Critical slowing down at a bifurcation
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Critical slowing down near a bifurcation or limit point leads to a dynamical hysteresis that cannot
be avoided by sweeping a control parameter slowly through the critical point. This paper
analytically illustrates, with the help of a simple model, the bifurcation shift. We describe an
inexpensive experiment using a semiconductor laser where this phenomenon occurs near the
threshold of a semiconductor laser. 804 American Association of Physics Teachers.
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[. INTRODUCTION conducted by students in a junior or senior year lab makes
the choice of including it in the undergraduate curriculum

The study of bifurcations has gained considerable attencompelling. _ _ ' '
tion in recent decades due to the role that they play in the TN€ purpose of this paper is to present this experiment to
characterization of the behavior of nonlinear systems. Thatroduce the students to delayeat dynamical bifurcations
transition from one state to another is accompanied by th8Y €sting some of their basic properties. We suggest that the
exchange of stabilityor at least by a modification of the StUdents first be given the setup and be asked to do the ex-

. : i . periment, without previous knowledge of the theory behind
basin of attractlohof coexisting solutions. Such a change of it. They will be quite puzzled by the result and be highly

; . ; : ?éceptive when the explanation for the phenomenon is pre-
neric equations, whose topological properties closely deéented in the simple terms we use in this paper. We have
scribe the system's states and the transitions between theRhgsen to keep the presentation as simple as possible. The
Bifurcations are reported in varied nonlinear systems, frompstryctor can complement our presentation with additional
mechanical systemsfor example, magnetostrictive ribbons, material, including a more rigorous approach to the problem
a spinning top, and a bouncing baflo spin waves in ferro-  f the students possess adequate background knowledge.

magnetic material$, chemicaf and hydrodynamical  Section Il presents the general conceptual framework of
systems,and lasers.A good introduction to bifurcations can the problem, which is developed analytically in a straightfor-
be found in Ref. 6. ward, but sufficiently complete way in Sec. Ill. Section IV

In this paper we highlight a counterintuitive property of discusses the experiment using a simple and inexpensive op-
bifurcations. Suppose that by varying a control paramgter tical setup, and compares the experimental results to the ana-
such as the temperature, a driving electric current, or dytical predictions. Some general comments are offered in
chemical concentration, we find a phase transition such thatec. V, and specific difficulties encountered by the students

one phase is stable < . and the other phase is stable if &€ address_ed i_n Sec. VI. Aset of questions that can be_posed
4> . . This behavior is static, obtained by choosing avalueto students is given in Sec. VII, followed by our conclusions
. o . 1n Sec. VIII.
of u, letting the system relax to its final state, and repeating
the procedure for each value af However, it often is prac-
tical or even necessary to vary the control parameter continut. CONCEPTUAL FRAMEWORK
ously in time. Such a change is especially true if a large _ )
amount of data has to be accumulated to perform a statistical One of the most common signatures of nonlinear phenom-

analysis. The counterintuitive result is that if the control pa-€Na is the occurrence of coexisting solutions of nonlinear
rameter is varied fromu<pu, to u>u,, the bifurcation differential equations. This coexistence may take different
C [}

o . . . forms. One common form of coexistence is hysteresis: three
p0|_nt IS ;hn‘ted from.c, no m_atter how slowly. IS varl_ed. . solutions coexist, one of which is always unstable, while the
This topic has been the subject of numerous investigationgiher two may have domains of stability and instability.
devoted to studying the general properfiésr the specific  These solutions are connected by limit points. A second form
characteristics of a systefror to exploiting the bifurcation's  of coexistence occurs in the vicinity of bifurcation points,
features for particular applicatiolis(for example, the re- \yhere two branches of solutions cross and exchange stabil-
moval of chaotic states and the stabilization of particularty.
orbits). Given the generality of the phenomenon, its far- |n both cases, bistability or, more generally, multistability,
reaching consequences, and that common intuition suggestslinked to a critical point, either a limit point or a bifurca-
the wrong answer, it is worth looking at it in some detail. tion point. We shall limit our consideration to stationary so-
The fact that a simple and inexpensive experiment can bkitions, although they can be generalized to time-dependent
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states. The multiplicity of solutions requires a stability analy- X
sis to determine the stability of the different solutions and

their basin of attraction. In general, it is not possible to carry

through such an ambitious program. In exceptional cases,

some simplified models admit exact solutions and a complete

stability analysis is then possiblsee Sec. 4.4.1 of Ref. 11 =10 A
for an examplg In most cases, one has to resort to a linear .t

