
Critical regions and region-disjoint paths
in a network

Stojan Trajanovski, Fernando A. Kuipers, Piet Van Mieghem
Delft University of Technology

Delft, The Netherlands

{S.Trajanovski, F.A.Kuipers, P.F.A.VanMieghem}@tudelft.nl

Aleksandar Ilić
Facebook Inc.

Menlo Park, CA, USA

ailic@fb.com

Jon Crowcroft
University of Cambridge

Cambridge, UK

Jon.Crowcroft@cl.cam.ac.uk

Abstract—Due to the importance of communication networks
to society, it is pertinent that these networks can withstand
failures. Improving the robustness of a network usually requires
installing redundant resources, which is very costly. Network
providers are consequently less inclined to take robustness mea-
sures against failures that are unlikely to manifest, like several
failures coinciding simultaneously in different geographic regions
of their network. Protecting against single regional failures is
more realistic. Network robustness, in terms of connectivity
properties, also requires survivability algorithms to quickly
reroute traffic affected by a network failure.

In this paper, we consider a network embedded in a plane and
study the problem of finding a circular region with radius r in
that plane that would cause the biggest network degradation if
all nodes within that particular region were to be destroyed.
We propose a polynomial time algorithm for finding such
critical regions. In addition, we develop a region-aware network
augmentation technique to decrease the impact of a critical-
region failure. We subsequently consider the region-disjoint paths
problem, which asks for two paths with minimum total weight
between a source (s) and a destination (d) that cannot both
be cut by a single circular regional failure of radius r (unless
that failure includes s and d). We prove that the region-disjoint
paths problem is NP-hard and propose and evaluate a heuristic
algorithm for it.

Index Terms—Survivability; Region-disjoint paths; Determin-
ing critical regions; Network augmentation

I. INTRODUCTION

In communication networks, when network failures occur,

they usually consist of (a) one node or link failure (e.g., when

a cable is cut); (b) an entire affected region (e.g., due to the

failure of a base station, a natural disaster, or a targeted attack)

or (c) cascading failures [1]. A fourth category of multiple

network failures at several geographic locations occurring in

a short time interval is less likely to take place, even though

it could be the result of a series of malicious attacks. Some

studies [2], [3], [4] do consider multiple network failures

to test the robustness of a network. These studies typically

either randomly take out a fraction of the nodes or links and

study the connectivity properties of the remaining network [2]

or a targeted attack is simulated in which several of the

most important nodes or links (according to some criterion)

are removed from the network [5]. Increasing the robustness

of a network usually requires installing redundant resources

or over-provisioning, which is unfortunately very costly. In

general, network providers are only inclined to take preventive

robustness measures for events that have a realistic chance

of occurring, such as a single, rather than multiple, regional

failure.

If a network is robust, in terms of connectivity, survivability

algorithms are needed to exploit this robustness by quickly

rerouting traffic affected by a network failure. Among the

three categories, the single link- or node-failure scenario has

been most studied or assumed by the research community

and various link- or node-disjoint paths algorithms have been

devised to find two disjoint paths, where one backup path takes

over when the other primary path fails (e.g., see [6], [7]).

This paper considers the context of a single regional failure

by investigating two problems. We start with the problem

of finding a critical region - identified by a circular area of

radius r - in the network whose failure (of the nodes inside

that region) would be most disruptive to the network. For

cases in which the network is deemed to be too vulnerable

to the failure of a critical region, we propose a technique to

augment the network such that the vulnerability is reduced.

The second problem under consideration asks for two region-
disjoint paths, between source s and destination d, with

a minimum total weight, such that each intermediate node

(between s and d) from the first path is on a distance greater

than 2r from every intermediate node in the second path. In

this case, no single regional failure can destroy both paths

unless that failure affects s and d (Fig. 1).

1st path

r

2nd path

r
one path is affected

both paths cannot be affected
by a single failure

s
d

Fig. 1: An example of two region-disjoint paths that cannot

both be cut by the failure of a single region with radius r.

Our main contributions are:

(a) A polynomial time algorithm that determines critical



2

regions in a network for any network metric;

(b) A network augmentation technique for improving the

robustness against regional failures;

(c) A proof that the region-disjoint paths problem is strongly

NP-hard and, subsequently, a polynomial time heuristic

for the region-disjoint paths problem.

Neumayer et al. [8] have also considered the problem of

determining critical regions. However, in their model, they

assume that the failure of a region affects all nodes and links,

even those that are only traversing and have no terminating

nodes in that region. While this may correspond to a realistic

scenario in the case of an earthquake, it may be too restrictive

for countries not on a fault line and for other scenarios, e.g. for

wireless or radio networks, floods, etc. In the model considered

in this paper, we therefore consider that the failure of a region

disrupts all nodes and their attached links in that region, but

not any traversing links.

This paper is structured as follows. Section II presents the

region-based model and problem definitions. In Section III,

we provide a polynomial time algorithm for detecting critical

regions and study a network augmentation strategy to make

the network more resilient against the failure of a region. The

NP-hardness of the region-disjoint paths problem is proved and

a heuristic is proposed in Section IV. The evaluation of our

proposed algorithms is conducted in Section V. An overview

of the state-of-the-art is given in Section VI. We conclude in

Section VII.

II. THE MODEL AND PROBLEM STATEMENT

We start with a presentation of our network model and the

problems considered.

