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 49 

Abstract 50 

 51 

Livestock grazing intensity (GI) is thought to have a major impact on soil organic carbon 52 

(SOC) storage and soil quality indicators in grassland agroecosystems. To critically 53 

investigate this, we conducted a global review and meta-analysis of 83 studies of extensive 54 

grazing, covering 164 sites across different countries and climate zones. Unlike previous 55 

published reviews we have normalized the SOC and total nitrogen (TN) data to a 30 cm depth 56 

to be compatible with IPCC guidelines. We also calculated a normalized GI and divided the 57 

data into four main groups depending on the regional climate (dry warm, DW; dry cool, DC; 58 

moist warm, MW; moist cool, MC). Our results show that taken across all climatic zones and 59 

GIs, grazing results in a decrease in SOC storage, although its impact on SOC is climate-60 

dependent. All GI levels increased SOC stocks under the MW climate (+7.6%) whilst there 61 

were reductions under the MC climate (-19%). Nevertheless, under the DW and DC climates, 62 

only the low (+5.8%) and low to medium (+16.1%) grazing intensities, respectively, were 63 

associated with increased SOC stocks. High GI significantly increased SOC for C4-64 

dominated grassland compared to C3-dominated grassland and C3-C4 mixed grasslands. It 65 

was also associated with significant increases in rate of TN change and bulk density but has 66 

no effect on soil pH. To protect grassland soils from degradation, recommended GI and 67 

management practices will differ according to climate region and grass’s type (C3 or C4 or 68 

C3-C4 mixed). 69 
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 70 

1. Introduction 71 

 72 

Grasslands cover approximately 40% of the earth’s land surface (Wang and Fang, 2009) and 73 

represent about 70% of the agricultural area (Conant, 2012). They store about 10% of 74 

terrestrial biomass and make a contribution of about 20-30% to the global pool of soil organic 75 

carbon (SOC) (Scurlock and Hall, 1998; Conant et al., 2012). Grasslands have some potential 76 

to sequester atmospheric CO2 as stable carbon (C) in the soil (Reid et al., 2004) and hence 77 

could contribute to mitigation of climate change (Allard et al., 2007). However, the 78 

accumulation and storage of C in grasslands is influenced by many factors especially biotic 79 

factors e.g. grazing intensity (GI), animal type and grass species (Conant et al., 2001; Olff et 80 

al., 2002; Jones and Donnelly, 2004; McSherry and Ritchie, 2013). Nevertheless, although 81 

grasslands have high SOC contents, recent studies have suggested that intensive livestock 82 

management has led to C losses from many grasslands around the world and thereby, 83 

grassland soils could become a source rather than a sink for greenhouse gas (GHG) emissions 84 

(Janzen, 2006; Ciais et al., 2010; Powlson et al., 2011). Grazing intensity has the potential to 85 

modify soil structure, function and capacity to store organic carbon (OC) (Cui et al., 2005) 86 

and could significantly change grassland’s C stocks (Cui et al., 2005). As SOC has a major 87 

influence on soil physical structure and a range of ecosystem services (e.g. nutrient retention, 88 

water storage, pollutant attenuation), its reduction could lead to reduced soil fertility and 89 

consequently, land degradation (Rounsevell et al., 1999) and a high risk under climate change 90 

(Lal, 2009). However, investigating the effects of GI on SOC is hampered by the 91 

heterogeneity in grassland types and variations in environment. This is exacerbated by the 92 

fact that all previous published meta-analyses studies on this topic (e.g. McSherry and 93 

Ritchie, 2013; Lu et al., 2017; Zhou et al., 2017) pooled the data of different studies together 94 

without considering the differences in soil depth at which the SOC, and TN were measured 95 

thus producing highly uncertain/contradictory results. 96 

  97 

High GI and moisture gradients (Cingolani et al., 2005) could indirectly alter grass 98 

species composition by decreasing water availability (Pineiro et al., 2010). This decreases 99 

plant community composition, aboveground biomass, leaf area and light interception and 100 

thereby, net primary production (NPP) (Manley et al., 1997; Hart, 2001; Pineiro et al., 2010). 101 

However, according to Derner and Schuman (2007), Pineiro et al. (2010) and McSherry and 102 

Ritchie (2013), high GI can increase soil C sequestration but only when mean annual 103 
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precipitation is 600 mm or less with different responses received from different soil types. It 104 

has also been shown to increase root C contents (a primary control of SOC formation) at the 105 

driest and wettest sites, but decrease root C contents at intermediate precipitation levels (400 106 

mm to 850 mm) (Pineiro et al., 2010). Wang et al. (2017) reported that the composition of 107 

plant species and soil condition in the Tibetan pastures were not only affected by GI but also 108 

by the local environmental factors. Moreover, Russell et al. (2013) found that a short period 109 

of mob grazing (grazing at high intensity for a short period of time) was effective at 110 

increasing soil organic matter and diversity in forage species composition. Though, 111 

overgrazing to the point of stripping surface vegetation can result in soil-degradation and loss 112 

of the fertile topsoil, especially where precipitation is low and evaporation is high (Xie and 113 