(local) stability analysis, testing the stability of a solution
against infinitesimal perturbations. This analysis leads to a
characteristic equation for the rates at which the perturbation
decays(stable solutioh or grows (unstable solution This  Fig. 1. Steady state solutions of E). Stability is denoted by the solid
characteristic rate may be complex, in which case the decaipe. Thex=0 solution is stable foA<0, while thex=A solution is stable
or the growth of the perturbation is modulated at a frequencyor.A>0. The exchange in stability occurs At 0, the(statig bifurcation
given by the imaginary part of the rate. By definition, a criti- PoInt

cal point is a point where the real part of a rate vanishes, a

property common to limit points and bifurcation points.

(that is,dx/dt=AXx). To describe the effect of the sweep, we
introduce an explicit time-dependence by settig w(t),

1. ESCAPING CRITICAL SLOWING DOWN so that Eq.(1) becomesdx/dt=x(u(t)—x). Notice thatx
i o ~ =0 remains an exact solution, independent of the functional
The inverse of the real part of a characteristic rate is ajme dependence qf. Therefore, the linearized form holds

relaxation time. Hence, a critical point is characterized by anp general, and the evolution is correctly described by
infinite relaxation time. The vicinity of a limit point is char-

acterized by critical slowing down. The magnitude of the Y% _ (t)x )
relaxation time is controlled by the distance from the critical dat “ '

oint; as the critical point is approached, the time scale be- . . .
Eomes longer, Whichpmeans tk?et)t the dynamics of the systef#® /0nd as the solutiox(t) remains close to zero. When this
is no longer governed by the usual time scales, such as trRoution is no longer valid, the solution(t) abandons the
atomic relaxation time or the cavity photon lifetime in optics. N€ighborhood of zero and diverges exponentially, and the
Rather, the response time is determined by the topologicdfansition to a finite value ok(t) has occurred. In this case,
structure and the resulting dynamics is universal. TheEd. (2) no longer describes the dynamics, but we can char-
amount of slowing down can be considerable and in opticaficterize the transition by the time at which the solutigt)
systems an increase in time scale by up to six orders oftarts increasing away from zero. Hence, the operational
magnitude for the relaxation times has been reported. definition of a dynamical bifurcation, that is, the occurrence

Critical slowing down often is unwanted. A classic strat- of a bifurcation in a time-dependent regime, will be defined
egy to evade critical slowing down is to sweep the controlas the deviation from the previous, zero solution.
parameter across the critical point. The rationale behind this Equation(2) can be formally integrated to obtain the so-
procedure is that if the sweep rate is small enough, the dyltion
namical system should quasi-statically follow the stationary ¢
state. This line of reasoning holds far away from critical x(t)zx(O)exp{f w(tHdt’
points, but it turns out to be incorrect close to a critical point. 0

Let us illustrate these ideas with a simple example thawy

b

: ()

contains all the necessary elements. We consider a systeRe ¢@llt the time at which the parametex(t) reaches the
that has two steady statégenoted by a tilde X=0 and¥ ifurcation point. This value is obviously defined by
=A, whereA is the control parameter. We assume that the M(t_)=0, (4)

dynamics of the system can be described b
y 4 Y which determines the static bifurcation, because at this in-

