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Heat transfer 	uids are a crucial parameter that a
ects the size and costs of heat exchangers. However, the available coolants like
water and oils have low thermal conductivities, which put many limitations to the development of heat transfer to achieve high
performance cooling. �e need for development of new classes of 	uids which enhance the heat transfer capabilities attracted
the attention of many researchers. In the last few decades, modern nanotechnology developed nanoparticles, which have unique
thermal and electrical properties that could help improve heat transfer using nano	uids. A “nano	uid” is a 	uid with suspended
�ne nanoparticles which increases the heat transfer properties compared with the original 	uid. Nano	uids are considered a new
generation of heat transfer 	uids and are considered two-phase 	uids of liquid solid mixtures. �e e�ciency of the 	uid could be
improved by enhancing its thermal properties, especially the thermal conductivity, and it is expected that the nano	uids will have a
greater thermal conductivity than the base 	uids. �is paper reviews the preparation of metallic and nonmetallic nano	uids along
with the stability of the produced nano	uids. Physical and thermal properties as well as a range of applications are also discussed
in detail.

1. Introduction

Heat transfer is vital area of research and study in thermal
engineering. Selection of an appropriate heat transfer 	uid for
heat dissipation is crucial consideration in designing heat
exchangers. Heat transfer 	uid (HTF) is one of the critical
parameters as it a
ects the size and cost of heat exchanger
systems. Conventional HTFs like water and oils have limited
heat transfer potentialities. �ere is urgency to develop new
group of HTFs so as to reduce cost and meet the burgeoning
demand of industry and commerce. Fortunately, the advances
in nanotechnology have made it possible to achieve higher
e�ciency and cost saving in heat transfer processes.Nanopar-
ticles are considered to be new generation materials having
potential applications in the heat transfer area.

Any host liquid, either organic or inorganic, which
contains nanoparticles in a suspended state, is known as

nano	uid. Nano	uids are two-phase 	uids of solid-liquid
mixtures and are considered to be new-generation HTFs.
Recently, in near past, nano	uids have developed as promis-
ing thermal 	uids for heat transfer applications. Also, the
thermal conductivity of nano	uids is expected to be greater
than that of the base liquids [1].

When two-phase suspensions of microparticles were
tested, it was reported that they produce sedimentation and
obstructions to smooth 	uid 	owbecause of channel clogging
and also erosion of tube materials was noticed. However,
nano	uids o
er many merits over single-phase pure 	uids
and suspensions with microparticles. �e issues of particle
sedimentation, clogging of microchannel passages, and ero-
sion of tube material are mitigated largely with nano	uids.
Besides, nano	uids form stable suspensions with uniform
dispersion of nanoparticles in the host 	uid.
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�ermophysical properties of traditional heat transfer
	uids such as oils, glycols, and water are well established and
are available in literature and handbooks. However, similar
properties of two-phase nano	uids have not been explored
extensively yet. An accurate and precise measurement of
properties is essential for determination of heat transfer coef-
�cients of nano	uids. �e aptness of a particular nano	uid
in a heat transfer application is then analyzed on the basis
of its heat transfer performance and requirement of appli-
cation. Nano	uids are considered as novel alternative, new-
generation liquids, for heat energy transport and can be
employed as HTFs in heat exchangers, thereby replacing
pure traditional 	uids. �e applications of nano	uids for
heat transfer include radiators in automobiles, components
in chemical engineering and process industries, solar water
heaters, refrigeration units, and the cooling of electron-
ics devices. �e main objective of obtaining heat transfer
enhancement using nano	uids is to accommodate high heat
	uxes and, hence, to reduce the cost and size of heat exchang-
ers which, in turn, results in the conservation of energy and
material.

Over the last several years, substantial research has been
carried out for development of heat transfer enhancement
methods. Generally, many additives have been used to ame-
liorate the heat transfer features of base 	uids. �erefore,
nano	uids may be perfectly suited in actual applications
as their use may have little increases in pressure drop and
may positively change the heat transfer characteristics and
transport properties of the 	uid. Due to the �ne nature of
these nanoparticles, nano	uids act as a single-phase 	uid
instead of dual-phase mixture.

2. Preparation of Nanofluids

Preparation of nano	uids is the �rst key step to synthesize
	uids with improved thermal conductivity. �ese nano	uids
are obtained by suspending nanoparticles in the range of
1–100 nm in conventional regular 	uids in suitable volume
fractions. �eoretically, when solid particles with high ther-
mal conductivity are added to 	uids, the overall thermal
conductivity is improved due to the change in 	ow, heat,
transport, and heat transfer features of the liquid [1]. Some of
the vital requirements that nano	uidmust ful�ll are adequate
durability, even and stable suspension of particles, no chemi-
cal change of particles or 	uid, and negligible agglomeration
of particles. Several types of particles have been reported
in literature to prepare nano	uids, which include (1) non-
metallic particles (SiO2 [2], SiC [84], TiO2 [68], Al2O3 [85],
ZnO [28], CuO [86], Fe3O4 [14], and AlN [45]), (2) metallic
particles (Cu [87], Ag [88], and Au [88]), and (3) di
erent
particle shapes such as carbon nanotubes [89], nanodroplets
[90], nano�bers [67], and nanorods [91].�e base 	uids com-
monly used are water, oil, acetone, decene, ethylene glycol,
and mineral oil. Two methods have been employed in pro-
ducing nano	uids which can be classi�ed as single-step and
two-step methods [1].

�e single-step method involves the preparation of
nanoparticles and dispersion of them in the host or base 	uid
simultaneously. �e nanoparticles can be directly prepared

via physical vapor deposition technique or liquid chemical
method.�erefore, the process of drying, storage, dispersion,
and transportation is avoided, so that agglomeration is
minimized and, hence, nanoparticle dispersion in the host
	uid is improved [15].�emain demerit of this process is that
the residue � of reactants is le� behind in the nano	uid due
to incomplete reaction or stabilization which diminishes the
purity of the nano	uid [92]. Another shortage in this process
is that only low vapor pressure 	uids can be used, which limits
the application of the method.