Model: We represent a network as a weighted (directed or

undirected) graph G(N ,L) in a plane consisting of a set N
of N nodes and a set L of L links. Each node i ∈ N has two-

dimensional coordinates (xi, yi). The distance between two

nodes u and v is denoted by d(u, v). The weight of a link

(i, j) ∈ L is denoted by w(i, j). The weight may reflect the

distance, but it could also reflect another metric.

We define the critical region C(O(xj , yj), r;X) to be the

circular area with center O(xj , yj) and radius r for which

the removal of all nodes in that area, and the links incident

to them, leads to a maximum decrease in a certain network

metric X . The network metric X could for instance represent

the number of affected nodes, the average shortest path length,

the number of connected pairs of nodes, the size of the

giant component, or some service function like packet loss

or average delay. Fig. 2 presents an example of a network for

which a critical region is identified. There might be multiple

critical regions that affect the metric X to the same degree.

For a given value r, two sets of nodes A and B are region
disjoint if each node a ∈ A is on a distance greater than

2r from every node in B. Two paths are said to be region
disjoint, if the set of intermediate nodes in the first path is

region disjoint with the set of intermediate nodes in the second

path. In some cases, the first hop from s might always lie

within the region of s, in which case no region-disjoint paths

could ever exist. However, in that case we could consider the

region of s (and similarly d) and its incoming or outgoing

links as a single source node attached to those incoming and

outgoing links. We are now ready to define our two main

problems.

Critical region problem: For a given network G(N ,L), and

a given radius r, find a critical region C(O(xj , yj), r;X) with

respect to the network metric X .

critical region

r

(xj,yj)

(0,0) x

y

Fig. 2: Critical region.

Region-disjoint paths problem: Given a network G(N ,L)
with positive link weights, find two region-disjoint paths from

s to d, with a minimum total weight as reflected by the sum

of the link weights in the two paths.

III. CRITICAL REGION DETECTION AND MITIGATION

In this section, we will first demonstrate that critical regions

can be found in polynomial time, after which we present a

greedy network augmentation approach to reduce the impact

of a failure of the critical region.

A. Polynomial time solvability

In principle, an infinite amount of circles exists within a

plane. Fortunately, as we will proceed to demonstrate, the

number of relevant circles is polynomially bounded in the

input N . The crux is, as formalized in Lemma 1, that we

may confine ourselves to only considering circles for which

the circumference passes through two or more nodes.
Lemma 1: If there exists a circle with radius r that covers

a set of nodes S , then that same set S could also be covered

by at least one of the circles with radius r that passes through

two distinct nodes in S .
Proof: Let us assume that we have an arbitrary circle C1

that covers a set S of m nodes. As exemplified in Fig. 3a, we

can move C1 along the x-axis as long as it does not contain

(at least) one node A ∈ S on the circumference. The resulting

circle, C2, contains the same set of nodes S or includes more

nodes. It cannot include fewer nodes, because that would

mean that a node would have crossed the circumference. We

continue to rotate (either clockwise or counter-clockwise over

node A) C2 until it contains (at least one) node B ∈ S (in

Fig. 3a). That circle, C3 contains the set S with two nodes A
and B on the circumference.

For two nodes A and B, it is possible to construct at most

two different circles with radius r that pass through A and



3

(0,0) x

y

A

C1 C2

C3

translation along x (C1 to C2)

rotation
along node A

(C2 to C3)

B

S

(a)

C C’
A

 

B

r

O2
.

r

 

r r

O1

(b)

Fig. 3: (a) Visualization of (the proof of) Lemma 1.

(b) Possible circles with radius r through nodes A and B.

B (in Fig. 3b): exactly two if the distance between A and

B is smaller than 2r, one if it is equal to 2r and zero if it

is greater than 2r. The centers of these circles can be found

in O(1) time. Having
(
N
2

)
different pairs of nodes results in

a maximum of N(N − 1) possible circles. If a node is on

a distance greater than 2r to all the other nodes, then we

add an arbitrary circle that contains (or passes through) this

node. Consequently, an algorithm that considers all possible

circles and checks which nodes are inside to find the critical

region(s) will have a complexity of O(N3 · C), where O(C)
is the complexity of finding the change in network metric X
after the failure of a region.

B. Region-critical network augmentation

In order to make the network more robust, we may augment

the network by adding k links, preferably of minimum total

weight. Since augmenting a network to increase node- or

link-connectivity is NP-complete for weighted networks [9],

our network augmentation problem is also NP-complete for

various metrics X . Since augmenting a network is a “design”

problem, time complexity may be of secondary concern. In

that case, by examining all possible combinations of k links,

we could choose the best combination of links to be added.

For large k, the running time may get too large. We will

therefore demonstrate that a much faster greedy approach that,

out of all the available links, only adds that one link which

realizes the greatest reduction in network degradation after

failure of the critical region (i.e., the network vulnerability as

measured in the network metric X and when compared with

the network vulnerability prior to the link addition), already

leads to significant improvements. There might be multiple

available links that equally reduce the network vulnerability. In

this case and when possible, we choose the link that does not

connect to any other critical region1. Adding one link may be

insufficient to (substantially) reduce the network vulnerability.

In that case, we might repeat the greedy algorithm k times,

depending on the number of links to be added. The complexity

of our network augmentation strategy is O(k ·LḠ ·C), where

O(C) is the time complexity of finding the network metric

change after a link addition and LḠ reflects the number of

links in the complement graph Ḡ of the original network.