dx stant the control parameter is zero. The value of the param-
ai - X(A=X). (D) eter for which
: . L o . x=0, w=0, 5
The bifurcation point is aA=0. The zero solution is stable if .
A<0 and unstable iA>0. Conversely, the solutick=A is  defines the position of the static bifurcation. At timehe
unstable ifA<0 and stable ifA>0. Figure 1 illustrates the control parameter reaches the value for which the linear sta-
stability exchangesolid line: stable solution; dashed line: bility analysis predicts a change in stability for the dynamical
unstable onge The bifurcation corresponds to the stability system. Fot<t, we haveu(t) <0, and therefore(t)=0.
exchange between the two solutions, where the change in For a time-dependent system, reaching the condition
behavior of the system passes from a state independent of tgecified by Eq(4) does not give rise to a change in physical
value of the control parametét, because foA<0 we al-  behavior. Indeed, while in the static problgithe result of
ways havex=0, to one that depends explicitly gh the usual linear stability analysis where all parameters are
We are interested in the transition between the two statekept constantthe point defined by Eq5) corresponds to the
whenA changes in time, beginning with<0 and crossing €xchange of stability, in the swept-parameter case the condi-
the pointA=0. As long as the solution remains in the neigh-tion x(t)=0 does not. We immediately recognize this fact
borhood ofx=0, a local analysis can be performed by ex-by observing from Eq(3) that x(t) starts to diverge away
panding Eq.(1) to first order in the neighborhood of=0  from x(0) only when the argument of the exponential func-
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tion goes from negative to positive values. For negative val- 4
ues the perturbation relaxes to zero, and only for positive u
values can it grow fronx=0.

We therefore define another quantity: diynamical bifur- !
cation point, a concept that can exist only if the control pa- !
rameter is time-dependent. It is defined as the time at which 0 !
the solutionx(t) in Eq. (3) begins to diverge:

P |
[
*
A
4

*
J‘ u(t)dt =0. 6)
0
Equatlon(G) IS an |mpI|c_:|t_ equation for the time* and Can Fig. 2. lllustration of the principle expressed by E@). The negative area
be solved once an e_Xp|ICIt form qu(t’) has been_ speC|f_|ed. accumulated in the triangle below theaxis (that is, betweert=0 andt
When a solution exists, we can infer some of its basic fea-:t—) has to be equal to the positive area accumulated bettveénand t
tures from some elementary considerations. =t* to attain the dynamical bifurcation point.

We have assumed thai(t) is an increasing function of
time, because we want to study the transition from the

parameter-independent solutiah=(0) to the other solution.  tq reach the dynamical bifurcation is double that of the static
Hence, ©(0)<<0. If u(t) is monotone(but otherwise ge- one, Eq.(11), independent of the speed This condition is
nerig, we know that until timet w(t)<O for t<t. There- a direct consequence of the fact that for the areas to be equal,

fore, we are certain thatju(t')dt’<0. As a consequence, the value 2“‘ for which th? dynamical bifurcatior_l .i‘?’
at the time the static bifurcation has been reached, the syste\ﬁlﬁ?Che?“(t ()0’)mUSt be equal in absolute value to the initial
is still stable on th&=0 branch. In order for the solution to V&Y€ OT# A1) . . .
be destabilized. the intearal betwesrand t* must “accu- Another very important point resulting from theinaly5|s is

€ es“ - 9 L » that the time required to reach the static bifurcattotthus
mulate” the right amount of positive “area” to compensate —

for the “negative” area that has accumulated between 0 an@!so t*) depends inversely on the sweep raterag/v
T (whereAy>0 is the initial u value. Hence, if the sweep is
' conducted at a slow rate, the time necessary to reach both
T, static and dynamic bifurcation will be correspondingly
JO p(t)dt|. () longer. Although obvious, on the basis of the mathematical
derivation, the results provided by Ed8)—(12) are entirely
Let us illustrate these considerations with an explicit ex-counterintuitive. Indeed, the limit in which the bifurcation is
ample, where we assume a linear dependence of the contré¢anned with vanishingly small values of the sweep rate (
parameter on time: —0) yields a completely different result from the static bi-
w(t)=—Ay+ovt  (v,Ay>0). (8)  furcation. In the dynamical case the time for reaching the

. . . v * _
Such a dependence is not only convenient mathematicall |furctat|0n|d|v?rgesht.(,th .?oc)’ and h;ahnce ttr.‘e ltlzon:](?tl ga
but also can be implemented experimentally, as discussed l‘?me.e.r value for which It occurs (snathematically shifte :

Sec. IV. The integration of Eq(3) is immediate using Eq. o infinity. Instead, in the static case the control parameter is

(8), and the conditions given in Eq5) and (6) become: kept constant and therefore the position of the bifurcation in
’ ' parameter space is fixed at its equilibrium value.