Wittig, 2004).  114 

 115 

Furthermore, high GI can alter SOC by changing the competitive abilities of different 116 

microbial phyla because of the link between GI, carbon availability and ecosystem functions 117 

(Eldridge et al., 2017a). However, the relationship between GI and SOC is non-linear 118 

(Eldridge et al., 2017b). Previous studies have found mixed results (Derner et al., 2006; 119 

McSherry and Ritchie, 2013; Zhou et al., 2017), with studies showing increases (Reeder and 120 

Schuman, 2002; Li et al., 2011; Silveira et al., 2014), no affect (Frank et al., 2002; Shrestha 121 

and Stahl, 2008; Cao et al., 2013) or decreases (Zuo et al., 2008; Golluscio et al., 2009; 122 

Reszkowska et al., 2011; Qiu et al., 2013) in SOC stocks. The review by McSherry and 123 

Ritchie (2013) showed that GI effects on SOC are highly context-specific, where higher GI 124 

increased SOC on C4-dominated and C4-C3 mixed grasslands, but decreased SOC in C3-125 

dominated grasslands. Other recent reviews by Lu et al. (2017) and Zhou et al. (2017) found 126 

that high GI significantly decreased belowground C and N pools. They found GI interacts 127 

with elevation and mean annual temperature (Lu et al., 2017), or with soil depth, livestock 128 

type and climatic conditions (Zhou et al., 2017). 129 

 130 

Understanding the impacts of GI on SOC accumulation and storage in grasslands is 131 

crucial to provide the most effective soil C management options. However, although all those 132 

previous reviews are valuable, scientific understanding would be improved by normalizing 133 

the sampling depth and GI. In this study, to be compatible with the IPCC guidelines, reduce 134 

these errors and make a comprehensive evaluation for GI we have normalized the soil depth 135 

for all studies to 30 cm using a quadratic density function based on Smith et al. (2000) and 136 

calculated a normalized GI. The major objective of this meta-analysis was to investigate the 137 
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impacts of GI on SOC in extensively grazed grassland soils at a global scale. Additionally, 138 

and because of its importance for C biogeochemistry, we discuss the impacts of GI on total 139 

nitrogen (TN) and other soil properties (mainly pH and bulk density) in grasslands. We also 140 

investigated whether climatic variations can control the ecological effects of GI practices on 141 

SOC in grasslands. The specific hypotheses we critically evaluated are as follows: 1) higher 142 

GI decreases SOC and TN in soils 2) the impacts of GI on SOC are modified by 143 

environmental and biotic factors, and  3) the effects of GI on SOC stocks depends on climatic 144 

zone and soil texture. 145 

 146 

2. Materials and Methods 147 

 148 

2.1. Data collection 149 

To collect published studies that have investigated the impacts of GI on SOC and other 150 

selected soil properties (TN, pH and BD ) under grassland, we performed a comprehensive 151 

search on the Web of Science database (accessed between January 2015 and February 2017) 152 

using the keywords: grazing; soil organic carbon; grassland; GI; total nitrogen and carbon 153 

sequestration. In an attempt to have the best possible coverage, we also checked all references 154 

in the papers found in the Web of Science search. Only studies which were longer than one 155 

year and measured SOC or TN were selected. This study accounted for the differences in 156 

grass growing seasons at each experimental site. Our searches resulted in 83 studies that 157 

investigated the impacts of grazing on SOC and other selected soil properties, carried out at 158 

164 sites covering different countries, climatic zones and management systems (Fig. 1). The 159 

studies were segregated into four groups depending on the regional climate zones (dry cool 160 

(DC); dry warm (DW); moist cool (MC) and moist warm (MW)). 161 

 162 

We defined the climatic zones based on thermal and moisture regimes: cool, warm, 163 

dry, and moist zone according to Smith et al. (2008). The cool zone covers the temperate 164 

(oceanic, sub-continental, and continental) and boreal (oceanic, sub-continental and 165 

continental) areas, whilst the warm zone covers the tropics (lowland and highland) and 166 

subtropics (summer rainfall, winter rainfall, and low rainfall) areas. The dry zone includes the 167 

areas where the annual precipitation is equal or below 500 mm, whilst the moist zone 168 

includes areas where the annual precipitation is above 500 mm. Coordinates, grass type (i.e. 169 

shrubby, woody, steppe, and prairie), annual mean climatic conditions as well as grazing 170 

details, soil texture, original depth (OD), initial and final BD and pH, changes in SOC and 171 
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TN (kg m
-2

); values were added where available or we put plus (+) for increased and minus (-172 

