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Abstract 

Nanomaterial engineering provides an important technological advance that offers substantial benefits for appli-

cations not only in the production and processing, but also in the packaging and storage of food. An expanding 

commercialization of nanomaterials as part of the modern diet will substantially increase their oral intake worldwide. 

While the risk of particle inhalation received much attention, gaps of knowledge exist regarding possible adverse 

health effects due to gastrointestinal exposure. This problem is highlighted by pigment-grade titanium dioxide  (TiO2), 

which confers a white color and increased opacity with an optimal particle diameter of 200–300 nm. However, size 

distribution analyses showed that batches of food-grade  TiO2 always comprise a nano-sized fraction as inevitable 

byproduct of the manufacturing processes. Submicron-sized  TiO2 particles, in Europe listed as E 171, are widely used 

as a food additive although the relevant risk assessment has never been satisfactorily completed. For example, it is not 

possible to derive a safe daily intake of  TiO2 from the available long-term feeding studies in rodents. Also, the use of 

 TiO2 particles in the food sector leads to highest exposures in children, but only few studies address the vulnerability 

of this particular age group. Extrapolation of animal studies to humans is also problematic due to knowledge gaps 

as to local gastrointestinal effects of  TiO2 particles, primarily on the mucosa and the gut-associated lymphoid system. 

Tissue distributions after oral administration of  TiO2 differ from other exposure routes, thus limiting the relevance of 

data obtained from inhalation or parenteral injections. Such difficulties and uncertainties emerging in the retrospec-

tive assessment of  TiO2 particles exemplify the need for a fit-to-purpose data requirement for the future evaluation of 

novel nano-sized or submicron-sized particles added deliberately to food.
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Background
Potential applications of recent nanomaterial develop-

ments in the food sector include, for example, nano-

sized coatings of packaging materials to protect from 

mechanical damage or microbial contamination, thereby 

extending the shelf life. Nano-sized additives may also 

be deliberately incorporated in food to optimize prop-

erties such as taste, sensation, color, texture or consist-

ency. Nanomaterials may be employed to supplement 

food with vitamins in a highly bioavailable form and 

could contribute to prevent nutritional iron deficiency 

and anemia, affecting nearly 2 billion people worldwide 

[1–3]. Nano-sized materials may further provide mark-

ers of food freshness and quality, or allow for traceabil-

ity and the detection of pathogens or contaminants [4, 

5]. In contrast to these novel developments, submicron-

sized particles of titanium dioxide  (TiO2) have been used 

in the food sector for more than 50  years as a pigment 

to enhance the white color and opacity of foods like cof-

fee creamer, sauces, spreads, pastries, candies and edible 

ices. Also,  TiO2 confers brightness to toothpaste and is 

added to enhance the flavor of non-white foods (pro-

cessed fish, fruits, meat, vegetables, breakfast cereals, 

fermented soybean, soups and mustard) and to clear bev-

erages (beer, cider and wine) [6–9].

Currently, the annual consumption volume of  TiO2 par-

ticles reaches four million tons, which makes it the most 
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widely used pigment globally [10]. In the United States 

(US), the Food and Drug Administration allows up to 1% 

by weight of  TiO2 particles as a food colorant [11]. In the 

European Union (EU),  TiO2 is an authorized food addi-

tive (listed as E 171) at quantum satis, meaning that no 

maximum level is imposed as long as the additive is used 

in accordance with good manufacturing practice, i.e., at 

a level not higher than necessary to achieve the intended 

scope [12]. A comparison of use levels reported by the 

food industry show that the highest  TiO2 concentrations 

are expected in chewing gum (up to 16,000 mg/kg), food 

supplements delivered in a solid form (up to 12,000 mg/

kg), processed nuts (up to 7000 mg/kg) and ready-to-use 

salads and sandwich spreads (up to 3000  mg/kg) [13]. 

 TiO2 particles can, therefore, be viewed as a paradig-

matic case for the safety assessment of inorganic particles 

employed as food additive and comprising a nano-scale 

fraction.

�e standard risk assessment procedure with 

risk = hazard × exposure, which includes hazard identifi-

cation, hazard characterization, exposure assessment and 

risk characterization, is also applicable to small inorganic 

particles in food. �e prefix “nano” does not make a sub-

stance automatically harmful and possible adverse effects 

should be tested case-by-case. However, reductions in 

size may change the material characteristics as compared 

to larger particles or the same substance in solution. 

Nano-sized particles display an increased surface-to-

mass ratio that enhances their reactivity [14, 15]. Also, 

nanoparticles display an increased propensity to pene-

trate through cell membranes thus conferring the poten-

tial for trafficking across biological barriers including the 

intestinal mucosa [16–18]. In principle, a nanomaterial 

exists in different forms, i.e., with one dimension in the 

nano-scale (for example nano-films), two dimensions in 

the nano-scale (for example nano-rods) or, as for nano-

particles, all three dimensions in the nano-scale range. A 

European Commission Recommendation defines nano-

materials as natural, incidental or manufactured materi-

als, containing 50% or more of the particles, determined 

in a number-based size distribution, with at least one 

external dimension not exceeding 100 nm [19]. However, 

there is no scientific ground to defend such a strict size 

boundary in the identification of possible hazards, as one 

would rather expect a gradient in the capacity of eliciting 

adverse effects with changing particle dimensions. In any 

case, a final answer to the question of when a material 

becomes nano-sized has not been provided [20] and the 

above Recommendation is not yet adopted for regulatory 

purposes.

Until now, the health effects of  TiO2 particles have 

been studied mainly with regard to their uptake by inha-

lation [21–23]. �e International Agency for Research 

on Cancer (IARC) concluded that there is inadequate 

evidence from epidemiological studies to assess whether 

 TiO2 dust causes cancer in humans, but that there is suf-

ficient evidence for carcinogenicity in experimental ani-

mals, based on the induction of respiratory tract tumors 

in rats after prolonged inhalation [24, 25]. �erefore, 

IARC classified  TiO2 as a Group 2B carcinogen [26]. 

Considering the widespread food-related uses, there is a 

pressing need to review the suitability of studies support-

ing the risk assessment of  TiO2 particles as food additive 

[27]. Comprehensive reviews on this topic have been 

provided inter alia by Shi et  al. [28], Heringa et  al. [29] 

and the Scientific Panel on Food Additives and Nutrient 

Sources added to Food (ANS Panel) [13]. �e purpose 

of our contribution is to focus on data gaps and uncer-

tainties in relevant risk assessment studies covering the 

dietary uptake of  TiO2 particles.

TiO2 particle manufacture and their physicochemical 

properties

Although Ti is the ninth most abundant element in the 

earth’s crust, it never appears in a metallic state in nature. 

 TiO2, an odorless powder with a molecular weight of 

79.9  g/mol, also known as Ti(IV) oxide, constitutes the 

naturally occurring oxide [30, 31].  TiO2 minerals contain 

impurities such as iron, chromium, vanadium or zirco-

nium that confer a spectrum of different colors. Manu-

factured  TiO2 is, instead, a white powder commonly 

used as a pigment in ceramics, paints, coatings, plastics 

and paper due to its high refractive index. Pure  TiO2 

assembles in three crystal structures, i.e., anatase, rutile 

(with tetragonal coordination of Ti atoms) and brookite 

(with rhombohedral coordination of Ti atoms), but only 

anatase/rutile or mixtures of these two polymorphs are 

employed in food [32]. In addition, as a fourth form, 

amorphous  TiO2 has been described [33]. �e surface of 

anatase crystals is considered to be more reactive than 

that of rutile counterparts, as indicated by their ability 

to generate reactive oxygen species in aqueous solutions 

when irradiated with ultraviolet (UV) light [34]. Also, 

anatase nanoparticles display a stronger adjuvant activ-

ity than rutile nanoparticles in an allergy model based on 

the intranasal sensitization of mice with ovalbumin [35]. 

Nonetheless, the anatase form is the most frequently 

used in the food sector [8, 36, 37].

Food-grade  TiO2 is manufactured from Ti minerals 

by either a sulfuric acid-based process, which can yield 

anatase, rutile or a mixture of both polymorphs depend-

ing on the reaction conditions, or a chlorine-based pro-

cess yielding only the rutile form [32]. Specifications for 

food use include a minimum purity of 99.0%, thus allow-

ing some contamination with arsenic, cadmium and mer-

cury (up to 1 mg/kg), antimony (up to 2 mg/kg) or lead 
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(up to 10 mg/kg). Also, food-grade  TiO2 may be coated 

with a small proportion (no more than 2% in total) of 

alumina and silica to enhance technological properties, 

for example to improve dispersion in host matrices [32, 

38]. All  TiO2 particles are insoluble in water, organic sol-

vents, hydrochloric acid and dilute sulfuric acid. �ey are 

highly stable to heat and remain unaffected by food pro-

cessing. Also, they are not or only minimally degraded 

or dissolved under conditions, including low pH, which 

mimic the gastrointestinal milieu [39, 40]. Such indigest-

ible particles, once released from the food matrix during 

their gastrointestinal transit, reach the intestinal mucosa 

raising the question of whether they might be prone to 

absorption and systemic distribution.