Jtt*,u(t’)dt’z—Jt,u(t’)dt’=

t 0

—Ao+vt_=0, 9) What happens in the dynamical case is that the@ is an
accumulation of stability(the integral between 0 antl),

—Agt* + Bt* 2_0. (10) which has to be compensated by going beyond the bifurca-
2 tion for a certain time. Slowing down the scan only increases
From Eqs.(9) and (10) we obtain the time necessary to achigve the necessary comper)sation.
- Note that the time at which the system loses stability also

t* =2t, (11)  depends on the initial conditioAy. The larger the magni-

~ *
w(t*)=— w(0), (12) tude of |Ay|, the longer arg andt*, because the system

needs more time to reach the static bifurcation and thus has

and thus the time at which the dynamical bifurcation occursaccumulated a greater amount of stability. Therefore, the sys-
is twice the time necessary for reaching the static bifurcationtem can follow the statically unstable solution for a longer
independent of the speed at which the parameter is sweptime, as illustrated qualitatively in Fig. 3, where the solid line
This result appears to be completely counterintuitive, berepresents the actual trajectorft), and as confirmed by the
cause one might expect that the sweeping speethould  experimental results of Sec. INee in particular, Fig.®)].
play a role in the position of the dynamical bifurcation. A comparison of Figs. 3 and 1 shows that the solution has

A graphical illustration of the results provided by EGEL)  remained on th&= 0 branch for a longer time than predicted
and (12) is given in Fig. 2. We see that the area under theoy a static linear stability analysis.
triangle in thex <0 half plane has to be equal to that in the |n summary, we see that the limit of the static bifurcation
#>0 half plane[because of Eqg6) and(7)]. Because, for can be approached only by keeping the rativ as small
ease of illustration(and experimental realizatipnwe have as possible. This limit is obtained either by starting the sys-
chosen a linear dependence for the paramegié), the two  tem infinitely close to the thresholgbut fluctuations, which
triangles of Fig. 2 are equal, and therefore the time necessagre not included in this treatment, will become important, see
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Fig. 3. Dependence of as a function of the timé when the bifurcation is :',,3
swept(for increasing values oft). The static bifurcation pointcrossing of 8 0.005 - ]
the solutiong is passed withx(t) remaining on the unstable solution for
some time, before jumping toward the new stable solution. In the opposite
sweepx remains on the other solution for a while in spite of its being 0 Lo TR CRTIE AN 1 1
unstable. 0.2 0.7 1.2 1.7 2.2 2.7

Pump (V)

Sec. V), or by using a very Iarge sweep speed, ideazlly Fig. 5. Laser intensity as a function of pump voltag&gnal level from the

. .. . . . . function generator The pump voltage changes from 0.3 to 2.8 V. The laser
—. Hence, contrary to intuition, the static bifurcation is threshold appears for=Vy,=1.78 V. In this figure and Fig. 6 we plot the

apprQaChed in th(‘?‘ ”_m_it in which the system is swept acrosgata in a way which resembles the oscilloscope’s output.
the bifurcation at infinite speed.
We remark that the long-dashed line in Fig. 3, which il-