) for decreased, as shown in Tables 1-4.  173 

 174 

2.2. Estimation methods applied 175 

In some studies SOC and TN values are given as concentrations. To convert these values to 176 

stocks (kg m
-2

), the following equations were applied (IGBP-DIS, 1998):  177 

  178 

SOC (kg m
-2

) = [depth (cm) * BD (g cm
-3

) * SOC (%C in g per100g soil)]/1000               (1)    179 

 180 

TN (kg m
-2

) = [depth (cm) * BD (g cm
-3

) * TN (%TN in g per100g soil)]/1000                (2)     181 

                                   182 

In cases where there were more than one year of values reported in the original paper we used 183 

the mean value in this meta-analysis. However, because studies reported the SOC and TN 184 

content from different soil depths, we used a quadratic density function based on Smith et al. 185 

(2000) to derive a scaling cumulative distribution function (c.d.f.) for soil density as a 186 

function of soil depth up to 1m. This allows SOC and TN at a given depth d (m) to be scaled 187 

to the equivalent values at 0.30 m as follows: 188 

 189 

cdf(d) = (22.1 −
33.3d2

2
+

14.9d3

3
) 10.41667⁄                                                                      (3) 

                                                                                       190 

SOC(0.3m) = SOC(d) × (cdf(0.3))/(cdf(d))                                                                     (4)  191 

                                                                                         192 

Different methods were used to measure soil pH in different studies, e.g. using pH 193 

probe/meter in deionized water or 0.01 M CaCl2 in 1:1 and 1:2 or 1:5 (v:v) soils: solution 194 

ratios. We did not adjust pH results recorded by different methods, but where a range of 195 

values were reported, we took the mean value. Also, where a range of air temperatures was 196 

reported, we used mean annual value in degree Celsius (°C) as reported for the years of the 197 

study in the meta-analysis. The mean annual precipitation (mm) value for each study period 198 

was taken from the original papers. However, where the mean annual precipitation or mean 199 

annual temperature were not reported, those values were taken from the CRU 3.24 climate 200 

data set (Harris et al., 2013). 201 

 202 

http://www.sciencedirect.com.elib.tcd.ie/science/article/pii/S0167880906004403#tbl1
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The GI reported in each of the studies was estimated in different ways, and was 203 

usually subjective considering local practices, usually described as high, medium (or 204 

moderate) and low. To undertake this analysis we required a continuous variable for grazing 205 

intensity and so the method described below was developed for this study and used to classify 206 

the GI used for each of the experiments in a comparable way. As available fodder was not 207 

described in all studies it was necessary to estimate the amount of plant dry material available 208 

(DM) on each site annually and to calculate the fodder requirements for the animals grazed at 209 

each experimental plot in a consistent manner. To achieve this, the annual NPP, expressed as 210 

dry vegetable matter (DM) (Mg DM ha
-1

 y
-1

) in terms of C was predicted for each location 211 

using the Miami model (Lieth, 1972; Grieser et al., 2006), and calculated using mean annual 212 

precipitation (P, in mm), and mean annual temperature (T, in 
o
C) reported in each study or 213 

determined from the CRU TS 3.4 dataset. (The possible effect of N fertilizer was not 214 

considered because of data scarcity). 215 

  216 

NPP = minimum (NPPT; NPPP)                                (5) 217 

 218 

NPPT = 30 (1 + exp (1.315 -0.119 T)                                          (6) 219 

 220 

NPPp = 30 (1 - exp (-0.000664 P))                               (7) 221 

 222 

where NPPT is the net primary production calculated based upon temperature and NPPp is the 223 

net primary production calculated based upon precipitation (Lieth, 1972; Grieser et al., 2006).  224 

 225 

The available surface vegetable dry matter (SVDM) available for animal grazing for each 226 

location was calculated using the following relationship, assuming an allocation of NPP to 227 

above ground biomass of 50% (Li et al., 1994):  228 

 229 

SVDM = NPP x 0.5 (Mg DM ha
-1

 y
-1

)
                                             

   (8) 230 

 231 

An animal unit month (AUM) is considered as a bovine weighing of 500 kg requiring 350 kg 232 

of DM a month of feed based on the animal equivalent chart (USDA-Animal equivalent 233 

chart). The carrying capacity (CC) of grassland is the number of animal unit months that the 234 

land will support, based upon the available forage dry matter and the fodder requirement, and 235 

this we calculated as: 236 
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 237 

CC = SVDM / 0.350 AUM ha
-1

 y
-1

                                (9) 238 

 239 

The GI was calculated from the ratio of the number of animal unit months actually grazed up 240 

to carrying capacity. The actual number of animal unit months (AAUM) depended on the 241 

type of animal: i) cows =1; ii) steers = 0.7; iii) sheep = 0.2; iv) goats = 0.2, v) domesticated 242 

yaks as 0.7 (USDA-Animal equivalent chart).  The AAUM was calculated as the product of 243 

stocking density per ha multiplied by the number of months grazed per year in ha
-1

 y
-1

. 244 

 245 

GI = AAUM /CC                               (10) 246 

 247 

As changes in SOC stocks are related to the initial SOC and the annual carbon input to the 248 

soil. We calculated the annual carbon input (CIN) to be the quantity of annual NPP carbon 249 

not grazed by the animals, and calculated as: 250 

 251 

 CIN = NPP (1-GI).  252 

                                                                 (11) 253 

2.3. Data analyses 254 

We used Minitab 17 (Minitab, Inc., State College, PA) to conduct the data exploration, 255 

conditioning and analyses. The complete data set was analysed to estimate the overall impact 256 

of grazing on grassland SOC and selected soil properties, and then to analyse the impact of 257 

climatic zone and GI. We have sufficient data to estimate the change in SOC stock (n=83) 258 

related to grazing for the top 30 cm or the profile over the period of the experiment that could 259 

be normalized to an annual rate per year. For a subset of the data (n=64) it was possible to 260 

estimate the change in total nitrogen per year during the experiment, bulk density change 261 