In the two-step method, which is the most widely used
method for preparing nano	uids, the nanoparticles, nan-
otubes, nano�bers, or nanorods are �rst produced by chem-
ical vapor deposition, inert gas condensation, or any other
technique as a dry powder. �e second step involves dis-
persing this nanopowder into the base 	uid with the help of
intensive magnetic force agitation, ultrasonic agitation, high
shear mixing, homogenizing, and ball milling. �e two-step
method is more economical than the one-step method to
produce nano	uids commercially. �e main disadvantage
of this method is that, due to the high surface area and
surface attractively, the nanoparticles tend to agglomerate.
�e agglomeration of nanoparticles in the 	uid results in
decreasing the thermal conductivity and increasing the settle-
ment and clogging of microchannels. �erefore, surfactants
are widely used to stabilize nanoparticles in the 	uids. Never-
theless, thismethod is suitable forwide range of particles such
as oxide particles and carbon nanotubes and it is attractive
to industry because it is simple for nano	uid preparation
[93].

2.1. Stability of Nano�uids. Agglomeration of nanoparticles
has severe rami�cations ranging from clogging ofmicrochan-
nels to reduction in thermal conductivity of nano	uids.
Sundry ofmethods have been developed to assess the stability
of nano	uids and the simplest of all is sedimentationmethod.
�e nano	uids are said to be stable when their concentration
remains constant. Physical inspection by naked eyes is also
usually considered one of the methods for observing stability
of nano	uids. Below, somemethods are described for analyz-
ing stability of nano	uids.

2.1.1. Zeta Potential Analysis. �e electric potential di
erence
between the dispersion medium and the stationary layer of
	uid is termed as zeta potential. �is potential is crucial for
depicting the stability of colloidal suspensions. �e higher
zeta potential is, the more stable colloidal suspension will be
and vice versa.

2.1.2. Spectral Absorbency Analysis. Spectral absorbency
analysis (SAA) is another e�cient way in addition to zeta
potential analysis in order to assess the steadiness of nano	u-
ids. Generally, there exists a linear relationship between
concentration of nanoparticles in 	uid and the absorbency
intensity. If nanomaterials, which are dispersed in base 	uids,
possess characteristic absorption bands in the wavelength
range of 190–1100 nm, then stability of nano	uids can be
evaluated by using UV-vis spectroscopy reliably.



Journal of Nanomaterials 3

2.2. �e Ways to Enhance the Stability of Nano�uids

2.2.1. Surfactants Used in Nano�uids. Surfactants or disper-
sants are used for increasing the stability of the nano	uids.
Normally, surfactants are required in order to stabilize the
nano	uid suspensions produced from two-phase method.
Surfactants stabilize nano	uids by reducing the surface ten-
sion of 	uids and hence are essential for increasing the
stability or preventing agglomeration of nanoparticles in base
	uids. Two-phase method is normally used commercially,
since it is an easy and economically viable method for
nano	uid production at large scale. Surfactants are composed
of hydrophobic tail portion (long-chain hydrocarbon) and a
hydrophilic polar head group. Surfactants help in achieving
higher wettability, that is, increased contact between two
materials. Water-soluble surfactants are selected when base
	uid is polar solvent; otherwise, oil-soluble solvents are
chosen. On the other hand, there are several issues associated
with surfactants such as the fact that dispersantsmay contam-
inate the heat transfer media by producing foams while heat-
ing. Further, addition of surfactants may lead to enlargement
of nanoparticles, which in turnmitigates the e
ective thermal
conductivity of the nano	uid. Hence, the system (surfactant
addition to nano	uid) needs to be optimized.

2.2.2. Surface Modi�cation Techniques: Surfactant-Free Meth-
od. �e other method which is utilization of function-
alized nanoparticles is a capable way to deal with accom-
plishing long haul strength of nano	uid. It characterizes the
surfactant-free technique. Some researchers experimented on
the combination of functionalized silica (SiO2) nanoparticles
by joining silanes speci�cally to the surface of silica nano-
particles in unique nanoparticle solutions which resulted
in peculiar qualities of nano	uids in which no deposition
layer formation on warmed surface a�er a pool bubbling
procedure was observed. Some other researchers introduced
hydrophilic functional groups on the surface of the nano-
particles by mechanic-chemical reaction and thus produced
nano	uids, which possess qualities such as no contamination,
great smoothness, low viscosity, high thermal conductivity,
and high stability. �ese nano	uids may �nd applications as
coolants in advanced thermal systems.

2.2.3. Stability Mechanisms of Nano�uids. Particles while in
dispersionmediummay pile together and agglomerate giving
in	ated size of particles, which may �nd their fate by settling
down in the solution due to gravity. Steadiness of nano	uids
signi�es that particles do not aggregate and settle down at
a noteworthy rate. �e rate of aggregation is de�ned by the
recurrence of impacts and the likelihood of union during
collision. Derjaguin and his research groups’ hypothesis pro-
poses that the stability of a particle in solution is dictated by
the resultant of van derWaals attractive and electrical double
layer repulsive forces that exist amongst particles as they
approach each other due to the Brownian motion they are
undergoing. If the attraction force is higher than the repulsion
force, then the particles will collide, and the suspension
will not be stable, while if the other way around was the
case, then the colloidal suspensions will stay stable. Table 1

summarizes the e
ects of di
erent nanoparticles types, size
of nanoparticles, loading of nanoparticles, synthesis process,
and dispersion method on the stability of di
erent types of
nano	uids.

3. Characterization of Nanofluids

Over the past decade, researchers have tried to improve
the heat transfer properties of the nano	uids by optimiz-
ing the physical and thermal properties of the nano	uid.
Experimental studies involved a wide range of nanoparticles
and some correlations were established. However, they have
come up with diverse results, thus making those correlations
inconsistent and sometimes contradictory. In this section,
the physical and thermal properties of nano	uids and their
varying e
ect on heat transfer behavior are studied through
reviewing several researches in the literature [74, 91, 94–106].

3.1. Physical Properties

3.1.1. Density (�). �e density is a factor that a
ects the heat
transfer properties. However, reports on the e
ect of density
are found to be scarce. Since the nanoparticle’s density is
higher than liquids’, it led to believing that an increase in
the volume concentration of the nanoparticles would lead to
increased density values of the nano	uid. Most researchers
obtain the theoretical density values from the mixing equa-
tion introduced by Pak and Cho [74].

