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ABSTRACT:

Image fusion technique has been extended its development from multi-sensor fusion, multi-model fusion to multi-focus fusion.
More and more advanced techniques such as deep learning have been integrated into the development of image fusion algorithms.
However, as an important aspect, fusion quality assessment has been received less attention. This paper intends to reflect on the
commonly used indices for quantitative assessment and investigate how they can represent the fusion quality regarding spectral
preservation and spatial improvement. We found that image dissimilarities are unavoidable due to the spectral coverage of different
image sensors. Image fusion should integrate these dissimilarities when they are representing spatial improvement. Such integration
will naturally change the pixel values. However, as the quality indices for the assessment of spectral preservation are measuring
image dissimilarities, the integration of spatial information will lead to a low fusion quality assessment. For the evaluation of spatial
improvement, the quality indices only work if the spatial details have been lost; however, in the case of spatial details gain, these
indices do not reflect them as spatial improvements. Moreover, this paper raises attention to image processing procedures involved
in image fusion, including image geo-registration, image clipping and image resampling, which will change image statistics and
thereby influence the quality assessment when statistical indices are used.

1. INTRODUCTION

Image fusion, as means of enhancing image quality and ex-
tracting useful information by combining images from differ-
ent sources, has been widely applied in many fields in the past
decades. Along with these applications, different terms have
been used to indicate the different techniques, such as multi-
sensor image fusion for remote sensing (Abdikan et al., 2014),
multi-model image fusion for medical diagnosis (Hermessi et
al., 2021), to the multi-focus image for optical microscopy (Liu
et al., 2020). Meanwhile, more and more advanced techniques
have been integrated into the fusion algorithms, such as sparse
representation (Ma et al., 2021, Zhang et al., 2021), deep learn-
ing (Mustafa et al., 2020, Li and Wu, 2018). While the fast de-
velopment of image fusion algorithms, the development of fu-
sion quality assessment, has been received less attention. This
paper intends to make a primary reflection on the commonly
used methods for quality assessment, with a focus on remote
sensing image fusion.

The general goal of remote sensing image fusion is to improve
the spatial resolution, at the same time, avoid spectral distortion.
Thus, the evaluation of image fusion quality emphasizes two as-
pects: spectral preservation and spatial improvement. The most
direct assessment method is a visual inspection. The disadvant-
age, however, is that human observation is subjective and is
problematic as a means of measurement. Therefore, it is widely
accepted to additionally use a quantitative approach for qual-
ity evaluation. Some researchers (Li et al., 2010) conducted a
survey and found a total of 27 quantitative measurements for
quality assessment. From the calculation function of the list
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of measurements, most of them deal with mean, standard de-
viation, correlation coefficient (CC), and variance, which are
basic statistical parameters. The objective of this paper is to
investigate how these statistical parameters are transferred as
measurements for quality assessment, and to which extend they
can reflect the fusion quality regarding spectral preservation and
spatial improvement.

2. IMAGE DISSIMILARITIES AND IMAGE FUSION

As image fusion is conducted between two different images, be-
fore examining image fusion quality, it is necessary to explain
what makes the differences between the two images, even they
were focused on the same target and taken at the same time.
From a physical point of view, this is because the sensor sys-
tem works at a specific range within the electromagnetic spec-
trum. In remote sensing terminology, this electromagnetic spec-
trum range is often referred to as spectral bands. The fusion
between panchromatic and RGB image, in other words, is us-
ing the panchromatic band to sharpen visible bands, therefore,
is also named pan-sharpening.

Depending on the spectrum coverage, each band identifies the
ground cover differently. As an example, figure 1a and figure 1b
display how Sentinel band 2 and band 5 present an airport area
as different images. The runway is displayed brighter than the
surrounding on band 2 while it is darker on band 5. For further
investigation, the same red line is drawn on both bands, across
the runway. By plotting the reflectance values along this red
line, figure 1c displays that the reflectance increases at the run-
way on band 2, and the reverse case appears on band 5. On fig-
ure 1, the two bands show slightly dissimilarities but the overall
spatial pattern are similar. Figure 2 shows another case, where
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the image difference between two bands are much more dis-
tinct. Figure 2a and 2b are the panchromatic and thermal bands
from a Landsat 8 image, with spatial resolution 15 m and 60
m, respectively. On figure 2a, there are two farm fields separ-
ated by a road. On figure 2b, because of the same reflectance
of both farm fields and lower spatial resolution, the road does
not appear. By drawing a red line across this road, the radi-
ance transect of the thermal band is a straight line. At the same
time, on the pan image (figure 2b) the transect curve drops at
the place where the road surface is located.