Considering the number of connected pairs as our metric X ,

we demonstrate the link addition strategy in a simple network

in Fig. 4a. The distances between nodes 1 and 2; 2 and 3; 3
and 4 are all three and the radius of failure r = 1. The network

is connected, therefore the initial number of connected pairs is

6. As there is no circle with radius one that passes through two

nodes, we detect two critical regions, around nodes 2 and 3,

whose single failure results in only one connected pair. There

are three possibilities for a link addition: (1, 3), (2, 4) and

(1,4). If we add a link between nodes 1 and 3 (in Fig. 4b) to

protect against the critical region around node 2, the number

of connected pairs would not be decreased as the failure of the

critical region around node 3 would lead to only nodes 1 and

2 to be connected). It did improve robustness in the sense that

the number of critical regions reduced. The same applies to

adding the link (2, 4) (in Fig. 4c). If we add the link (1, 4) that

is not connected to any critical region then we always have

three connected pairs after any single critical region failure as

shown in Fig. 4d.

1

2 4

3
3 3 3

(a)

1

2 4

3

(b)

1

2 4

3

(c)

1

2 4

3

(d)

Fig. 4: Example of the network augmentation technique, with

r = 1. (a) The original network. There are three possibilities

for a link addition (shown in dotted lines). (b) Link (1, 3)
is added. Critical region around 3 remains; (c) Link (2, 4) is

added. Critical region around 2 remains; and (d) Link (1, 4)
is added. Failure of any single critical region always leaves

three connected pairs.

In Section V, we present an evaluation of our greedy

network augmentation when applied to real-world networks.

Instead of adding a fixed number of links, another variant

consists of adding links as long as the network metric X does

not meet a certain threshold, set by a network provider.

1In our simulations we take w(u, v) = d(u, v). If different weights are
used, one could break ties by choosing the link with lower weight.



4

IV. REGION-DISJOINT PATHS PROBLEM

The region-disjoint paths problem is equivalent to finding

two node-disjoint paths from s to d with a minimum total
weight, such that each intermediate node from the first is on a

distance at least 2r from all the intermediate nodes from the

second path.
First, we show that the problem is strongly NP-hard. Sub-

sequently, we propose a heuristic polynomial time region-

disjoint paths algorithm.

A. Complexity of the problem
We provide a polynomial time reduction for the 3SAT prob-

lem2, which is known to be NP-complete [10]. We use a graph

structure called lobe [11]. We use the lobe to construct a graph

from a 3SAT problem and on which finding two region-disjoint

paths would provide a solution to that 3SAT problem, thus

proving NP-hardness. We will assume undirected networks,

although the results also apply to directed networks, since

directed links could also have been used.

Graph Construction. For a given 3SAT instance, we create a

lobe for each variable xi, i = 1, 2, . . . , n. Denoting by pi the

number of occurrences of variable xi (in an auxiliary form xi

or as a negation x̄i), the lobe of xi contains (4pi + 2) nodes:

xi, xi+1, ui
j , v

i
j , ū

i
j , v̄

i
j for each j = 1, 2, . . . , pi. We construct

the links:
(
xi, u

i
1

)
,
(
xi, ū

i
1

)
,
(
vipi

, xi+1

)
,
(
v̄ipi

, xi+1

)
all with

a weight 1; (ui
j , v

i
j) with a weight 0, (vij , u

i
j+1) with a weight

1, (ūi
j , v̄

i
j) with a weight 0, (v̄ij , ū

i
j+1) with a weight 1 for each

j = 1, 2, . . . , pi. In Fig. 5, the lobe of variable xi is depicted,

which contains two parallel disjoint branches.

1
iu

ix

1
iv 2

iu 2
iv

i
i
pu i

ipv

1ix �

1
iu 1

iv 2
iu i

i
pu2

iv i
i
pv

0 1 0

0 0 0

0

1

1

1 1

1
. . .

. . .

i

iU

D

Fig. 5: Lobe of xi.

The links with weight 0 are shown with dotted lines and the

links with weight 1 with solid lines. All n lobes are connected

in series (the i-th lobe is connected to the (i+ 1)-th lobe),

starting from s = x1 to d = xn. Further, for each clause i
of the 3SAT instance, we construct two nodes yi and zi. A

link (zi, yi+1) with a weight 0 is established for each i =
1, 2, . . . ,m − 1. Additionally, links (s, y1) and (zm, d), each

with weight 0, are constructed. To relate the clauses with the

variables, we have the following: (i) if the k-th occurrence of

variable xi exists without negation in clause Cj , then links(
yj , u

i
k

)
and

(
vik, zj

)
are added; or (ii) if the k-th occurrence

of variable xi exists with a negation (x̄i) in clause Cj , then

links
(
yj , ū

i
k

)
and

(
v̄ik, zj

)
are added. The final graph is shown

in Fig. 6.

23SAT is a formula satisfiability problem, with an input logical expression
C1∧C2∧. . . Cm, where Ci are logical expressions of 3 variables (in auxiliary
or negated forms) connected by ∨, which asks whether it is possible to assign
boolean values to the variables so that the formula evaluates to TRUE.

1y
1z 0

lobe of x1 lobe of x2 lobe of xn

00
2

y 2z my mz

2x 3x nxs d

0 0
0 0 0

0
0

0 0
0

0 0
0

0 0
0

. . .

. . .