Optimal light scattering is needed to achieve the 

desired whitening effect. �erefore, food-grade  TiO2 

ideally displays a primary particle size of approximately 

half the wavelength of the light to be scattered [41], i.e., 

half of the 400–700-nm of the visible range. Accordingly, 

scattering of visible light is maximized in fine particles 

that are 200–300  nm in diameter. Ultrafine products 

are instead not suited for this purpose as they become 

transparent when their size remains below the 100-nm 

threshold [42]. Such nano-sized  TiO2 particles are often 

included at concentrations of up to 25% in cosmetic prep-

arations, including lip balms and sunscreens to protect 

from solar light by reflecting UV radiation away from the 

skin [43, 44]. As a consequence of the production process 

there is inevitably a broad size distribution that com-

prises nanoparticles with a primary size below 100  nm 

even when the mean diameter reaches 200–300  nm. In 

this respect, a frequently cited size distribution is the one 

determined by Weir et al. [6] using transmission electron 

microscopy (TEM), whereby 36% of particles by num-

ber were below the threshold of 100  nm. �is data was 

derived from a single determination with one lot of E 171 

and, hence, is not representative for all  TiO2 on the mar-

ket. In a follow-up distribution analysis of five different 

food-grade  TiO2 samples by TEM, nano-sized particles 

occured with a frequency between 17 and 35% by num-

ber [8]. Studies by scanning electron microscopy (SEM) 

suggested that commercial E 171 materials contain ~ 10% 

of particles with dimensions below 100  nm [7]. Clearly, 

the outcome of particle size determinations varies with 

the method of measurement, whereby smaller diameters 

are generally reported from TEM measurements com-

pared for example to laser diffraction [13, 45]. Another 

relevant aspect is that, as illustrated in Fig. 1, suspended 

 TiO2 particles tend to aggregate/agglomerate to form 

larger clusters, although a majority of the individual 

particles may display a primary diameter < 100  nm. �e 

term “aggregate” designates an assembly of particles held 

together by covalent or metallic bonds. Instead, “agglom-

erates” result from weak forces like van der Waals inter-

actions, hydrogen bonding, electrostatic attractions 

or adhesion by surface tensions. It is important not to 

equate the nanoparticle fraction measured by num-

ber with the same value by mass. �e ANS Panel at the 

European Food Safety Authority (EFSA) proposes to use 

a proportion of 3.2% by mass to estimate the nano-sized 

Fig. 1 Example of food-grade  TiO2 particles (E 171). a A sample of food-grade anatase dispersed in  H2O was deposited on a copper grid coated 

with glow-discharged parlodion and analyzed by TEM as described [146, 147]. Scale bar, 100 nm. b Size distribution of the imaged food-grade 

 TiO2 particles. The diameter measured as longest distance across particles is 100 ± 24 nm (mean ± standard deviation) and 54% by number of the 

particles have a diameter < 100 nm
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fraction of E 171 for risk assessment considerations [13]. 

TEM analyses of  TiO2 particles in the coatings of chew-

ing gums revealed a nano-sized mass fraction of 4.2% on 

the average [45, 46]. �is review only includes studies 

where  TiO2 test materials have been characterized with 

respect to their size preferably with indications on the 

primary particle diameter.

Human exposure

In the US, the dietary intake of  TiO2 was estimated 

at 1–2  mg/kg body weight per day for children under 

the age of 10  years and 0.2–0.7  mg/kg/day for other 

age groups. �is dietary exposure in the United King-

dom (UK) population was estimated to be 2–3  mg/kg/

day for children and around 1  mg/kg/day for the other 

age groups [6]. �e corresponding exposure values esti-

mated for the German population are between 0.5 and 

1  mg/kg/day in adults but reach ~ 2  mg/kg/day in chil-

dren [47]. To obtain dietary exposures across Europe, the 

ANS Panel at EFSA selected food categories for which 

the use of  TiO2 is authorized, and assumed that 60–80% 

by weight of these food items actually contain  TiO2 as an 

additive. Next, the ANS Panel used the EFSA Compre-

hensive European Food Consumption Database and the 

typical  TiO2 inclusion levels reported by industry (see 

background section above), as well as reported analyti-

cal results, to calculate chronic dietary exposures to  TiO2 

for different age groups. �e highest values were found 

for children of 3–9 years where, depending on the dietary 

habits, the mean exposures were 0.9–8.8  mg/kg body 

weight per day with 95th percentiles of 2.4–30.2  mg/kg 

per day. Some relevant food categories (for example edi-

ble cheese rind) are not displayed in the Consumption 

Database and, as a consequence, could not be taken into 

account for the exposure estimate. Also, the contribution 

of the accidental swallowing of toothpaste or lip balms 

was not included in these calculations, possibly resulting 

in an underestimation of oral  TiO2 intake. Another study 

employed the Dutch National Food Consumption Survey 

and the  TiO2 concentrations in food products reported 

by industry [48]. Again, the highest exposure (median 

of 1.4 mg/kg body weight per day and 95th percentile of 

4.9 mg/kg) was found in children 2–6 years old. A parallel 

study also employed the Dutch National Food Consump-

tion Survey but used Ti and/or  TiO2 concentrations in 

food products and toothpaste as reported in the literature 

[36]. �e calculations confirmed that the highest intake 

(median of 0.59 mg/kg body weight per day and 95th per-

centile of 1.29 mg/kg) is found in children 2–6 years old. 

�e generally elevated exposure of children is attributed 

to their lower body mass and disproportionately higher 

consumption of  TiO2-containing products like pastries 

and candies [6, 13].

Determinants of intestinal uptake

After oral exposure, foreign particles released by diges-

tion from the food matrix encounter a layer of entero-

cytes, lining the intestinal tract, that are responsible for 

nutrient absorption. �is digestive epithelium surface, 

in humans estimated to 30 m2 [49], presents a structural 

barrier to foreign materials that also secretes a protec-

tive layer of mucus. Indigestible particles like the ones 

consisting of  TiO2 may nevertheless gain entry into 

the underlying lamina propria by penetration across 

or between intact enterocytes. However, the digestive 

mucosa is additionally defended by the gut-associated 

lymphoid tissue (GALT), which is arranged into lym-

phoid follicles that, in the small intestine, aggregate to 

form Peyer’s patches [50–52]. �e epithelium cover-

ing this intestinal lymphoid tissue displays phagocytic 

microfold cells (M-cells), whose specialized function is 

to absorb particulates from the intestinal lumen to be 

forwarded to the innate immune system including den-

dritic cells and macrophages [53]. Intestinal dendritic 

cells also reach out their membrane projections across 

the epithelial barrier into the gut lumen to take up par-

ticulates directly [54]. �us,  TiO2 particle can be incor-

porated by cells of the innate immune system, where they 

persist without being substantially degraded or dissolved 

[16]. �e local accumulation of such particles appears as 

pigments in the lymphoid tissue of the intestinal mucosa 

[51, 55–57].

Oral bioavailability in rodents

Inhalation studies in animals converge on the finding that 

nano-sized  TiO2 particles can enter, in small amounts, 

the systemic circulation from the alveolar epithelium and 

disseminate into other organs [21, 23, 58, 59]. Instead, 

dermal exposure studies indicated that  TiO2 particles of 

any size do not penetrate the stratum corneum of the skin 

[60–63]. Less certain is the extent of intestinal absorp-

tion, but an elegant vanadium (V) radiotracer study 

established that the vast majority of ingested  TiO2 nan-

oparticle is directly excreted in the feces. Briefly, com-

mercial anatase particles were irradiated with a proton 

beam to generate a radiolabeled  [48V]TiO2 fraction with 

a mean particle diameter of 50 nm. After demonstrating 

that most 48V ions remain associated with  TiO2 parti-

cles, a single dose (30–80 µg/kg body weight) of this test 

material was administered by intraesophageal instillation 

(oral gavage) to Wistar-Kyoto rats [64]. Groups of ani-

mals were sacrificed 1, 4, 24 h and 7 days after gavage to 

assess the transfer of radioactivity from the gastrointesti-

nal tract into the cardiovascular system and various tis-

sues. �is time course revealed that a small proportion of 

the applied radioactivity (only ~ 0.6%) was detected in the 

blood and internal organs like liver, spleen and kidneys, 
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at 1 h after gavage. �is overall proportion of systemically 

distributed  TiO2 particles gradually dropped to ~ 0.05% 

after 7 days.