Figure 1. Different presentations of the same ground objects in
two Sentinel-2 bands; (a) and (b) are from band 2 and 5

separately; (c) is the reflectance transect of the red lines shown
in both bands.

Figure 2. Different presentations of the same ground objects by
two Landsat 8 bands; (a) and (b) are from panchromatic band

and thermal band respectively; (c) is the radiance transect of the
red lines shown in both bands.

This brings up a question, how image fusion deal with these
image dissimilarities? After image fusion, the resulting im-
age should have sharper and increased spatial details. In the
case of figure 2, if using the panchromatic band to sharpen the
thermal band, the ideal result should be that the border of the
farm fields and the road between them appears on the sharpened
thermal image. If so, then at the same transect, the spectral
curve of thermal band would not be a straight line anymore,
and would either drop or go up. An object can be visible due to

the variation of reflectance, where no variation means identical
features. It can therefore be concluded that spatial improve-
ments will introduce the modification of spectral information.
This finding provides some hints to the phenomena that has
been noticed by the image fusion community: there is a trade-
off between the spectral and spatial quality in pansharpening
algorithms. For example, some researchers found that a trade-
off occurs between spectral information and spatial informa-
tion on fused images (Choi, 2006). Some studies reported that
the during image fusion higher the amount of signal integrated
into the fused image, the higher the amount of aliasing that oc-
curs (Aiazzi et al., 2012). Many researchers also believed that
this trade-off is a nature of image fusion (Vijayaraj et al., 2004,
Wang et al., 2005, Tu et al., 2007, Chen et al., 2008). This paper
further investigates how this trade-off effect influences quality
assessment, especially when statistical measurements are used.

3. FUSION QUALITY ASSESSMENT INDICES

In this section, commonly used indices for fusion quality as-
sessment are discussed in two groups, according to their func-
tion, whether for evaluation of spectral preservation, or the as-
sessment of spatial improvement.

3.1 Spectral preservation

For evaluation of spectral preservation, the most commonly
used quality indices include CC; root mean square error
(RMSE) which is a standard measurement of the value of dif-
ferences; the relative average spectral error (RASE) which is
the average RMSE of all bands and is expressed as a percent-
age; relative dimensionless global error of synthesis (ERGAS)
which is a further development of RASE with additional con-
sideration of the resolution ratio between the two image sets.
These indices have been widely reported in the literature for
performance comparisons of data fusion algorithms (Aiazzi et
al., 2002, Aiazzi et al., 2006, Aanæs et al., 2008, Alparone et al.,
2006). Basically, these statistical methods compare the pixel
values between the original and fused images; the ideal fusion
result should show similar averages and low standard deviation.
For the original and fused images, identical pixel values implies
good spectral preservation. This might be true for images with
large patches of homogeneous areas; for example, green veget-
ation area after fusion should also remain green, but this might
not be the case if the image was taken in an urban area.

As urban space is a heterogeneous area, the high resolution im-
age shows much more spatial details than the low resolution
image. As discussed in the last section, increased spatial details
will naturally change the pixel values of the original image. The
higher the increase in spatial detail, the more dissimilarities will
appear on the fused image. These changes are necessary and
desired, but will be recognized as poor fusion quality using the
aforementioned statistical methods. Zero deviation, one hun-
dred percent CC equals to absolute color preservation but leads
to no spatial improvement.

3.2 Spatial improvement

Statistical measurements are not ideal for spectral quality as-
sessment, and they are more problematic for assessing spatial
quality improvement. It was claimed that some fusion qual-
ity indices can measure structure similarity between reference
and fused images, such as the structure similarity index met-
ric (Wang et al., 2004), the average value of local variance
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(Beauchemin et al., 2002), and the quality index based on local
variance, usually referred to as QILV (Aja-Fernandez et al.,
2006). Alternatively, it was claimed that some indices can eval-
uate the overall fusion performance which include spatial im-
provement. Among them, the most popular ones are the univer-
sal image quality index (UIQI) (Wang and Bovik, 2002), and
quaternion theory-based quality index, also named as Q4 (Al-
parone et al., 2004).

