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Abstract

FOXO3a is a member of the FOXO subfamily of forkhead transcription factors that mediate a variety of cellular processes

including apoptosis, proliferation, cell cycle progression, DNA damage and tumorigenesis. It also responds to

several cellular stresses such as UV irradiation and oxidative stress. The function of FOXO3a is regulated by a

complex network of processes, including post-transcriptional suppression by microRNAs (miRNAs), post-translational

modifications (PTMs) and protein–protein interactions. FOXO3a is widely implicated in a variety of diseases, particularly

in malignancy of breast, liver, colon, prostate, bladder, and nasopharyngeal cancers. Emerging evidences indicate that

FOXO3a acts as a tumor suppressor in cancer. FOXO3a is frequently inactivated in cancer cell lines by mutation of the

FOXO3a gene or cytoplasmic sequestration of FOXO3a protein. And its inactivation is associated with the initiation and

progression of cancer. In experimental studies, overexpression of FOXO3a inhibits the proliferation, tumorigenic potential,

and invasiveness of cancer cells, while silencing of FOXO3a results in marked attenuation in protection against

tumorigenesis. The role of FOXO3a in both normal physiology as well as in cancer development have presented a great

challenge to formulating an effective therapeutic strategy for cancer. In this review, we summarize the recent findings

and overview of the current understanding of the influence of FOXO3a in cancer development and progression.
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Background

Forkhead box (FOX) proteins are evolutionarily con-

served transcription factor family of proteins, which are

characterized by their forkhead winged helix-turn-helix

DNA binding domain composed of three α–helices and

two loop or “wing” domains. Currently, more than 2000

members have been found in this family of transcription

factors based on sequence homology, which are ubiqui-

tously expressed across a range of species from yeast to

human [1, 2]. FOX proteins regulate a wide spectrum of

biological processes involved in normal homeostasis and

development [3, 4]. Although the forkhead DNA binding

domain with ~ 100 amino acid residues is highly con-

served, the other domains are very divergent in FOX

proteins. So they have very different binding specificities

and cellular effects. According to additional domains and

sequence conservation, FOX family is further grouped into

various subfamilies, namely FOXM, FOXK, FOXA and

FOXO families [5–7].

The forkhead box class O (FOXO) family is a ubiqui-

tously expressed transcription factor that plays important

role in higher organisms. The first member of this family

with fork head was described in Drosophila, which plays

key roles in the terminal development of Drosophila em-

bryo [8]. The mammalian system consists of four members,

namely FOXO1, FOXO3a, FOXO4, and FOXO6, which are

known to be regulated by the phosphoinositol-3-kinase

(PI3K)-PKB signaling pathway [9–11]. FOXO family

has been shown to regulate developmental processes

and energy metabolism as well as tumorigenesis in many

tissues. All these functions are mediated by the specific acti-

vation of a coordinated transcriptional program [12]. The

deregulation of FOXO functions will cause uncontrolled

cell proliferation and accumulation of DNA damage, which

results in carcinogenesis.

The member of FOXO subfamily, FOXO3a, also known

as FOXO3 or forehead in rhabdomyosarcoma-like 1

(FKHRL1), was first identified in human placental cosmid.

The FOXO3a gene is located on chromosome 6q21 [13]

and it plays vital role in regulating a variety of cellular pro-

cesses through targeting the expression and activity of

effector genes. The subcellular localization of FOXO3a is
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important for its activities and functions [14]. The

phosphorylation of FOXO3a leads to its translocation

from nucleus to cytoplasm, where it associates with 14–

3-3 protein and this binding prevents its reentry into the

nucleus [15, 16]. In this review, we focus on the recent

findings and important progress made in identification of

FOXO3a functions and its target molecules and we have

also presented an overview of the current understanding

of the influence of FOXO3a activity on cancer.

Overview: Structure, regulation and function of

FOXO3a

Structural domains of FOXO3a

FOXO3a is approximately 71 kDa in size and its struc-

ture is conserved across different species. FOXO3a

contains five domains: a highly conserved forkhead winged

helix-turn-helix DNA binding domain (FKH), two nu-

clear localization sequence (NLS), a nuclear export se-

quence (NES) and C-terminal transactivation domain

(TAD) (Fig. 1). Among the FOXO family members, many

of these regions are highly conserved. A highly conserved

Forkhead Domain is primarily responsible for direct inter-

action between FOXO3a and DNA, which also mediates

its interaction with Estrogen receptor α (ERα) [17] and

p53 [18]. NLS domain is required for the translocation of

FOXO3a from cytoplasm to nucleus and it also mediates

the release of FOXO3a from nucleus [19]. TAD domain

in C-terminal is vital for the transactivation of FOXO3a

target genes.