(n=43) and pH (n=30). 262 

 263 

The data collected were segregated into four climatic zones for the meta-analysis: DC 264 

(n=26), DW (n=33), MC (n=9) and MW (n=15). The data were also grouped by the 265 

calculated GI: low (LG; GI = 0 to 0.33), medium (MG; GI = 0.33 to 0.66), high (HG; GI = 266 

0.66 to 1.0) and overgrazed (OG; GH ≤1.0). The tests were also grouped by animal type 267 

bovine (B), which included yaks, steers, cows and heifers; caprine (C), including sheep and 268 

goats; and a mixture of both bovine and caprine (M). The tests were also grouped by soil type 269 

and texture: clay, clay-loam, loam, sandy-loam and sandy; and grassland type: grassland, 270 
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shrubby grassland, woody grassland, steppe, and prairie. We also tested grass by 271 

photosynthesis type: C3, C4 and mixed. 272 

 273 

We used different analytical procedures for each group and parameter that related to 274 

the available published data. An analysis of the effects of grazing on on SOC, TN, pH and 275 

BD was made by the methods of Hedges et al. (1999) and Luo et al. (2006) using the 276 

response ratio (RR) defined as the natural logarithm of the ratio of the value or the parameter 277 

measured on the grazing treatment to that without grazing (control).  278 

 279 

Ln (RR) = ln (grazed treatment parameter value/un-grazed (control) parameter value)       (12) 280 

          281 

The rate of change (R) was calculated in the form ln (RR) by dividing by the length of the 282 

experiment in years (y). 283 

R = ln (RR)/y                                                                                                  (13) 284 

 285 

The descriptive statistics of the annual change in SOC, TN, BD and pH due to grazing 286 

including mean, median, standard deviation, and 95% confidence intervals for each were 287 

calculated. One way ANOVAs were performed to investigate the impact of factors: climate, 288 

GI, grass and animal types on SOC, TN and other selected soil properties, and the rates of 289 

change. Principle component analysis was used to determine significant explanatory variables 290 

and response variables and determine the differences between climate zones. In addition, 291 

regressions or mixed models such as GLM’s, were used to determine significant explanatory 292 

variables. 293 

 294 

3. Results 295 

 296 

3.1. Estimation of NPP and grazing intensities 297 

Mean NPP for the period 1960-2000 covered a wide range of values reflecting the global 298 

diversity of NPP under different climate zones (Fig. 1). No statistically significant differences 299 

in NPP between the DC, DM and MC climate zones was found; however, the NPP values at 300 

the MW climate were significantly different from those under the other climate zones (Fig. 2 301 

and Table 5). The calculated and reported estimates of GI show considerable overlap, and 302 

only three experiments represented ‘overgrazing’ i.e. beyond the carrying capacity (Fig. 3). 303 
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They also illustrated the different definitions of the levels of grazing used in the literature for 304 

each domain. 305 

 306 

A linear regression of annual NPP remaining available as a possible OC input to the 307 

soil, with the calculated GI and climate zones (p<0.001, R
2
= 67%), demonstrated that the 308 

SOC stock under the MC climate zone is much higher than under the other climate zones 309 

(Fig. 4). An ANOVA showed that un-grazed SOC is different between the different climate 310 

zones as shown in Table 6 and explains 21% of the variation. A GLM showed that adding 311 

NPP and pH explained 41% of the un-grazed SOC value.  312 

 313 

3.2. Impacts of grazing intensity on SOC and other selected soil properties using the response 314 

ratio ln (RR) 315 

An analysis of all studies together and using the response ratio ln (RR) of grazed compared to 316 

un-grazed grassland, showed that GI was associated with a decrease of overall SOC stocks by 317 

a response ratio of -0.0774 (-8%; StDev=0.358). It was also associated with a slight increase 318 

in pH of 0.029 (+3%; StDev=0.044), an increase in TN of 0.06 (+6%; StDev=0.772) and BD 319 

of 0.070 (+7%; StDev=0.083).  However, an ANOVA of the SOC, TN, BD and pH showed 320 

that whilst climate zone significantly affects SOC change (p=0.011) and pH (p=0.014), it did 321 

not significantly impact BD (p=0.144) or TN (p=0.118) (Table 7). At all GI levels, grazing 322 

increased SOC stocks under the MW climate (+7.6%), but decreased them under the MC 323 

climate (+19.5%). However, for the DW and DC climates, only the low (+5.8%) and low to 324 

medium (+16.1%) grazing intensities, respectively, led to increases in SOC (Fig. 5).  325 