Luminance =
2µrµf

µ2
r + µ2

f

; (1)

Contrast =
2δrδf
δ2r + δ2f

; (2)

Correlation =
δrf
δrδf

; (3)

UIQI =
2µrµf

µ2
r + µ2

f

× 2δrδf
δ2r + δ2f

× δrf
δrδf

; (4)

where r and f are the reference image and fused image
µr, µf = local mean
δr, δf = standard deviation
δrf = local correlation coefficient between r and f

A close comparison of the functions from these indices show
that there are small differences in expression but are essentially
similar. Therefore, UIQI is taken as an example to present how
these indices works for fusion quality assessment. In general,
spatial details are built up by a group of pixels and spatial im-
provement cannot be measured by looking at an image on a
pixel-by-pixel comparison. Therefore, when these indices are
implemented, a sliding window approach is often applied. The
measurements are computed locally based on the pixels within
a sliding window. Then, this window moves pixel by pixel ho-
rizontally and vertically through all the rows and columns of
the image. In the end, the overall quality index is the average
of all the local measurements. In the following examples, we
use a 3 × 3 pixels window to present how UIQI works. The
function of this index (equation 4) includes three parts: lumin-
ance distortions (equation 1), contrast distortions (equation 2),
and correlation loss (equation 3). Assuming that there is an
original image (figure 3a) where a geometrical cross feature is
presented, part of this feature has been lost (Figure 3b and 3c)
after being processed by two fusion methods. Figure 3b retains
more structural information than figure 3c. If the pixel values
for the cross feature and surrounding pixels are set as 100 and
50 respectively, the UIQI values of the fused figure 3b and 3c
are calculated based on the equation 1 to 4 and listed in table
1. The ideal UIQI value is one; the closer to one, the better the
quality. UIQI values in table 1 show that figure 3b has a better
fusion quality than figure 3c. In this way, the index can reflect
the fusion quality in a reasonable range.

However, this is just the case when the fused image has lost the
existing structural information compared to the original image,
while in the image sharpening context, the fused image will add
extra structural information. Then the index does not work in
the right way. Figure 4 shows that in the image sharpening con-
text, an original image (Figure 4a) has no visible structures in-
side. After image fusion, a cross structure (Figure 4b) or a linear
structure (Figure 4c) are generated. In this way, the measure-
ment of UIQI will result in a poor evaluation of fusion quality,

Figure 3. Loss of structure information caused by fusion,
illustrated using a 3 × 3 pixel window; (a) original image and its

pixel values, (b) and (c) are two fusion results and their pixel
values.

Figure 4. Enrichment of structural information caused by fusion,
illustrated within a 3 × 3 pixel window; (a) original image and

its pixel values; (b) and (c) are two fusion results and their pixel
values.

see table 1. It seems like, among the three parts of the index,
correlation loss is the one that reflects spatial loss but a part that
can reflect spatial gain is missing in the index. Take the fusion
between the optical and thermal image as an example, spatial
gain happens when ground objects have the same temperature
but the border of the objects only appear on the optical image,
image fusion will integrate the border of the objects into the
thermal image. However, such a spatial improvement won’t be
reflected by the quality index.

Reflect fusion quality Not reflect fusion quality
fig3b fig3c fig4b fig4c

UIQI 0.7978 0.6241 0.000775 -0.000615

Table 1. UIQI values of the fusion results displayed in figure 3
and 4. The UIQI values reflect the fusion quality for the

situation in figure 3 but do not for figure 4.

4. FUSION EXPERIMENT AND QUALITY
ASSESSMENT

To examine the performance of the quality index in practice,
this section carried out an image fusion experiment with Sen-
tinel 2 multispectral bands. Sentinel 2 image contains 13 spec-
tral bands from VNIR to SWIR. The image spatial resolution is
dependent on the particular band. We took band 4 as the high-
resolution image to enhance band 9 and band 1. The spatial
resolution and spectral location of the input image are listed in
Table 2. These three bands were chosen because they have no
overlap on the spectral spectrum, which fits perfectly with the
situation illustrated in section in section 2.

