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Département de Physique, Universite´ de Nice-Sophia Antipolis, Parc Valrose, F-06108 Nice, Cedex, France

~Received 10 June 2002; accepted 2 February 2004!

Critical slowing down near a bifurcation or limit point leads to a dynamical hysteresis that cannot
be avoided by sweeping a control parameter slowly through the critical point. This paper
analytically illustrates, with the help of a simple model, the bifurcation shift. We describe an
inexpensive experiment using a semiconductor laser where this phenomenon occurs near the
threshold of a semiconductor laser. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

The study of bifurcations has gained considerable at
tion in recent decades due to the role that they play in
characterization of the behavior of nonlinear systems. T
transition from one state to another is accompanied by
exchange of stability~or at least by a modification of th
basin of attraction! of coexisting solutions. Such a change
state can in many instances be characterized by simple
neric equations, whose topological properties closely
scribe the system’s states and the transitions between t
Bifurcations are reported in varied nonlinear systems, fr
mechanical systems1 ~for example, magnetostrictive ribbon
a spinning top, and a bouncing ball!, to spin waves in ferro-
magnetic materials,2 chemical3 and hydrodynamica
systems,4 and lasers.5 A good introduction to bifurcations ca
be found in Ref. 6.

In this paper we highlight a counterintuitive property
bifurcations. Suppose that by varying a control parametem
such as the temperature, a driving electric current, o
chemical concentration, we find a phase transition such
one phase is stable ifm,mc and the other phase is stable
m.mc . This behavior is static, obtained by choosing a va
of m, letting the system relax to its final state, and repeat
the procedure for each value ofm. However, it often is prac-
tical or even necessary to vary the control parameter cont
ously in time. Such a change is especially true if a la
amount of data has to be accumulated to perform a statis
analysis. The counterintuitive result is that if the control p
rameter is varied fromm,mc to m.mc , the bifurcation
point is shifted frommc , no matter how slowlym is varied.
This topic has been the subject of numerous investigat
devoted to studying the general properties,7,8 or the specific
characteristics of a system,9 or to exploiting the bifurcation’s
features for particular applications10 ~for example, the re-
moval of chaotic states and the stabilization of particu
orbits!. Given the generality of the phenomenon, its fa
reaching consequences, and that common intuition sugg
the wrong answer, it is worth looking at it in some deta
The fact that a simple and inexpensive experiment can
799 Am. J. Phys.72 ~6!, June 2004 http://aapt.org/ajp
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conducted by students in a junior or senior year lab ma
the choice of including it in the undergraduate curriculu
compelling.

The purpose of this paper is to present this experimen
introduce the students to delayed~or dynamical! bifurcations
by testing some of their basic properties. We suggest that
students first be given the setup and be asked to do the
periment, without previous knowledge of the theory behi
it. They will be quite puzzled by the result and be high
receptive when the explanation for the phenomenon is p
sented in the simple terms we use in this paper. We h
chosen to keep the presentation as simple as possible.
instructor can complement our presentation with additio
material, including a more rigorous approach to the probl
if the students possess adequate background knowledge

Section II presents the general conceptual framework
the problem, which is developed analytically in a straightf
ward, but sufficiently complete way in Sec. III. Section I
discusses the experiment using a simple and inexpensive
tical setup, and compares the experimental results to the
lytical predictions. Some general comments are offered
Sec. V, and specific difficulties encountered by the stude
are addressed in Sec. VI. A set of questions that can be p
to students is given in Sec. VII, followed by our conclusio
in Sec. VIII.

II. CONCEPTUAL FRAMEWORK

One of the most common signatures of nonlinear pheno
ena is the occurrence of coexisting solutions of nonlin
differential equations. This coexistence may take differ
forms. One common form of coexistence is hysteresis: th
solutions coexist, one of which is always unstable, while
other two may have domains of stability and instabili
These solutions are connected by limit points. A second fo
of coexistence occurs in the vicinity of bifurcation point
where two branches of solutions cross and exchange st
ity.

In both cases, bistability or, more generally, multistabili
is linked to a critical point, either a limit point or a bifurca
tion point. We shall limit our consideration to stationary s
lutions, although they can be generalized to time-depend
799© 2004 American Association of Physics Teachers
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states. The multiplicity of solutions requires a stability ana
sis to determine the stability of the different solutions a
their basin of attraction. In general, it is not possible to ca
through such an ambitious program. In exceptional ca
some simplified models admit exact solutions and a comp
stability analysis is then possible~see Sec. 4.4.1 of Ref. 1
for an example!. In most cases, one has to resort to a lin
~local! stability analysis, testing the stability of a solutio
against infinitesimal perturbations. This analysis leads t
characteristic equation for the rates at which the perturba
decays~stable solution! or grows ~unstable solution!. This
characteristic rate may be complex, in which case the de
or the growth of the perturbation is modulated at a freque
given by the imaginary part of the rate. By definition, a cri
cal point is a point where the real part of a rate vanishe
property common to limit points and bifurcation points.

