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A b s t r a c t .  This paper describes the geometrical limitations of algorithms 
for 3D reconstruction which use corresponding line tokens. In addition to 
announcing a description of the general critical set, we analyse the configu- 
rations defeating the Liu-Huang algorithm and study the relations between 
these sets. 

1 I n t r o d u c t i o n  

The problem of 3D reconstruction is to determine the geometry of a three-dimensional 
scene on the basis of two-dimensional images. In computer vision it is of utmost im- 
portance to develop robust algorithms for solving this problem. It is also of importance 
to understand the limitations of the algorithms, which are presently available, because 
knowledge of such limitations guides their improvement or demonstrates their optimality. 

From a theoretical point of view there are two types of limitations. The first type 
involves sets of images, where there exist more than one essentially distinct 3D scene, 
each giving rise to the images. The superfluous reconstructions in this case can be thought 
of as "optical illusions". This type of limitation describes the absolute "bottom line" of 
the problem, because it involves scenes where the most optimal algorithm breaks down. 

The second type of limitation is specific to a given not necessarily optimal algorithm. 
It describes those scenes which "defeat" that particular algorithm. 

Currently, algorithms for 3D reconstruction are of two types. One type assumes a 
correspondence between sets of points in the images. For algorithms of this type the 
critical set has been studied extensively. (See [6] for a vivid graphical description of this 
locus and the references in [8] for a detailed bibliography.) In recent years another type 
of algorithm has been introduced, which assumes a correspondence between sets of lines 
in the images. 

The purpose of this paper is to describe limitations for the algorithms which use lines 
as tokens in the images. 

We use projective geometry throughout the paper. Configurations in 3-space are con- 
sidered to be distinct if they cannot be transformed into one another by a projective linear 
transformation. The use of the projective standpoint can be thought of as preliminary 
to studying the situation in euclidean space. But the projective situation is of interest in 
its own right, because some algorithms operate essentially within the projective setting. 
Generally, algorithms using a projective setting are easier to analyse and implement than 
algorithms which fully exploit the euclidean situation. 

This paper is organized as follows. In section 2 we collect some standard definitions 
from line geometry, which will allow us to describe the line sets in Sections 3 and 4. In 
Section 3 we describe line sets gr in 3-space and images of ~ which give rise to ambiguous 
reconstructions. In Section 4 we describe line sets F in 3-space which defeat the algorithm 
introduced in [7]. Essential properties of F were first noted in [10, p. 106] in the context 
of constructive geometry. In Section 5 we discuss the relationship between ~ and F. 
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A proof of Theorem 3.1 will appear in [1]. 

2 D e f i n i t i o n s  f r o m  l i n e  g e o m e t r y  

The set of all lines in 3-space will be denoted by /2 .  It is well-known that /2 is a 4- 
dimensional algebraic variety. (See [11, pp. 244-247 and Chap. XV] for an introduction 
to /2  and [15] for an encyclopedic exposition.) To see that dim/2 = 4 is plausible, consider 
the set of pairs of points in 3-space. The dimension of this set is 2 x 3 = 6. Each pair of 
distinct points determines a line i joining the two points. However, ! is overdetermined 
for we can move each of the two points along i. This reduces the degrees of freedom for 
/2 by 2. Thus we have dim/2 = 6 - 2 = 4. 

Elements of/2 can be coordinatized by 6-tuples (P01, p02, P03, P12, P13, P23) which are 
subject to the following conditions. 

(a) At least one Pij (0 _< i < j < 3) is nonzero. 
(b) Scalar multiples (Ap01, Ap02, AP03, Ap12, )tPl3, AP23) denote the same line for all A r 0. 
(c) The line coordinates pij satisfy the equation 

POlP23 - Po2P13 + Po3P12 = 0 . (1) 

Given a line i containing distinct points with homogeneous coordinates (x0 , . . . ,  x3) 
and (y0, . . . ,  Y3), then the pij are defined by 

P i j = d e t ( X l x J )  Yj -- -- 

That  the Plj do indeed have properties (a), (b) and (c) is shown in [11] for example. 
An algebraic set is defined to be a set which is defined by a set of polynomial equa- 

tions. In line geometry these equations involve the line coordinates Pij as unknowns. An 
algebraic set is called reducible if it can be written as the union of two nonempty proper 
algebraic subsets. For example, in the cartesian plane the set of points satisfying xy = 0, 
which consists of the coordinate axes, is a reducible algebraic set, because the set is the 
union of the y-axis (x = 0) and the x-axis (y = 0). On the other hand, the x-axis de- 
scribed by y = 0 is irreducible, because the only proper algebraic subsets of the x-axis 
are finite sets of points of the form (x, 0). An irreducible algebraic set is called a variety. 
It  can be shown that any algebraic set can be described as the finite union of varieties. 