Regulation of FOXO3a activity

MiRNA pathways contribute to post-transcriptional

regulation of FOXO3a

MicroRNA (miRNA) is a kind of short single-stranded

non-protein-coding RNA molecules that negatively regu-

lates the gene expression at the posttranscriptional level

by repressing translation and/or promoting mRNA deg-

radation [20, 21]. There are more than 30% of genes are

regulated by miRNA in human system [22]. The 3′-un-

translated region (3′-UTR) of FOXO3a mRNA harbors

several miRNA target sequences. Many miRNAs modu-

late the expression of FOXO3a proteins under various

pathological conditions. FOXO3a is directly targeted by

miR-155 in ischemic renal diseases and some types of

cancer. Experimental studies revealed that the overexpres-

sion of miR-155 down-regulates the expression of FOXO3a

protein, while knockdown of miR-155 increases FOXO3a

expression [23–27]. FOXO3a is also regulated by other

miRNAs, including miR-132, miR-212 and miR-223. They

directly bind to FOXO3a 3′-UTR and inhibit the ex-

pression of FOXO3a. The de-repression of FOXO3a by

microRNA-132 and 212 cause neuronal apoptosis in

Alzheimer’s disease [28]. In addition, miR-132 and 223

promote pathogenesis of inflammatory bowel disease

by negatively regulating FOXO3a [29]. In glioblastoma

cells, the overexpression of miR-27a can inhibit the ex-

pression of FOXO3a protein and its transcriptional ac-

tivity, while the inhibition of miR-27a increases the

expression and activity of FOXO3a, which indicates

that FOXO3a is a target of miR-27a [30]. In traumatic

brain injury condition, miR-27a displays neuroprotective

effect by directly targeting FOXO3a-mediated neuronal

autophagy [31]. In human breast cancer and Idiopathic

pulmonary fibrosis, miR-96 directly targets the 3′UTR of

the FOXO3a mRNA, which consequently decreases the ex-

pression of FOXO3a targets (p27 and p21) and increasing

cyclin D1 [32, 33]. FOXO3a can also be directly regulated

by other miRNAs, such as miR-30d, miR-182, miR-592,

miR-1307 and 29a [34–38]. Modulation of FOXO3a by

anti-miR strategies may prove useful to promote apoptosis.

In addition to the direct regulation of miRNA, FOXO3a

activity also can be regulated by miRNAs in an indirect

manner. For instance, miR205 upregulates AKT dependent

activation of FOXO3a in lung cancer cell via suppressing

PTEN [39]. Therefore, to explore the comprehensive of

network of microRNAs and FOXO3a, further research is

required to design FOXO3a based strategies for better

chemotherapeutics.

Importance of post-translational modifications in regulation

of FOXO3a

Post-translational modifications (PTMs) is the fundamental

process for the regulation of proteins’ functions that cause

changes in their subcellular location, molecular half-life,

DNA-binding affinity and/or interaction with other cellular

proteins. The common PTMs include phosphorylation,

Fig. 1 Structure of human FOXO3a. Letters within the bar indicate structural domains. The well-known proteins interacting with FOXO3a are

shown above the lines at the corresponding domains. Only representatives of FOXO3a-interacting proteins are shown. FKH, forkhead winged

helix-turn-helix DNA binding domain; TAD, transactivation domain; NLS, nuclear localization sequence; NES, nuclear export sequence
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acetylation, methylation, ubiquitination, sumoylation, ned-

dylation, glycosylation, sulphation and prenylation. The

activity of FOXO3a can be regulated by multiple types

of PTMs including phosphorylation, acetylation, ubiquiti-

nation and methylation [9, 40, 41]. These reversible PTMs

alter the translocation of FOXO3a, influence its DNA

binding affinity, and change the pattern of transcriptional

activity at specific target genes sites [42, 43]. These modifi-

cations in FOXO3a occur consecutively by various combi-

nations of enzymes and signaling molecules.

The primary mechanism of regulation of FOXO3a

activity and its target genes is by controlling the trans-

location of FOXO3a between nucleus and cytoplasm,

which can be achieved by phosphorylation by a series

of kinases. The protein kinases such as protein kinase

B (PKB), extracellular signal-regulated kinase (ERK),

Serum-and glucocorticoid-inducible kinases (SGK) and

IκB kinase isoform β (IKKβ) promote the nuclear export

of FOXO3a [44–47]. Whereas, poly(ADP-ribosyl)ated by

PARP1 dependent phosphorylation facilitates its exclusion

from the nucleus [48]. After the cytoplasmic retention,

FOXO3a is ubiquitinated and then degradated by prote-

asome [45]. The sites for PTMs in FOXO3a is well defined

and activation of these kinases normally correlates with

loss of nuclear FOXO3a. However, the phosphorylation of

FOXO3a by p38, Macrophage stimulating 1 (MST1) and

AMPK promote its nuclear entry and increase its tran-

scriptional activity [49–51]. Given the fact that the balan-

cing of nuclear import and export is very important to

maintain FOXO3a functions, the loss of this balance leads

to development and progression of various diseases in-

cluding cancer.