Table  1 presents an overview of relevant oral expo-

sure studies in rodents found in the literature. A high-

dose biokinetic/acute toxicity study was carried out in 

CD-1 mice after a single administration by oral gavage 

of differentially sized  TiO2 particles (crystal structure 

not specified) administered at 5000  mg/kg body weight 

[42]. �e mean diameter of the three tested particles was 

25 nm, 80 nm and 155 nm. Ti concentrations in tissues 

were determined by inductively coupled plasma (ICP)-

mass spectrometry 2  weeks after treatment. In animals 

that received the fine particles of 155  nm in diameter, 

increased Ti concentrations (~ 500 ng/g) over control lev-

els (< 100 ng/g) were found only in the spleen. For com-

parison, the highest Ti level (~ 4000  ng/g) was detected 

in the liver of animals that received the 80-nm particles. 

A major deficiency of this and other bioavailability stud-

ies is that distribution measurements rely on a chemical 

Ti analysis and, therefore, it is not clear whether the Ti 

detected in fluids and tissues is due to translocation of 

 TiO2 from the gastrointestinal tract in the form of par-

ticles or as solubilized material. A subsequent experi-

ment in CD-1 mice involved the oral administration by 

gavage of anatase particles with mean diameters of 18 

and 120  nm. �e dose was 64  mg/kg body weight [65]. 

Increased Ti levels, measured by ICP-optical emission 

spectrometry, were detected in the blood, liver and pan-

creas, but only in animals administered the 18-nm par-

ticles. A peak Ti blood concentration of ~ 0.15  µg/ml 

(against a background of ~ 0.05 µg/ml) was detected 1 h 

after administration.

In an earlier study, Sprague–Dawley rats were treated 

with rutile particles (mean size of 500  nm) by oral gav-

age at a dose of 12.5  mg/kg body weight per day [66]. 

SEM analysis and histologic examination of tissues after 

10  days of dosing revealed the presence of  TiO2 parti-

cles in the GALT and mesenteric lymph nodes and even 

demonstrated some translocation to sinusoidal cells of 

the liver. �e Ti content of the aforementioned tissues 

was demonstrated by ICP-atomic emission spectros-

copy and quantitative estimates suggested that approxi-

mately 6.5% of  TiO2 particles were absorbed. However, 

the authors did not consider the background Ti content 

in their calculations, likely resulting in an overestimation 

of systemic retention. In another study, Sprague–Dawley 

rats fed with Ti-free diet received by gavage a single oral 

dose of  TiO2 (5 mg/kg) in the form of nano- or micron-

sized particles with mean diameters ranging from 40 nm 

to 5  µm [40]. �ese particles consisted of anatase or 

rutile. Ti levels were measured by ICP-mass spectrom-

etry in the feces, blood and urine at different times after 

administration and no Ti translocation from the gastro-

intestinal tract into blood or urine was observed. �e ani-

mals were sacrificed 4 days after administration for tissue 

analysis, but Ti concentrations in liver, spleen and kidney 

remained at control levels. In a subchronic study,  TiO2 

particles consisting of 80% anatase and 20% rutile (mean 

size of 26 nm) were administered orally to Sprague–Daw-

ley rats at daily doses of up to 1042 mg/kg body weight 

for 90  days [39]. Upon analysis by ICP-mass spectrom-

etry, no increased Ti levels were detected in liver, spleen, 

kidney and brain tissues even in the group of animals 

receiving the highest dose, thus indicating a very low oral 

bioavailability. In the blood taken at necropsy, the high 

background Ti concentration of ~ 0.4 µg/g was minimally 

increased, but only in males of the 521 and 1042-mg/kg 

groups.

Similar results were obtained from a study performed 

with differentially sized  TiO2 particles provided by the 

Joint Research Center (JRC) Nanomaterials Repository. 

�ese reference materials consist of anatase or rutile with 

mean particle sizes ranging from 6 to 90 nm. Wistar rats 

were administered these particles by oral gavage at a daily 

dose of around ~ 10 mg/kg body weight for 5 consecutive 

days [67]. �e ICP-mass spectrometry analysis of liver, 

spleen and mesenteric lymph nodes performed 24 h after 

the last exposure revealed low Ti levels exceeding the 

limit of detection of 30  ng/g only occasionally. In a few 

 TiO2-exposed animals, there was a detectable but very 

slight increment of Ti in liver, spleen or the mesenteric 

lymph nodes. On the basis of these findings, the fraction 

of  TiO2 particles absorbed after repeated oral adminis-

tration was estimated to be maximally 0.02% by weight. 

Upon intravenous application, the same particles were 

predominantly retained in the liver, and the subsequent 

analysis of animals sacrificed at different times after 

injection reveled long half-lives of up to 650 days in the 

liver and spleen. It is therefore possible that even a lim-

ited systemic absorption from the gastrointestinal tract 

in combination with slow elimination might potentially 

result in tissue accumulation.

In a short-term exposure test, anatase particles (pri-

mary size of 20–60 nm) were administered by oral gavage 

to Sprague–Dawley rats at doses of up to 2 mg/kg body 

weight per day for five consecutive days [68]. ICP-mass 

spectrometry measurements revealed a slight but statisti-

cally significant increase of Ti concentrations relative to 

untreated controls not only in the spleen but surprisingly 

also in the ovaries of animals exposed at the higher dose. 

�e penetration of  TiO2 into the spleen (but not into 

the ovaries) was confirmed by single-particle ICP-mass 

spectrometry and SEM analysis of tissue homogenates, 

thus demonstrating the presence of particle aggregates/

agglomerates.
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Table 1 Overview of oral toxicokinetic and toxicodynamic studies in rodents

Study type Oral dose Particle structure (mean 
size)

Internal exposure Main reported effects Source

Acute toxicity in mice 5000 mg/kg Structure not specified (25, 
80 and 155 nm)

~ 4 µg/g Ti in liver Histopathologic findings 
in brain, liver and kidney

[42]

Acute toxicity in rats Up to 5000 mg/kg Coated rutile/anatase 
(73 nm)

Not examined None [82]

Bioavailability in rats Up to 80 µg/kg Radiolabeled anatase 
(50 nm)

Oral particle bioavailability 
of ~ 0.6%

None [64]

Bioavailability in rats 5 mg/kg Anatase and rutile 
(40 nm–5 µm)

None detected None [40]

Toxicokinetics in rats ~ 10 mg/kg/day for 5 days Anatase and rutile 
(6–90 nm)

Oral particle bioavailability 
of ~ 0.02%

None [67]

Toxicokinetics in rats Up to 2 mg/kg/day for 
5 days

Anatase (20–60 nm) Increased Ti concentra-
tions in spleen and 
ovaries

Altered testosterone 
levels, histopathologic 
findings in thyroids

[68]

Toxicokinetics in rats Up to 30 mg/kg/day for 
7 days

Anatase and rutile (pri-
mary sizes not specified)

None detected None [37]

Toxicokinetics in rats 12.5 mg/kg/day for 
10 days

Rutile (500 nm) Detection of particles in 
GALT, lymph nodes and 
liver

None [66]

Subacute toxicity in mice Up to 500 mg/kg/day for 
5 days

Anatase/rutile (46 nm) Not examined Histopathologic findings 
in gut mucosa

[134]

Subacute toxicity in mice Up to 100 mg/kg/day for 
14 days

Anatase (20–50 nm) Not examined Histopathologic findings 
in liver

[83]

Subacute toxicity in mice 150 mg/kg/day for 14 days Anatase (21 nm) Not examined Histopathologic findings 
in liver

[84]

Subacute toxicity in rats 300 mg/kg/day for 14 days Structure not specified 
(50–100 nm)

Not examined Histopathologic findings 
in liver

[85]

Subacute toxicity in rats 24,000 mg/kg/day for 
28 days

Rutile (173 nm) Detection of particles in 
GALT

None [82]

Subacute toxicity in rats Up to 200 mg/kg/day for 
30 days

Anatase (75 nm) Not examined Histopathologic findings 
in liver

[88]

Subchronic toxicity in 
mice

Up to 250 mg/kg/day for 
42 days

Anatase (25 nm) Not examined Increased sperm abnor-
malities

[86]

Subchronic toxicity in 
mice

64 mg/kg/day for 196 days Anatase (18 and 120 nm) ~ 0.15 µg/ml Ti in whole 
blood

Histopathologic findings 
in liver, kidney, spleen 
and pancreas

[65]

Subchronic toxicity in rats Up to 1000 mg/kg/day for 
90 days

Coated rutile (145 nm) Detection of particles in 
GALT

None [82]

Subchronic toxicity in rats Up to 1042 mg/kg/day for 
90 days

Anatase/rutile (26 nm) Marginally higher Ti blood 
levels in males

None [39]