A variety V has a well-defined dimension, which is the number of parameters required 
to parametrize smooth open subsets of V. We can think of the dimension of V as the 
number of degrees of freedom in V. For example, the plane has dimension 2, 3-space has 
dimension 3, etc. 

Line varieties A are subvarieties of/2.  Since dim/2 = 4, there four possibilities for 
dim A, when A is not all of/2. If dim A = 0, then A is a single element of/2,  i.e., a line. 
Line varieties of dimension 1, 2 and 3 are called a ruled surface, a (line) congruence and a 
(line) complex respectively. The unfortunate choice of terminology for line varieties goes 
back to the 19th century. The terms have so thoroughly established themselves in the 
literature, however, that it would be futile to try to introduce new names for the line 
varieties. 
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Note that a ruled surface as defined above is a 1-parameter family of lines, not a set 
of points. For example, the hyperboloid of one sheet contains a 1-parameter family of 
l ines--a ruled surface. 

A different ruled surface lying on the hyperboloid is shown in figure below. 

A particularly simple ruled surface is a pencil defined to be the set of lines passing 
through a given point P and lying in a given plane ~r. 

An important descriptor for a line complex F is its order. The orderof F is defined to 
be the number of lines P has in common with a general pencil. It is important to count 
not only lines real space but also properly count lines in the space of complex numbers. 
For any point P in 3-space we may consider all lines of P which pass through P.  This 
subset of F is called the eomplez cone at P. The order of F could equivalently be defined 
as the order of a general complex cone of F. If a general complex cone has as its base a 
plane curve of degree d, then d is the order of the cone and the order of F. 

A theorem of Felix Klein states that in the space over the complex numbers a line 
complex can be described by a single homogeneous polynomial equation 

f(P01, P02, P03, P12, P13, P23) = 0 

(see [4, p.147, Exercise 6.5d]). Of course, it is always tacitly assumed that (1) holds. If 
F is described by a homogeneous polynomial f ,  the order of F coincides with the degree 
of f .  

A very simple line complex consists of all lines which meet a given line 1. If the 
coordinates of I are a = (a01, a02, a03, a12, a13, a23), then the equation for this complex 
can be shown to be 

aOlP23 -- ao2P13 + ao3p12 -- a13P02 + a12p03 + a23POl = 0 . (2) 
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This polymonial has degree 1 so the order of the complex is 1. The polynomial in a 
and p = (Pol,Po2,Pos, Pz2,Pla, P2s) is denoted by 12ap. Equation (1), which we are always 
tacitly assuming, can be expressed by the equation 12pp = 0. 

For a given complex/" it may happen that F contains all lines through some special 
point P. In this case/~ is called a total paint of F. 

Given a line congruence ~ only a finite number of lines pass through a given point 
in general. Again we count not only lines in real space but lines in the space over the 
complex numbers. The number of such lines is constant for almost all points of 3-space; 
this number is defined to be the order of ~. Analogously, a general plane ~r in 3-space 
contains only a finite number of lines of ~. This number is defined to be the class of k~. 
Points lying on an infinite number of lines of ~" and planes containing an infinite number 
of lines of ~ are called singular. 

Given a congruence fir and a line l in 3-space not in ~P, we may consider the subset 
of k~ consisting of elements of ~ which meet I. This set can then be described by  the 
equations which define ~P together with an additional linear equation of the form of (2). 
If  this set is irreducible, it is a ruled surface. 

In general, there exist  a finite number of points P on ! with the property that I 
together with two elements of ~ through P lie in a plane. This number is the same for 
almost all i and is defined to be the rank of ~P. A congruence of order n, class rn and rank 
r is referred to as a (n, m, r)-congruence. 

Given a point P all lines through P form a (1, 0, 0)-congruence called the star at P. 
A ruled surface p can be considered to be an algebraic space curve in 5 dimensional 

projective space, which is the space coordinatized by the six homogeneous line coordinates 
Pi~" (0 < i < j < 3). The curve lies on the variety defined by (1). The order of p is 
defined to be the number of lines which meet a general given line, where again lines are 
counted properly in the space of complex numbers. For example, ruled surfaces lying on 
a hyperboloid have order 2. 

If a (space) curve in complex projective space is smooth, it is topologically equivalent 
(homeomorphic) to a surface (a so-called Riemann surface), which is either a sphere, a 
torus or a surface having a finite number of handles. 