The PTMs of nuclear FOXO3a regulates its transcrip-

tional activity by changing DNA binding affinity and pro-

moter binding specificity. In nucleus, FOXO3a is acetylated

by p300 and CREB-binding protein (CBP) and it is deacety-

lated by SIRT1 and SIRT2. Interestingly, SIRT1 mediated

deacetylation changes the DNA binding affinity of

FOXO3a [52], while deacetylation by SIRT2 increases its

DNA-binding activity [53]. The coactivator-associated ar-

ginine methyltransferase 1 (CARM1) dependent methyla-

tion of FOXO3a is required for its activation in the nucleus

[40]. A molecular study found that the methylation of

FOXO3a at K270 leads to the loss of DNA binding ability

and it reduces FOXO3a-mediated apoptosis. Many PTMs

of FOXO3a can interact with each other, and function in

combination or compete with each other. Therefore, ex-

ploring the FOXO code is essential to understand the

function and mechanism of FOXO3a.

Alternative protein–protein interactions modulate FOXO3a

activity

The activity of FOXO3a can be modulated by other pro-

teins via protein-protein interactions. As a transcription

factor, FOXO3a interacts with co-regulators (co-activators

or co-repressors) and general transcription factors to regu-

late the gene expression of its target. In neuronal cells, C/

EBP homologous protein (CHOP) directly interacts with

FOXO3a in response to endoplasmic reticulum stress and

that increases the transcription activity of FOXO3a and in-

ducing the expression of FOXO3a target genes Puma and

Bim [54]. In many cancer cell lines, c-Myc binds with

FOXO3a and this interaction represses FOXO3a-mediated

activation of the p27 promoter as evident from consistent

with the inverse patterns of their expression in a diverse

group of human cancers [55]. In MCF-7 cells, latency asso-

ciated nuclear antigen 2 (LANA2) functionally interacts

with FOXO3a and inhibits the transactivation of Bim pro-

moter mediated by FOXO3a [56]. In normal lympho-blasts

and HeLa cells treated with H2O2, forms a complex with

FOXO3a by direct binding with FANCD2 in response

to oxidative stress [57]. In COS-7 cells, the interaction

of p53 with FOXO3a suppresses transcriptional activity of

FOXO3a. In fact, p53 decreases the expression of

apoptosis-inducible genes such as Bim and Bcl6, but it does

not affect the expression of p27 and Cyclin G2 [58]. In

HeLa cells, FOXO3a is de-phosphorylated by PP2A inter-

action, which results in the rapid nuclear translocation and

transcriptional activation of FOXO3a [59]. In Gastric Can-

cer Cells, the complex of RUNX3 and FOXO3a participates

in the induction of apoptosis by activating FOXO3a target

gene Bim [60]. In the Mitochondria, the interaction of

SIRT3 with FOXO3a increases FOXO3a DNA-binding ac-

tivity as well as FOXO3a dependent gene expression [61].

Functions of FOXO3a

FOXO3a is a central transcription factor that mediates

multiple physiological and pathological processes by indu-

cing transcription of target genes involved in apoptosis [62],

proliferation [63], cell cycle progression [64], survival [65]

and DNA damage [66] (Fig. 2). It also respond to several cel-

lular stresses such as UV irradiation [67] and oxidative stress

[68, 69]. Besides, FOXO3a is strongly associated with human

longevity [70]. FOXO3a is also involved in the regulation of

autophagy process in muscle and in cancer cells [71, 72].

The multiple functions of FOXO3a indicate that deregula-

tion of FOXO3a expression and/or activity can lead to vari-

ous diseases, particularly cancer. Indeed, the overexpression

of FOXO3a has been shown to inhibit tumorigenesis in

breast cancer [17, 73]. The export of FOXO3a from nucleus

seems to be related to poor survival of breast cancer patients

[73]. In this context, the tumor suppressor function of

FOXO3a is also well defined in other type of cancers.

FOXO3a in diseases development

FOXO3a and its role in non-neoplastic diseases

The dysregulation of FOXO3a has been implicated in

many pathological processes. FOXO3a play a crucial role
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in neurological disorders such as Alzheimer’s diseases,

Lewy body dementia, Parkinson’s diseases, motor neuron

disease and acute spinal cord injury. FOXO3a also asso-

ciated with the development of heart disease, muscle at-

rophy, and premature ovarian failure.