Subchronic toxicity in rats Up to 50 mg/kg/day for 30 
and 90 days

Anatase (24 nm) None Altered serum enzyme 
levels

[87]

Carcinogenicity in mice Up to 8350 mg/kg/day for 
2 years

Anatase (pigment-grade) Not examined Lower survival, hepatocel-
lular carcinomas

[112]

Carcinogenicity in rats Up to 2900 mg/kg/day for 
2 years

Anatase (pigment-grade) Not examined Hyperplastic bile ducts, 
thyroid carcinomas

[112]

Reproductive toxicity in 
rats

Up to 1000 mg/kg/day in 
gestation

Anatase and/or rutile 
(43–213 nm)

Not examined None [114]

Reproductive toxicity in 
rats

100 mg/kg/day in gesta-
tion

Anatase (10 nm) Increased Ti content in 
hippocampus

Impaired learning and 
memory

[116]

Acute colitis model in 
mice

Up to 500 mg/kg/day for 
7 days

Rutile (30–50 nm) Not examined Histopathologic findings 
in gut mucosa

[124]

Colon cancer model in rats Up to 10 mg/kg/day for 
up to 100 days

Anatase/rutile (22 and 
118 nm)

Detection of particles in 
GALT and liver

Histopathologic findings 
in gut mucosa

[135]
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Taken together, the above reports indicate a size-

dependent biokinetic behavior with low systemic absorp-

tion of orally administered fine-sized  TiO2 particles 

displaying primary sizes > 100 nm. �is conclusion is con-

firmed by a toxicokinetic study in Sprague–Dawley rats 

carried out according to the OECD test guideline 417, 

which failed to detect any systemic uptake of pigment-

grade rutile and anatase particles [37]. Although some 

penetration may take place across and between entero-

cytes, the observed intestinal uptake of nano-sized  TiO2 

particles occurs primarily through the GALT as the port 

of entry [16, 53, 69]. �us, a unique feature of the gas-

trointestinal exposure is that a fraction of  TiO2 particles 

is retained in the GALT from where the particles may 

reach the blood presumably through the lymphatic tho-

racic duct. �ere is finally only slow elimination of these 

particles from internal organs (with estimated half-lives 

of up 650  days), indicating the potential for persistence 

and accumulation after repeated uptake.

Oral bioavailability in humans

Studies in adult human subjects highlight a low but 

detectable oral bioavailability. Male volunteers ingested 

anatase particles at doses of 23 and 46 mg in gelatin cap-

sules (mean particle size of 160 nm) or as a powder (mean 

particle size of 380 nm) [70]. Pretreatment blood Ti lev-

els, measured by ICP-atomic emission spectroscopy, 

ranged between 0.007 and 0.02 µg/ml. After  TiO2 admin-

istration, blood was obtained at different times over 24 h. 

Around 8–12 h after the intake of 160-nm anatase at the 

dose of 23 mg (~ 0.4 mg/kg body weight), peak Ti concen-

trations in the blood reached 0.04–0.05 µg/ml in the five 

volunteers. �e highest Ti concentration of 109.9  µg/l 

was detected in the blood of one volunteer 8  h after 

ingesting 46  mg (~ 0.75  mg/kg body weight) of 160-nm 

anatase. Administration of 380-nm anatase in the same 

amounts yielded lower blood concentrations. In another 

human study, nine volunteers received a 5-mg/kg single 

oral dose of different  TiO2 particles, i.e., anatase with a 

size of 15 nm, rutile with a size of ~ 100 nm and another 

rutile in the micron-scale range, dispersed in water [71]. 

�e ICP-mass spectromety analysis of blood collected 

over a 4-day period, starting 24 h before dosing and end-

ing 3 days post-dose, revealed that essentially none of the 

administered particles were systemically absorbed. �e 

background Ti concentration in the blood was 0.014 µg/

ml. A further study involved seven volunteers who 

ingested a single 100-mg dose of anatase (particle size of 

260 nm) in the form of gelatin capsules [72]. �e parti-

cles were subsequently identified in the blood of by dark 

field microscopy and the presence of Ti was confirmed 

by ICP-mass spectrometry. A peak Ti blood concentra-

tion of ~ 10  µg/ml (against a background of ~ 1.5  µg/ml) 

was detected at 6 h after ingestion of the test item. �us, 

this report presented by Pele et al. [72] not only confirms 

the earlier finding of Böckmann et al. [70] in revealing a 

peak of Ti in the blood after oral intake of  TiO2, but also 

demonstrates that at least part of this Ti appears in the 

blood as whole particles. �ere is an intriguing difference 

between the background Ti concentration of whole blood 

in most rodent studies (0.05  µg/ml or higher) and the 

lower levels observed in human blood (0.007–0.02  µg/

ml).

Impact of the particle corona

A critical aspect that has not yet been investigated with 

regard to bioavailability and systemic distribution is the 

effect of bound biomolecules that alter surface properties 

[73–75]. In fact, small particles avidly and rapidly adsorb 

on their surface macromolecules including proteins that 

modify key characteristics like their overall size, aggrega-

tion state, bioavailability, tissue distribution and bioaccu-

mulation. �e term “corona” was introduced to describe 

the simultaneous attachment of multiple macromol-

ecules from a physiologic environment to the surface of 

nanoparticles [76, 77]. For example,  TiO2 particles incu-

bated in a simulated intestinal digestion juice form a 

corona of bile acids and proteins [78]. Also,  TiO2 nano-

particles incubated in blood plasma are readily decorated 

with a layer of proteins like apolipoprotein A-1, comple-

ment factors and immunoglobulins [73–75]. �us, each 

biologic compartment has its own set of macromolecules 

that interact with outer particle surfaces. Although not 

explicitly tested, it can be assumed that  TiO2 adopts dis-

tinctive corona compositions in the context of each dif-

ferent food matrix in which this material is incorporated 

as additive [79]. Also, any given corona configuration is 

expected to progressively change upon oral ingestion, as 

the particles and surrounding food constituents move 

through saliva in the mouth to the gastric and intestinal 

fluids [80]. Presumably, the corona composition further 

changes if the particles move from the intestinal lumen 

to the central blood compartment and internal organs. 

A potential effect of this continuously changing corona 

is to modify key surface properties, which could medi-

ate particle transfer across biological barriers and their 

uptake into cells including for example macrophages, 

dendritic cells or hepatocytes, thus influencing bio-

availability and tissue permeability [81]. Importantly, 

the extent of macromolecular interactions and composi-

tion of the resulting corona depends on both the surface 

chemistry of the particles and their exact diameter. At 

the outer interface of nano-sized particles, for example, 

a highly curved surface increases the deflection angle 

between absorbed macromolecules, possibly leading to a 

higher density of such macromolecules in the corona of 
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smaller nanoparticles compared to the corona of larger 

particles [73–75]. �erefore, nanomaterial characteristics 

like surface chemistry and outer curvature determine the 

corona composition and these considerations imply that 

uncoated versus coated or small versus large particles 

exert fundamentally different biological effects as a con-

sequence of their distinct corona composition.

Acute toxicity

An overview of available toxicity studies is shown in 

Table  1. With the exception of genotoxicity tests, only 

the oral route of exposure is considered relevant for the 

risk assessment of  TiO2 as food additive. No mortality 

or adverse signs resulted from an acute exposure by sin-

gle oral gavage administrations of  TiO2 particles (crys-

tal structure not specified) according to the OECD test 

guideline 420. A suspension of the test material (mean 

particle size of 155  nm) was administered to male and 

female CD-1 mice at the dose of 5000  mg per kg body 

weight [42]. �e same dose of nano-sized  TiO2 particles 

(diameters of 25 and 80 nm) resulted in an increased liver 

weight. �ere were also histopathologic findings in the 

brain (fatty degeneration of hippocampal regions), in the 

liver (hydropic degeneration around the central vein) and 

kidney (glomerular swelling). �ese organ damages were 

reportedly more serious in the animals treated with the 

80-nm particles, which is consistent with higher Ti tissue 

levels achieved by administration of these medium-sized 

test items compared to the 25 and 155-nm counterparts 

(see section on oral bioavailability above). No statisti-

cal analysis supported the causal relationship between 

histopathologic findings and  TiO2 treatments. For an 

acute oral toxicity study in Crl: CD(SD) rats according to 

OECD guideline 425, alumina- and silica-coated particles 

with a primary size of 73 nm and a crystalline composi-

tion of 79% rutile/21% anatase were administered by gav-

age at doses of up to 5000 mg/kg body weight [82]. �ese 

treatments with surface-coated particles failed to elicit 

mortality, biologically relevant body weight changes, 

clinical signs (except grey-colored feces) or gross organ 

lesions.