III. ESCAPING CRITICAL SLOWING DOWN

The inverse of the real part of a characteristic rate i
relaxation time. Hence, a critical point is characterized by
infinite relaxation time. The vicinity of a limit point is char
acterized by critical slowing down. The magnitude of t
relaxation time is controlled by the distance from the critic
point; as the critical point is approached, the time scale
comes longer, which means that the dynamics of the sys
is no longer governed by the usual time scales, such as
atomic relaxation time or the cavity photon lifetime in optic
Rather, the response time is determined by the topolog
structure and the resulting dynamics is universal. T
amount of slowing down can be considerable and in opt
systems an increase in time scale by up to six orders
magnitude for the relaxation times has been reported.12

Critical slowing down often is unwanted. A classic stra
egy to evade critical slowing down is to sweep the cont
parameter across the critical point. The rationale behind
procedure is that if the sweep rate is small enough, the
namical system should quasi-statically follow the station
state. This line of reasoning holds far away from critic
points, but it turns out to be incorrect close to a critical poi

Let us illustrate these ideas with a simple example t
contains all the necessary elements. We consider a sy
that has two steady states~denoted by a tilde!, x̃50 and x̃
5A, whereA is the control parameter. We assume that
dynamics of the system can be described by

dx

dt
5x~A2x!. ~1!

The bifurcation point is atA50. The zero solution is stable i
A,0 and unstable ifA.0. Conversely, the solutionx̃5A is
unstable ifA,0 and stable ifA.0. Figure 1 illustrates the
stability exchange~solid line: stable solution; dashed line
unstable one!. The bifurcation corresponds to the stabili
exchange between the two solutions, where the chang
behavior of the system passes from a state independent o
value of the control parameterA, because forA,0 we al-
ways havex̃50, to one that depends explicitly onA.

We are interested in the transition between the two st
whenA changes in time, beginning withA,0 and crossing
the pointA50. As long as the solution remains in the neig
borhood ofx50, a local analysis can be performed by e
panding Eq.~1! to first order in the neighborhood ofx50
800 Am. J. Phys., Vol. 72, No. 6, June 2004
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~that is,dx/dt.Ax). To describe the effect of the sweep, w
introduce an explicit time-dependence by settingA5m(t),
so that Eq.~1! becomesdx/dt5x(m(t)2x). Notice thatx̃
50 remains an exact solution, independent of the functio
time dependence ofm. Therefore, the linearized form hold
in general, and the evolution is correctly described by

dx

dt
5m~ t !x, ~2!

as long as the solutionx(t) remains close to zero. When th
solution is no longer valid, the solutionx(t) abandons the
neighborhood of zero and diverges exponentially, and
transition to a finite value ofx(t) has occurred. In this case
Eq. ~2! no longer describes the dynamics, but we can ch
acterize the transition by the time at which the solutionx(t)
starts increasing away from zero. Hence, the operatio
definition of a dynamical bifurcation, that is, the occurren
of a bifurcation in a time-dependent regime, will be defin
as the deviation from the previous, zero solution.

Equation~2! can be formally integrated to obtain the s
lution

x~ t !5x~0!expF E
0

t

m~ t8!dt8G . ~3!

We call t̄ the time at which the parameterm(t) reaches the
bifurcation point. This value is obviously defined by

m~ t̄ !50, ~4!

which determines the static bifurcation, because at this
stant the control parameter is zero. The value of the par
eter for which

x50, m50, ~5!

defines the position of the static bifurcation. At timet̄ the
control parameter reaches the value for which the linear
bility analysis predicts a change in stability for the dynamic
system. Fort, t̄ , we havem(t),0, and thereforex(t)50.

For a time-dependent system, reaching the condit
specified by Eq.~4! does not give rise to a change in physic
behavior. Indeed, while in the static problem~the result of
the usual linear stability analysis where all parameters
kept constant! the point defined by Eq.~5! corresponds to the
exchange of stability, in the swept-parameter case the co
tion m( t̄ )50 does not. We immediately recognize this fa
by observing from Eq.~3! that x(t) starts to diverge away
from x(0) only when the argument of the exponential fun

Fig. 1. Steady state solutions of Eq.~1!. Stability is denoted by the solid
line. Thex50 solution is stable forA,0, while thex5A solution is stable
for A.0. The exchange in stability occurs atA50, the~static! bifurcation
point.
800Tredicceet al.
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tion goes from negative to positive values. For negative v
ues the perturbation relaxes to zero, and only for posi
values can it grow fromx̃50.

We therefore define another quantity: thedynamical bifur-
cation point, a concept that can exist only if the control p
rameter is time-dependent. It is defined as the time at wh
the solutionx(t) in Eq. ~3! begins to diverge:

E
0

t*
m~ t8!dt850. ~6!

Equation~6! is an implicit equation for the timet* and can
be solved once an explicit form form(t8) has been specified
When a solution exists, we can infer some of its basic f
tures from some elementary considerations.

We have assumed thatm(t) is an increasing function o
time, because we want to study the transition from
parameter-independent solution (x̃50) to the other solution.
Hence,m(0),0. If m(t) is monotone~but otherwise ge-

neric!, we know that until timet̄ m(t)<0 for t, t̄ . There-

fore, we are certain that*0
t̄ m(t8)dt8,0. As a consequence

at the time the static bifurcation has been reached, the sy
is still stable on thex̃50 branch. In order for the solution t

be destabilized, the integral betweent̄ and t* must ‘‘accu-
mulate’’ the right amount of positive ‘‘area’’ to compensa
for the ‘‘negative’’ area that has accumulated between 0
t̄ :

E
t̄

t*
m~ t8!dt852E

0

t̄
m~ t8!dt85U E

0

t̄
m~ t8!dt8U. ~7!