We selected an agricultural area as the study area. As figure 5
shows, in this area, the farm fields are laid out in grids. Such
spatial features are convenient for investigating spatial improve-
ment. We used the high pass filter to conduct the image fusion,
as the other classic image sharpening algorithms, such as IHS,
Brovey, and PC need at least three bands as the low-resolution
image input. The experiment started with using use Band 4 to
sharpen Band 9 and Band 1 separately, at the same time, Band
9 and Band 1 were resampled to 10 m and used as the reference
images. After fusion, the fused Band 9 and Band 1 were com-
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Figure 5. The performance of ERGAS for the evaluation of spectral preservation

Figure 6. The performance of UIQI for the evaluation of spatial improvement

Input image Spatial resolution Central wavelength
Band 4 10 m 665 nm
Band 1 60 m 442.4 nm
Band 9 60 m 943.2 nm

Table 2. Spatial resolution and wavelength of input images

pared with their reference images respectively. With the soft-
ware ImAnalysis (Vaiopoulos, 2022), the quality indices were
calculated for each pixel, as well as the average value for the
entire image.

We took two steps to investigate the indices for fusion quality
assessment. The first step is to check the index for evaluation of

spectral preservation. Here, we use ERGAS as an example. We
set sample points at farm fields, streets and residential houses
and then collected their ERGAS values after fusion. As figure 5
shows, these sample points present high ERGAS values which
indicate poor spectral preservation. However, if we compare
the original image and the fused image, it is clear that at these
points, the spatial details have been improved. More precisely,
the border of the farm field, the edge of the street and the shape
of residential houses that were blurry before become clearly vis-
ible after fusion. Similarly, other statistic indices used for as-
sessing spectral preservation, such as CC and RASE also show
low performance at these places. It proved that if we use these
statistical measurements for assessment, the increased spatial
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Fused band CC ERGAS RMSE RASE UIQI
Band 1 0.07 1.76 94.1 7.18 0.1
Band 9 0.09 7.58 578.3 23.43 0.1

Table 3. Fusion quality assessment for the entire image

features will lead to low quality of spectral preservation.

In the second step, we take UIQI as an example to investigate
how this index reflects spatial improvement. For such purpose,
the sample points were set at liner structures on the ground.
To examine large-scale features, samples were set on the main
street and the border of farm fields. To investigate small-scale
features, samples were set where terraced houses are located. It
turns out that even though there were distinct spatial improve-
ments at these places, the UIQI values are very low which indic-
ates low spatial improvement. At some points, the UIQI shows
even negative values. These are exactly the cases described in
figure 1, where the reflectance values of the two bands are op-
posite.

The quality assessment result for the entire image is presen-
ted in Table 3. All the indices show low fusion quality, even
though by visual inspection there are recognizable improve-
ments. Overall, the fused Band 1 has a higher fusion quality
than Band 9, according to all the indices. This is not because a
better fusion algorithm was used but because the spectral char-
acteristic of the input bands varies.

5. OTHER FACTORS INFLUENCING INEFFECTIVE
EVALUATION

By checking the function with which the quality evaluation in-
dex is calculated, all the functions are computed based on pixel
values. Therefore, any factor resulting in pixel value change
will also influence the result of the quality evaluation. How-
ever, during image fusion and quality evaluation, nearly every
image processing procedure modifies pixel values. Before im-
age sharpening starts, the input and target images need to be
co-registered. Then, an area of interest can be clipped out.
Lastly, the low-resolution image needs to be resampled to the
same pixel size as the high-resolution image. These processing
procedures will further influence these statistical indices on ef-
fective quality evaluation.

5.1 Image geo-registration

Image geo-registration is the first step in image fusion. Im-
ages can be retrieved from various sources where no or differ-
ent coordinate systems were used. Input images need to be re-
gistered to one map coordinate system where each pixel is in
its geometrically correct position and has coordinates. For im-
age sharpening, it is crucial that the input and target images
are geo-registered correctly so that the data is comparable on a
pixel-to-pixel basis. Some researchers (Pohl and Van Genderen,
2016) stresses the importance of image registration for image
fusion. Inaccurate image registration will lead to the mismatch
of ground objects between the original image and fused im-
age, resulting in low fusion quality. This paper further emphas-
izes that even though two images are correctly geo-registered,
the pixel values of the input image have been modified before
image fusion. This is because during image geo-registration,
the pixel arrays are shifted and twisted to match the new co-
ordinate system. Consequently, the pixel sizes are slightly ad-
justed to match the new map grids. The change of the pixel

size will modify the pixel values. Such modification may seem
like a minor change, and they are nearly invisible thus are of-
ten ignored. However, as the difference between assessment
results are also not significant, these modifications could pro-
duce an impact on fusion quality assessment. Therefore, this
paper draws attention to the change in image statistics during
processing procedures, particularly when statistical indices are
used to measure fusion quality.