Subacute and subchronic toxicity

A subacute exposure was carried out in male albino 

mice with anatase particles displaying a primary size of 

20–50  nm (see Table  1 for an overview of oral toxicity 

studies). Daily doses of 10, 50 and 100 mg/kg body weight 

were applied for 14 consecutive days [83]. At the high-

est dose, this treatment induced a statistically significant 

increase of liver weight and histologic changes includ-

ing a recruitment of mononuclear cells to the vicinity of 

sinusoids accompanied by angiectasis (dilated sinusoi-

dal spaces filled with blood cells). Another 14-day oral 

exposure study was carried out in male albino mice with 

anatase particles displaying a mean diameter of 21  nm 

[84]. �e particles were administered daily at 150 mg/kg 

body weight, leading to statistically significantly higher 

liver weights as well as significantly increased serum lev-

els of the liver enzymes alanine aminotransferase (ALT) 

and aspartate aminotransferase (AST). �e authors 

also reported histopathologic changes in the liver (focal 

degeneration of hepatocytes with mononuclear cell infil-

tration) supporting the hypothesis that the tested nano-

particles cause liver injury. Swelling and vacuolization 

of hepatocytes as well as infiltration of inflammatory 

cells were additionally detected in the liver of Wistar rats 

treated daily for 14 consecutive days by oral gavage with 

300 mg/kg  TiO2 particles (composition not specified, pri-

mary size of 50–100 nm) [85]. �ese adverse hepatocel-

lular effects were supported by a statistically significant 

increase of ALT, AST and alkaline phosphatase serum 

activity in treated animals compared to vehicle controls.

A 28-day study was carried out in line with OECD 

test guideline 407 using rutile particles with a mean size 

of 173  nm. �is material was administered by oral gav-

age to 8-week old male Cr: CD(SD) rats at daily doses of 

24,000  mg/kg body weight [82]. One rat each from the 

control and test group died during the dosing period due 

to accidental perforation of the esophagus. �ere were, 

however, no test item-related effects on mortality, food 

intake, body weight, clinical signs, hematology, serum 

clinical chemistry, hematology, organ weights, gross 

pathology or histopathology. Brown granular aggregates 

or clumps, likely indicative for the presence of  TiO2, were 

seen upon hematoxylin and eosin staining in sections of 

the intestinal mucosa and draining lymphoid tissue, but 

without overt cellular reactions. �ese microscopic find-

ings related to the presence of test particles in the GALT 

were not considered to be adverse.

An oral subchronic (90-day) toxicity study was per-

formed in line with OECD test guideline 408 using rutile 

particles with a mean diameter of 145  nm. �e particle 

surface was alumina-coated. �is material was adminis-

tered to groups of 8-week old Cr: CD(SD) rats by daily 

gavage doses of up to 1000  mg/kg body weight [82]. 

�ere were no treatment-related effects on survival, food 

intake, body weight, clinical signs, hematology, clinical 

chemistry, hematology, organ weights, gross pathology 

or histopathology. Test material-related findings were 

limited to microscopic observations consistent with the 

oral route of uptake. In particular, granular aggregates 

or clumps, indicating the presence of  TiO2, were seen in 

the intestinal mucosa and the draining lymphoid tissue, 

without tissue reactions. Again, these findings related to 

the presence of  TiO2 particles in the GALT were not con-

sidered adverse. �ere is also a 28-week study with CD-1 
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mice exposed orally at 64 mg/kg/day to anatase particles 

with mean diameters of 18 and 120 nm [65]. �e authors 

reported histopathologic findings such as tissue fractures 

in the liver, glomerular atrophy in kidneys and islet hya-

linization in the pancreas induced by 18-nm particles but 

not upon treatment with 120-nm particles, consistent 

with the missing systemic retention of the latter (see sec-

tion on oral bioavailability above).

In summary, these oral toxicity studies in rodents 

reveal major uncertainties limiting their predictive value 

for the risk assessment of human dietary exposure. Many 

reports are based on a small number of animals per treat-

ment group, involve an unusual or inadequate design or 

lack statistical analyses. Some studies used insufficiently 

characterized particles with regard to composition, pos-

sible contaminants, impurities or physico-chemical 

properties, and most reports failed to monitor particle 

size distributions. Single-dose [42] or repeated-dose oral 

exposures [83–85] point to liver toxicity as a common 

endpoint following gastrointestinal absorption of nano-

sized  TiO2 particles with mean diameters below 100 nm. 

�is endpoint involving liver toxicity is not seen after 

oral administration of  TiO2 particles with mean diame-

ter above 100 nm [82]. Further adverse outcomes in oral 

toxicity studies were reported by the Medical College 

of Soochow University (Suzhou, China). �ese studies 

tested  TiO2 nanomaterials synthesized by technical pro-

cedures that are not consistent with commercial prod-

ucts in the food sector. �ree of these studies indicating 

toxicity in animals were withdrawn by journal editors due 

to inadequate statistical analyses. As already pointed out 

[13, 29], the same methodological deficits are also found 

in other publications from the same group such that their 

reports were not further considered.

Oral toxicity in young animals

In view of the higher exposure of children relative to 

adults (see section on human exposure), it is also appro-

priate to screen the literature for oral toxicity studies car-

ried out in young laboratory animals. A seminal report 

involved pubertal male mice aged 4 weeks at the begin-

ning of exposure. Anatase particles with a mean diam-

eter of 25 nm were administered orally at daily doses of 

10, 50 and 250  mg/kg body weight for 42 consecutive 

days [86]. �e analysis of epididymal sperm at the end 

of the exposure period revealed a statistically significant 

and dose-dependent increment of morphologic abnor-

malities. Although no changes in sperm number were 

detected, the fraction of sperm cells displaying abnor-

malities increased from ~ 13% in controls to ~ 23% in 

the 50-mg/kg group and ~ 29% in the 250-mg/kg group. 

�ese effects on spermatogenesis were associated, in 

the medium- and high-dose groups, with a reduction of 

serum testosterone levels, decreased layers of spermato-

genic cells and an increased appearance of vacuoles in 

the seminiferous tubules. No statistical evaluation of 

these histologic findings was given. �e testosterone 

reduction described in the young mice of this report is 

contrasted by another study using 9–10-week old rats, 

described in more detail in the section on reproductive 

toxicity below, where anatase particles (primary size of 

20–60 nm) given by the oral route were associated with 

increased serum testosterone levels in males, whereas 

the concentration of this same hormone was reduced in 

females [68]. Another study focused on cardiac toxicity 

in young rats (4 weeks old at the beginning of the study) 

following 30 and 90 days of an oral exposure to anatase 

particles (mean size of 24  nm) at 2, 10 and 50  mg/kg 

body weight per day [87]. �e authors report changes in 

some biochemical endpoints like decreased serum lac-

tate dehydrogenase, hydroxybutyrate dehydrogenase and 

creatine kinase activity in the high-dose group, but this 

study did not reveal any toxicologically relevant effects. 

A comparison between rats aged 4 weeks and rats aged 

9 weeks at the start of the study was carried out to test 

the susceptibility to anatase particles with a mean size 

of 75  nm [88]. Sprague–Dawley rats were administered 

daily doses at 10, 50 or 200  mg/kg body weight for 30 

consecutive days. Histologic examinations of the organs 

after the treatment period revealed changes in the liver 

described by the authors as hepatic cord disarray, peri-

lobular cell swelling, vacuolization and hydropic degen-

eration in both the 50 and 200-mg/kg dose groups, but 

only in young animals. �ese alterations were accompa-

nied by a statistically significant rise of serum bilirubin 

at the anatase dose of 200 mg/kg. In adult rats, less seri-

ous infiltrations of inflammatory cells in the liver paren-

chyma were seen at 10 and 50 mg/kg (but not at 200 mg/

kg) and considered to represent background liver lesions 

frequently observed in rats.

In summary, these few studies on the reaction of dif-

ferentially aged rodents suggest the possibility that young 

animals may be more susceptible than adults to develop-

ing adverse effects upon oral exposure to  TiO2 particles.

Genotoxicity

TiO2 particles with varying composition (anatase, rutile 

or mixtures of these two polymorphs) and different sizes 

were probed for mutagenicity in the canonical reverse 

mutation assay with bacteria (Ames test), usually at con-

centrations of up to 5–10  mg per standard plate. In all 

cases, the tested particles failed to elicit mutations in the 

absence or in the presence of rat liver microsomes medi-

ating metabolic activation (see for example [89–93]). 

However, the Ames test is not considered suitable for this 
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purpose due to the presumed inability of bacterial cells, 

conferred by their rigid cell wall, to take up the particles.