Let us illustrate these considerations with an explicit e
ample, where we assume a linear dependence of the co
parameter on time:

m~ t !52A01vt ~v,A0.0!. ~8!

Such a dependence is not only convenient mathematic
but also can be implemented experimentally, as discusse
Sec. IV. The integration of Eq.~3! is immediate using Eq
~8!, and the conditions given in Eqs.~5! and ~6! become:

2A01v t̄ 50, ~9!

2A0t* 1
v
2

t* 250. ~10!

From Eqs.~9! and ~10! we obtain

t* 52 t̄ , ~11!

m~ t* !52m~0!, ~12!

and thus the time at which the dynamical bifurcation occ
is twice the time necessary for reaching the static bifurcat
independent of the speed at which the parameter is sw
This result appears to be completely counterintuitive,
cause one might expect that the sweeping speedv should
play a role in the position of the dynamical bifurcation.

A graphical illustration of the results provided by Eqs.~11!
and ~12! is given in Fig. 2. We see that the area under
triangle in them,0 half plane has to be equal to that in th
m.0 half plane@because of Eqs.~6! and ~7!#. Because, for
ease of illustration~and experimental realization!, we have
chosen a linear dependence for the parameter,m(t), the two
triangles of Fig. 2 are equal, and therefore the time neces
801 Am. J. Phys., Vol. 72, No. 6, June 2004
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to reach the dynamical bifurcation is double that of the sta
one, Eq.~11!, independent of the speedv. This condition is
a direct consequence of the fact that for the areas to be eq
the value of m for which the dynamical bifurcation is
reached,m(t* ), must be equal in absolute value to the initi
value ofm, m~0!.

Another very important point resulting from the analysis
that the time required to reach the static bifurcationt̄ ~thus

also t* ) depends inversely on the sweep rate:t̄ 5a0 /v
~whereA0.0 is the initialm value!. Hence, if the sweep is
conducted at a slow rate, the time necessary to reach
static and dynamic bifurcation will be corresponding
longer. Although obvious, on the basis of the mathemat
derivation, the results provided by Eqs.~8!–~12! are entirely
counterintuitive. Indeed, the limit in which the bifurcation
scanned with vanishingly small values of the sweep ratev
→0) yields a completely different result from the static b
furcation. In the dynamical case the time for reaching
bifurcation diverges (t̄ ,t* →`), and hence the control pa
rameter value for which it occurs is~mathematically! shifted
to infinity. Instead, in the static case the control paramete
kept constant and therefore the position of the bifurcation
parameter space is fixed at its equilibrium value.

What happens in the dynamical case is that there is
accumulation of stability~the integral between 0 andt̄ ),
which has to be compensated by going beyond the bifu
tion for a certain time. Slowing down the scan only increas
the time necessary to achieve the necessary compensat

Note that the time at which the system loses stability a
depends on the initial conditionA0 . The larger the magni-

tude of uA0u, the longer aret̄ and t* , because the system
needs more time to reach the static bifurcation and thus
accumulated a greater amount of stability. Therefore, the
tem can follow the statically unstable solution for a long
time, as illustrated qualitatively in Fig. 3, where the solid lin
represents the actual trajectoryx(t), and as confirmed by the
experimental results of Sec. IV@see in particular, Fig. 6~b!#.
A comparison of Figs. 3 and 1 shows that the solution h
remained on thex50 branch for a longer time than predicte
by a static linear stability analysis.

In summary, we see that the limit of the static bifurcati
can be approached only by keeping the ratioA0 /v as small
as possible. This limit is obtained either by starting the s
tem infinitely close to the threshold~but fluctuations, which
are not included in this treatment, will become important, s

Fig. 2. Illustration of the principle expressed by Eq.~7!. The negative area
accumulated in the triangle below thet axis ~that is, betweent50 and t

5 t̄ ) has to be equal to the positive area accumulated betweent5 t̄ and t
5t* to attain the dynamical bifurcation point.
801Tredicceet al.
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Sec. V!, or by using a very large sweep speed, ideallyv
→`. Hence, contrary to intuition, the static bifurcation
approached in the limit in which the system is swept acr
the bifurcation at infinite speed.

We remark that the long-dashed line in Fig. 3, which
lustrates the evolution ofx(t) beyond the bounds of validity
of our local analysis, is nothing but an educated guess a
whatx(t) will do after abandoning thex̃50 branch. Indeed
because only one other solution is available,x̃5A, and be-
cause this solution is stable, it is plausible that the sys
will converge toward it and that it will do so asymptoticall
In Sec. V we will comment on a small difference betwe
this prediction and the experimental situation.

IV. EXPERIMENT

The experimental apparatus is shown in Fig. 4. The ou
power of a semiconductor laser13 driven by a modulated
variable power circuit is focused on a solid state detecto14

The current supplied to the laser is controlled by a stand
signal generator. The detector and signal generator out
are observed with a two-channel digital oscilloscope. T
oscilloscope is interfaced to a personal computer to ana
the data. The laser operates in the red region of the op
spectrum (l'670 nm, maximum power'4.2 mW).15

Fig. 3. Dependence ofx as a function of the timet when the bifurcation is
swept~for increasing values ofm!. The static bifurcation point~crossing of
the solutions! is passed withx(t) remaining on the unstable solution fo
some time, before jumping toward the new stable solution. In the oppo
sweepx remains on the other solution for a while in spite of its bei
unstable.