(The surface in the figure abt~ve has 5 handles.) 
Surfaces with handles can be topologically built up from tori by cutting small disks 

out of the tori and pasting them together on the disk boundries. The number of tori 
required to build up a given surface is the number of handles of the surface; this number 
is defined to be the genus of the curve. The definition of genus can be extended to curves 
with singularities. We refer the reader to a textbook on algebraic curves or algebraic 
geometry (for example, [12] or [14]) for equivalent definitions of "genus". The concept of 
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genus is applicable to ruled surfaces, since these can be regarded as space curves. 
Given a congruence ~P, the sectional genus of ~P is defined to be the genus of a general 

ruled surface p consisting of the elements of ~ which meet a given line 1 not lying in ~. 

3 T h e  cri t ical  l ine  set  

In this section we assume three cameras are set up in general position with centers 
O1,02, 03. The image planes are denoted by I1,12, 13. The imaging process defines col- 
lineations 71 : star(O/) ~ Ii (i -- 1,2,3), which we assume to be entirely general. 
To consider the critical set, we consider another three centers 01 ,02 ,03 ,  which are in 
general position with respect to each other and the first set of centers O1,02, 03. The 
symbols with bars denote an alternative reconstruction of the scene and the camera po- 
sitions. The stars at the O/'s project to the same image planes defining collineations 
~i : star(O/) ----* Ii, also of general type. The compositions ai = 7i o ~-1 define collinea- 
tions between the lines and the planes through Oi and 0i .  

We shall describe what we mean by "general position" after stating our main result. 

Theorem 3.1 With respect to images from three cameras the general critical set ~ for 
the reconstruction problem using lines is a (3,6,5)-congruence. The sectional genus of ~ 
is 5. ~ contains 10 singular points, 3 of which are located at the camera centers. The 
singular cones have order 3 and genus 1. ~ has no singular planes. 

The proof of this theorem is given in [1]. Essentially, the proof determines ~ ' s  order 
and class and ~ ' s  singular points and planes. These invariants suffice to identify ~ in 
the classification of congruences of order 3 given in [3]. In this classification the other 
properties of ~ can be found. 

Just as a ruled surface can be considered to be a curve in 5-space, a congruence can 
be considered to be a surface in 5-space. 

According to [3, p. 72] !P is a surface of order 9 in 5-space. This surface has a plane 
representation: the hyperplane sections of g', i.e., the intersection of ~ with complexes of 
order 1, correspond to the system of curves of order 7, which have nodes at 10 given base 
points. The plane cubic curves which pass through 9 of the 10 base points correspond to 
the singular cones of ~. 

Let us now describe what is meant by "general position". 
First, we assume the centers of projection O1, 02, O3 and 01, 02, 0a  are not coil/near. 

Let Ir denote the plane spanned by O1,O2,O3 and ~ denote the plane spanned by 
01,02,  03. 

Next, we assume that the images of 7r under the various (~i intersect in a single point 
15 = 7r~1 f3 lr ~2 f3 Ir ~3. Analogously, we assume the images of ~ under a i - l , c~- l , a~  1 

intersect in a single point P = ~Y1 f3 ffa~* t3 ~ 7  * . 
Each pair of centers Oi, 0 i and collineations cq, a j ( i  # j = 1, 2, 3) determines a point 

locus Qii, which is critical for 3D reconstruction using points. In the general projective 
setting Qij is a quadric surface passing through O/ and 0 i. We assume each Qij is 
a proper quadric and each pair of quadrics Qii,Q/k ({i, j, k} = 1, 2, 3) intersect in a 
irreducible curve of order 4. Moreover, we assume that all three quadrics intersect in 
8 distinct points. The analogous assumptions are assumed to hold for the quadries (~/i 
determined by the centers 0i ,  0 i. 

Finally, we assume that for each fixed i = 1,2, 3 the two lines (OiOi)~J, j = 1, 2, 3, j 
i) are skew. Here OiOj denotes the line joining Oi and Oj. 
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4 L i n e  s e t s  d e f e a t i n g  t h e  L i u - H u a n g  a l g o r i t h m  

The algorithm proposed in [7] sets about to determine the rotational components of the 
camera orientations with respect to one another in its first step. We shall only concern 
ourselves with this step in what follows. 