��� = ��� + (1 − �) ��, (1)

where � is the density, � is the volume concentration, and
“��” and “�” subscripts are the nano	uid and base 	uid,
respectively. Table 2 shows the experimental results reported
by Saeedinia et al. [107], which seem to be in agreement with
Pak and Cho’s correlation.

As it is evident from the table, the above equation holds
for various weight fractions with negligible di
erences. How-
ever, it should be noted that the di
erence slightly increases
for 2%weight fraction, whichmeans it could further increase
at higher concentrations. Some investigations report on
the e
ect of volume concentration and temperature on the
density in water based Al2O3 nanoparticles and came upwith
a model that is a function of both [108].

�e� = 1001.064 2738.6191�� − 0.2095	;
for 0 ≤ �� ≤ 0.4, 5 ≤ 	 (∘C) ≤ 40, (2)

where �e� represents the e
ective density of the nano	uid,
�� is the volume concentration, and 	 is the temperature.
�e correlation shows that the density of the nano	uid is
linear with volume concentration and inversely linear with
increasing temperature.

Nanoparticle Concentration E
ect on Density. It has been
reported that increasing the volume concentration of metal
oxides such as Al2O3, Sb2O5, SnO2, and ZnO with both
ethylene glycol andwater as base 	uids leads to the increase of
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Table 2: Di
erent volume concentration and the theoretical and experimental densities.

Nanoparticle weight percentage Base oil 0.2% 0.5% 1% 2%

�eoretical density (kg/m3) 871.13 872.66 874.97 878.75 886.93

Experimental density (kg/m3) 871.13 872.21 875.11 880.34 889.07

Table 3: �eoretical models for predicting the viscosity.

Author Model for  Notes

Einstein [71] 1 + 2.5� For spherical nanoparticles with low volume concentration

Batchelor [72] 1 + 2.5� + 6.5�2 Amodi�cation of Einstein’s equation to account for Brownian motion e
ect

Brinkman [73]
1

(1 − �)2.5 Used for copper, gold, and carbon nanotubes and graphene nanoparticles dispersed in water

Pak and Cho [74] 1 + 39.11� + 533.9�2 At room temperature

their densities in all of the mentioned nano	uids [109]. Fur-
thermore, a�er investigating propanol based Al2O3 nano	u-
ids, it has been proven that a linear relationship existed
between the density and the volume fraction [110].�is e
ect
is also valid for water based carbon nanotubes nano	uids,
where results showed that, with 0.02 and 0.04 weight per-
centage of carbon nanotubes loading, the density increased
by 0.01% to 0.39% [111].

Temperature E
ect on Density. Contrary to the volume con-
centration, temperature has a reverse e
ect on density. It has
been reported that the density of Al2O3 nano	uid increases
with the increase of volume concentration of nanoparticle but
decreases with increasing the temperature [112, 113]. �is is
also consistent with (2).

3.1.2. Viscosity (). Researchers have found viscosity to be a
key parameter in determining the convective heat transfer
coe�cient. However, this property is troublesome due to
lack of understanding of viscosity mechanisms and lack of
a general mathematical model that predicts the behavior of
viscosity in nano	uids.

Several e
orts were made to come up with a model
that predicts the viscosity in nano	uids. �e �rst model is
Einstein’s model [71] of e
ective viscosity for suspended rigid
spherical solids in liquids as a function of volume.�emodel
was developed in 1906 and it was derived from linear hydro-
dynamic equations. Still, Einstein’s model could only predict
the viscosity behavior for spherical rigid particles and for a
low particle concentration of 1.0 volume percentage.

Numerous modi�cations of Einstein’s model were made
to further enhance the viscosity correlations. Brinkman [72]
developed a model based on Einstein’s equation to include
higher particle concentrations, while Batchelor [73] added
Brownian motion to his model. Nevertheless, experiments
have shown discrepant results from the mentioned models.
Researches on alumina and titania nano	uids showed higher
levels of viscosity when compared with Einstein-Batchelor
correlations [114]. Moreover, these models are all function
of volume fraction of nanoparticles; however, they do not
include the temperature e
ect. Researchers have continued
to work on measuring the viscosity for di
erent nano	uids

and came up with their own correlations. �ese correlations
listed in Table 3 are a function of volume fraction only, �.

In the recent years, researches started using instruments
called viscometers to measure the viscosity of nano	uids.

Nanoparticle Concentration E
ect on Viscosity. Several re-
searches have con�rmed that nanoparticle volume concen-
tration in nano	uids increases the heat transfer coe�cient
[115–119] along with increasing the viscosity. It was found that
varying the concentration of Al2O3 in water with values of
0.3, 0.5, 0.7, 1, and 2% leads to an increase of viscosity, which in
turn led to increased friction factor [115]. A similar behavior
was observed in both water and ethylene glycol based Al2O3
and water based SiC nano	uids [120, 121]. �is trend is
also true for nonmetallic nano	uids, where several studies
on the rheology of carbon nanotubes nano	uids con�rmed
that increasing the carbon nanotubes loading increases the
viscosity of the nano	uid [122–124].

It is important to mention that there are some inconsis-
tencies in the literature regarding viscosity behaviors. Pak and
Cho [74] examined water based Al2O3 and TiO2 nano	uids
and observed that at a volume concentration of 3% the heat
transfer severely reduced and has become lower than the heat
transfer of pure water.

�ere are factors other than volume concentration which
a
ect the nano	uid’s viscosity such as the nanoparticle’s
shape, size, and surface chemistry [114]. Similarly, a study on
water based Al2O3 and TiO2 showed that the nanoparticle’s
size and shape as well as the volume fraction and temperature
all were important parameters for determining the viscosity.
However, the mentioned factors are poorly studied in the
literature and further investigations are required.