Fig. 4. Schematics of the apparatus. The laser output~see Ref. 13! is fo-
cused through a standard lens onto a Si PIN detector~see Ref. 14!, con-
nected to a digital oscilloscope~HP54602B digital oscilloscope, 150 MHz
with a HP54657A Measurement/Storage Module HP-IB interface! through a
50 V adaptor. The signal from the function generator is simultaneou
recorded by the oscilloscope on a second trace. A function generator~Tek-
tronix CFG253, 3 MHz bandwidth! drives the laser through its stabilize
power supply~modulated/variable power circuit driver by Thorlabs!, which
includes protection against junction bias reversal and overvoltage; wit
input signal, this driver supplies the laser to obtain about 90% of its m
mum power.
802 Am. J. Phys., Vol. 72, No. 6, June 2004
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Initially, we determine the threshold voltage and the la
intensity as a function of the pump, that is, the amount
current flowing through the semiconductor junction, inject
by the power supply~MVP driver by Thorlabs, cf. Fig. 4!,
and controlled by the voltage level at the output of the sig
generator. We set the offset of the signal generator at aro
Vbias511.55 V and apply a triangular signal at very lo
frequency~of the order of 5 Hz! and amplitude 2.5 V~peak-
to-peak! to control the injection current. The voltage on th
semiconductor laser changes fromVmin510.3 V to Vmax

512.8 V. By setting the oscilloscope in thex–y mode, we
can directly observe the laser intensity as a function
pumping voltage.

A typical result is shown in Fig. 5. Several conclusio
can be drawn by simple inspection:~i! there exists a pump
ing valueVthr511.78 V below which the output intensity i
constant16 at I 50; ~ii ! the intensityI grows linearly with the
pumping voltage forV.Vthr ; and ~iii ! the transition from
the I 50 state to theIÞ0 state appears to be continuou
devoid of hysteresis. In addition, there is no sign of critic
slowing down, even though there is an exchange of stab
between two different branches. We thus could assume
the measurement is done quasi-statically: the system rea
the steady state value before the parameter changes app
bly. In other words, the experiment appears to show t
there is no coexistence of states even close to the bifurca
point ~the laser threshold!. We will now show that this con-
clusion is erroneous, and that critical slowing down can
seen by modifying the parameters involved in the measu
ment.

Without changing the experimental apparatus, we just
crease the frequency of the triangular voltage signal to
kHz, without modifying its amplitude and bias voltage.
Fig. 6 we show a typical trace of~a! the laser intensity and
the pumping voltage as a function of time, and~b! the laser
intensity as a function of pumping voltage. We observe t
for increasing signal level, the laser switches on at a pum
ing voltageV* which is higher than the previously measur
Vthr . At V5V* , the intensity increases suddenly from 0
the ‘‘large’’ value, which corresponds to the above-thresh
value of the instantaneous pump. This jump is visible in
lower trace of Fig. 6~a!, where the laser intensity sudden
grows from the low level~spontaneous emission! to the tri-
angular shape which follows the current injected in the ju

te

y

ut
i-

Fig. 5. Laser intensity as a function of pump voltage~signal level from the
function generator!. The pump voltage changes from 0.3 to 2.8 V. The las
threshold appears forV5Vth51.78 V. In this figure and Fig. 6 we plot the
data in a way which resembles the oscilloscope’s output.
802Tredicceet al.



t

al

e
su
th

ic
ili
ou
en
in

ea
te
tio

d

r-
as
nge

the
ent

lar
me
m-

is
the
we
ply
lly,
ant
ing
its
,

tting

d

that
and

cal
re,

We
ues

ion
the
in

em.
me
for

,
scal-
del
en
mit

e

e
t,

f

he

-

or
tion. A comparison of Figs. 6~b! and 3 is very instructive: the
delayed jump is visible in the experimental trace~plotted
with dots—we suggest that the same be done by using
‘‘dots’’ options available on most oscilloscopes!. As we de-
crease the voltage, the laser intensity remains proportion
the pumping voltage until it vanishes atV5Vthr . Thus, there
is hysteresis forVthr,V,V* , which can be straightfor-
wardly and clearly displayed using thex–y mode of the
oscilloscope@Fig. 6~b!#, and shows directly the coexistenc
of two different states. Notice that there is not a perfect
perposition of the traces in the part of the branch where
laser intensity follows the pump@Fig. 6~b!#. This behavior is
an artifact of the sweep imposed on the parameter, wh
prevents the system from being instantaneously at equ
rium: the laser retains a memory of its state at the previ
instant, and thus the intensity curve is slightly lower wh
the pump is being increased and higher when it is be
decreased.