Conflicting findings were reported from in  vitro tests 

carried out in rodent or human cells and aimed at the 

detection of DNA strand breaks, point mutations, dele-

tions, chromosomal aberrations, micronuclei or sister 

chromatid exchanges. Mammalian cell-based genotox-

icity assays yielded both positive and negative outcomes 

when used to test  TiO2 particles. �ese methods include, 

in particular, single-cell electrophoresis (comet assays) as 

well as reporter gene, micronuclei, chromosomal aberra-

tion and sister chromatid exchange assays (see for exam-

ple [83, 91, 92, 94–107]). �e interpretation of findings is 

uncertain because the effects, if any, may be secondary 

to cytotoxic or apoptotic reactions elicited by incubation 

of rodent or human cells with high concentrations of the 

test material.

For the evaluation of in vivo genotoxicity, it is impor-

tant to consider that, in view of the low absorption of 

 TiO2 particles after oral uptake (see section on oral bio-

availability), sufficient systemic exposure can only be 

achieved by parenteral administration. For example, 

B6C3F1 mice were subjected to daily intravenous injec-

tions of anatase particles (mean size of 10 nm) at doses 

ranging from 0.5 to 50 mg/kg body weight, for 3 consecu-

tive days. Genotoxicity was assessed by determining the 

micronuclei in reticulocytes and the frequency of muta-

tions in the X chromosome-linked phosphatidylinositol 

glycan complementation group A (Pig-A) gene in periph-

eral blood cells [108]. �is study concluded that anatase 

nanoparticles reaching the bone marrow cause consider-

able cytotoxicity but without inducing direct genotoxic 

effects. Transgenic C57Bl/6 mice harboring the bacte-

rial lacZ reporter gene were injected intravenously with 

anatase particles (mean size of 22  nm) obtained from 

the JRC Nanomaterials Repository, at daily doses of up 

to 30  mg/kg body weight on 2 consecutive days [109]. 

No genotoxic effects were detected by scoring the fre-

quency of micronuclei in reticulocytes of the peripheral 

blood and by monitoring lacZ mutations as well as DNA 

strand breaks (by comet assay) in liver and spleen cells. 

Anatase/rutile particles (primary size of 21  nm) were 

injected intravenously to Wistar rats at a single dose of 

5 mg/kg body weight [110]. No genotoxicity was subse-

quently detected by analyzing bone marrow cells in the 

comet assay. A threefold increase in micronucleated 

cells was detected 1 h after the injection when polychro-

matic erythrocytes were stained with the conventional 

May-Grunwald-Giemsa reagents, but not in concomi-

tant stains with acridine orange. Although not recom-

mended by the relevant OECD test guideline 474, other 

authors selected the intraperitoneal route to expose rats 

with anatase/rutile particles displaying a primary size 

of 45  nm. �e daily doses were 500–2000  mg/kg body 

weight applied for 5 consecutive days [111]. �e animals 

were sacrificed 24  h after the last treatment and geno-

toxic effects were evaluated by counting the frequency 

of micronuclei in polychromated erythrocytes of the 

bone marrow, and by monitoring the appearance of DNA 

strand breaks when subjecting bone marrow, brain and 

liver cells to comet assays. �ese experiments revealed 

a statistically significant and dose-dependent increase in 

micronuclei and DNA strand breaks in response to the 

 TiO2 treatment. However, the report lacks an assessment 

of cytotoxicity in the tested tissues raising the possibility 

that the genotoxic effects might be secondary to particle-

induced cell death. �e above considerations lead to the 

conclusion that there is no solid evidence for anatase/

rutile particles being genotoxic.

Carcinogenicity

Long-term (2-year) carcinogenicity studies were carried 

out in both B6C3F1 mice and Fisher 344 rats using, as the 

test material, pigment-grade anatase particles designated 

 Unitane® 0–220 [112]. �e size of these test particles is 

not specified but it can be assumed from their optical 

properties that they have a mean diameter in the 200–

300  nm range conferring a white color. �e test mate-

rial was included in the diet of mice (groups of 50 males 

and 50 females) at daily doses of 3250 and 6500  mg/kg 

body weight (for male animals) and 4175 and 8350 mg/

kg (for females). �e particle-supplemented feed was 

not examined for possible nutritional imbalances. With 

the exception of white feces, there were no clinical signs 

related to  TiO2 administrations. �e test item did not 

affect the survival of male mice but, in the females of the 

high-dose group, only 66% survival was reported until 

the end of the 104-week study compared to 90% survival 

in controls. No accompanying effects were reported that 

would explain this gender-specific difference. All sur-

viving animals were sacrificed after 103 weeks for com-

prehensive macroscopic and microscopic inspection for 

neoplasms. �ere was a dose-dependent increase in the 

incidence of hepatocellular carcinomas in males (17% of 

animals in the control group, 19% in the low-dose group 

and 29% in the high-dose group), although the test labo-

ratory noted that this higher occurrence of liver cancer 

remained within the range of historical reference con-

trols. �e study authors, therefore, concluded that the 

oral  TiO2 administration is not carcinogenic in the tested 

mice strain.

In rats, the same  Unitane® 0–220 particles were 

tested by dietary administration to groups of 50 males 

and 50 females at daily doses of 1125 and 2250  mg/kg 

body weight (for males) and 1450 and 2900  mg/kg (for 

females). Again, the particle-supplemented feed was 
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not examined for possible nutritional imbalances. With 

the exception of white feces, there were no clinical signs 

related to  TiO2 exposure. �e test substance had no effect 

on survival. After 103 weeks, the organs of surviving ani-

mals were subjected to macro- and microscopic analyses. 

�ere was an increased frequency of hyperplastic bile 

ducts in males of both the low- and high-dose groups. 

Tumor incidences in the treatment groups were report-

edly not higher than in controls. However, in females the 

combined incidence of c-cell adenomas and carcinomas 

of the thyroid was substantially increased from 2% in 

controls to 14% in the high-dose group. No such adeno-

mas or carcinomas were detected in the low-dose group. 

Although statistically significant by the Cochran–Armit-

age test (P = 0.013) and the Fisher exact test (P = 0.042), 

this increased neoplastic incidence was dismissed by 

introducing a Bonferroni correction for multiple com-

parisons. Irrespective of such statistical considerations, 

the emergence of thyroid tumors in rats needs careful 

considerations due to the questionable relevance of this 

finding for humans [113].

Reproductive toxicity

A pivotal prenatal developmental study evaluated three 

pigment-grade (pg-1, pg-2 and pg-3) and three ultrafine 

(uf-1, uf-2 and uf-3) anatase and/or rutile particles given 

to pregnant rats following the OECD test guideline 

414. �e primary particle size was 153–213  nm for the 

pigment-grade material and 43–47  nm for the ultrafine 

material. �ese test substances were administered to 

Crl:CD(SD) rats by oral gavage on gestation days 6–20. 

Also, pregnant Wistar rats were exposed to  TiO2 parti-

cles (uf-2, pg-2 and pg-3) by oral gavage on gestation days 

5–19. �e dose levels in both rat strains were 100, 300 

and 1000 mg/kg body weight per day [114]. At the end of 

each exposure period, the rats were sacrificed for caesar-

ean sections and examination of the dam and fetuses. As 

the only finding, at 1000 mg/kg per day, the uf-1 particles 

led to an increased fetal sex ratio (males/females) from 

0.46 in the controls to 0.60 in the treatment group. �e 

range of the test facility historical control for this param-

eter was 0.43–0.53. Because the sex ratio is determined 

by events that occur around conception well before the 

start of the treatment on gestation day 6, the authors con-

cluded that this finding was not test item-related. �ese 

results are confirmed by a reproduction study according 

to OECD test guideline 421, which involved Sprague–

Dawley rats dosed with daily oral gavages of pigment-

grade  TiO2 at 1000 mg/kg body weight. �e males were 

administered the test substance for 40  days (beginning 

from 2 weeks before the mating period) and females were 

treated for 2  weeks before mating, during the gestation 

period and until day 4 after delivery. Also this study did 

not reveal any reproductive or developmental toxicity 

[115].

Other reports ascribe adverse reproductive effects to 

orally administered  TiO2 particles but, unfortunately, 

these further experiments in rodents were not carried 

out following standardized procedures. Undoubtedly, 

these studies raise uncertainties but their impact on 

hazard identification and characterization is still limited 

in view of the small number of animals per treatment 

group, inappropriate study design or insufficient statisti-

cal analyses. In a study already mentioned in the preced-

ing sections, anatase particles (primary size of 20–60 nm) 

were given to Sprague–Dawley rats by the oral route at 

doses of up to 2  mg/kg body weight per day for 5 con-

secutive days [68]. �is oral exposure was associated with 

increased serum testosterone levels in males, whereas the 

concentration of this hormone was reduced in females. 