Alzheimer’s disease (AD) is a most common form of

age-associated dementia, which is a multifactorial and

progressive neurodegenerative disorder. The mRNA and

protein levels of FOXO3a are significantly up-regulated,

and most of the its target genes are increased in AD

brains, which indicates that the FOXO3a signaling path-

way contributes to AD neurodegeneration [28]. In the

Tg2576 mouse model of AD, the inactivation of FOXO3a

had attenuated AD-type amyloid neuropathology. In

primary neuron cultures derived from Tg2576 mouse

embryos, a constitutively active form of FOXO3a pro-

motes AD amyloid-β peptide (Aβ) levels by inhibiting

non-amyloidogenic α-secretase activity, which indicates

the existence of an inverse correlation between FOXO3a

activity and Q Aβ amyloidosis [74].

Parkinson’s disease (PD) and Lewy body dementia

(LBD) are recognized as disorders of protein aggregation

and inclusion body formation. The increased activity

and expression of FOXO3a is intimately associated with

Lewy bodies and Lewy neurites in the brain tissue of

LBD and PD. In fact, the localization of FOXO3a to

Lewy bodies result in the degeneration of neurons [75].

The cardiovascular problems and its associated com-

plications are the leading cause of mortality worldwide.

FOXO3a acts as a negative regulator of cardiomyocyte

size in the cardiac tissue [76]. Our previous study demon-

strated that FOXO3a inhibits cardiomyocyte hypertrophy

by transcriptionally targeting catalase [77]. In pathological

hypertrophy and heart failure, FOXO3a drives the expres-

sion of BNIP3 and induces mitochondrial apoptosis and

mitophagy [78]. FOXO3a can inhibit cardiomyocyte hyper-

trophy by suppressing the expression of p21, Cat and Atro-

gin-1 [77, 79, 80], which are involved in hypertrophic

response.

Recent studies demonstrate that FOXO3a up-regulates

the expression of the atrophy-related ubiquitin ligases

atrogin-1 and muscle Ring Finger-1, which induce a rapid

loss of muscle mass [81, 82]. Hsp70 and SAPKs inhibit the

activity of FOXO3a and prevent skeletal muscle atrophy

[83, 84]. On the other hand, FOXO3a promotes cell sur-

vival pathway in aortic vascular smooth muscle cells.

However, its deregulation due to a reduction of IGF-1R

signaling may promote apoptosis during atherosclerosis

Fig. 2 The functions and regulation of FOXO3a. The non-phosphorylated form of FOXO3a located in nucleus actively mediates multiple cellular

processes, including cell apoptosis, proliferation, cell cycle, survival and DNA damage by inducing transcription of its target genes depends on

the upstream stimuli. The growth factor signaling induced activation of protein kinases such as PKB, ERK, SGK, IKKΒ terminate FOXO3a activity by

phosphorylation (in active form). The phosphorylated FOXO3a binds with 14–3-3 protein, which consequently leads to nuclear export of FOXO3a.

In the cytoplasm, FOXO3a is ubiquitinated and degraded in a proteasome-dependent manner
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[85]. FOXO3a is a critical regulator of follicular activa-

tion. A study in mice with ovarian phenotype of

FOXO3a−/−showed a similar phenotype with the human

premature ovarian failure (POF). A mutation screening in

POF patients have revealed that there are eight variants in

FOXO3a and three of them are resulting in amino acid

substitutions, which indicates that FOXO3a is a candidate

gene for POF in human [86]. After acute spinal cord con-

tusion injury, a significant decrease in the expression of

FOXO3a favors axonal regeneration and glial cell prolifer-

ation by reduction in the expression of its target protein

p27kip1, which indicates that FOXO3a has a detrimental

role in nervous system lesion and repair [87]. In contrast,

the pharmacological or genetic activation of FOXO3a

protects neurons from damage caused by motor neuron

diseases [88].

Implication of FOXO3a in carcinogenesis

It is well known that FOXO3a has a crucial role in

apoptosis, cell proliferation, DNA damage and resist-

ance to oxidative stress, and thus its deregulation of

FOXO3a is highly associated with a series of malignan-

cies [60, 89–103] (Table 1). In most of the malignant

cells, the deregulation of FOXO3a is mainly through

aberrant PTMs.