Note that the slope of the triangular signal is a direct m
surement of the parameter’s rate of change and this ra
still orders of magnitude smaller than the smallest relaxa

Fig. 6. ~a! Laser intensity~bottom trace, left vertical scale! and pump volt-
age~top trace, right vertical scale! as a function of time for a frequency o
the triangle wave applied by the function generator,f '40 kHz. In analogy
with the notation of Sec. III,V* represents the voltage value at which t
laser switches on~for increasing pump values!, while turn-off occurs atV
5Vth for decreasing pump. In the notation of Sec. III,Vth should be ex-

pressed asV̄. We prefer using the traditional notationVth which is widely
recognized in laser physics.~b! Laser intensity as a function of pump volt
age. The graph shows bistability in the intervalVth<V<V* . The traces
~plotted with points to better highlight the effect! are slightly separated on
the diagonal branch~the lower occurs for increasing pump, the higher f
decreasing pump! because of the speed at which the laser is driven.
803 Am. J. Phys., Vol. 72, No. 6, June 2004
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rate of the laser~its relaxation time is in the nanosecon
range!. Furthermore, the differenceV* 2Vthr is a direct mea-
surement of the delay timet* because the voltage is propo
tional to time. If we keep the amplitude and voltage bi
constant, a change in the frequency amounts to only a cha
in the sweep rate of the pumping parameter.

The theoretical results described in Sec. III show that
time t* diverges as the sweep rate vanishes. A measurem
of the delay time as a function of frequency for the triangu
signal should therefore show such behavior. At the sa
time, if the dynamics are independent of the laser para
eters, we should find a universal scaling law for the timet*
as a function of the slope of the triangular function. Th
prediction can be verified experimentally by measuring
delay time at different scanning frequencies. To do so
keep the amplitude of the modulation constant and sim
change the frequency of the triangular wave. Experimenta
we define the delay time as the time starting from the inst
at which the triangular wave is at its lowest point, and end
at the instant at which the laser intensity reaches half of
final height ~this value is the point with maximum slope
which can therefore be determined most accurately!. The
measurement of the delay time can be best made by se
the vertical cursors~intensity! at the correct levels~as speci-
fied previously! and then using the horizontal ones~time
scale! to measure the delay~the oscilloscope’s predefine
‘‘difference’’ function will provide the delay time directly!.

In Figs. 7~a! and 7~b! we plot t* as a function ofb
5dV/dt, and ln(t* ) as a function of ln(b),17 for different am-
plitudes and bias voltages. From the plots we conclude
the delay time increases as we decrease the sweep rate
that it diverges for a vanishing sweep rate. Thus, criti
slowing down exists at the bifurcation point. Furthermo
the scaling law is of the typet* 5Cbx, wherex is indepen-
dent of the laser parameters and the constantC depends on
the amplitude and bias voltage of the triangular signal.
also remark that the scaling law breaks down for large val
of the sweep rate and/orVmin relatively close to threshold.

V. COMMENTS

This brief section is devoted to a more detailed discuss
of some finer points related to the comparison between
paradigmatic model for a dynamical bifurcation, discussed
Sec. III, and the measurements performed on our syst
These points are not apparent in our figures, but will beco
obvious to anyone repeating the experiment and looking
these effects.

As mentioned in Sec. III, ifVmin is set close to threshold
the system becomes sensitive to noise. In this case, the
ing exponent that we have derived with the simple mo
cannot hold~see Sec. VI!, because noise has not been tak
into account. For this reason we cannot reach the li
A0 /v→0 by choosing a very small value forA0 . There is
another reason that restricts the approximation ofdx/dt
5x(m2x) by dx/dt5mx to the domainx!0. If x is a small
quantity, say«, then the linearized equationdx/dt5mx is
balanced only ifm is not small. That is, each member of th
equation is proportional to«. However, ifA0 also is a small
quantity, comparable to«, then the right-hand sidemx is
proportional to«2 for small times while the left-hand sid
remains proportional to«. This dependence is inconsisten
803Tredicceet al.
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and it means that the linearization procedure we have app
to the nonlinear equationdx/dt5x(m2x) is no longer valid
if both x andA0 are very small.

The opposite limit,v→`, presents experimental difficul
ties as well. If the values of the sweep rate are very large~for
example, obtained by using a square function from the g
erator, instead of a triangular one!, we see that the delay tim
t* saturates. This saturation is due to the fact that the exp
mental system is more properly described by a set of
coupled ordinary differential equations, characterized by
ferent time scales. A discussion of the saturation in the de
time is beyond the scope of this paper, and we refer to R
18 for a physical description of that process. In addition,
the laser in question, the limitation of the electrical ban
width becomes relevant at high speeds. Because we can
rectly describe the behavior at the bifurcation over a rang
speeds of about three orders of magnitude, this experime
a demonstration of the generality of the phenomenon. E
though we described the more complex experimental sys
with a one-dimensional model, Eq.~1!, we still obtained a
correct representation of the shifted bifurcation.

The comparison between Figs. 5 and 6 may raise so
questions. The hysteresis cycle, visible at high scann

