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Critical Scaling of the Conductance in a Disordered Insulator

M. A. Paalanen, T. F. Rosenbaum, '" G. A.. Thomas, and R. N. Bhatt
Bel/ I.aboratories, Murray IIill, New Jersey 07974

(Received 26 August 1983)

A critical scaling of the real and imaginary parts of the low-frequency ac conductance
of insulating phosphorus-doped silicon near the metal-insulator transition has been ob-
served. The results are interpreted as evidence of an electron glass, i.e., glasslike
behavior, intimately connected with the scaling description of the transition, in which
Coulomb interactions play a significant role.

PACS numbers: 72.15.Cz, 71.30.+h, 72.20.Fr

The evidence of a significant role played by

electron-interaction effects in disordered met-
als' ' suggests an even greater role in the in-

sulating phase" where metallic screening is ab-

sent. Historically, a number of experiments in

the localized regime have been explained on the

basis of the noninteracting Anderson model, in

which the insulator is viewed as a Fermi glass."
The most widely applied consequences of this
model have been the Mott T"'" variable-range

hopping law' and the Austin-Mott" low-frequency

ac conductivity. These conclusions have been

challenged by Efros and Shklovskix" who claim
that electron-electron interactions, no matter
how small, because of their long-range (1/&) na-

ture in the insulating phase, give rise to a soft
Coulomb gap" where the density of states goes
continuously to zero at the Fermi level. While

recent numerical calculations on a lattice model

of this electron glass" with strongly localized
states" confirm this, evidence from real experi-
mental systems is somewhat scant" and uncon-

vincing. Our results support the Efros-Shklov-
skiz type of model.

We have measured the complex ac conductance
of phosphorus-doped silicon (Si:P) just on the in-

sulating side of the metal-insulator transition.
Using uniaxial stress" to tune n, within 0.1% of

the sample density (n —3.6X10" cm '), we moni-

tor the ac response as a function of temperature

(T), frequency (~), and stress (S). Our meas-
urements span the range 10' Hz& ~/2&&10'Hz and

10 mK& T & 100 mK, and are in the limit +«k B T
«R, ff with four decades separating each inequal-

ity (R,fq, the P ionization energy, is 45.5 meV
=530 K=1.1&&10"Hz). We find a sublinear depen-

dence of the real part on ~ (o ~K~', s &1) and a cor-
responding infrared divergence of the dielectric
constant, implying glasslike behavior. In add¹
tion, the prefactor K tends to diverge as n —n,
with the same exponent as the zero-frequency

optical" dielectric constant, ' indicating that this
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FIG. 1. Inverse donor polarizability (47t-y)
' at 31

kHz and square of the conductivity (Hef. 4), both ex-
trapolated to T=o, as functions of n-n . Inset shows

sample geometry in the capacitance-bridge measure-
ment.

glassy behavior is intimately connected with the
scaling description of the metal-insulator transi-
tion. At finite T, we observe a positive T' cor-
rection which also scales with the T=O part.

The measurement geometry is shown in the in-
set of Fig. 1. After etching of the surfaces of an
insulating Si:P sample close to n„1000-A-thick
gold layers were evaporated on opposite faces,
forming a capacitor with area 1.6 mm' and thick-
ness 0.35 mm. The Schottky barriers, formed
at the sample surfaces below the gold platings,
had a capacitance C& = 1100 pF in the metallic
phase. The complex conductance Y =6+ j&C was
measured with a capacitance bridge. Small volt-
ages (&10 '

V) and power levels (-10 "W) were
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useds

Figure 1 shows the inverse donor polarizability

(4&y) ' —= (& —& s; )
' at a typical frequency (v =31

kHz) and extrapolated to T =0 (typically within 5/o

of the value at our lowest T) as a function of n

-n, . The host dielectric constant (amounting to

a background capacitance of 0.5 pF) has been sub-

tracted. The linear variation implies a critical
divergence 4sg —(n, /n —1) with L='1.0, con-

sistent with the divergence of the zero-frequen-
cy" dielectric constant obtained with high-fre-

quency probes' (Kramers-Kronig analysis of far-
infrared absorption above 10"Hz, and micro-
wave cavity resonance at 4&10' Hz). Similar

results are found at other frequencies studied.

The rounding of the data close to the transition
(4&y& 2000) is due to the Schottky barriers. On

the right of Fig. 1 is plotted the square of the T
= 0 dc conductivity in the metallic phase from an

earlier, four-probe measurement. '
In the same region, we find a variation of con-

ductance with ~ (open circles, Fig. 2) of the form

o(~) = K~' with s =0.9+O.l. [However, we cannot

differentiate between +', (u ln(1/~), or other sim-

ilar forms. ] Such a sublinear & dependence of o

has been seen" deep in the insulating region at

high &, as well as in amorphous semiconductors, '
and ascribed to phonon-assisted hopping.