Temperature E
ect on Viscosity. As mentioned before, the
theoretical models for viscosity do not consider temperature.
�us, the previous models can only be true for low concen-
trations and at room temperature conditions, but they are not
true for higher temperatures [125]. Many researches reached
a consensus that viscosity decreases with increasing tem-
peratures [120, 121, 123, 126–128]. Previous studies involved
CuO, Al2O3, SiC, and CNT nano	uids with the focus being
on Al2O3 nano	uids. Furthermore, it has been found that
viscosity decreases exponentially with temperature rise in
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CuO, Al2O3, and SiO2 dispersed in both water and ethylene
glycol [129]. A research also concluded that if the increase in
viscosity is more than the thermal conductivity of nano	uids
by four times, then it is rendered useless due to the increase
of friction factor [130, 131].

3.2. �ermal Properties

3.2.1. Speci�c Heat Capacity (��). Speci�c heat capacity
measures the ability of a material to store energy in the form
of heat and exchange it if a temperature di
erence exists [111,
112]. It is important to acquire accurate values of the speci�c
heat as speci�c heat is used to calculate important properties,
which include thermal conductivity, thermal di
usivity, and
	ow’s spatial temperature. Researchers mostly use deferential
scanning calorimeter (DSC) and double hot wire to measure
�� of nano	uids.

Several models predict the speci�c heat values of nano	u-
ids at di
erent conditions. One model was based on mixture
of liquid and particle and was introduced by Pak and Cho
[74]:

��� = (1 − �
V
) ��� + �

V
��, (3)

where “�” is for the speci�c heat, “��” is the nano	uid, �
V

is the volume fraction of the nanoparticle, and “��” and “�”
represent the base 	uid and nanoparticle, respectively. Some
researchers proposed a correlation that was a modi�cation of
the previous model and was based on thermal equilibrium of
the nanoparticles and the base 	uid [132]:

(��)�� = (1 − �
V
) (��)� + �

V
(��)� ,

��� = (1 − �
V
) �� + �

V
(��) ,

(4)

where “�,” “�,” and “�
V
” represent the speci�c heat, den-

sity, and nanoparticle’s volume fraction from the nano	uid,
respectively, and “��,” “�,” and “�” represent the nano	uid,
base 	uid, and nanoparticle, respectively. A recent study
compared the results of heat capacities of water and EG based
Al, Cu, and Si nano	uids acquired from DSC with the above
models, and it found that there is a signi�cant deviation from
(3) but there was an agreement with (4) [133]. �is was the
same case with Al2O3-water, TiO2-EG nano	uids, and ZnO
with ethylene glycol and water nano	uids [134, 135].

Zhou et al. [136] further modi�ed equation one and
proposed a correlation for higher volume concentration of
nanoparticles

��� =
[(1 − �

V
) ���� + �

V
������]

[�� + (1 − �
V
) ���]

, (5)

where “�” represents the speci�c heat, � is the density, �
V

is the nanoparticle volume fraction from the nano	uid, and
“��,” “�,” and “�” represent the nano	uid, base 	uid, and
nanoparticle, respectively.

A comparison study between (3) and (5) found that the
latter is more suitable to use at nano	uids with higher volume
concentration [137]. Many parameters a
ect the speci�c heat

of nano	uids; however, nanoparticle volume concentration,
type of nanoparticle, and base 	uid all have higher in	uence
than the shape, size, or the electrostatic behavior of the
nanoparticles [138].

E
ect of Nanoparticle’s Size and Concentration on �� of
Nano�uids. It has been observed by many researchers that
in nano	uids when the volume fraction of the nanoparticle
increases the speci�c heat decreases due to the nanoparticles
having lower heat capacities compared to their base 	uid. A
recent paper investigated the speci�c heat of �ve di
erent
nano	uids, which are Al2O3, ZnO, TiO2, CuO, and SiO2,
with 60 : 40 ratios of propylene glycol and water, respectively.
A�er varying the volume concentrations of the nanoparticles
from 0.5% to 6% and the particle sizes from 15 nm to 76 nm,
the paper reported that the size of the particle had no
signi�cant impact on the speci�c heat. On the other hand,
the volume concentration played a big part in altering the
behavior of the heat capacity. At low concentration, the
reduction in speci�c heat was tolerable mostly because it led
to increasing the thermal conductivity, which enhanced the
heat transfer e�ciency. However, as the volume fraction of
the nanoparticle increases, the heat capacity further decreases
[139]. Similarly, the speci�c heat of water and ethylene
glycol mixture based MgO, ZnO, and ZrO2 nano	uids were
investigated, and it was observed that although the nano	uids
showed a 30% increase in speci�c heat compared to their base
	uids, it still decreases with increasing nanoparticles’ volume
fraction [140]. Several researchers conducted similar studies
and all of them reported the same behavior across a variety of
nano	uids [141–144].

For carbon nanotubes nano	uids, it is reported that
as the multiwalled CNT concentration in 30 : 70 EG-water
increased, the speci�c heat decreases [145, 146]. However, in
contrast, an increase in speci�c heat with increasing single-
walled CNT concentration in water was reported [147]. It is
known that carbon nanotubes (CNTs) have high speci�c heat
capacity. It is due to this reason that increased loading leads to
the increase in the speci�c heat, but this has not been agreed
upon yet.

Temperature E
ect on ��. Most papers in the literature
have reported that the speci�c heat increased with increased
temperature. Experiments with several nano	uids have con-
�rmed that increasing the temperatures will lead to increased
speci�c heat capacities [112, 139, 148]. However, a few papers
have found the contrary e
ect and reported that speci�c
heat capacity decreases with increased temperatures [149–
151]. Similar to volume concentration, when the temperature
is varied, the previous behavior of speci�c heat does not hold
for all CNT nano	uids. It was observed that speci�c heat
of multiwalled CNT increased with increasing temperatures
[146, 152], while it was the opposite in single-walled CNT
nano	uid [147].

3.2.2. �ermal Conductivity (�). �ermal conductivity “�” is
the rate at which a material passes heat. It is a major fac-
tor in increasing nano	uid e�ciency in heat transfer and
researchers have extensively studied it. �e rate of heat
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Table 4: �eoretical models for predicting the thermal conductivity.