Fig. 7. Scaling law for the time at which the dynamical bifurcation is
tained, as a function of the pump voltage slope.~a! The time is plotted as a
function ofb5dV/dt for two different values of the initial pump (V0). The
data superpose very well, irrespective of the chosen initial condition.~b!
Log–log plot ~base e! of the previous graph, which allows for the dire
determination of the scaling law; the values of the fitted parameters~the
straight line is shown to guide the eye! are given in the expression on top o
the graph.
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speed~Fig. 6!, apparently disappears at low speed~Fig. 5!. If
true, the disappearance of bistability at low speed would c
tradict the body of the results that we have discussed~indeed,
no bistability loop exists in the static bifurcation!. The con-
tradiction is only apparent, as can be easily underst
through the following arguments~see Sec. VI for further de-
tails!. The bistable cycle shrinks and, in theory, never dis
pears when the scanning speed is reduced. Experimen
this statement can be verified by adjusting the oscilloscop
scales in such a way as to visualize the cycle at differ
speeds, until the cycle becomes so small that it disapp
into the noise. The shrinking of the cycle comes from t
progressively lower speed at which the system advan
close tox50 andm.0 ~known as the unstable manifold!
after crossing the static bifurcation point. In spite of the
creased time delay~see Fig. 7!, the speed is slow enough t
reduce the total distance covered on the unstable manif
noise further reduces the portion of unstable manifold f
lowed by the laser~see Sec. VI for further observations o
this point!. Hence, there is no contradiction between the
crease in the time delay and the decrease in the width for
bistable loop for a decrease in the scanning speed. We p
out that this feature is characteristic of all dynamically i
duced hysteresis cycles.

As mentioned in Sec. IV, a careful inspection of the osc
loscope trace in Fig. 6~b! shows that the transition from th
lower to the upper branch is accompanied by a~small! over-
shoot which relaxes on the upper branch with oscillation21

This overshoot is an indication of the fact that the dime
sionality of our experimental system is larger than that of
model we used to discuss the delayed bifurcation (D51),
because oscillations require a minimum dimensional
Dmin52 to occur.6 Even though there are small deviation
that can be highlighted by careful experimental observatio
the one-dimensional description of the shifted bifurcation
mains an excellent description of the main features obser
in most two-dimensional systems.

VI. METHODOLOGICAL DIFFICULTIES

Students have trouble realizing that only the timet* is
experimentally accessible and that their efforts are best s
if they concentrate on it. In addition, the correct measu
ment of t* requires care in the use of the oscilloscope—
point that does not always occur to them. The first sn
comes from keeping the whole signal on the screen, a nat
temptation, but one that renders the measurement inaccu
at low scanning speeds~for lack of time resolution!. To com-
pound the problem, this kind of visualization gives the im
pression that the delay time is reduced at low speeds,
cause the width of the dynamical hysteresis loop shrin
This difficulty is easily recognized by comparing Figs. 5 a
6~b!, which have been taken at 5 Hz and 40 kHz, resp
tively. Hence, the students’ first reaction is that the functio
dependence on speed predicted in Sec. III is incorrect~or, if
they haven’t yet been presented the theory, they will c
vince themselves of the validity of the incorrect intuitiv
image discussed at the beginning of Sec. III!.22 The correct
measurement requires plotting the delay time as a functio
the input signal’s slope, as in Fig. 7. The measurement ot*
is best obtained with the help of the cursors of a digi
oscilloscope and the delay features of the trigger so tha
sufficiently fine time scale is used to maintain a good leve
accuracy throughout the series of measurements.23 The zero
804Tredicceet al.
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for time is taken at the beginning of the ramp, a concept t
has to be sometimes stressed, together with the fact tha
ferent series of measurements starting from different va
of the initial current ~voltage offset! provide information
about the independence~or lack thereof! of the phenomenon
on the distance from the critical point~see Fig. 7!.

An objection raised by some students is that,a posteriori,
it is obvious that the delay time should be longer for slow
scanning rates, because the time that the system take
arrive at the bifurcation, starting from the same initial co
dition, is longer. This objection is clearly valid, but the a
parent triviality of the statement hides a subtle point
which all of our considerations depend. The objection ho

when thinking aboutt̄ , but does not say anything aboutt*
which, in the absence of a dynamically delayed bifurcati

could approacht̄ in the slow scan. The latter conclusion
exactly what~the wrong! intuition would suggest.

We can instead demonstrate thatt* does not approacht̄ in
a slow scan with the following argument. We do not have

independent measure oft̄ to show thatt* satisfies the con-
ditions shown in Sec. III, but it is obvious@see, for example
Fig. 6~b!# that during a fast scan the system changes s
well after the static threshold. Hence, we are sure that at h
scanning speed there is a dynamical shift of the bifurcat
The graphs of Fig. 7~b! show that the delayed bifurcatio
crossing also holds for a slow scan, because the scalin
found even at slow speed; this result remains true~with an
accuracy of a few percent in the parameters calculated w
standard regression algorithm! for different initial values for
the scan. Therefore, the shift that we measure is not sim
due to the fact that the slower scans require a longer tim
reach the static threshold: the linearity of the point distrib
tion in Fig. 7~b! shows thatt* increases with an invers

power of the speed, that is, the amount of time (t* 2 t̄ ) the
system spends following the unstable solution also increa
in the same way. The graphs and this careful analysis of
results prove the nontriviality of the result.

A more direct way of visualizing the previous conside
ations can be obtained in the following way, although
stress that even though a visual tool is very helpful, o
should not attach too much importance to it. Figure 8 sho
a series of measurements performed for different value
the triangle wave frequency and fixed amplitudes. For th
measurements, the oscilloscope trigger has been set
close to the static bifurcation value~within '1%). This
choice gives the best visualization of the delay, but is
appropriate for quantitative measurements, because the
tial time is not correctly defined in this way. The left colum
shows the initial portion of the period of modulation whe
the laser emits light, and we can easily recognize the~appar-
ently! increasing part of the modulation where bistability
present. The right column shows the corresponding bista
loops obtained by plotting the laser intensity as a function
the injected current. The latter clearly shows a reduction
the width of the bistable loop when the driving frequency
reduced. This result is in agreement with the visual conc
sion that one could draw from the left-hand figures in Fig
and would appear to support the~incorrect! intuitive conclu-
sion that the delay time is reduced when the frequenc
lowered. We show this figure and stress the discussion of
point because it is exactly what students conclude from t
805 Am. J. Phys., Vol. 72, No. 6, June 2004
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observations. Many students will use these figures to ar
that the slow modulation regime approaches the static bi
cation.