�e authors also reported histologic changes in the thy-

roid (desquamation into follicular lumen, follicles with 

irregular shape, smaller colloid space) after oral treat-

ments at 1 or 2 mg/kg body weight per day for 5 days.

Neurodevelopmental consequences of a  TiO2 exposure 

were suggested by a study in which pregnant Wistar rats 

were treated by oral gavage with anatase particles (pri-

mary size of 10 nm) at 100 mg/kg body weight [116]. �is 

dose was applied daily from gestation day 2 to gestation 

day 21. Two male pups from each litter were sacrificed 

for the examination of brains immediately after birth. 

�e Ti content in the hippocampus of the pups in the test 

group was increased to a statistically significant degree. 

Concomitantly, the authors observed that expression 

of the cell proliferation marker Ki67 is reduced in that 

brain region of treated animals relative to controls. On 

post-natal day 60, the learning and memory capacity was 

tested in randomly selected male pups by means of the 

passive avoidance and Morris water maze test, and was 

found to be impaired in the treatment group relative to 

controls.

Local effects in the gastrointestinal tract

Depending on the identified hazards, the usual risk 

characterization may need the assessment of additional 

endpoints that are not routinely inspected in the toxi-

cological evaluation of most chemicals. One question is 

whether  TiO2 particles may influence directly the bacte-

rial community in the gut lumen. When tested in  vitro 

using anaerobic reactors, which provide an intestinal 

microbiome surrogate, food-grade anatase has been 

shown to cause marginal shifts in bacterial populations, 

for example by slightly reducing the abundance of Bacte-

roides ovatus in favor of a Clostridium species as seen at 

particle concentrations of 100 µg/ml or higher [117, 118]. 

�e biological relevance of these observations needs to 



Page 12 of 19Winkler et al. J Nanobiotechnol  (2018) 16:51 

be ascertained but it appears so far that  TiO2 particles do 

not exert major effects on the human gut microbiota at 

realistic concentrations.

Another potential target of nanomaterials is the intes-

tinal surface under the surveillance of dendritic cells that 

act as first-line sentinels of foreign materials by filtering 

out a volume of up to 1500 µm3, which equals their own 

cell volume, per hour [119]. Unlike other antigen-pre-

senting cells, dendritic cells constitutively express class II 

major histocompatibility complexes and, in response to 

pathogen recognition, display co-stimulatory surface gly-

coproteins and secrete inflammatory cytokines. By these 

combined features, dendritic cells constitute key activa-

tors of both the innate and adaptive immune system [120, 

121]. It is not surprising to find that, based on their func-

tion in sampling their environment for intruding insults, 

dendritic cells are also able to capture nanoparticles 

in an efficient manner [122]. It was shown in  vitro that 

endotoxin-activated dendritic cells release the potent 

pro-inflammatory cytokine interleukin-1β (IL-1β) upon 

incubation with nano-sized anatase/rutile particles [123]. 

By activation of the inflammasome, leading to IL-1β 

secretion, gavage applications of rutile particles (30–

50 nm) at a daily dose of 50 mg/kg body weight aggravate 

macro- and microscopic signs of acute colitis induced in 

C57BL/6 mice by repeated exposures to dextran sulfate 

sodium (DSS) given in the drinking water [124]. In addi-

tion, a nano-Trojan horse hypothesis has been proposed 

due to the enhanced adsorptive surface property of nano-

particles and, hence, their potential to carry harmful sub-

stances as their cargo [125]. A relevant pro-inflammatory 

cargo of dietary inorganic particles like those containing 

 TiO2 consists of bacterial fragments such as lipopolysac-

charides (LPS) or peptidoglycan [126–128]. In this con-

text, pigment-grade  TiO2 particles have been shown to 

stimulate secretion of IL-1β from macrophages isolated 

from mice carrying a mutation in the nucleotide-binding 

oligomerisation domain-containing 2 (NOD2) gene [129], 

a mutation that confers an increased risk for inflamma-

tory bowel disease (IBD) [130, 131]. It is, therefore, pos-

sible that the binding of luminal antigens or adjuvants 

to  TiO2 particles could aid their delivery to inflamma-

tory cells of the gastrointestinal tract and contribute to 

the pathogenesis of IBD in susceptible individuals. Con-

versely, dietary nanoparticles by adsorptive sequestration 

on their surface may negatively influence the bioavailabil-

ity of iron, zinc and fatty acids [132, 133].

Reactions of the gastric mucosa were examined after 

oral treatment of Swiss Webster mice with nanopar-

ticles (mean size of 46  nm) composed of rutile (77%) 

and anatase (22%). �e  TiO2 nanoparticles were dis-

persed in water and administered at daily doses of 5, 50 

and 500 mg/kg body weight for 5 consecutive days. �e 

animals were sacrificed 24 h, 1 or 2 weeks after the last 

treatment. Analysis of the gastric epithelium by ICP-

mass spectrometry revealed a dose-dependent increase 

of Ti levels associated with histopathologic effects like 

submucosal edema, necrosis of epithelial cells and 

ulcerations [134]. �e severity of these histopathologic 

findings increased with the dose. Another approach to 

this problem made use of a colorectal cancer model to 

test the ability of food-grade  TiO2 particles to acceler-

ate intestinal tumor progression. �is murine model 

involves the intraperitoneal injection of the tumor ini-

tiator azoxymethane (AOM) combined with repeated 

exposures to the pro-inflammatory agent DSS in drink-

ing water. BALB/c mice were treated with the AOM/DSS 

protocol, with intragastric gavage of  TiO2 particles at 

5 mg/kg body weight per day alone, or with a combina-

tion of AOM/DSS and  TiO2 particles [18]. �e primary 

size of these particles is not specified but TEM analyses 

revealed aggregates/agglomerates with diameters rang-

ing from 50 to 600 nm. �e particle administrations took 

place during 5  days per week for 10  weeks. Necropsies 

carried out after 11 weeks revealed that the combination 

of AOM/DSS with  TiO2 particles increased the expres-

sion of markers of tumor progression (COX2, Ki67 and 

β-catenin) in the epithelium of the colon, whereas  TiO2 

alone did not induce such expression changes. Moreo-

ver, the authors observed that the tested food-grade  TiO2 

particles, even in the absence of any tumor initiator/pro-

moter, reduced the density of protective mucin-produc-

ing goblet cells detected by alcian blue staining.

�e consequences of an oral exposure to food-grade 

 TiO2 on the intestinal mucosa was further investigated 

in male Wistar rats. Two types of anatase/rutile materi-

als were tested: commercial E 171 (primary particle size 

of 118  nm) and, as a reference, nanoparticles from the 

JRC Nanomaterials Repository (primary size of 22  nm). 

In a first experiment, these test materials were given by 

daily gavage administrations at 10  mg/kg body weight 

for 7  days in the absence of any additional treatment. 

In a second experiment, the animals were pretreated 

with the tumor initiator 1,2-dimethylhydrazine (DMH) 

followed by exposure to E 171 at daily doses of 0.2 and 

10 mg/kg body weight for 100 days through the drinking 

water. Another experimental group was exposed to E 171 

for 100 days without DMH pretreatment [135]. Interest-

ingly, exposure to E 171 in these experiments led to the 

internalization of light-diffracting particles not only in 

cells of the Peyer’s patches but, to a minor extent, also in 

the colonic mucosa and liver, particularly in proximity 

of the portal vein sinus. An accumulation of both E 171 

and  TiO2 nanoparticles in the Peyer’s patches of treated 

rats was confirmed by secondary ion mass spectrometry. 

Effects on the lymphoid tissue included an increased 
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number of dendritic cells in Peyer’s patches and a 

higher capacity of spleen cells to secrete cytokines like 

interferon-γ and IL-17, possibly dysregulating immune 

responses. In the carcinogenesis model, exposure to E 

171 at 10  mg/kg per day led to a statistically significant 

increase of aberrant crypt foci (defined as abnormal tube-

like glands in the lining of the colonic mucosa) regard-

less of whether the animals were pretreated with DMH 

or not. Based on these findings, the authors concluded 

that food-grade  TiO2 particles induce a low-grade local 

inflammation in the mucosa that has the potential to 

initiate preneoplastic lesions in the colonic mucosa. An 

important caveat in this interpretation of the reported 

findings is that the relevance of abnormal crypt foci as 

an early precursor of colorectal cancer is controversially 

discussed.

Conclusions
�e Joint FAO/WHO Expert Committee on Food Addi-

tives considered unnecessary the establishment of an 

acceptable daily intake (ADI) for  TiO2 additives in food 

[136]. �is decision was taken on the basis of the low 

solubility, poor absorption into internal organs like liver 

and the absence of acute toxic effects. Many reports pre-

sented in the context of this review suggest that, contrary 

to the assumptions made 50 years ago, food-grade  TiO2 

particles are not totally inert upon oral intake. �e obser-

vation that  TiO2 particles cause at least some adverse 

reactions in experimental animals is disturbing because 

this material, including its unavoidable nano-scale 

byproducts, has been in use as food additive since 1966. 