Deregulation of FOXO3a phosphorylation

FOXO3a is phosphorylated by several upstream kinases,

such as Akt, ERK, SGK, IKKβ and IKBKE [104]. The

phosphorylated FOXO3a is expelled from nucleus by

binding with 14–3-3 proteins and through exportins. In

the cytoplasm, FOXO3a is further ubiquitinated and then

degradated by an ubiquitin/proteasome-dependent man-

ner [105]. The deregulation of these kinases are frequently

observed in different kinds of cancers and that contributes

to the progression of carcinogenesis by promoting the

nuclear-to-cytoplasm translocation and/or ubiquitin/pro-

teasome dependent degradation of FOXO [106].

The role of JNK in cancer is still in debate that has

pro-oncogenic as well as tumor-suppressor roles in cancer

tissue depends on the upstream signaling. Its expression

and/or activity is dysregulated during carcinogenesis [107].

The abnormal activation of JNK by UV irradiation inacti-

vates ERK and PKB, which, in turn, leads to cell death by

increased activity of nuclear FOXO3a and Bim expression

[67]. IKK plays important roles in chromatin remodeling,

cell cycle progression and nuclear factor κB (NFκB) signal-

ing pathway, which is involved in the development of disor-

ders, including cancer [108]. IKK directly interacts with and

phosphorylates FOXO3a independent of PKB, and that

causes the degradation of FOXO3a. The cytoplasmic level

of FOXO3a correlates with the expression of IKKβ in many

Table 1 Functional roles of FOXO3a pathway in different types of cancer

Cancer types Key message(s) Ref.

Breast cancer Dephosphorylation of FOXO3a induced by Aplysin suppresses tumor growth by inhibiting cell
proliferation and promoting apoptosis in cancer cells.

[89]

Prostate cancer Deregulation of FOXO3a promotes prostate cancer progression in TRAMP mice. [90]

Acute myeloid leukemia Dephosphorylation of FOXO3a induced by hypomethylating agents promote apoptosis by
upregulation of BIM and PUMA expression.

[91]

Colon cancer Activation of FOXO3a by aldose reductase induces human colon cancer cell apoptosis by
upregulating both DR5 and DR4.

[92]

Lung cancer Deregulation of FOXO3a promotes DNMT3B overexpression leading to tumor growth in lung cancer. [93]

Glioma A high expression of FOXO3a is associated with glioblastoma progression and FOXO3a level
independently indicates poor prognosis in Glioma patients.

[94]

Thyroid cancer Nuclear FOXO3a promotes cell cycle progression by transcriptional upregulation of cyclin A1 and
accelerates proliferation of human ATC cells.

[95]

Lung adenocarcinoma FOXO3a gene inactivation occurs frequently in carcinogen-induced lung adenocarcinoma. [96]

Oral squamous cell carcinoma Constitutively active form of FOXO3a induces significant G1-phase arrest and apoptosis in OSCC cells [97]

Neck cancer Tumor patients with low FOXO3a expression have a poor prognosis compared with patients with
high FOXO3a.

[98]

Urothelial cancer FOXO3a suppresses invasiveness of urothelial cancer through regulation of Twist1, YB-1 and E-cadherin. [99]

Osteosarcoma Activation of FOXO3a by ionizing radiation induces cell apoptosis in osteosarcoma. [100]

Bladder cancer Upregulation of FOXO3a by Nkx2.8 suppresses bladder cancer proliferation.

Gastric cancer FOXO3a cooperates with RUNX3 to induce apoptosis by activating Bim in gastric cancer cells. [60, 101]

Neuroblastoma Inactivation of FOXO3a by AKT is essential for neuroblastoma cell survival. [102]

Ovarian cancer Inhibition of FOXO3a phosphorylation by BrMC upregulates Bim expression and leads to apoptosis in
ovarian cancer cells.

[103]
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types of tumor. The negative regulation of FOXO3a by IKK

plays a key role in promoting malignant cell growth and

tumorigenesis [73]. The RAS–ERK signaling pathway can

be activated by a wide range of extracellular growth signals

that is known to play a crucial role in differentiation, prolif-

eration and tumor progression. A constitutively active ERK

phosphorylates FOXO3a and consequently promotes its

degradation, thereby ERK pathway contributing to carcino-

genesis [45].

The PI3K–PKB signaling pathway is involved in many

fundamental cellular functions such as proliferation, growth,

and survival. The PI3K–PKB signaling pathway is frequently

dysregulated by different types of cellular stress stimuli or

toxic insults. For example, the activation of PI3K-PKB by

upstream activators or amplification of PI3K/PKB genes lead

to uncontrolled activation of PKB pathway and it contrib-

utes to carcinogenesis [109]. PKB abnormally activated by

some protein kinases in leukemia cells. The Fms-like tyro-

sine kinase-3 (FLT3) receptors within-frame internal tandem

duplications (ITD) acts as a upstream for PKB signaling that

have been found in about 30% of the patients with acute

myeloid leukemia. FLT3-ITD receptors exhibit constitutive

tyrosine kinase activity without its ligand binding. Thus, the

expression of FLT3-ITD results in relentless activation

of PKB and concomitant phosphorylation of FOXO3a

in leukemia cells. The phosphorylation of FOXO3a in-

duces its translocation from nucleus to cytoplasm, which

in turn leads to suppression of the expression of its target

genes p27Kip1 and Bim [110]. Similarly, the nucleophos-

min–anaplastic lymphoma kinase (NPM-ALK) is a fusion

protein kinase which is generated in 30–50% of pa-

tients with advanced-stage anaplastic large-cell lymphoma.