Author Formula to get “�” of the nano	uid Comments

Maxwell [75]
�e�
�� = [�� + 2��] + [2�� (�� − ��)]

[�� + 2��] − [�� (�� − ��)] Spherical particles

Bruggeman [76]
1
4 [(3� − 1) ��

�� + (2 − 3�) + 1
4√Δ] High volume concentration of spherical particle

Hamilton and Crosser [77]
�
e�

�� = [�� + (� − 1) �� + (� − 1) � (�� − ��)]
[�� + (� − 1) ��] − [� (�� − ��)] Spherical and nonspherical particles

transfer through solids is much higher than that through
liquids and gases; it is for this reason that nano	uids have
higher “�” values compared to their base 	uids. �ere are
several methods to measure the thermal conductivity of a
material, but the most common method is transient hot wire
method.

Several e
orts have been made in order to come up with
a correlation that predicts the values of thermal conductivity
of nano	uids at di
erent conditions. Using continuum equa-
tions and particle-	uid mixtures, scientists have developed
equations and tested them. Some of the derived models
are shown in Table 4. One of the early models is Maxwell’s
[75] to determine the e
ective thermal conductivity of mil-
limeter to micrometer scale spherical particle-	uid mixture.
Maxwell’s equation includes the thermal conductivity of the
solid particles in base 	uid and its volume fraction with
respect to the total 	uid and it can be applied only for
low concentrations of particles. Bruggeman [76] considered
the interaction between randomly distributed particles and
introduced a model for spherical particles. Hamilton and
Crosser [77] came up with a model for any particle shape,
where in their equation they included a parameter of “�,”
which accounts for the shape of the particle (as shown in
Table 4). Further modi�cations weremade by other scientists
to enhance the prediction of thermal conductivity; however,
there are none that can determine the thermal conductivity of
nano	uids in high volume concentrations and temperatures.

Volume Fraction E
ect. It is reported in the literature that a
higher volume fraction of the nanoparticle in the nano	uid
will increase the thermal conductivity. An increase in the
e
ective thermal conductivity of 32.4% in Al2O3 nano	uid
was reported when the volume concentration was increased
to 4.3% [153]. A similar behavior was reported in another
research, observing a 20% increase in the e
ective thermal
conductivity for the same volume fraction increase [154].
�e enhancement is notable when compared to nano	uids’
base 	uids. Moreover, a�er investigating Al2O3 and CuO
nano	uids, their thermal conductivities were enhanced by
2% to 9.4% for a volume concentration of 1.0% and 4%,
respectively, showing an increase with increasing volume
concentration [80]. �e same e
ect can be seen in single-
walled CNT [147].

Particle Size E
ect. �e size of the nanoparticle a
ects the
thermal conductivity of the nano	uid, where smaller particle
size will have a larger surface area relative to its diameter
and thus will increase the thermal conductivity. A study

con�rms this a�er testing Al2O3 and CuO with nanoparticle
sizes of 28 nm and 23 nm, respectively; the results showed
an improvement in the thermal conductivity for the copper
oxide nano	uid because their nanoparticles were smaller
compared to Al2O3 [120]. However, this e
ect is inconsistent
in other nano	uids such as SiC nano	uid. A paper experi-
mented SiC nano	uids with sizes of 26 nm and 600 nm. �e
paper reported a thermal conductivity increase of 15.8% and
22.9%, respectively. �is may be due to the clustering of the
nanoparticles [85].

Temperature E
ect. Temperature is also a factor in deter-
mining the thermal conductivity of the nano	uid. Several
papers show that increasing the temperatures will intensify
the thermal conductivity of the nano	uid. �is e
ect holds
true for water based Al2O3, CuO [155], ethylene glycol based
ZnO [156], and CNT nano	uids [157].

3.3. Heat Transfer Characteristics. All the previous properties
a
ect and determine the heat transfer rate of the nano	uid.
However, it is important to note that volume concentration
and temperature are major factors in all of these properties as
well as the heat transfer characteristics.

3.3.1. Heat Transfer Coe�cient andNusselt Number. �emain
objective of using nano	uids is to increase the heat transfer
rate so that it can be applied in heat transfer applications.
Studies have demonstrated that adding nanoparticles to base
	uids would result in a nano	uid with a higher heat transfer
coe�cient comparedwith the base 	uid.One study compared
water based Al2O3 nano	uid with pure water; the heat trans-
fer coe�cient and the Nusselt number both increased from
399.15W/m2 K and 367.8 to 700W/m2 K and 587, respectively
[115]. Oil based CuO also showed a 12.7% increase in the heat
transfer coe�cient over oil at a 0.2% volume concentration
when operated in a plate heat exchanger [107]. Similarly,
another study in a plate heat exchanger reported enhance-
ments of 42% and 50% in heat transfer coe�cients for alu-
minum oxide and carbon nanotubes nano	uids, respectively
[158]. Several correlations weremade in order to calculate the
Nusselt number and the heat transfer coe�cient, which are
described in Table 5.

E
ect of Volume Fraction. Several studies have shown that the
volume concentration increases the heat transfer coe�cient
in the nano	uid. Table 6 lists some of these studies along with
remarks made by their authors.
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Table 5: �eoretical models for predicting the Nusselt number.

Author (8) Correlation Remarks

Pak and Cho [74] Nu = 0.021 Re0.8 Pr0.4 For Al2O3 and TiO2
Duangthongsuk and Wongwises [78] Nu = 0.074 Re0.707 Pr0.385Ø0.074 For TiO2
El Bécaye Mäıga et al. [79] Nu = 0.086 Re0.55 Pr0.5 For Al2O3-water, Al2O3-EG, and constant heat 	ux

Das et al. [80] Nu = �Re� Pr0.4 c &m depend on the volume fraction

�: complex amplitude ratio.

Table 6: E
ect of volume fraction on heat transfer coe�cient.