A closer look at the left-hand figures in Fig. 8 show
however, that this conclusion is a visual trick. If one me
sures the delay time, rather than simply looking at the sh
of the laser intensity, one realizes that it increases for
creasing driving frequency. This delay time is exactly t
quantity measured in Fig. 7. An easier way of convinci
oneself that the ‘‘shrinking’’ bistability loops of Fig. 8~left!
push the experimenter toward the wrong conclusion is to p
multiple switch-on traces on the same scale~see Fig. 9!. We
see that the time is truly increasing for slower driving: t
experimental traces obtained for different frequencies
plotted on two separate panels for better visualization~both
time scales and intensity values differ too much for a sin
graph!. The straight lines are plotted to guide the eye a
qualitatively extend backward the functional dependence
the laser intensity would have if the delay at the bifurcati
did not exist. We remark that~1! all straight lines cross in
~approximately! the same point~as can be seen by comparin
the absolute scales in the two panels of Fig. 9!; ~2! the
switch-on time is further reduced with increasing driving fr
quency;~3! the laser follows a larger portion of the unstab
manifold at larger driving frequencies~which causes confu-
sion between the increasing width of the bistable loop a
the actual reduction of the time delay!; and ~4! the laser
intensity jumps to higher intensity values when the time d
lay is shorter~and the overshoot is larger!. Notice that the
crossing point of the straight lines corresponds to the ins
at which the swept current encounters the threshold, that
occurs when the traces are triggered by the oscilloscope.
fact that the value of the laser intensity is not zero at t
time is a finer point which cannot be discussed here
whose origin is related to the nature of class B lasers.24,25

The longer delay at the bifurcation is now evident, and
corresponding jump toward higher intensity values is ob
ous, while the larger overshoot is again a feature conne
to the larger dimensionality~two! of the phase space repre
senting this laser.19

We stress that the curves in Fig. 9 are drawn by takin
portion of the data of Fig. 8~left!. Due to the longer time
scales of the slower scans and to the fixed~and limited!
number of points that the oscilloscope allows, the rendit
of the details becomes poorer@especially for the curves o
Fig. 9~a!#.

Finally, we remark that the predicted and observed ex
nents are not the same~see Sec. III and Fig. 7!. This discrep-
ancy is a point that bothers those students who believe
no disagreement is to be expected in science. We believe
this conflict between theory and experiment offers the
structor an excellent opportunity to remark on the scope
models and on the limitations of the validity of their predi
tions. A simple model is preferable to a very complex on
but one must be aware of its limitations and use it only as
as appropriate.

However, we can offer some comments that help in und
standing the origin of the discrepancy. First of all, we wou
expect the difference in the exponent to be related to
complexity of the semiconductor laser, normally describ
by two coupled differential equations,26 although the model
that we discuss is limited to one dimension. Although t
different phase space dimensionality is a limitation of t
comparison, it turns out not to be the most important o
805Tredicceet al.



nding

Fig. 8. Details of the upward-scanned laser intensity near threshold for different values of the triangle-wave frequency and fixed amplitude~minimal value of
the triangleVmin51.0 V, maximal valueVmax53.0 V). The left-hand column shows the temporal intensity behavior, the right-hand the correspo
laser-intensity vs pump. The bistability loops are well visible in Figs. c.r-f.r~and can be guessed in Fig. b.r!. Frequency values of the driving signal:~a! f
51 kHz, ~b! f 53 kHz, ~c! f 510 kHz, ~d! f 520 kHz, ~e! f 550 kHz, ~f! f 580 kHz. The oscilloscope’s trigger is set very close to threshold~within 1%! for
best visualization.
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because the exponentx differs from 21 even for lasers
whose dynamics can be correctly described as o
dimensional.27

One cause of the discrepancy, which alert students m
notice, is in the different definitions of the delay time used
the theoretical discussion and in the experiment. In Sec
t* is defined as the time at which the solution begins
diverge @see Eq.~6!#. Because such a time cannot be me
sured experimentally due to the smallness of the inten
values compounded by the presence of the intrinsic n
~both the laser’s and the electronics used for the meas
806 Am. J. Phys., Vol. 72, No. 6, June 2004
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II
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ments!, we are forced in the experiment to introduce a d
ferent definition. The most convenient is the one used in S
IV, because it provides the best sensitivity. However, beca
the growth of the laser intensity from the zero solution
exponentially fast, the amount of time spent betweent* , as
defined in the theory, and the end of the measured delay
is always very short and does not change much at all with
frequency of the scan. By adding to the theoretical de
time this nearly constant contribution, we obtain a dep
dence of the delay time with an exponent somewhat lar
than 21. Numerical integration of the dynamics with th
806Tredicceet al.