InBa/F3 cells, the inducible or constitutive expression of

NPM-ALK results in concomitant activation of AKT and

phosphorylation of FOXO3a, a frequently observed cellular

event in anaplastic large-cell lymphoma [111]. A study in

mouse model has revealed that Pml deficiency fails to re-

cruit PP2a, PKB phosphatase into PML nuclear bodies,

which leads to the accumulation of nuclear phosphor-Akt

and nuclear exclusion of FOXO3a. This results in progres-

sion of tumorigenesis process in the prostate [112].

The phosphatase and tensin homologue deleted on

chromosome 10 (PTEN) is a dual function lipid and

protein phosphatase, which was originally identified as a

tumor-suppressor. PTEN negatively regulates the PI3K-PKB

pathway by dephosphorylation of PI(3,4,5)P3 and down-

regulation of PI3K activity. The inactivation of PTEN due to

mutations is observed in many primary tumors, such as

thyroid, prostate, uterus and breast [109]. The mutation

or loss of PTEN activity results in aberrant activation of

PKB signaling and nuclear export of FOXO3a during

carcinogenesis. In experimental studies found that FOXO3a

in PTEN-negative tumors result in cell cycle arrest and

apoptosis [3]. Thus, the inactivation of FOXO3a by

deregulation of its upstream phosphokinases is crucial

for the nuclear export of FOXO3a and acceleration of

carcinogenesis. Taken together, these studies strongly

suggest that the imbalance between kinases and phos-

phatases can significantly affect the cellular processes

through inhibiting FOXO3a activity, and the alteration

of these kinases and phosphatases may cause the dys-

regulation of FOXO3a leading to carcinogenesis.

Effectors of FOXO3a deregulation

Multiple mechanisms have been associated with FOXO3a

dysregulation and carcinogenesis due to the fact that it

governs many genes involved in apoptosis (such as Bim,

Noxa, Puma, FasL and TRAIL) and cell proliferation (in-

cluding p21, p27, p130, Cyclin G2 and GADD45) [113].

Our previous study demonstrated that FOXO3a binds to

the promoter region of miR-21 and suppresses its promoter

activity in human neuroblastoma cells. Fas ligand, a

pro-apoptotic factor, is a downstream target of miR-21.

Foxo3a inhibits miR-21 transcriptionally which results in to

the up-regulation of Fas ligand, and hence initiate the apop-

tosis [114]. The transcriptional repressor MXI1-SRα is a

direct target of FOXO3a, which mediates the repression of

MYC activity by FOXO3a [115]. These results indicate

that FOXO3a dysregulation contributes to carcinogenesis

through directly regulating its target genes expression, and/

or affecting its downstream effectors, such as MXI1-SRα.

FOXO3a coordinately works with other transcription factors

in cancer

FOXO3a has the ability to suppress cancer cell proliferation

by down-regulating the expression of several ER-relates

genes, which are involved in cell cycle progression. The dir-

ect interaction of FOXO3a with ER-α and ER-β proteins

causes inhibition of 17β-estradiol (E2)-dependent ER

gene transcriptional activities. In ER-positive breast

cancer MCF-7 cells, the overexpression of FOXO3a

up-regulates the expression of the cyclin-dependent kinase

inhibitors (including p21Cip1, p27Kip1, and p57Kip2), which

results in the repression of the growth and survival of

MCF-7 cells [17]. Molecular studies show that there are

several structural and functional similarities between p53

and FOXO3a. Both p53 and FOXO3a control cell cycle

progression and DNA damage repair, and both of them

can be post-translationally modified by acetylation and

phosphorylation. They have regulate a range of genes in

common. Thus, there is functional cross talk between these

two transcription factors. p53 promotes the expression of

SGK, while SGK phosphorylates and inhibits FOXO3a. On

the other hand, FOXO3a relieves p53-mediated repression

of SIRT1 expression, which, in turn, deacetylates p53 [116].