 326 

Analysis of the impact of animal type (bovine, caprine and mixed) on ln (RR) of SOC 327 

across all climate types showed no significant difference (p=0.89). Neither soil texture (clay, 328 

clay-loam, loam, sandy-loam and sandy) (p=0.75), nor grassland characteristics (grassland, 329 

shrubby grassland, woody grassland, steppe, and prairie) (p=0.079) significantly affected 330 

SOC. However, an ANOVA for grass photosynthesis type (C3, C4 and mixed) showed that 331 

there was a significant difference (p=0.003) with C4 grasslands increasing SOC by 0.056 332 

(StDev=0.341), and C3 grasses and mixed grass decreasing SOC by -0.155 (StDev=0.233) 333 

and -0.25 (StDev=0.435), respectively (Table 8). 334 

 335 

3.3. Impacts of grazing intensity on SOC with annual rate of response ratio ln (RR) 336 
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The annual rate of change, R, of the response ratio ln (RR), show that GI overall decreased 337 

SOC, with an annual rate of -0.009 (StDev=0.037), but increased pH at a rate of 0.003 338 

(StDev=0.006), TN at a rate of 0.0005 (StDev= 0.0047) and BD at a rate of 0.009 339 

(StDev=0.021).  However an ANOVA of the SOC, TN, BD and pH showed that, whilst 340 

climate zone significantly impacts the rate of SOC change (p<0.001), rate of TN (p=0.047) 341 

and rate of BD change (p=0.009), it did not significantly impact the rate of pH change 342 

(p=0.201; Table 9). It also showed that GI was associated with more rapid decreases in SOC 343 

in DW and MC climates, than in DC and MW climates (Table 9). 344 

 345 

3.4. Interactions between climate zone, grazing intensity and soils 346 

The effect of soil texture was tested by ANOVA both for the entire data set (n=67) and for 347 

each climatic region (DC, n=22; DW, n=21; MC, n=6 & MW, n=14), but no statistical 348 

differences were found between texture classes (data not shown). 349 

 350 

3.5. Interactions of significant explanatory variable on response ratio ln (RR). 351 

Principle component analysis (PCA) showed that the main explanatory variables for response 352 

ratio ln (RR) were climate zone, initial SOC, grazing intensity and NPP. PCA component 1-4 353 

derived from this parameter subset showed a different pattern for each climate zone with DW 354 

and DC being similar and MW and MC exhibiting different patterns (Figure 6). When the 355 

contribution of each variable to the four components is examined in radar plots (Figure 7), it 356 

is observed that the pattern of interaction or each variable is different for each climate zone 357 

indicating that SOC change is governed by different factors. 358 

 359 

4. Discussion 360 

 361 

4.1. Comparison of methods used here with previous analyses 362 

In this systematic global review and meta-analysis we collected 83 published studies, on the 363 

impacts of GI of grasslands on SOC and other selected soil properties (TN, pH and BD), 364 

covering 164 sites and representing different countries and climatic zones. However, unlike 365 

the previous published reviews (e.g. McSherry and Ritchie, 2013; Lu et al., 2017; Zhou et al., 366 

2017), we depth-normalized the SOC and TN data in line with IPCC guidelines. We also 367 

calculated a normalized GI. The purpose was to attempt to harmonise very heterogeneous 368 

data. Additionally, the calculation of the normalized GI allowed us to compare across 369 

experiments, since reported grazing intensities were subjective, considering the normal local 370 
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management practices. We found the calculated GI overlapped with the GI from the collected 371 

literature, which suggests that our normalization method is unlikely to have introduced 372 

additional errors. The extracted mean annual temperatures and annual rainfall at each site 373 

from the CRU 3.4 dataset all agreed well with the values reported in publications, where 374 

given, providing confidence to the calculation of NPP using the Miami model at each 375 

experimental site. Our value of excess NPP for a given GI are similar for all climate zones 376 

except for MW, where the value is almost double that in the other climate zones. Here, 377 

climate, especially temperature and rainfall, influences grass productivity and thereby NPP 378 

(Chu et al., 2016). Climate zones also play a major role in the initial SOC contents, and 379 

values for the different zones were significantly different (p<0.05) from each other (i.e. SOC 380 

was highest for MC, and lowest for the DW climate zone). Estimation of uncertainty is of 381 

crucial importance since it has a large impact on the management decisions. In this study, 382 

some approximations and assumptions incorporated in the methods we used may have 383 

created uncertainty in the final results. To consider this, we have conservatively estimated it 384 

by calculating the standard deviation for all values as shown in the Tables 5-9. 385 

 386 

4.2. Impacts of grazing intensity on soil organic carbon (SOC) 387 

By pooling all the data and ignoring the regional climatic zones we found that higher GI, was 388 

generally associated with a decrease in SOC stocks. Similar results were found by Lu et al. 389 