1 2 n

n1 2

U U U

DDD

R

Fig. 6: Constructed graph.

The position of all the nodes in the Euclidean plane is

defined in the following way. We set the nodes ui
j , v

i
j from

the upper part of each lobe xi such that they are all on a

distance not greater than 2r from each other and they are

all on a distance greater than 2r from all the other nodes in

the constructed graph. We denote the union of these nodes by

Ui =
pi⋃
j=1

ui
j ∪

pi⋃
j=1

vij . Similarly, for the lower part of each

lobe xi, we set the nodes ūi
j , v̄

i
j , such that they are all on

a distance not greater than 2r from each other and they are

all on a distance greater than 2r from all the other nodes in

the constructed graph. We denote the union of these nodes

by Di =
pi⋃
j=1

ūi
j ∪

pi⋃
j=1

v̄ij . Finally, all the nodes yi and zi,

i = 1, 2, . . . ,m are on a distance not greater than 2r from

each other and they are all on a distance greater than 2r
from all the other nodes in the constructed graph. We denote

these nodes by R =
m⋃
i=1

yi ∪
m⋃
i=1

zi. All the sets R,Ui,Di for

i = 1, 2, . . . ,m are pair-wise region disjoint. The construction

of the graph can be done in polynomial time.

An example of the aforementioned construction of the

graph, for a 3SAT instance, is given in Fig. 7.

1y 1z

lobe of x1 lobe of x2 lobe of x4

2y 2z

2x 3x nxs d

3y 4y3z 4z

lobe of x3

Fig. 7: Constructed graph that corresponds to (x1∨x2∨x3)∧
(x1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4).

Theorem 1: The problem of finding two region-disjoint

paths with minimum total weight is strongly NP-hard.

Proof: We will demonstrate that we could solve any

instance of the 3SAT problem by solving the region-disjoint

paths problem on a graph obtained via the polynomial time

transformation of the 3SAT instance explained before.

3SAT to Region-disjoint paths. Let us assume there is an

assignment τ , such that all m clauses are satisfied. For each

clause Cj : (i) there exists a variable xi (in non-negated



5

form) such that τ(xi) = TRUE in which case we use links(
yj , u

i
k

)
,
(
ui
k, v

i
k

)
,
(
vik, zj

)
or (ii) there exists a variable x̄i

in Cj , such that τ(xi) = FALSE in which case we use

links
(
yj , ū

i
k

)
,
(
ūi
k, v̄

i
k

)
,
(
v̄ik, zj

)
. Together with links (s, y1),

(zm, d), (zi, yi+1) for j = 1, 2, . . . ,m − 1 they form a path

P1 with weight 0. In addition, there is another path P2 that

traverses through the lower part of xi’s lobe (Di) if τ(xi) =
TRUE or the upper part (Ui) if τ(xi) = FALSE, for each

i = 1, 2, . . . ,m. Paths P1 and P2 are region-disjoint and have

a minimum total weight, namely
n∑

i=1

(pi + 1).

Region-disjoint paths to 3SAT. Let us assume there are two

region-disjoint paths P1 and P2 with minimum total weight.

It is important to notice that it is not possible for both P1

and P2 to contain nodes yi or zi at the same time, because

there will be two paths that traverse through nodes from R,

therefore P1 and P2 will not be region disjoint. Consequently,

at most one path, without loss of generality P1, uses (some or

all) the nodes yi and zi and the other, P2, traverses through all

the lobes. We denote by w(P ) the sum of the weights of all

the links in the path P . Because the total weight of traversing

links through a lobe is the same (pi) when either using the

upper (Ui) or the lower part (Di), the total weight of P2 is

w(P2) =
n∑

i=1

(pi+1). Hence, the total weight of P1 and P2 is

w(P1)+w(P2) ≥
n∑

i=1

(pi+1), with an equality if w(P1) = 0,

i.e. all the link weights equal 0. This is only possible if P1

uses links (s, y1), (zm, d), (zi, yi+1) and either (i)
(
yj , u

i
k

)
,(

ui
k, v

i
k

)
,
(
vik, zj

)
or (ii)

(
yj , ū

i
k

)
,
(
ūi
k, v̄

i
k

)
,
(
v̄ik, zj

)
are not

occupied by P2. In (i) we set τ(xi) = TRUE, while for (ii)

we set τ(xi) = FALSE. Finally, by this truth assignment, all

m clauses become satisfied. Since only {0, 1} weights have

been used, the problem is strongly NP-hard.

B. Heuristic region-disjoint paths algorithm

Since a strongly NP-hard problem cannot be solved by a

FPTAS, unless P=NP, we propose a polynomial time heuristic

algorithm, named REGIONDISJOINTPATHS, for the region-

disjoint paths problem.

REGIONDISJOINTPATHS starts by finding two node-disjoint

paths P1 and P2 with minimum total weight, e.g. by using the

Suurballe-Tarjan algorithm [12], if possible, otherwise there

are no region-disjoint paths and the algorithm terminates. We

denote by critical pairs K the set of pairs of nodes, such that

one is in P1 and the other is in P2 on a distance not greater than

2r. Then, the algorithm partitions the nodes in the network into

two sets S1 and S2. A node belongs to the set S1 if it is closest

to a node in P1 \ {s, d}, otherwise the node belongs to S2,

which means that these nodes are closer to P2. We initialize a

set of “unavailable” nodes to an empty set (Q in Algorithm 1).