Fig. 8. ~Continued!.
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time definition corresponding to that of the experime
shows, however, that the variation in the exponent amou
to only '10%. An additional factor that increases the exp
nent is the presence of noise in any experimental syst
This factor has been neglected in the theoretical discuss
because we wanted to demonstrate the deterministic co
bution to the delayed bifurcation. The analysis of the effe
of noise is beyond the scope of this paper, but, as can be
from Ref. 8, noise added to a dynamical system near a b
cation point drives the system away from the unstable m
fold and anticipates the jump to the other solution. In t
way, the exponentx is further reduced.

A physical interpretation of the delay times can be offer
to those students who have sufficient knowledge of la
807 Am. J. Phys., Vol. 72, No. 6, June 2004
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physics. The laser below threshold operates with a pop
tion inversion value that is insufficient to support amplific
tion of the optical field. While growing, the injected curre
~the pump! reaches the value corresponding to the point
laser emission~the threshold!. This instant corresponds tot̄ ,
because the bifurcation has been reached by the contro
rameter. However, the amount of charge~number of carriers!
accumulated in the semiconductor junction is not yet at
lasing level because the accumulation is achieved at a fi
rate, starting from an amount of carriers below the critic
one. An additional time period is needed to accumulate
number of carriers necessary to attain their threshold va
this will occur at timet* and corresponds to reaching th
dynamical bifurcation.28
807Tredicceet al.



s
th

.

en
sh

e
tif

om

ro
-
m

ea

a
nt

he

’s
is

to

ss a
id
an
lab

t of
eri-
e

e of
This
the

elay
but
ar
-

ally,
se
lu-

le

on
nts.
criti-
y
er

a-
sity
re

f the

’’

ic

and

ct
tive

en-

l,

m

s
se

re
re
ns
s

VII. QUESTIONS FOR STUDENTS

We offer a few questions that can be posed to student
test their degree of understanding of the physics behind
experiment and their mastery of the techniques involved

~1! If the delay in reaching the bifurcation point grows wh
reducing the frequency, then why was the static thre
old determined by using a very slow ramp ('5 Hz in
Sec. IV!?

~2! Is it possible in practice to obtain an actual measurem
of the true static threshold in a real experiment? Jus
your answer.

~3! Why aren’t the experimental delay times measured fr
the point where the laser threshold is crossed?

~4! Compare the measurement of the delay time taken f
the initial instant of the ramp to~a! a set threshold inten
sity value ~any value between minimum and maximu
intensity on the switch-on!; ~b! the mid-point of the ris-
ing intensity front ~see Sec. IV!; and ~c! the zero-
crossing of the laser intensity derivative~see Ref. 23!.
What are the advantages and the disadvantages of
technique?

Fig. 9. ~a! and~b! The variation of the delay at the bifurcation starting fro
the instant when the driving signal~triangle wave! crosses threshold. This
choice provides the best visualization but is not the best choice for mea
ing the delay—see the text. In~a! the solid line represents the laser respon
at f 53 kHz, the dashed line atf 510 kHz. The curve atf 51 kHz has too
low a resolution~see the text! and is not shown. The straight lines a
superimposed on the linear part of the laser intensity response and a
tended to guide the eye to show the expected behavior of the laser inte
in the absence of a delayed bifurcation. The shift toward positive value
the intensity of the crossing point of the straight lines~at the trigger time! is
discussed in the text.~b! Same as~a! for f 520 kHz ~solid line!, f
550 kHz ~long-dashed line!, and f 580 kHz ~short-dashed line!. A reduc-
tion in the delay time for increasing frequencyf is clearly visible throughout
the graphs@notice the change in horizontal scale between~a! and ~b!#.
808 Am. J. Phys., Vol. 72, No. 6, June 2004
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~5! Would it be a good idea to set the trigger level in such
way as to start the trace at the point from which we wa
to measure the delay~the bottom point of the triangle
wave!? This procedure would avoid having to use t
pretrigger and the cursors~at least one of them!, because
we could read the time directly off the oscilloscope
scale. Comment on this procedure and explain which
the best choice.

~6! Why are Figs. 8 and 9 taken with the trigger set close
threshold for better visualization purposes?

VIII. CONCLUSION

We have shown that sweeping a control parameter acro
critical point does not bypass critical slowing down. We d
so by solving a simple analytic model and by conducting
experiment involving a semiconductor laser and standard
equipment.

Although we have concentrated on the simplest aspec
the delay problem, generalizations are quite obvious. Exp
mentally, we could ask ift* vanishes for large values of th
sweep rate. Intuitively we would say that ifb is sufficiently
large, the delay time becomes equal to the response tim
the system, and therefore independent of the sweep rate.
effect, that is the dependence of the response time of
system on the initial pumping value—the ‘‘memory time’’—
and the dependence of the first peak amplitude on the d
time, can be easily measured in a similar experiment,
will be the subject of future work. We note that the line
equation~2! can still be solved analytically if we add a con
stant term ~modeling an imperfection!, a modulation, or
noise. These generalizations are discussed in Ref. 11. Fin
whether we deal with a first- or second-order pha
transition-like model does not change any of our conc
sions.

Another generalization is provided by optically bistab
systems.29 In this case, the minimal equation, Eq.~1!, must
have a cubic nonlinearity and therefore the dependence
the sweep rate will be characterized by different expone
The basic problem remains the same: sweeping across a
cal point ~here, a limit point! induces a delay generated b
critical slowing down and the dynamical hysteresis is larg
than the static one.
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