,p is decreasing, whereas the diameter of Fn,p is increasing for all
0 ≤ p ≤ 1. At some point in the range (p − 1/n) = o(1/n), the diameters Gn,p and Fn,p
diverge; the precise behavior of this divergence is unknown. If the expected diameter of
Gn,p is unimodal, for example, then it makes sense to search for a specific probability p∗∗

at which the expected diameters of Gn,p and Fn,p cease to have the same order. In this
case, what can we say about |p∗−p∗∗|? For p = (1+ε)/n and ε > 0 constant, the diameter
of Gn,p is concentrated on a finite number of values, whereas it follows from results of [26]
that this is not the case in Gn,p for p = 1/n+O(1/n4/3). How does this behavior change
as p increases through the critical window? Answering such questions would seem to be a
prerequisite to a full understanding of the diameter of Gn,p in the critical range.

References

[1] D. Aldous. A random tree model associated with random graphs. Random Structures
Algorithms, 4:383–402, 1990.

[2] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coa-
lescent. Ann. Probab., 25:812–854, 1997.

[3] B. Bollobás. Random Graphs. Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, 2nd edition, 2001.

[4] B. Bollobás. The evolution of random graphs. Trans. Amer. Math. Soc., 286(1):
257–274, 1984.

23
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