The algorithm finds a node k that appears in most of the pairs

in K, but is not in the set of “unavailable” nodes. Further, if

k ∈ S1 (k ∈ S2), the algorithm makes a local improvement

by finding the shortest path through the nodes in S1 (in S2)

that do not appear in Q and in a pair in K, between the first

predecessor a of k in P1 (in P2) and the first successor b of

k in P1 (in P2) that both do not appear in Q and in a pair in

K. The updated path P1 (or P2) comprises of the current part

from s to a, the newly determined shortest path from a to b and

the current part from b to d. REGIONDISJOINTPATHS iterates

by searching back for a new k that appears in most of the

pairs in K, but is not in the “unavailable” nodes, and updates

S1 and S2. If there are multiple nodes that appear in most

of the pairs in K, it chooses the one such that the resulting

total weight of P1 and P2 is minimal. The pseudo-code of

REGIONDISJOINTPATHS is given in Algorithm 1.

Algorithm 1: REGIONDISJOINTPATHS

input : Network G, radius r, source s, destination d
output: Region-disjoint paths P1 and P2

1 Find node-disjoint paths P1 and P2 between s and d, if

exist; otherwise Exit; Find the set of critical pairs K;

2 Initialize the set of “unavailable” nodes Q ← ∅;
3 Divide all the nodes in the network (except s and d) into

two disjoint sets S1 and S2 in the following way:

i ∈ S1 if i is the closest to some node in P1 \ {s, d} or

i ∈ S2 if i is the closest to some node in P2 \ {s, d};
4 If the set K = ∅ then stop, region-disjoint paths are

found or do not exist. Otherwise, find the node

k ∈ (P1 ∪ P2) \ Q that appears in most of the critical

pairs in K (if many the one with a minimum resulting

total weight of P1 and P2);

5 k ∈ Pj , where j ∈ {1, 2}. Find the shortest path Px

through nodes in Sj that do not appear in Q and in a

pair in K, between the first predecessor a and the first

successor b of k in Pj that do not appear in Q and in a

pair in K;

6 If Px does not exist Q ← Q∪ {k}, Go to Line 9;

7 Update Pj such that it consists of: the existing part in Pj

from s to a, Px and the current part from b to d in Pj ;

8 Update K, S1 and S2 based on P1 and P2;

9 G← G− k, Go to Line 4.

REGIONDISJOINTPATHS always terminates, since each

node can be picked for removal at most once. The complexity

of REGIONDISJOINTPATHS can be determined as follows.

Finding node-disjoint paths with a minimum total weight [12]

requires a complexity [13] of O(L + N log2N). Finding the

shortest path in S1 or S2 (after a node k is picked) can be done

in O(L+N log2N). The updates of the sets K, S1 and S2 all

require a worst-case complexity of O(N2) as O(N) nodes

may change in one of the paths, whose distances to the nodes

in the second path have to be compared. The number of nodes

that appear in pairs in the set K and could be picked is O(N),
which reflects the number of iterations. Consequently, the

total worst-case time-complexity of REGIONDISJOINTPATHS

is O(N3).
For comparison purposes, we also present (in Algorithm 2) a

naive algorithm, named DOUBLEDIJKSTRA, since it uses two

iterations of the Dijkstra shortest path algorithm [14]. The first



6

iteration finds the shortest path between s and d. Subsequently,

it removes all the nodes within a distance 2r from at least one

node in the first path different from s and d. Finally, the second

path is found by running Dijkstra’s algorithm in the pruned

network. Since it uses two Dijkstra algorithm iterations, the

complexity [13] of DOUBLEDIJKSTRA is O(L+N log2N).

Algorithm 2: DOUBLEDIJKSTRA

input : Network G, radius r, source s, destination d
output: Region-disjoint paths P1 and P2

1 P1 ← DIJKSTRA(s, d,G);
2 Find set S, which contains all the nodes in P1 \ {s, d}

and all the nodes on a distance at most 2r from a node in

P1 \ {s, d}, G′ ← G− S;

3 P2 ← DIJKSTRA(s, d, G′);

Since the region-disjoint paths problem is NP-hard, we

resort to an Integer Linear Program (ILP) to find the exact

solution. For each link (i, j) ∈ L, we define two variables

xij , yij ∈ {0, 1}. If a link (i, j) is on path P1 then xij = 1,

otherwise xij = 0 and if a link (i, j) is on path P2 then

yij = 1, otherwise yij = 0. The distances d(i, j) between

the nodes can be calculated beforehand in polynomial time

(O(N2) for all pairs). The 0-1 ILP formulation is as follows:

min
∑

(i,j)∈L
w(i, j) · (xij + yij)

s.t. (1)
∑
j∈N

(xij − xji) =

⎧⎨
⎩

1, if i ≡ s
−1, if i ≡ d
0, otherwise

(2)
∑
j∈N

(yij − yji) =

⎧⎨
⎩

1, if i ≡ s
−1, if i ≡ d
0, otherwise

(3) xij + ykl ≤ 1, if (d(i, k)≤ 2r, i /∈M, k /∈M) or

(d(i, l)≤ 2r, i /∈M, l /∈M) or

(d(j, k)≤ 2r, j /∈M, k /∈M) or

(d(j, l)≤ 2r, j /∈M, l /∈M), where M = {s, d}
(4) xsd + ysd ≤ 1

The objective function represents the total weight of the

region-disjoint paths. The equality conditions (1) and (2) are

“conservation rules” and ensure that for all the nodes (different

from s and d) in both P1 and P2, the number of incoming

and outgoing links is the same. For the source node s, there

is exactly one outgoing link for both P1 and P2, while for

the destination node d there is exactly one incoming link for

both P1 and P2. Condition (3) gives the region-disjointness

constraint, as it is not possible to have two nodes different from

s and d, one in link (i, j) ∈ P1 and one in link (k, l) ∈ P2

that are within a distance 2r. In condition (4), if there is a

direct link from s to d, that link will be used by at most one

path. Condition (4) is not a sub-case of (3).