(2017) and Zhou et al. (2017) amongst others. However, analysing the data according to 390 

climate zone revealed that the impact of GI on SOC is clearly climate dependent, so that the 391 

same GI level under specific climate zones could have different impacts on SOC compared to 392 

others. This can be explained by the interactions between GI and the environmental 393 

parameters (e.g. temperature and precipitation) at each climate zone. The different GI levels 394 

have significantly different effects on individual plant species occurrences and covers and 395 

thereby, SOC. Generally, grazing simulates pasture growth, so although the animals under 396 

high GI consume more C  from the system and respire it, grazing returns (urine and faeces) 397 

recycle the C, so the input to the soil remains similar. In addition, the amount and quality of 398 

animal urine and dung, and typical manure management practices in each climate zone, may 399 

also stimulate grass regrowth differently. Below we discuss our results for each climate zone 400 

in more detail. 401 

 402 

4.2.1. Impacts of grazing intensity on soil organic carbon (SOC) under dry/warm climates 403 
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Under the DW climate, where soil is dry and temperature and evapotranspiration are high, GI 404 

has detrimental effects on SOC at all levels apart from low GI, under which SOC increases 405 

by 5.8%. In this climate zone, Angassa (2014) reported a decline in species richness under 406 

high GI and suggested low to medium grazing intensities for promoting and conserving key 407 

forage species. Low GI could stimulate grass regrowth and mobilise nutrients within the soil 408 

and therefore, is recommended for steppe-type ecosystems such as those found in Inner 409 

Mongolia (Steffens et al., 2008). Fernandez et al. (2008) reported that high GI affects soil 410 

fertility and has long-term potential implications for the sustainability of grazing in semi-arid 411 

environments. It can also increase CO2 fluxes from soil and reduce the potential of grasslands 412 

to capture CO2 by reducing aboveground biomass (Frank et al., 2002), thereby reducing the 413 

source of SOC from above- and below-ground inputs. Similarly, in a mixed prairie, high GI 414 

has been shown to change grass composition (reduced tallgrasses) resulting in reduced litter 415 

accumulation and ground cover (Fuhlendorf et al., 2002). It is also likely to increase nutrient 416 

losses (particularly N) (Craine et al., 2009), affect bacterial and fungal community structures 417 

(Huhe et al., 2017), and hence threaten longer term sustainability . However, according to 418 

Talore et al. (2016), although high GI reduces the total C and total N soil content and its C/N 419 

ratio, a resting period of 1-2 years followed by three consecutive grazing years at low GI 420 

would be ideal for a sustainable livestock production in South Africa. Although Walters et al. 421 

(2017) reported that management of GI, by rotational grazing (which incorporated long 422 

periods of rest) control through fencing increased SOC on red Lixisol soils. 423 

 424 

4.2.2. Impacts of grazing intensity on soil organic carbon (SOC) under moist/cool climates 425 

In the MC climate zone, where soil is moist for longer periods and the temperature is low, all 426 

type of GIs led to a decrease in SOC. The activity of soil microorganisms is supressed due to 427 

low temperature and high water saturation of the soil (i.e. reducing oxygen availability). High 428 

rainfall decreases microbial biomass, likely due to high demand of nutrients from the soil for 429 

the peak growth of vegetation during that time (Devi et al., 2014) and decreases soil pH. 430 

Many other studies have found that frequent disturbances of grassland by grazing practices at 431 

different intensities decrease C sequestration in soils (e.g. Klumpp et al., 2007; 2009; Wu et 432 

al., 2009, 2010). Sun et al. (2011) reported that higher GI under alpine meadows, reduced 433 

plant biomass productivity and changed the species composition and thereby, decreased SOC. 434 

Moreover, Wu et al. (2009) and Dong et al. (2012) found that high GI decreased, not only 435 

SOC, but also soil N in the Qinghai-Tibetan Plateau. Further, trampling by cattle decreases 436 

soil carbon storage by stimulating organic matter decomposition, due to the destruction of 437 
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soil aggregates by mechanical stress, alters soil microbial community structure, leads to lower 438 

fungal to bacterial ratios (Hiltbrunner et al., 2012), and increases denitrification rates and N 439 

losses (Su et al., 2005; Jones et al., 2017). Pappas & Koukoura (2011) found that medium GI 440 

could enhance soil carbon accumulation at higher altitudes. The trade-off between above- and 441 

below-ground C storage is positively associated with net ecosystem productivity. However, 442 

increasing grass productivity by adding more N fertilizer then intensifying the GI accordingly 443 

can increase SOC (Klumpp et al., 2007). Although the use of added N to enhance 444 

productivity in temperate grasslands is widespread, it can lead to an enhancement of N losses 445 

particularly as GI increases. This can lead to a situation where despite increases in C 446 

sequestration the losses of non-CO2 GHGs increase and the net GHG balance remains close 447 

to zero (or becomes positive), offsetting the benefits of C sequestration (Jones et al., 2017; 448 