The transcription factor, RUNX3, is a candidate tumor

suppressor that mediates apoptosis and cell growth inhib-

ition in gastric epithelial cells that interacts with FOXO3a
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and this complex activates Bim to induce apoptosis

[60]. FOXO3a also cooperate with other members of

forkhead-box transcription factors. For example, FOXO3a

interacts with FOXM1 in breast cancer cells and they

regulate ERα gene transcription [117]. There is a mutual

regulatory mechanisms exist between FOXO3a and other

FOX members. In glioblastoma brain tumor cells, SMAD3

is activated by transforming growth factor-β (TGF β) and

that forms a complex with FOXO3a to induce the expres-

sion of growth inhibitory gene such as p21Cip1, while

FOXG1 binds to FOXO3a-SMAD3 complex and blocks

p21Cip1 expression [118]. In this context, the potential

interaction between different FOX proteins make more

complications in understanding the effects of FOX pro-

teins on tumorigenesis. In other way, their interaction

provide a point of integration for divergent signaling path-

ways that could be utilized for the effective therapy.

FOXO3a as biomarker and therapeutic target in
cancer

Currently, due to the physiological and anatomical features

of tumor, it is difficult to observe obvious early symptoms

of patients, leading to a large number of patients diagnosed

at an advanced stage. Therefore, valuable biomarkers for

early diagnosis and prognosis of cancer are required in clin-

ical practice. FOXO3a has recently emerged as a potential

biomarker for the diagnosis, prognosis and treatment of

multiple malignant tumors. For example, FOXO3a expres-

sion is identified as a cancer-initiating cells biomarker

in Hodgkin’s lymphoma [119]. Many studies showed

that FOXO3a expression acts as a prognostic biomarker

in multiple cancers [94, 98, 120–127]. Interestingly,

overexpression of FOXO3a is associated with poor progno-

sis in triple-negative breast cancer [120], hepatocellular car-

cinoma [121], glioblastoma [94] and gastric cancer [122]

patients, whereas low expression of FOXO3a is associated

with poor prognosis in glioma [126] and ovarian cancer

[127] patients. The expression of phosphorylated FOXO3a

is also identified as a prognostic biomarker in ovarian can-

cer [128] and acute myeloid leukemia [129]. The nuclear

localization of FOXO3a is demonstrated as a prognostic

biomarker in luminal-like breast cancer [130]. In addition,

the subcellular localization of FOXO3a is identified as a

biomarker for predicting response to the chemotherapy

and radiotherapy in cervical carcinoma, breast cancer and

esophageal cancer [131, 132]. Although the potential

value of FOXO3a as a biomarker has been established in

small-scale studies, it is difficult to validate it in large co-

horts of patients with cancer. Therefore, further large-scale

studies on patient populations are required to confirm the

utility of FOXO3a as a biomarker in cancer.

FOXO3a has become a potential target of chemo-

therapeutic drugs due to its central role in in carcino-

genesis. Many chemical and pharmacological agents

targeting FOXO3a have been tested in clinical as well

as experimental settings. FOXO3 is an indirect target

of BMS-345541 (a highly selective IKK inhibitor) in

T-cell acute lymphoblastic leukemia (T-ALL) in which

the expression of p21Cip1 is up-regulation by increased

nuclear translocation of FOXO3a after treatment with

BMS-345541. This process is independent of PKB and

ERK 1/2 signaling, which indicates that the loss of

FOXO3a tumor suppressor function could be mainly due

to overactivation of IKK [133]. In BCR-ABL-positive

chronic myeloid leukaemia cell lines, STI571 (also called

imatinib or Glivec), an inhibitor of BCR-ABL oncoprotein,

increases FOXO3a mediated apoptosis by triggering

FOXO3a dependent cell cycle arrest and Bim expression

[134]. Epigallocatechin-3-gallate (EGCG), the major

constituent of green tea, can induce apoptosis by targeting

FOXO3a in pancreatic carcinoma [135] and breast carcin-

oma cells [136]. FOXO3a is also an indirect target of many

anticancer agents including paclitaxel [137], cisplatin [138],

imatinib [139] and lidamycin [140] in breast cancer cells.

All these compounds activate FOXO3a by decreasing PKB

activity. However, Paclitaxel also enhances JNK activity,

which targets both FOXO3a and 14–3-3 proteins. JNK reg-

ulates the activity or stability of FOXO3a by phosphoryl-

ation, and this phosphorylation event additionally reduces

its interaction with 14–3-3 proteins, which results in the

nuclear export of FOXO3a.