C. An example of region-disjoint paths
In Fig. 8, two region-disjoint paths between Turin and

Palermo are depicted for the Italian main backbone net-

work. The (undisplayed) weights in the network are the

node-disjoint
paths

region-disjoint
paths

r

pp

pp

pp

pp

pp

pp

pp

pppp

pp

12 Bologna

Turin

Rome
Naples

Cagliari

Palermo

Fig. 8: Node-disjoint and region-disjoint paths in the Italian

backbone network.

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pppp

pp

pp

pp

72

757757

55555555555

(a) Europe.

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

pp

6666666

(b) ARPANET.

Fig. 9: Used network topologies.

geographical distances between the nodes. The two node-

disjoint paths of minimum total weight (which traverse through

Turin-Rome-Naples-Palermo and Turin-Cagliari-Palermo) are

depicted in solid lines. However, these paths cannot protect

against a failure of a circular region with radius r = 3000.



7

0 2000 4000 6000 8000
0

50

100

150

200

 r

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs original
original after failure
modified after failure

0 5000
0

1

2
x 105

 r

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(a) ARPANET.

0 2000 4000 6000
0

100

200

300

400

500

 r

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs original
original after failure
modified after failure

0 5000
0

5

10
x 104

 r

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(b) Italy.

0 0.5 1 1.5 2
x 104

0

1000

2000

3000

4000

5000

6000

 r

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs

original
original after failure
modified after failure

0 1 2

x 104

0

1

2

3
x 106

 r

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(c) Europe.

Fig. 10: The number of disconnected pairs and the average shortest path length (inset) as a function of the failure radius r.

Ten links were added to each of the modified networks. The number of disconnected pairs in the original network is 0.

0 10 20 30 40
0

50

100

150

number of added links

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs

original
original after failure
modified after failure

0 20 40
0

5000

10000

15000

number of added links

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(a) ARPANET (r = 3672).

0 10 20 30 40
0

100

200

300

400

number of added links

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs

original
original after failure
modified after failure

0 50
0

5000

10000

number of added links

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(b) Italy (r = 3152).

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

number of added links

N
um

be
r o

f d
is

co
nn

ec
te

d 
pa

irs

original
original after failure
modified after failure

0 50
0

5

10
x 104

number of added links

A
ve

ra
ge

 sh
or

te
st

 p
at

h 
le

ng
th

(c) Europe (r = 10185).

Fig. 11: The number of disconnected pairs and the average shortest path length (inset) as a function of the number of added

links, for a fixed value of the failure radius r.

REGIONDISJOINTPATHS returns region-disjoint paths such

that one of the paths is the same as in the initial node-

disjoint paths, but the other path differs (Turin-Bologna-

Naples-Palermo, shown with dashed lines). Moreover, the ILP

confirms that this solution is exact. DOUBLEDIJKSTRA could

not find a solution.

D. Region-disjoint paths under non-circular failures

A solution to the region-disjoint paths problem for circular

shaped regions is immediately applicable to regions of any

shape. The diameter of a particular regional shape is the

longest distance between any two points (not nodes) in that

region. In order for two nodes to be region disjoint, they

will have to lie on a distance greater than the diameter from

each other. Consequently, the region-disjoint paths problem

for regional failures of any arbitrary shape with a diameter D
is equivalent to the problem of finding region-disjoint paths

problems under circular failures with radius r = D/2.

V. EVALUATION STUDY

In this section, we evaluate the performance of our greedy

network augmentation strategy and we evaluate the accuracy

and running time of our REGIONDISJOINTPATHS algorithm.

A. Used data

We use three real-world network data sets: the Italian

main backbone network (in Fig. 8), the main backbone fiber

connections in Europe [15] (in Fig. 9a) and for benchmarking

purposes the infrastructure of the ARPANET network [16]

(in Fig. 9b). Through longitude and latitude information, the

geographical distances between the nodes can be derived. The

properties of the used networks are given in Table I.

TABLE I: Real networks used in the evaluation.

Networks N L Description

ARPANET 20 32 first packet switching network [16]
Italy 32 62 main fiber connections in Italy

Europe 108 151 main fiber connections in Europe [15]

B. Evaluation of region-critical network augmentation

We examine the effect of our network augmentation strategy

on the number of disconnected pairs (i.e., the number of

connected pairs of the original network minus the number

of remaining connected pairs) and the average shortest path

length of the connected pairs. In Fig. 10, we present the

numbers of disconnected pairs (main plot) and the average



8

22.16 221.68 4433.54 9975.47
0

50

100

150

200

 r

N
um

be
r o

f s
uc

ce
ss

fu
l r

eq
ue

st
s

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

(a) ARPANET.