Soussana et al., 2007). In circumstances where soils have a high nutrient capital (e.g. upland 449 

sheep grazing), it can be more appropriate to recommend no or low-intensity grazing as a 450 

management practices for enhancing plant and soil C sequestration (Smith et al., 2014). In 451 

contrast, Gao et al. (2007; 2009) and Li et al (2011) reported that higher GI increased soil C 452 

and N storage in alpine meadows through changes in the species composition and biomass 453 

allocation pattern. Although grazing in the warm-season is good for plant diversity 454 

conservation and nutrient storage in the topsoil, whilst grazing in the cold season is suitable 455 

for nutrient storage in deep soil layers (Gao-Lin et al., 2017). Pavlů et al. (2007) 456 

demonstrated that high GI creates canopy gaps, relaxes intra- and inter-specific competition 457 

for light, and ultimately favours the establishment of short-stature, less-palatable forb species.  458 

 459 

4.2.3. Impacts of grazing intensity on soil organic carbon (SOC) under moist/warm climates 460 

In the MW climate zone, where both moisture and temperature are high, all GIs have a 461 

beneficial impact on SOC. Temperature increases soil microbial C due to faster 462 

decomposition of plant residues and immobilization of products in the microbial biomass. 463 

However, Devi et al. (2014) found that only medium GI may benefit sub-tropical grasslands, 464 

by influencing nutrient dynamics and could be prescribed for the management of these 465 

grasslands. Da Silva et al. (2014) reported that light GI was a useful management for 466 

enhancing C sequestration whilst high GI led to a reduced number of plants, plant basal area, 467 

and amount of deposited dead plant material. Nevertheless, Wright et al. (2004) reported that 468 

a long-term grazing at low GI of Bermuda-grass pastures can increase SOC and SON 469 

concentrations and could have strong potential for C and N sequestration. This is mainly due 470 

to enhanced turnover of plant material and excreta under low GI. Franzluebbers et al. (2000) 471 
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found that a long-grazed pastures in the Southern Piedmont USA have great potential to 472 

restore natural soil fertility, sequester soil organic C and N and increase soil biological 473 

activity compared to other land use management. The processing of forage through cattle and 474 

deposition of faeces onto the pasture can increase the long-term storage of SOC 475 

(Franzluebbers et al., 2000). Other studies (e.g. Kieft, 1994; Shrestha and Stahl, 2008) found 476 

no consistent impacts of GI on soil C and N, C/N ratios and microbial biomass and 477 

respiration rate.  478 

 479 

4.2.4. Impacts of grazing intensity on soil organic carbon (SOC) under dry/cool climates 480 

In the DC climate zone, where both moisture and temperature are low, low to medium GIs 481 

are beneficial for SOC, while high GI impact is unknown as this study found no relevant 482 

published data. According to Ganjegunte et al. (2005) and Han et al. (2008) low to medium 483 

GI is the most sustainable grazing management system to increase SOC. Han et al. (2008) 484 

reported that high GI diminished grass regrowth, decreased litter deposition and decreased 485 

SOC. Steffens et al. (2008) reported that sheep grazing at high GI deteriorated physical and 486 

chemical parameters of steppe top-soils and depleted SOC and could be improved by 487 

reducing GI or excluding from grazing. Further, long-term grazing at different intensity levels 488 

significantly reduced SOC and TN in an Inner Mongolian grassland (Li et al., 2008; Ma et al., 489 

2016). Also, soil compaction induced by sheep trampling changes selected soil properties and 490 

possibly enhances soil vulnerability to water and nutrient loss, and thereby reduces plant 491 

available water, and thus grassland productivity (Zhao et al., 2007). In contrast, Reeder and 492 

Schuman (2002) found that grazing at high and low intensities increased SOC, partly due to 493 

rapid annual shoot turnover and redistribution of C within the plant-soil system as a result of 494 

changes in plant species composition.  495 

 496 

4.3. Impacts of grazing intensity on C3/C4 dominated grass or C3-C4 mixed grasslands 497 

Our results show that on average GI was associated with significantly increased SOC for C4 498 

dominated grasslands, whilst it significantly decreased SOC for C3 dominated grasslands and 499 

C3-C4 mixed grasslands. Similar findings were reported by McSherry and Ritchie (2013). 500 

The reason for increased SOC levels under grazed C4-dominated grass, especially in tropical 501 

grasslands, is the ability of the grass to adapt and compensate for grazing practices (Ritchie et 502 

al., 2014). C4 grasses adapt to high GI by having many rhizomes and other storage organs 503 

that enable them to respond quickly to grass defoliation by animals (McNaughton, 1985; 504 

Dubeux et al., 2007). In addition to the warm temperature that encourages macro-505 
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decomposers to incorporate plant and animal materials in the soil (Risch et al., 2012), C4-506 

grasses can compensate the loss by sacrificing stems for leaves (Ziter and MacDougall, 507 