""Our

experiment differs in that it is in the critical re-
gion and allows an extrapolation to T = 0 K. Our

central result is that we find a critical depen-

dence of the prefactor E with stress, which scales
with the divergence of the dielectric constant:

K = Kc(n, /n —1) (1)

where &
= 1 and K, is a constant. This is demon-

strated in the inset of Fig. 2 which shows a linear

relationship between the real and imaginary part
of the conductance as the two are varied by the

application of stress.
The sublinear dependence of 0 on ~ implies,

via a Kramers-Kronig relationship, a weak (log-
arithmic, or small-power law) divergence of the

dielectric constant & (~) as &-0. This is consis-
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FIG. 2, Variation of conductance G (open circles)
and donor capacitance C (solid circles) with frequency

&/2z at T=12 mK at a typical stress [$=1.72 kbar,

4&y(0} =180]. Solid lines are fits by the forms ~' and
' respectively, with s =0.9+0.1 (data also consistent

with other forms, see text). Inset shows proportionality
between real and imaginary parts of the conductance

(extrapolated to T =0 K} at 31 kHz as n n, .

tent with the rise of the capacitance seen at low

frequency (solid circles, Fig. 2) and indicative of

glassy behavior. As n —n, , the variation with

+ increases proportionally with the absolute value

at a given .
If we take a hopping conductivity o(cu) = K&u',

with s & 1 for 0 & a) &(u, (It(u, is a cutoff - k B T above

which the hopping conductivity joins onto the opti-
cal conductivity'), the dielectric constant is given

by

+ COP+ 6 S I (2)

where es; (= 11.4) is the Si dielectric constant and &,
p

that coming from the donor optical (~ & &u,) con-

ductivity, whose weak ~ dependence has been neglected. The first two terms represent the (frequency-

dependent) donor polarizability, 4sy(~). The ratio of the imaginary and real parts of the donor con-

ductance is thus

(dC( &d) GO)(( (a/) KS 2( (d/(d~ ) Cop(d

G((u) o(u)) 2 rr(l —s) 4rrK
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Because 1 —s=0.1 is small, the last two terms
make significant contributions even at the low

of the present experiment (the variation of (AC/G

with (u is weak for the same reason). However,

Eq. (3) demonstrates that if uC/G is independent

of stress, the prefactor E of the hopping con-
ductivity must scale with the dielectric constant

&,p as a result of the optical conductivity, i.e.,
both must diverge similarly as n-n, (Fig. 2 in-

set shows this effect).
While both the noninteracting Fermi glass" and

interacting-electron glass" models give a hopping

conductivity linear in with logarithmic correc-
tions, their implications in the critical region
are very different. In the noninteracting case,
K~ $' where g is the localization length [$ -(n, /~
—1) "], whereas' e, ~g'. This implies a varia-
tion in &vC/G with S [see Eq. (3)], in contrast to
our experimental results. For the Efros-Shklov-
ski'i electron glass, however, K=c,ave, &in '(tu, /
a&) for &u «v, in the critical region, "where c,—1.
Thus K cc e, (in+, does not vary rapidly" ), in

agreement with our experiment; further, the
magnitude also agrees to within a factor of 2.

We find a strong temperature dependence of

both the real and imaginary parts of the conduc-
tance. Figure 3 shows the capacitance C (= C
-0.5 pF) for different S values at 31 kHz as a
function of T . The solid-line fits imply a T
variation of the form C(T) = C(0)[1+ (T /Ao)' ].
A similar dependence is found for the conduc-

tance, G(T) = G(0) [1+(T/&o)'], at the frequen-
cies studied. The inset shows the variation of

the coefficient of the T' part of the donor polar-
izability [or C(T)] with the extrapolated T = 0

polarizability, on a log-log plot. The straight
line drawn through the data has a slope of 1.3
~0.2; a similar plot for G(T) yields a slope of

1.0 ~0.2. Thus, &~ and && do not appear to vary
critically at n, [or have very small exponents,
-0.15~0.2]. This is in contrast to the prediction
of current versions of the electron-glass model

where the T variation of the hopping conductivity"

is not purely quadratic, and further the scale for
its variation is the soft Coulomb gap, &, which

varies critically near n„as&,z
"'. The magni-

tude of &~ and && obtained from fitting the data

is = 30 mK, which agrees with theoretical esti-
mates for &,p -1000, but is lower by almost two

orders of magnitude for &,~- 50. The noninter-

acting Fermi glass model, ' as stated earlier,
gives a linear dependence on T (unlike the T'
variation observed) and has no energy on the 30-
mK scale.
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FIG. 3. Capacitance C(T) at 31 kHz in the range 10
mK & T &55 mK at different stresses in (kilobars).
Straight-line fits indicate a T variation, also found

for G(T). Inset: a log-log plot of the slope d(4~)()/d7'
with the T =0 polarizability, 47t.y(0). Straight line has
slope of 1.3.

We find &G somewhat smaller than &o (by'-"25%),

consistent with the expectation that the T depen-
dence of C comes only from the contribution due

to the hopping conductivity. The difference also
provides confirmation of our earlier statement
that &,

p
is a significant portion of the total dielec-

tric constant [ Eq. (3)].
In conclusion, we find that the low-frequency

(m «kg T) ac conductivity in Si:P just on the in-
sulating side of the transition varies almost lin-
early with over three decades, implying a w eak,
near logarithmic, infrared divergence of the di-
electric function reminiscent of relaxation phe-
nomena in glasses. Further, the prefactor ap-
pears to diverge as n-n, with the same ex-
ponent as the optical dielectric constant. This
scaling relationship is implied by the Efros-
Shklovski~ interacting-electron glass picture, but
there is a discrepancy in the temperature depen-
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dence. Nevertheless, the data appear to rule out

the noninteracting Fermi glass model, and point

to the importance of Coulomb interactions in the

description of the metal-insulator transition in

Si:P.
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