16.33 163.26 3265.31 7346.96
0

100

200

300

400

500

 r

N
um

be
r o

f s
uc

ce
ss

fu
l r

eq
ue

st
s

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

(b) Italy.

42.63 426.28 8525.52 19182.5
0

1000

2000

3000

4000

5000

6000

 r

N
um

be
r o

f s
uc

ce
ss

fu
l r

eq
ue

st
s

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

(c) Europe.

Fig. 12: Number of successful requests. All pairs of nodes are requests. Variable r reflects the radius of failure.

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

 r

R
un

ni
ng

 ti
m

e 
(m

s)

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

0 5000 10000
0

10

20

30

 r

R
un

ni
ng

 ti
m

e 
(m

s)

(a) ARPANET.

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5 x 104

 r

R
un

ni
ng

 ti
m

e 
(m

s)

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

0 5000
0

20

40

 r

R
un

ni
ng

 ti
m

e 
(m

s)

(b) Italy.

0 0.5 1 1.5 2
x 104

0

5

10

15 x 105

 r

R
un

ni
ng

 ti
m

e 
(m

s)

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

0 1 2

x 104

0

50

100

 r

R
un

ni
ng

 ti
m

e 
(m

s)

(c) Europe.

Fig. 13: Average running times of the algorithms over all pairs of nodes. Variable r reflects the radius of failure.

shortest path lengths (inset) for (i) the original network (the

solid, black, horizontal line), (ii) the original network after

a critical region failure and (iii) the modified network after

failure of a critical region, as a function of the radius of failure.

The network augmentation strategy has been repeated ten

times: consequently ten new links were added to each network.

The results show a substantial reduction in the number of

disconnected pairs and in the average shortest path lengths, as

a result of the network augmentation. The curve for the number

of disconnected pairs of the modified network approaches that

of the original for high values of the radius, because most of

the nodes are then affected, leaving no effective protection.

In Fig. 11, we examine the effect on the number of

disconnected pairs and the average shortest path length as a

function of the number of added links. For small networks

(ARPANET in Fig. 11a and Italy in Fig. 11b), only few links

are required to reduce the number of disconnected pairs and

further link additions would not have an effect as the remaining

disconnected pairs are attributed to nodes residing inside a

critical region (which therefore cannot be protected against

the failure of that region). For Europe (in Fig. 11c), more

links are required to reduce the number of disconnected pairs.

In all three networks, the average shortest path lengths are

shortened as more links are added, where a few added links

already realize a significant reduction.

C. Evaluation of region-disjoint paths algorithms

The accuracy of REGIONDISJOINTPATHS is evaluated

by comparing it to an exact ILP solution and the naive

DOUBLEDIJKSTRA algorithm. For each network, the requests

consist of all the possible pairs of distinct nodes. Fig. 12

depicts the success rates of the three algorithms. The results

vary for different values of r that reflects the radius of

failure, but the algorithm REGIONDISJOINTPATHS correctly

finds region-disjoint paths in a significant number of cases.

On the other hand, DOUBLEDIJKSTRA has a much worse

performance, because greedily removing a first shortest path

may jeopardize finding a second path.

The average running times of the three algorithms over all

possible requests (pairs of nodes) are shown in Fig. 13. The

algorithms have been implemented in the same programming

language, using the same libraries and the simulations have

been conducted on the same machine3. Fig. 13 shows that

solving the ILP requires significant running time, orders of

magnitude greater than for the REGIONDISJOINTPATHS and

DOUBLEDIJKSTRA algorithms, which is unacceptable when

paths need to be computed on the fly for dynamically arriving

requests. The running times of REGIONDISJOINTPATHS and

3Intel(R) Core 2 Duo T9600 - 2 × 2.80GHz, 4GB RAM memory; using
JAVA libraries: JUNG (http://jung.sourceforge.net/) for network representa-
tions and algorithms and lpsolve (http://lpsolve.sourceforge.net/) for the ILP.



9

DOUBLEDIJKSTRA do not differ much, while the improved

accuracy of REGIONDISJOINTPATHS clearly outweighs the

slight increase in time over the DOUBLEDIJKSTRA algorithm.

VI. RELATED WORK

The problem of finding link- or node-disjoint paths in a

network between two nodes has been widely explored under

different scenarios, e.g. see [17], [12], [6], [18], [19], [20],

[21], [7]. Suurballe [17] proposed a polynomial time algorithm

to find k node- or link-disjoint paths with minimum total

weight (i.e., the min-sum objective). Subsequently, an opti-

mized algorithm was proposed by Suurballe and Tarjan [12]

to find 2 link- or node-disjoint paths from a source to all other

nodes. Finding disjoint paths for other objective functions has

been studied in [18], [22], [23], among others. Contrary to

the min-sum objective, these objectives typically lead to NP-

complete problems.
Much work on the robustness of a network against ge-

ographical failures has been done by Neumayer et al. [8],

[24], [25]. However, they use a different failure model than

the one presented in this paper. Agarwal et al. [26] study

a probabilistic geographical failure model. Sen et al. [3]

consider the problem of finding region-disjoint paths for the

case that critical regions are fixed and predetermined. Banerjee

et al. [27] have taken a different application domain, namely

that of distributed file storage in a network, in which data

resiliency is provided to regional failures.