Paper
Heat with

volume fraction
Nano	uid Remarks

Haghshenas Fard et al. [81] Increase CuO-water 27% enhancement

Heris et al. [82] Increase Al2O3-water & CuO-water
Optimum concentration between
2.5% and 3% volume fraction

Corcione [83] Increase Al2O3-EG & TiO2-EG �eoretical study

Some studies are inconsistent and showed di
erent
behaviors. One study con�rmed an increase in the Nusselt
number of SiO2 and water nano	uid as the volume concen-
tration increased [159]. Another study also con�rmed this
for both water based Al2O3and TiO2; however, it made the
observation that the heat transfer coe�cient decreases to less
than the base 	uid at a constant temperature [74]. In another
paper, researchers found that although the Nusselt number
increased, it only increased for volume concentrations values
between 0.2 and 2% and no change was reported for values
larger than what is mentioned [160].

4. Applications of Nanofluids

In the previous sections, characteristics, preparation, and
properties of nano	uids have been discussed. In this section,
the focus will be on application of nano	uids. Nano	uids are
used in several industries such as the automobile sector and
the energy industry. Speci�c applications include cooling in
electrical, electronic, and mechanical machines or devices,
e�cient heat transfer in energy generation and process
industries, energy recovery from 	ue gases, cooling and
heating of buildings, thermal storage, solar energy systems,
desalination, refrigeration, space and defense, and lubrication
in moving parts of machines and biomedical equipment.
In the following sections, the role of nano	uids in these
applications is discussed in detail.

4.1. Nano�uids in Cooling Applications. �e use of water as a
coolingmediumhasmany limitations; thus there is a need for
	uids with higher heat transfer e�ciencies [161]. It is known
that solids have higher thermal conductivities than 	uids;
this suggests that they provide improved thermal properties
[162–164]. Since 	uids are required to substitute water and
coolants, nano	uids are the best candidates because they
provide the necessary properties for better heat transfer
properties. Nanoparticle concentration has a direct e
ect on
nano	uid’s thermal conductivity, heat transfer, and viscosity
[165, 166]. �erefore, the e
ects must be considered before
utilizing nano	uids in any applications. �ere are various

cooling applications of nano	uids, which are described
below.

4.2. Nano�uids in Vapor Compression Cycles. Water based
nano	uids can achieve enhanced high heat 	ux cooling while
keeping the bene�ts of water [99]. Many studies were per-
formed on household fridges utilizing nanorefrigerants. One
study utilized R134a as a refrigerant and a blend of mineral
POE oil mixed with TiO2 nanoparticles as a lubricant. It
was found that energy consumption decreased by 26% in
comparison to R134a and regular POE oil lubricant. Likewise,
there was a signi�cant decrease in the power utilization
and a large change in freezing capacity. �e change in the
cycle performance was related to the improvements in the
thermophysical characteristics of the lubricant in addition to
the presence of nanoparticles with the R134a [167]. In later
studies, tests were performed on a household fridge utilizing
TiO2-R600a nanorefrigerant as working liquid. �e study
demonstrated that utilizing TiO2 with the R600a refrigerant
makes the system perform regularly and productively in the
icebox. Furthermore, energy consumption decreased by up
to 10% [123, 167–174]. Similarly, a study was conducted to
investigate the performance of a residential fridge, which
utilized Al2O3-R134a nanorefrigerant as the working 	uid.
It was found that the Al2O3-R134a system performance was
superior to the systemwith lubricant andR134a working 	uid
mentioned before. �e system consumed 10.30% less energy
with 0.2% volume concentration. Moreover, by utilizing
nanosized Al2O3, an increase was noticed in the heat transfer
coe�cient [175].

Another study focused on the performance of a house-
hold fridge utilizing TiO2-R12 nanorefrigerant as theworking
	uid in a household fridge. �e experiment discovered that
the freezing capacity enhanced while 3.6% of enhancement
was recorded in the heat transfer coe�cient by using nano	u-
ids. A decrease of 11% in the pressure work and an increase of
17% in the coe�cient of performance by adding nanoparticles
to the lubricant were also observed [176].

In another study, TiO2 nanoparticles were added to
R600a and were used as the working 	uid; the energy saving
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and coe�cient of performance increase were found to be 11%
and 19%, respectively [177]. ACFD study used aworking 	uid
consisting of CuO-R134a as a part of the vapor compression
system.�e study reported an increase in the evaporator heat
transfer coe�cient by adding CuO nanoparticles [178]. �e
conventional refrigerant and lubricant were replaced with a
hydrocarbon refrigerant and mineral lubricant that contains
Al2O3 nanoparticles in order to enhance the grease and
heat transfer characteristics. �e authors concluded that a
volume concentration of 0.1 wt.% Al2O3 nanoparticle and a
60% R134a refrigerant were ideal and had decreased energy
consumption by around 2.4% while increasing the coe�cient
of performance by 4.4% [179].

In addition to metal oxide nano	uids, several studies
investigated the potential of CNT nano	uids. CNTs were
added to the polyester oil by concentrations of 0.01–0.1 wt.%
and were experimented with R134a refrigerant as the base
	uid. �e authors showed that 0.1 wt% was ideal, achieving
the higher values of heat transfer improvement as well as
increasing the coe�cient of performance by 4.2% [180].
CNTs were noticed to have higher thermal conductivity
(∼3000W/mK) over other nanoparticles such as CuO,Al2O3,
SiO2 diamond, and TiO2 [181]. In a study, CNT nano	uid
with R113a as the base refrigerant was utilized and notable
enhancements of the systemwere observed.�is recent study
has also found that CNT based nano	uid has higher ther-
mal conductivity when compared with ordinary refrigerants
[182].

Nano	uids are expected to contribute largely in decreas-
ing energy consumption as well as emissions in industrial air
conditioning applications [183]. It was estimated that savings
of 1 trillion Btu can be saved in the energy sector within US
by replacing water with nano	uids in cooling and heating
applications [184]. Similarly, about 10–30 trillion Btu can be
saved annually by utilizing nano	uids in closed loop cooling
cycles. Furthermore, this would reduce the related emissions
of carbon dioxide, nitrogen oxides, and sulfur dioxide by 5.6
million metric tons, 8,600 metric tons, and 21,000 metric
tons, respectively [183].