If three cameras are oriented in a manner that they differ only by a translation, we 
can define a collineation between the lines and planes through each center of projection 
Oi (i = 1, 2, 3) by simply translating the line or the plane from one center to the other. 
This collineation coincides with the collineation at the Oi induced by the images, namely 
where the points Pi and Pj in the i-th and j- th image correspond when they have the 
same image coordinates (i, j = 1, 2, 3). 

Regardless of camera orientation, introducing coordinates in the images preemptively 
determines collineations between the images and as a result between the corresponding 
lines and planes through the centers of projection. We call such lines and planes homol- 
ogous, i.e., the images of homologous elements have the same coordinates in the various 
images. 

In the case where the cameras are simply translated, homologous elements in the stars 
at Oi are parallel. Projectively speaking, this means that homologous rays intersect in 
the plane at infinity and homologous planes are coaxial with the plane at infinity. 

A generalization of the translational situation arises when the collineations between 
the lines and planes through the centers are induced by perspectivities with a common 
axial plane 7r, i.e., a ray ri through Oi corresponds to rj through Oj when rj = (rl n 
lr)Oj (i, j = 1, 2, 3). Here (rl N ~r)Oj denotes the line joining points ri NIr and Oj. 

Note that the projections of points X on ~r give rise to homologous rays OiX, which 
per definition have the same coordinates in the images. Let ! be a line in 3-space and 
li (i = 1,2, 3) denote the images of i. If ! meets ~r in X, the points Pi corresponding to 
the projection of X in the images have the same coordinates. (In the translation case X 
corresponds to the vanishing point of l.) Thus if the li are drawn in a single plane using 
the common coordinate system of the images, they are concurrent, because the Pi E Ii 
all have the same coordinates. In the translational case, this point is the vanishing point 
of the parallel class of i. 

The idea behind the first step in the algorithm of [7] is to find the rotational com- 
ponents of the camera orientation by collinearly rearranging two of the images so that 
all corresponding lines in all three images are simultanously concurrent with respect to 
a given coordinate systems. If 

2 2 2 
~ i=0  uizi = 0, El=0 vlzl = 0, ~ i = 0  w i x i  = 0 

are the equations of the projections of a line l, we look for rotations, i.e., 3 • 3 orthogonai 
matrices, or more generally simply 3 • 3 invertible matrices M1,Ms such that u = 
(uo, ul, u~), May = Mx(vo, vx, vs) and Msw = Ms(wo, wl, wz) are linearly dependent, 
the linear dependancy being equivalent to concurrency. This means we look for M1, Ms 
such that 

det(u, Mlv, M2w) = 0 

for all triples of corresponding lines in the images. The algorithm would like to infer that 
after applying M1 and Ms, the cameras are now oriented so that  they are translates 
of each other, or in the projective case that the images are perspectively related by a 
common axial plane. 

Consider the cameras with general orientations, where again homologous rays through 
the centers corespond to points in the image having the same coordinates. If a line i in 
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space meets 3 homologous rays rl,  r2, rs, then the projections of 1 are concurrent, the 
point of concurrency being the point corresponding to rl ,  r2 and 7"3. 

The set of all lines which meet the rays rl ,  r2 and r3 when the homologous rays are 
skew is a ruled surface of order 2 denoted by [rl, r2, rs]. Let F = ~r~,r2,r3 [rl, r2, rs] be 
the set of all lines of 3-space meeting triples of homologous rays. If all the lines in the 
scene lie in F, then their projections have the property that they are concurrent. But 
since the cameras were in general position, they are not translates of each other. Thus F 
defeats the algorithm. 

To find the equation for F let ql, q2, q3 denote the line coordinates of 3 rays through 
O1, not all in a plane. Then ql, q2, q3 form a frame of reference for rays through O1; the 
coordinates of any ray through 01 can be written as a nonzero linear combination 

Alql-I'A2q2+A3q3 (3) 

of the three coordinate 6-tuples ql, q2, q3. 
If sl,  sz, s3 denote the rays through 02, and t t, t2, t3 the rays through O3 which are 

homologous to ql, q2, q3, the line coordinates of the rays through O2 and 03, which are 
homologous to the ray defined by (3) are given by 

A181 "~- A282 "b A383 and Altl q- A2t2 -}- ASt3 

Thus a line i with coordinates p intersect this homologous triple if and only if 

0 ap,)~lql+A2qa+Anqa 3 = = ~i=1 ~it~pq, 

0 Op,x,,,+x~,~+x,,~ ~i=1~ ~iap,, 

In general I with line coordinates p lies in F if there exist (A1, As, As) not all zero such 
that  p satisfies the equations above. This will be the case when 

( t2pq, apq~ apqs) 
(4) 

Thus (4) is the equation for F; the left-hand side of (4) is a homogeneous polynomial 
in p = (P01, P02, P03, P12, pls,p23) of degree 3. We have the following theorem. 