The PI3K-PKB pathway is a major downstream signaling

pathway of epidermal growth factor receptor (EGFR),

which is a crucial cell surface receptor involved in cancer

cell proliferation. Thus, the inhibition of EGFR by chemo-

therapeutic drugs (trastuzumab, lapatinib, afatinib, cetuxi-

mab, gefitinib and neratinib) provide a novel and valuable

therapeutic strategy for treating breast, colon, prostate,

ovarian, lung and head and neck cancers [141, 142] by

replenishing the activity of FOXO3a through inhibition of

PI3K-PKB. BNIP3L is a pro-apoptotic gene, which is re-

quired for chemosensitization of cancer cells. This gene is

one of the targets of FOXO3a. In breast cancer cell lines,

the blockade of EGFR by antibodies or small-molecule

inhibitors induces nuclear translocation of FOXO3a and

promotes the expression of BNIP3L gene, which conse-

quently results in apoptotic death of breast cancer cells

[143]. Knockdown of FOXO3a also promotes the response

to cetuximab treatment in colorectal cancer [144]. These

findings indicate that FOXO3a could be a crucial target of

small-molecule EGFR inhibitors, and its activity also in-

creases chemosensitivity of cancer cells to agents such

as lapatinib. In agreement with this, the activation of

FOXO3a by other anticancer agents also sensitize cancer

cells with resistance to apoptosis. For instance, FOXO3a

transcriptional activity and its target gene Bim expression

level is increased in Saos2 (a p53-null osteosarcoma cell

line) upon ionizing radiation, which indicates that FOXO3a
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is a crucial effector of radiation-inducing apoptosis [100].

However, there is a drawback in therapeutically targeting

FOXO3a for some type of cancers. IGFR1 and PI3KCA

have been identified as target genes of FOXO3a in a colon

carcinoma cell line [115], which indicates that FOXO3a

may activate PI3K–PKB signaling pathway by multiple

mechanisms and it could contribute to drug resistance in

colon cancer. However, the majority of studies have re-

vealed that the activation of FOXO3a is highly associated

with apoptotic pathway in tumor cells.

FOXO3a activity is directly regulated by a large number

of miRNAs. This indicates that the screening or synthesis

of novel chemotherapeutic drugs targeting these miRNAs

may also be a valuable strategy to treat cancer. Although

valuable progress has been made in FOXO3a-based thera-

peutics for cancer, the most important challenges such as

the detailed mechanism of FOXO3a in sensitivity and re-

sistance of chemotherapeutic drugs remain to be solved

before its translation in to clinic.

Conclusions

FOXO3a is a core regulator of multiple physiological

and pathological processes by directly inducing or mediat-

ing the expression of genes associated with cell prolifera-

tion, growth and survival. The deregulation of FOXO3a

signaling significantly contributes to the development and

progression of many disorders, including cancer. There is

a complicated cross-talk between FOXO3a and other key

signaling pathways (such as p53 and ER) involved in car-

cinogenesis. Therefore, FOXO3a is a valuable therapeutic

target for a wide range of cancers. The unique role of

FOXO3a in the carcinogenesis is that certain tissues offers

exciting possibility for cancer-tissue-specific therapeutic

strategies. Current studies have shown that FOXO3a tar-

geted chemotherapy has lower toxicity in normal tissues

compared with tumor tissues. In chemotherapy-resistant

breast cancer cell lines, FOXO3a activation is vital for sen-

sitizing cells to chemotherapeutic agents. ERα is a critical

regulator in breast cancer development and it is an effi-

cient target for endocrine therapy [145]. The expression of

ERα is considered as a marker for favorable prognosis and

the level of functional ERα plays a key role in a successful

endocrine treatment for breast cancer [146]. It is well

documented that FOXO3a and FOXM1 regulate the

expression of ERα [117]. Thus, FOXO3a could be a

critical factor in determining the sensitivity and resist-

ance of endocrine treatment. The PI3K-PKB signaling

pathway is a relatively stable signaling pathway, which

is not commonly mutated in cancers. Therefore, it is a

promising strategy to identify novel inhibitors of FOXO3a

for future anti-cancer drug design by targeting a down-

stream node of the PI3K-PKB pathway. As FOXO3a re-

quires the recruitment of co-activators or suppressor for

its activity or its inactivation, the therapeutic targeting of

the coactivators or corepressors of FOXO3a could also be

another way to manipulate FOXO3a functions in cancer

cells. This strategy, along with therapeutic manipulation

of PTM of FOXO3a would help to avoid the potential side

effects in long term due to total inhibition of FOXO3a,

which is required for normal cell functions. Given the fact

that FOXO3a network is complex and considering its

crosstalk with other transcription factors, the influence of

FOXO3a in carcinogenesis need to be further investigated

in order to develop an efficient FOXO3a based therapeutic

strategies. The clinical applications of FOXO3a are poten-

tially promising to limit the progression of human cancers

in the future.
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