4.3. Nano�uids in Microchips and Server Cooling. E�cient
cooling in electronics is necessary to maintain their per-
formance. Alumina nano	uid was tested in microchannels
and has been shown to improve heat transfer. It has been
also shown to be e
ective in microchips cooling applications
[185, 186]. A new design for a cooler containingmicrochannel
heat sink was tested using nano	uid and the results showed
a decrease in heat resistance as well as temperature gradient
between the warmed microchannel walls and the coolant
[88].

�e heat transfer enhancement of water-Al2O3 nano	uid
at various concentrations was investigated using a cooler
designed with microchannel heat sink [187]. Similarly, a
heat sink of silicon microchannels was used to analyze the
performance of Cu nanoparticles [188].

4.4. Nano�uids in Automotive Cooling. Nano	uids dispersed
in ethylene glycol have pulled in great attention in motor
cooling applications [189]. Increment in the conventional

coolant working temperature and the heat rejection rate can
be done by utilizing nano	uids within the current motor
cooling system [190]. A study used a 3.5% volume fraction of
aluminum oxide nanoparticles dispersed in a standardmotor
coolant in a standard car engine and recorded enhanced ther-
mal conductivity of 10.41% at room temperature [191]. A
nano	uid composed of CuO and Al2O3 nanoparticles was
used in the engine transmission oil as a coolant for automatic
transmission systems. �e outcomes demonstrated that CuO
nano	uids lead to a reduced transmission temperature at
di
erent turning speeds [192]. �e mentioned results show
that using nano	uids in transmission systems may have a
signi�cant potential.

4.5. Nano�uids in Aerospace and Defense Cooling. Various
military equipment needs su�cient amount of cooling in the

order of Mw/m2. Using conventional 	uids for cooling in
these sectors would require large and heavy operations. An
example ofmilitary equipment cooling is the cooling require-
ment in direct energy weapons, high power laser diodes,
and submarines. Transformer cooling in order to reduce the
size and weight is necessary in naval and energy industries.
Retro�tting conventional 	uids in transformer may lead to
large cost savings. It has been experimentally proven that,
with nano	uids, the magnitude of critical 	ux in pool boiling
increases manifold in comparison to the conventional 	uids.
�e high levels of critical 	ux will help in simplifying cooling
requirements in space such as space shuttle or space suits
[193].

4.6. Nano�uids in Heat Exchanger Applications. �e replace-
ment of conventional heat transfer 	uids by nano	uids in
heat exchangers is promising [194]. �e development of
new, highly e�cient heat exchanger 	uids is an important
requirement for heat exchanger design [195]. Nano	uids can
improve the heat transfer process more than twice with small
volume fraction under 0.3% [196]. One study focused on
thoroughly characterizing all the properties of the nano	uid
in order to determine its suitability in a particular heat
exchanger. �e latest experimental work related to the uti-
lization of nano	uids in heat exchangers claimed that the
	ow type within the heat exchanger is a vital concern in the
suitability of a nano	uid [119, 197]. In situations where the
heat exchanger works under turbulent conditions, the use of
nano	uids is helpful if it is accommodated by a minimum
increase 	uid viscosity which appears to be extremely hard
to accomplish. Yet, improvement in the Nusselt number was
achieved by using alumina-water and Titania-water nano	u-
ids in 	uids where the 	ow was described as turbulent [198].
A study showed improvements in the critical convective heat
transfer of MWCNTs scattered in water. It was noticed that
the improvement relied on the 	ow conditions and volume
concentration [199].�e conductive heat transfer in turbulent
	ows using copper/water nano	uid was investigated. �e
study showed an improvement of more than 39% with a
volume concentration of 1.5% [200]. Another study found
that, by adding 0.2% volume concentration of TiO2 nanopar-
ticles, an upgrade of 11% in the convective heat transfer
coe�cient is possible [201]. On the other hand, if a laminar
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	ow exists in the heat exchanger, the utilization of nano	uids
appears to be favorable with the main obstacles being the
cost and the particles suspension concerns when compared
to pure 	uids [194]. A study investigated the use of nano	uid
under laminar 	ow and reported a 41% improvement in heat
transfer characteristics in the entry region [202]. Similarly,
graphite nano	uids were utilized in a horizontal circular tube
to study the laminar convective heat transfer performance
and were proven to be e
ective [203].

4.7. Biomedical Applications of Nano�uids. Medical science is
also not aloof from technological advancement. �e growing
�eld of nano	uids �nds many applications in the biomedical
industry. One example is the use of nano	uids in order to
minimize the side e
ects of traditional radiation cancer
therapy, in which iron based nanoparticles can help in
delivering drugs or radiation to the targeted cells (nano	u-
ids can be guided in blood stream with magnets outside)
without actually damaging the healthy cells [203]. Moreover,
undergoing surgery is an unpleasant experience. However,
with help of nano	uids, the e
ective cooling can be achieved
around the surgical area, thus improving the chance of
survival for the patient and mitigating the danger of organ
damage. On the other hand, nano	uids (heating mode) can
also be used for killing tumors or cancerous cells without
a
ecting neighboring healthy cells. Furthermore, researches
have con�rmed antibacterial properties of nano	uids. ZnO
nano	uids are helpful in killing Escherichia coli (E. coli)
bacteria [204]. Increasing nanoparticles volume fraction and
decreasing their size were shown to increase the antibacterial
activity. In addition, nano	uids also help in nanodrug deliv-
ery systems in order to supply controlled dose of drug over
desired period of time.

4.8. Application in Mechanical Processes Energy Industry.
Heat transfer value may be of a great bene�t to the �nal qual-
ity of a product or process in industry. �is increase may
help in reducing pumping power and in turn may help
in saving energy in HVAC systems. In the energy sector,
nano	uids can enhance the heat transfer, which in turn will
lead to higher temperatures in turbines and more power
outputs. In cooling systems such as refrigeration or process
of cooling applications, nano	uids are equally trustworthy.
Nano	uid coolants can be used in several applications like
chemical, food and drinks, and oil and gas industries. In
addition, �e Massachusetts Institute of Technology (MIT)
has a multidiscipline center to research the application of
nano	uids in nuclear energy industry. Currently, potential
impacts of using nano	uids in nuclear systems on safety,
economic performance, and neutronic are under study [203].