VII. CONCLUSION

This paper has studied robustness problems in relation to

the geographical embedding of a network. We have provided

a polynomial time algorithm to determine a circular critical

region with a radius r that, after the removal of all the

covered nodes (and their incident links), would cause the

biggest change in a given network metric. This algorithm can

be used to detect the most vulnerable parts in a network. We

also proposed a region-aware network augmentation strategy

to increase the network robustness to regional failures. By

applying our augmentation strategy to three real networks, we

have demonstrated that adding only a few links may already

induce significant robustness gains. Subsequently, we have

studied the problem of finding two region-disjoint paths with

a minimum total weight such that they cannot both be cut

by a single regional failure with a given diameter, unless that

failure affects the source or the destination. Region-disjoint

paths are needed to quickly reroute traffic upon the failure

of a region. We have proved the NP-hardness of the region-

disjoint paths problem and subsequently proposed an efficient

polynomial time heuristic for it. The comparison with an exact

exponential-time algorithm shows that our proposed algorithm

correctly finds region-disjoint paths in most of the cases, while

being orders of magnitude faster than the exact algorithm.

ACKNOWLEDGMENT

This research has been partly supported by the EU FP7

Network of Excellence in Internet Science EINS (project no.

288021) and by the GigaPort3 project led by SURFnet.

REFERENCES

[1] S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin,
“Catastrophic cascade of failures in interdependent networks,” Nature,
vol. 464, pp. 1025–1028, Apr. 2010.

[2] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, “Resilience of the
internet to random breakdowns,” Phys. Rev. Lett., vol. 85, pp. 4626–
4628, Nov. 2000.

[3] A. Sen, S. Murthy, and S. Banerjee, “Region-based connectivity - a new
paradigm for design of fault-tolerant networks,” in Int. Conference on
High Performance Switching and Routing, pp. 1 –7, June 2009.

[4] W. Zou, M. Janic, R. Kooij, and F. A. Kuipers, “On the availability of
networks,” in Proc. of BroadBand Europe, Dec. 2007.

[5] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, “Breakdown of the
internet under intentional attack,” Phys. Rev. Lett., vol. 86, pp. 3682–
3685, Apr. 2001.

[6] R. Bhandari, Survivable Networks: Algorithms for Diverse Routing.
Kluwer Academic Publishers, 1999.

[7] F. A. Kuipers, “An Overview of Algorithms for Network Survivability,”
ISRN Communications and Networking, vol. 2012, no. 932456, 2012.

[8] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” IEEE/ACM Trans.
on Networking, vol. 19, no. 6, pp. 1610–1623, 2011.

[9] G. Frederickson and J. JáJá, “Approximation algorithms for several
graph augmentation problems,” SIAM Journal on Computing, vol. 10,
no. 2, pp. 270–283, 1981.

[10] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1990.

[11] A. Itai, Y. Perl, and Y. Shiloach, “The complexity of finding maximum
disjoint paths with length constraints,” Networks, vol. 12, no. 3, pp. 277–
286, 1982.

[12] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Networks, vol. 14, no. 2, pp. 325–336, 1984.

[13] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, pp. 596–
615, July 1987.

[14] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[15] Level 3 Communications, “Level 3 Network map.” available on:
http://www.level3.com/en/resource-library/maps/level-3-network-map/.

[16] “ARPANET Maps.” available on: http://www.10stripe.com/featured/map/
arpanet/arpanet-1972-aug.php.

[17] J. W. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2,
pp. 125–145, 1974.

[18] D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He, “On finding disjoint
paths in single and dual link cost networks,” in INFOCOM, vol. 1, pp. 4
vol. (xxxv+2866), IEEE, March 2004.

[19] Y. Guo, F. A. Kuipers, and P. Van Mieghem, “Link-disjoint paths for
reliable QoS routing,” Int. J. Communication Systems, vol. 16, no. 9,
pp. 779–798, 2003.

[20] R. Andersen, F. Chung, A. Sen, and G. Xue, “On disjoint path pairs
with wavelength continuity constraint in wdm networks,” in INFOCOM,
vol. 1, pp. 4 vol. (xxxv+2866), IEEE, March 2004.

[21] A. A. Beshir, F. A. Kuipers, A. Orda, and P. Van Mieghem, “On-line
survivable routing in WDM networks,” in 21st International Teletraffic
Congress (ITC 21), Sept. 2009.

[22] Q. She, X. Huang, and J. P. Jue, “Maximum survivability using two dis-
joint paths under multiple failures in mesh networks,” in GLOBECOM,
IEEE, Dec. 2006.

[23] A. A. Beshir and F. A. Kuipers, “Variants of the min-sum link-disjoint
paths problem,” in 16th Annual Symposium on Communications and
Vehicular Technology (SCVT), IEEE, Nov. 2009.

[24] S. Neumayer and E. Modiano, “Network reliability with geographically
correlated failures,” in INFOCOM, pp. 1658–1666, IEEE, March 2010.

[25] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-flow and min-
cut under a circular disk failure model,” in INFOCOM, pp. 2736–2740,
IEEE, March 2012.

[26] P. Agarwal, A. Efrat, S. Ganjugunte, D. Hay, S. Sankararaman, and
G. Zussman, “Network vulnerability to single, multiple, and probabilistic
physical attacks,” in MILCOM, pp. 1824 –1829, IEEE, Nov. 2010.

[27] S. Banerjee, S. Shirazipourazad, and A. Sen, “On region-based fault
tolerant design of distributed file storage in networks,” in INFOCOM,
pp. 2806 –2810, IEEE, March 2012.