lustrates the evolution of(t) beyond the bounds of validity  pjtially, we determine the threshold voltage and the laser
of our local analysis, is nothing but an educated guess abo‘i’f‘itensity as a function of the pump, that is, the amount of
whatx(t) will do after abandoning th&=0 branch. Indeed, current flowing through the semiconductor junction, injected
because only one other solution is availade;A, and be- by the power supplfMVP driver by Thorlabs, cf. Fig. %
cause this solution is stable, it is plausible that the systerand controlled by the voltage level at the output of the signal
will converge toward it and that it will do so asymptotically. generator. We set the offset of the signal generator at around
In Sec. V we will comment on a small difference betweenv,,=-+1.55V and apply a triangular signal at very low

this prediction and the experimental situation. frequency(of the order of 5 Hzand amplitude 2.5 \(peak-
to-peak to control the injection current. The voltage on the
IV. EXPERIMENT semiconductor laser changes frovf,,=+0.3 V t0 V4«

=+2.8 V. By setting the oscilloscope in thxe-y mode, we

The experimental apparatus is shown in Fig. 4. The outpugan directly observe the laser intensity as a function of
power of a semiconductor lasérdriven by a modulated/ pumping voltage.

variable power circuit is focused on a solid state detélétor. A typ|ca| result is shown in F|g 5. Several conclusions

The current supplied to the laser is controlled by a standargdan be drawn by simple inspectiofi) there exists a pump-
signal generator. The detector and signal generator outpu;ﬁg valueV, = +1.78 V below which the output intensity is
are observed with a two-channel digital oscilloscope. Th%onstan]tﬁ atl=0; (ii) the intensityl grows linearly with the
oscilloscope is interfaced to a personal computer to analyz umping voItagé foA/>V, - and (iii) the transition from
the data. The laser operates in the red region of the optic e 1=0 state to the aEOthsrt'ate appears to be continuous

~ i 15
spectrum §~670 nm, maximum powes-4.2 mw). devoid of hysteresis. In addition, there is no sign of critical
slowing down, even though there is an exchange of stability

between two different branches. We thus could assume that
cond I the measurement is done quasi-statically: the system reaches
Semiconductor Detector the steady state value before the parameter changes apprecia-
Laser .
I bly. In other words, the experiment appears to show that
there is no coexistence of states even close to the bifurcation
Lens point (the laser threshojdWe will now show that this con-
clusion is erroneous, and that critical slowing down can be
. seen by modifying the parameters involved in the measure-
. Signal Two-Channel
MV Driver Generator Digital men.t' . . . .
Without changing the experimental apparatus, we just in-

Oscill i i
scifioseope crease the frequency of the triangular voltage signal to 40

kHz, without modifying its amplitude and bias voltage. In
Fig. 6 we show a typical trace @8) the laser intensity and

_ _ _ the pumping voltage as a function of time, afil the laser
Fig. 4. Schematics of the apparatus. The laser outgeg Ref. 1Bis fo- intensity as a function of pumping voltage. We observe that
cused through a standard lens onto a Si PIN detgstee Ref. 1% con- . B . N
nected to a digital oscilloscop&P54602B digital oscilloscope, 150 MHz, for Increasing S|glnal'lev_el, the laser SWItChQS on at a pump-
with a HP54657A Measurement/Storage Module HP-IB intejfmmugh a  ing voltageV* which is higher than the previously measured
50 Q) adaptor. The signal from the function generator is simultaneousiy\/,, .. At V=V* the intensity increases suddenly from 0 to
recorded by the oscilloscope on a second trace. A function genéiatior the “large” value, which corresponds to the above-threshold

tronix CFG253, 3 MHz bandwidihdrives the laser through its stabilized : P R .
power supply(modulated/variable power circuit driver by Thorlabshich value of the instantaneous pump. This Jump 1S visible in the