T h e o r e m  4.1 The set F which defeats the Liu-Huang algorithm is in general a line com- 
plex of order 3 given by (~), where ql , q2, qs; sl , 82, 83 and t l , t2, t3 denote line coordinates 
of rays through 01 ,02  and 03 respectively. The centers are total points of F. 

To prove the assertion about the total points note that if say O1 E ! then ~2pq~ = 0 
for i = 1, 2, 3; hence p satisfies (4). n 

In the euclidean case (4) takes on the special form in which the triples ql, q2, qs; sl, s2, s3 
and tl ,  t2, t3 are line coordinates for an orthogonal triple of lines through O1,02 and Os 
respectively. 

Definition: F is called the complex of common transversals of homologous rays. The 
essential properties of F were first noted in [10, p. 106] in the context of constructive 
geometry. The projective geometry of F has also been studied in [5] and [13, IV,pp. 134 
ft.]. 
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5 T h e  r e l a t i o n  b e t w e e n  c r i t i c a l  c o n g r u e n c e  qr a n d  t h e  c o m p l e x  

o f  c o m m o n  t r a n s v e r s a l s / "  

Before going into the relation between/" and g' we state some properties of still another 
congruence. 

The Roccella congruence .4 is a (3,3,2)-congruence of sectional genus 2 which consists 
of all common transversals of 3 homographically related plane pencils in general position. 
If we restrict the collineations of three stars to a plane pencil, we obtain .4 as a subset 
of the complex of common transversals determined by collinear stars. (Cf. [9], [2, pp. 
152-15T].) 

Let us return to the situation used in defining ~. Here O1,O2, Oa and O1,O2,Oa 
denote the location of the cameras for two essentially different 3D reconstructions and 
ai denote collineations between the stars at Ok and Oi, which are induced by the images. 

Any plane # in 3-space not meeting 01,02,  Oa determines perspectivities between 
stars at Oi via ri ~-} (rl n #)Oj (i, j = 1, 2, 3). Since star(Oi) and star(Oi) are collinear 
via al,  these perspectivities also induce collineations between the stars at Oi. Hence # 
also gives rise to a complex F~ of common transversals of homologous rays, as explained 
in the previous section. 

P r o p o s i t i o n  5.1 If #1, #2 are two distinct planes in 3-space in general position, then 

r , ,nr ,2=~u.4u  U star(Oi) 
i - - --1,2,3 

where .4 denotes the Roccella congruence induced by the pencils at Ok in the planes 
(Ok(#l N #2))"71 (i = 1,2,3). 

PROOF. "_D". We need only show that 

o \ U s t a r ( O l )  c_ F,r, 

since F~, contains U star(Ok). 
Given I E ~ not meeting any Oi, then i corresponds to an [in the second interpretation 

of ~ from centers 01. Let t5 e [N #1. Then i meets (OiP)a7 ' (i = 1, 2, 3), hence l �9 F~,. 
"C_". Let l �9 F~, N F~ 2 and let l~ = (Ol l )  a' n (021) a2. 
First observe that homologous rays rl ,  r2, ra which meet ! must be of the form ri = 

(OiP)a71 for some /5 �9 16 rl #1 N #2, because ri must be in Oil, hence r~ ~ must be in 
(Oil) a', and r~ ~ meets l~ (i = 1, 2). In particular, if ~ N #1 n #2 is a point, r l ,  r2, r3 are 
unique. 

Case 1. ~ meets #1 N #2. Then either/5 = #1 N #2, whence ! �9 A by the observation 
above, or/5 does not lie in one of the planes, say 16 ~ r l .  Then the intersection l~N #1N #2 

_ -- a - - I  
is a point/5. Again by the observation above, ! must meet (OiP) ~ �9 Thus l �9 .4. 

Case 2. ~ does not meet #1 rl#2. Let #j Np =/s j .  By the observation above, (0i/5)a7 ' 
meets l for i = 1,2, 3 and j = 1,2. In particular (0a/sj) a;'l meets i. But these two rays 

span Oil. This means Okp are coaxial (with axis l~), and Oil = (0i/5) ~7~ are coaxial with 
axis i. Thus l �9 ~. Q 

Coro l la ry  5.1 If#x, #2, #3, #4 are planes in general position, then 

!PU U star(Oj)---- N r , ,  
i = 1 , 2 , 3  i = 1 , . . . , 4  
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