�e now available literature reveals data gaps and uncer-

tainties that should be addressed before declaring food-

grade  TiO2 particles as generally safe. A non-exhaustive 

list of such data gaps und uncertainties comprises the 

following.

  • Although there is only limited absorption from the 

gastrointestinal tract, toxicokinetic experiments 

in rats revealed very long tissue half-lives for  TiO2 

nanoparticles in internal organs [67]. �is observa-

tion indicates that there is the potential for a slow but 

continued accumulation of particles upon lifelong 

exposure.

  • �e public literature offers only one subchronic oral 

toxicity study in rodents carried out following inter-

nationally recognized OECD test guidelines [42]. 

�is study was based on the daily administration of 

food-grade  TiO2 consisting of coated rutile particles. 

�ere were no test item-related adverse effects, yield-

ing a no observed effect level (NOEL) of 1000  mg/

kg body weight per day, which corresponds to the 

highest dose tested. By applying a default uncertainty 

factor of 200 (to adjust for inter-species as well as 

inter-individual variations in sensitivity, and for the 

extrapolation from subchronic to chronic exposure 

[137]), this NOEL of 1000  mg/kg/day translates to 

a tentative safe upper level for the lifetime intake of 

 TiO2 particles of 5 mg/kg body weight per day. How-

ever, the alumina-coated rutile under scrutiny is not 

at all representative for the full range of  TiO2 used 

in the food sector, which includes anatase or mixed 

anatase/rutile polymorphs, particularly also in an 

uncoated form.

  • Acute [42], subacute [83–85, 88], subchronic [42] and 

chronic toxicity studies [112] converge on the liver as 

a possible target organ for adverse effects after oral 

 TiO2 intake (Table  1). �e carcinogenicity study in 

mice revealed an increased incidence of hepatocellu-

lar carcinomas in males at 6500 mg/kg/day (but not 

at 3250  mg/kg/day) compared to controls. �e lack 

of genotoxicity of  TiO2 particles allows to assume a 

thresholded mode of liver cancer promotion and, by 

application of a default uncertainty factor of 100 (to 

adjust for inter-species and inter-individual varia-

tions in sensitivity [137]), the resulting no observed 

adverse effect level (NOAEL) of 3250  mg/kg/day 

translates to a tentative safe upper level for the life-

time intake of 3.25 mg/kg body weight per day. �e 

subacute 30-day study by Wang et al. [88] identified 

a NOAEL for anatase nanoparticles in young animals 

of 10 mg/kg body weight per day. Assuming a nano-

particle fraction of 4.2% by weight [46], this value of 

10 mg/kg corresponds, in terms of food-grade  TiO2, 

to a NOAEL of 238.1 mg/kg body weight per day. By 

applying a default uncertainty factor of 600 (to adjust 

for inter-species as well as inter-individual variations 

in sensitivity, and for the extrapolation from 30 days 

to chronic exposure as proposed by Heringa et  al. 

[29]), the NOAEL of 238.1 mg/kg/day yields a tenta-

tive safe upper level for the intake of  TiO2 particles of 

0.40 mg/kg body weight per day.

  • One study suggests effects on spermatogenesis 

resulting in sperm abnormalities upon intragastric 

gavage administration of anatase nanoparticles for 

42 days [86]. �is study was carried out in pubertal 

mice and is, therefore, relevant to address the pos-

sibly higher vulnerability of children. �e NOAEL, 

as a nanoparticle dose, was 10  mg/kg body weight 

per day. Assuming as above a nanoparticle fraction 

of 4.2% by weight, this 10-mg/kg value corresponds 

again, in terms of food-grade  TiO2, to a NOAEL of 

238.1  mg/kg body weight per day. By applying a 

default uncertainty factor of 400 (to adjust for inter-

species as well as inter-individual variations in sen-

sitivity, and for the extrapolation from 42  days to 
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chronic exposure as proposed by Heringa et al. [29]), 

this NOAEL of 238.1  mg/kg/day yields a tentative 

safe upper level for the intake of  TiO2 particles of 

0.40 mg/kg body weight per day. Another study indi-

cates a penetration of  TiO2 nanoparticles into the 

ovaries from the gastrointestinal tract of rats [68]. A 

further report suggests neurodevelopmental distur-

bances upon exposure to  TiO2 nanoparticles during 

pregnancy in rats [116]. �ese findings, if confirmed, 

would raise additional concerns regarding the repro-

ductive safety.

  • �ere is finally only poor understanding of the con-

sequences of the proven uptake of  TiO2 by reac-

tive GALT cells, possibly triggering inflammatory 

responses that could favor chronic conditions like 

IBD, and perhaps leading to initiation, promotion 

and/or progression of neoplasms in the mucosa of 

the gastrointestinal tract [18, 134, 135]. Food-borne 

inorganic particles have been shown to accumulate 

during lifelong exposure in “pigment cells” of the 

GALT where the earliest signs of IBD are noted [126, 

138, 139]. �is is a group of chronic conditions rang-

ing from Crohn’s disease (affecting all segments of 

the digestive tract) to ulcerative colitis (restricted to 

the large bowel) [140]. IBD has a multi-factorial etiol-

ogy with genetic susceptibility, gut microflora com-

position and a dysfunctional local immune reaction 

as main drivers [141]. Dietary factors have also been 

implicated in IBD and several authors raised the con-

cern that inorganic particles in food may contribute 

to initiating this chronic inflammatory condition by 

inappropriate stimulation of the innate immune sys-

tem [55, 56, 142, 143].

In conclusion, the existing toxicity studies cannot com-

pletely exclude human health risks from the long-term 

ingestion of  TiO2 particles. �e above hypothetical upper 

safe levels for dietary intake (between 0.4 and 5  mg/kg 

body weight per day) calculated from rodent studies are 

in no way conclusive and are only meant to illustrate in 

quantitative terms the wide range of uncertainty in the 

current risk assessment of this ubiquitous food addi-

tive. Especially the estimated consumption by children 

suggests that, in any case, the dietary exposure to  TiO2 

particles should be reduced to remain, even in a worst-

case exposure scenario, below this proposed lowest safety 

threshold of 0.4 mg/kg daily. Further studies are needed 

to reduce existing uncertainties.

Recommendations

�e uncertainty emerging in the retrospective assess-

ment of  TiO2 particles demonstrates the need for a fit-

to-purpose data requirement for the future evaluation 

not only of nano-sized but also of novel submicron-sized 

particles to be used as food additives. In particular, this 

review identified the following five main issues related 

to particles that resist rapid degradation or dissolution 

under digestive tract conditions:

  • To become eligible for the safety assessment, novel 

particles should first undergo a detailed characteri-

zation to provide unambiguous information on their 

constituents, structure and shape, surface character-

istics and coating, average size and size distribution, 

impurities, aggregation or agglomeration states. All 

these parameters should be specified with accompa-

nying analytical methods.

  • Particle characteristics like size, size distribu-

tion, crystalline form, shape and coating are critical 

determinants of intestinal uptake and adverse reac-

tions (see for example the above sections on particle 

corona and local gastrointestinal effects). �erefore, 

there is little opportunity for read-across proce-

dures to assess simultaneously multiple variants of 

the same particulate material. Instead, we advocate 

a case-by-case testing of particles with clearly estab-

lished specifications.

  • �e potential genotoxicity of nano- and submicron-

size particles should be ruled out with mamma-

lian cell models and, pending on the findings, using 

in vivo genotoxicity tests with proven systemic expo-

sure, following generally recognized OECD guide-

lines.

  • In the absence of any evidence of genotoxicity, the 

safety testing should proceed with an extended 

90-day oral toxicity assay in rodents following OECD 

test guideline 408 [144], but with additional param-

eters for the detection of endocrine disruptors as 

listed in test guideline 407 [145]. �is subchronic 

study should also include the analysis of tissues 

(including the GALT, mesenteric lymph node, spleen 

and liver) to examine the degree of systemic particle 

uptake. Such a toxicokinetic analysis should compare, 

if necessary using satellite groups of animals, the tis-

sue level of particles at an early and late time of the 

study to exclude a possible accumulation.

  • Additionally, more research is needed to under-

stand the consequences of interactions of indigest-

ible nano- and submicron-sized particles with the 

GALT and, in particular, with dendritic cells residing 

in the intestinal mucosa. As outlined in the section 

on local effects in the gastrointestinal tract, dendritic 

cells are the first-line sentinels of foreign materials as 

well as key activators of both the innate and adap-

tive immune system and, as such, potential triggers 

of particle-induced chronic inflammatory conditions.
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