2013), and by containing higher levels of lignin and cellulose (Barton et al., 1976). As C4 508 

dominated grasslands would be generally in the moist warm climate zone these results are 509 

self-consistent. 510 

 511 

4.4. Impacts of grazing intensity on other selected soil properties (TN, BD and pH) 512 

There were too few data points in each climate zone to assess the impact of grazing intensity 513 

on pH, BD and TN separately for each climate zone. However, pooling data across all climate 514 

zones suggests that on average GI could significantly increase the rate of change of TN and 515 

BD but the effect on soil pH was small. Many studies have found higher BD (e.g. Dong et al., 516 

2012; Luan et al., 2014; Abril and Bucher, 1999; He et al., 2011) and high pH (e.g. Yong- 517 

Zhong et al., 2005; Pei et al., 2008; Enriquez et al., 2015) in response to high GI in different 518 

climate zones. Grazing intensity increases soil BD and lowers soil moisture content, mainly 519 

due to high animal trampling (He et al., 2011; Zhang et al., 2017), leading to higher 520 

denitrification losses (Oenema et al., 1997) and may increase the risk of soil erosion by wind 521 

(Kolbl et al., 2011). However, some studies have found lower BD due to GI, e.g. Li et al. 522 

(2008) and Schuman et al (1999). High GI was reported to decreases soil pH (Hiernaux et 523 

al.1999; Cui et al. 2005; Zhang et al., 2017). Also, many studies (e.g. Wright et al., 2004; 524 

Ganjegunte et al., 2005; Han et al., 2008; Li et al., 2011) have found that GI increases TN, 525 

while others suggest it decreases TN (e.g. Li et al., 2008; Ma et al., 2016; Zhou et al., 2017) 526 

or had no change (Schuman et al., 1999). 527 

 528 

5. Concluding remarks 529 

 530 

The impact of GI on SOC stocks differs between the different climate zones, but that lower 531 

GIs increase SOC stocks in three of the four climate zones (list the three here), whereas 532 

higher GIs result in increased SOC in only one climate zone (include the 4
th

 here). Although 533 

our model for predicting biomass production does not take into account extra gains in 534 

productivity that can be achieved (promoting increased C sequestration), the benefits (in 535 

terms of net GHG emissions) of N use will often be offset by increased losses of non-CO2 536 

GHG emissions (particularly at higher GIs). There are also differences between C3, C4 and 537 

mixed grasslands in their response to GI, and rate of TN change and BD tend to increase 538 

under high GI. The effects of GI management on SOC are mediated by ground cover and 539 
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high organic matter supply and/or less soil erosion (Waters et al., 2017). High GI can 540 

decrease net primary productivity (Wardle, 2002) and result in the loss of palatable, larger-541 

leafed species causing domination of unpalatable small-leafed species which produce litter of 542 

low quality for soil microbes and fauna (Cornelissen et al., 1999; Shengjie et al. (2017). This 543 

reduction of some plant-species could also result in decreasing chemical quality of the 544 

organic C stock in soil (Larreguy et al., 2017). Moreover, high GI can shift the 545 

fungal:bacterial ratio towards dominance by fungi, which are more tolerant of periodic 546 

drought and seasonal fluctuations in soil moisture than bacteria (Bagchi and Ritchie, 2010; 547 

Bagchi et al., 2017). Best management practices for GI, therefore, need to be tailored to local 548 

bioclimatic conditions to avoid loss of soil carbon. Policy makers in each climatic zone 549 

should decide on the level of GI depending on the local climate and grass types they have. 550 

Such climate impacts should be considered in future grassland management and conservation 551 

plans. The optimal use of GI and grass species has the potential to significantly increase SOC 552 

and SON sequestration, and alters C and N cycling in  soil. In addition, the breeding of plants 553 

with deeper or bushy root ecosystems e.g. Festulolium (ryegrass x fescue hybrid), which have 554 

greater efficiency in resource use, could improve carbon storage, water and nutrient retention, 555 

as well as biomass yields (Kell, 2011; Humphreys et al., 2003). In a world of a changing 556 

climate, livestock production will be negatively affected, especially in arid and semiarid 557 

regions, due to e.g. diseases and water availability. Our results have important implications 558 

for setting future grassland management policies that account for climate change. High GI 559 

under increased frequency of drought and heatwave events may increase GHG emissions and 560 

turn grasslands into C sources (Ciais et al., 2005; McSherry and Ritchie, 2013). Additionally, 561 

long-term drought in combination with high atmospheric CO2 concentration can? decrease 562 

soil microbial biomass and promote a shifts in functional microbial types, and thereby modify 563 

biogeochemical cycles and SOC storage (Barnard et al., 2006; Pinay et al., 2007). Further, 564 

high GI on dry areas or C3 grassland reduces C storage and makes it vulnerable to climate 565 

change, whilst increases C sequestration under C4 grasslands. Thus considering climate will 566 

allow us to properly address sustainability of SOC, conservation of biodiversity, reduction of 567 

greenhouse gas emissions and mitigation of climate change as the geographical location of 568 

the bio-climatic envelope of the flora and fauna of current climatic zones moves with the 569 

evolving climatic disruption.  570 
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