4.9. Solar Energy and Desalination Applications. �e major
problem with solar or other forms of renewable energies is
their availability at irregular intervals and the energy cannot
be fetched from renewables round the clock. �erefore,
storing energy becomes necessary to meet the demand in a
more appropriate fashion. With this concept of storage, the
technology of solar thermal energy cropped up.However, this
technology still faces some serious problems with thermal

energy storage for longer durations. �e molten salts used
for storing energy have certain drawbacks associated with
them.�e salts have freezing point of about 200∘C and, below
this temperature, they precipitate down in the system and
clog the entire plant within fraction of seconds. Nano	uids
prove to be trustworthy for storing energy as nano	uids
PCMs (Phase ChangeMaterials) possess extremely high ther-
mal conductivities compared to the base material. Recently,
researchers have tested nano	uid based PCMs by suspend-
ing nanoparticles from titanium oxide in saturated barium
chloride aqueous solution and the result showed that the
nano	uid based PCMs possessed considerably high thermal
properties.

Solar energy is the major form of renewable energy and
has the potential to supply the entire world’s demand. Many
researchers have proven that installing solar thermal power
plants in arid regions of the globe will help in meeting
the demands of entire world. �e only problem with solar
thermal energy is storage for a consistent base load, peak load,
and intermediate load power generation. With nano	uids
this problem of storage may be sorted out. Recent study from
scientists has shown that nano	uid based concentrating solar
thermal power plants can improve the e�ciency by 10% and
installing these nano	uid based plants in solar resource areas
of Tucson, Arizona, and Algeria can lead to $3.5millionmore
earnings per year per 100MWe.

On the other hand, world is also facing water shortages
and in particular the arid regions of globe are water stress
zones. Implementing nano	uid based solar thermal power
plants along with solar thermal desalination systems will help
in solving the problems of water along with electricity or
energy. With nano	uids, more heat transfer capacities will be
obtainedwhich in turnwill givemore power output andmore
potable water. Implementing MED (Multie
ect Distillation)
systems with solar thermal power plant based on nano	uids
energy storage will provide uninterrupted, round the clock
water and energy supply [204].

4.10. Optical Application. Optical �lters are used to choose
various wavelengths of light. A ferrobased nano	uid can help
in selecting several bands of the wavelength of the spectrum
such as infrared, ultraviolet, or even the visible region. �e
required wavelengths range in addition to their bandwidths
along with re	ectivity can be managed by using properly
customized ferro	uid emulsions [204].

4.11. Friction Reduction. �e major concern of any mechan-
ical industry ranging from manufacturing companies to
railways is wear and tear, life, and reliability of moving parts.
Nanoparticles have excellent load bearing capabilities and
can withstand high pressures, thereby reducing wear and tear
in moving parts of machines. Tribology is the science of
bearing and it greatly emphasizes the mitigation of friction
and wear. Lubrication provided by conventional 	uids is not
as e�cient as lubrication provided by nano	uids. �is is
shown in the evaluation of tribological behavior of Cu based
nano	uids; results have con�rmed that the Cu nano	uid
showed increased friction reduction as well as antiwear
properties even at high loads. In addition, nano	uids proved
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to be valuable in machining operations such as cutting,
grinding, and tapering. Better surface �nishwas achieved and
prevented the burning of the workpiece and the tool [204].

4.12. Magnetic Sealing. In comparison to mechanical sealing,
magnetic ones are more cost-e
ective and provide environ-
ment friendly and hazard proof sealing to large number
of rotational equipment in the industry. �ey have low
frictional resistance, long life, and high reliability and are
capable of withstanding high speeds. Magnetic nano	uids
are stable emulsions of magnetic particles like magnetite
(Fe3O4). �e developed seal of magnetic 	uid operated for
286 days in constant 	ow state. Ferrocobalt magnetic 	uid
can withstand 25 times the pressure when compared with
traditional magnetite sealing [204].

4.13. Nano�uid Detergent. In order to discover themethod of
dispersing dynamics in nano	uids of polystyrene, re	ected-
light digital video microscopy was used and it was demon-
strated that nano	uids can act as a detergent; however, more
work is required in this area. Commercial extraction of oil
and oil spills removal can also be an application for the same
nano	uid type [193].

4.14. Application in Geothermal Energy Extraction. Using
zinc oxide nano	uids increases heat transfer ability of geo-
thermal systems. Nano	uids usage increases the e�ciency of
entire power generation cycle based on geothermal energy.
Out of themany renewable energy sources available, geother-
mal energy is a rarely used source. So far, only 1.5% of the
available geothermal energy resource is extractable globally.
However, nano	uids can help in extracting more geothermal
energy and producing power in a Rankine cycle more
e�ciently. Moreover, nano	uids can be put in place to cool
the pipes, which carry geothermal 	uid at high temperatures,
that is, in the range between 500∘C and 1000∘C. Furthermore,
nano	uids behave as “	uid superconductors” and hence
might be utilized as a working 	uid to convert energy into
useful form [205].

5. Conclusion

In this paper, the goal was to present an overview of the recent
developments in the �eld of nano	uids. Preparation, charac-
teristics, and applications of nano	uids have been discussed
in detail. It is important to mention that thermophysical
properties vary with the volume concentration, temperature,
and 	ow rate. However, more research is required to study
the e
ect of nanoparticle’s shape, size, and surface chemistry
on the properties of nano	uids. In general, the increase of
volume fraction of the nanoparticles increases the density,
viscosity, and thermal conductivity of the nano	uid. In the
case of heat transfer coe�cient and Nusselt number, studies
showed that there is a limit to enhancement and an optimum
volume fraction exists. �e application of nano	uids appears
promising in a wide range of �elds; however, more work is
required in some areas such as the stability of these nano	uids
in various applications, the use of hybrid nano	uids, and
e
ect of working conditions on the properties of these

nano	uids. Furthermore, the experimental and lab scale
results must be scaled up to the prototype level in order to
evaluate the results and implement them commercially in
various �elds such as water desalination, power generation,
mechanical devices, defense, and space applications. Finally,
environmental consequences of nano	uids must be investi-
gated and analyzed using cradle to grave approach or LCA
(Life Cycle Assessment) method.
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