5.2 Image clipping

For image sharpening purposes, a subset of the high-resolution
and low-resolution image will be cut together by the border
of an study area. If the border crosses half of the pixel size
of the low-resolution image, it is impossible to cut half of the
pixels, as a pixel is the minimum unit of a raster image. In
this case, the row above or below the border will be taken as
the starting line of cutting. Due to the smaller pixel size, the
border can go through underneath a row of pixels of the high-
resolution image. Figure 7 illustrates this situation. It serves
as an example to show that when clipping is applied, the gen-
erated images may not be completely aligned. Assuming the
low-resolution image has a resolution of 30 m, a shift of 15 m
is generated. In the urban context, a shift of 15 m could mix up
one building with another or result in a street deviating from its
original direction. To avoid this problem, this paper suggests
resizing the low-resolution image to a higher resolution before
cutting the subsets. Consequently, the image will go through
geo-registration, resizing, and then clipping. As during geo-
registration, resampling already occurred once, it means that
before image sharpening occurs, the image has already been
resampled twice. Consequently, pixel values and image statist-
ics have been modified twice.

Figure 7. Pixel mismatch caused by image clipping

5.3 Resampling

Resampling is not just used before image fusion but also after-
wards. Since it is used so often, it is worth to examine how it
changes the image values. The common resampling algorithms
include nearest neighbor, bilinear interpolation, and cubic con-
volution. Different resampling techniques change the pixel val-
ues differently. Figure 8 shows the use of nearest neighbor or
cubic convolution to resample an image. Cubic convolution
produces a smooth color change, and nearest neighbor retains
the original pixel values but can produce blocky artifacts. Com-
paring two resampled images pixel by pixel, very few pixels
have the same pixel values. This means if different resampling
algorithms have been applied before and after fusion, the stat-
istical quality indices will conclude with a low fusion quality.
To avoid misjudgment about the fusion quality, this suggests
that resampling methods before and after fusion should be kept
consistent.

6. CONCLUSION

This paper firstly explained the image dissimilarities from a
physical point of view. As each band or image has its specific
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Figure 8. Change of pixel values caused by different resampling
methods: (a) original image is resampled using (b) nearest

neighbor or (c) cubic convolution. The colors used in (b) and (c)
aim to display differences in resample effects but not precise

interpolation results.

spectrum coverage, it is natural that images taken at the same
time do not present the ground cover in the same way. The goal
of image fusion is to integrate these image dissimilarities when
they can enhance the image quality. However, the more dissim-
ilarities added to the fused image, the more pixels’ values will
be changed. Consequently, the image statistic will be changed
and influence the assessment of fusion quality.

We then examined the often-used fusion quality indices from
the aspects of spectral preservation and spatial improvement.
We found that when statistical indices are used to evaluate spec-
tral preservation, they are actually measuring the dissimilarities.
This means the more spatial details added to the fused image,
the worse the fusion quality will be evaluated. This is partic-
ularly the case for urban areas, where the ground cover is not
homogeneous but has spatial variations at a small scale. This
explains the trade-off between spectral preservation and spatial
improvement performance. For the evaluation of spatial im-
provement, we used UIQI as an example to illustrate that the
statistical indices only work if the spatial details have been lost.
However, in the case of spatial details gain, these indices do
reflect them as spatial improvements. Later, we experimented
with fusion Sentinel 2 multispectral bands. It proves again that
the places where spatial improvements are visible they are eval-
uated as low performance of spectral preservation and spatial
improvement by ERGAS and UIQI. In this experiment, we took
extreme examples, where input spectral bands have no overlap
at the spectral spectrum. These extreme examples partly reflect
the ongoing research of multi-focus, multi-model image fusion,
where the input image often have no overlap at the spectral
spectrum, such as the fusion between thermal and visible im-
ages. Overall, this paper argues that statistical indices do not
provide a complete picture of fusion quality.

Moreover, this paper lists the factors which will change the
pixel values and thereby change image statistics. Attention
should be paid to these factors when statistical indices are used
for the quantitative measurement of fusion quality. As some
research has pointed out, one direction for future research is a
standardized visual quality assessment to objectively compare
fusion quality (Pohl et al., 2017). It might be useful to extend
such a quality assessment and develop more robust quantitative
measurements.
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