includes protection against junction bias reversal and overvoltage; Withoul(Ower trace of Fig. 6), where the laser 'n_tenS'ty SUdd_enIy
input signal, this driver supplies the laser to obtain about 90% of its maxi-grows from the low levelspontaneous emissipto the tri-
mum power. angular shape which follows the current injected in the junc-
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0.035 rate of the lase(its relaxation time is in the nanosecond
range. Furthermore, the differencé* — Vy,, is a direct mea-
008 surement of the delay tin# because the voltage is propor-
< 0025 tional to time. If we keep the amplitude and voltage bias
% = constant, a change in the frequency amounts to only a change
§ 002 Py in the sweep rate of the pumping parameter.
= 0015 ng_ The theoretical results described in Sec. 11l show that the
§ time t* diverges as the sweep rate vanishes. A measurement
- 001 of the delay time as a function of frequency for the triangular
0.005 signal should therefore show such behavior. At the same
time, if the dynamics are independent of the laser param-
0 . eters, we should find a universal scaling law for the tirhe
0 1e,'05 2605 3605 as a function of the slope of the triangular function. This
Time (s) prediction can be verified experimentally by measuring the
0.02 . . : : : delay time at different scanning frequencies. To do so we
(b) " keep the amplitude of the modulation constant and simply
change the frequency of the triangular wave. Experimentally,
—~ 0015} ‘j we define the delay time as the time starting from the instant
— £ at which the triangular wave is at its lowest point, and ending
% £ at the instant at which the laser intensity reaches half of its
s o001} j . final height (this value is the point with maximum slope,
= * E which can therefore be determined most accuratelne
§ I,f" measurement of the delay time can be best made by setting
- 0.005 | §° . the vertical cursorsintensity) at the correct levelgas speci-
f fied previously and then using the horizontal onésme
f . scalg to measure the delagthe oscilloscope’s predefined
0

“difference” function will provide the delay time directly

In Figs. 7a) and 7b) we plot t* as a function ofb
=dV/dt, and In¢*) as a function of Irig),!’ for different am-
Fig. 6. (a) Laser intensity(bottom trace, left vertical scaland pump volt-  Plitudes an_d b"'?‘S voltages. From the plots we conclude that
age(top trace, right vertical scales a function of time for a frequency of the delay time increases as we decrease the sweep rate and
the triangle wave applied by the function generater40 kHz. In analogy ~ that it diverges for a vanishing sweep rate. Thus, critical
with the notation of Sec. lllV* represents the voltage value at which the slowing down exists at the bifurcation point. Furthermore,
laser switches offfor increasing pump valugswhile turn-off occurs aiv the scaling law is of the typE* —=Cb*. wherex is indepen-
=V, for decreasing pump. In the notation of Sec. My, should be ex- ’

= . o . o dent of the laser parameters and the constadiepends on

pressed a¥. We prefer using the traditional notatiafy, which is widely the amplitude and bias voltage of the trianqular sianal. We
recognized in laser physicé) Laser intensity as a function of pump volt- p . 9 g9 gnal.
age. The graph shows bistability in the intengl<V<V*. The traces also remark that the scaling law breaks down for large values

(plotted with points to better highlight the effectre slightly separated on  Of the sweep rate and/f,,;, relatively close to threshold.
the diagonal branckthe lower occurs for increasing pump, the higher for
decreasing pumpbecause of the speed at which the laser is driven.

0.2 0.7 1.2 1.7 2.2 27
Pump (V)

V. COMMENTS

This brief section is devoted to a more detailed discussion
of some finer points related to the comparison between the
aradigmatic model for a dynamical bifurcation, discussed in

ec. lll, and the measurements performed on our system.
t‘ghese points are not apparent in our figures, but will become
Obvious to anyone repeating the experiment and looking for
these effects.

tion. A comparison of Figs.(®) and 3 is very instructive: the
delayed jump is visible in the experimental tragdotted
with dots—we suggest that the same be done by using th
“dots” options available on most oscilloscope#\s we de-
crease the voltage, the laser intensity remains proportional
the pumping voltage until it vanishes ¥t Vy,,. Thus, there

is hysteresis forVy,<V<V*, which can be straightfor-  Ag mentioned in Sec. Ill, it/,,;, is set close to threshold,

wardly and clearly displayed using the-y mode of the  he gystem becomes sensitive to noise. In this case, the scal-
oscilloscopg Fig. 6(b)], and shows directly the coexistence ing exponent that we have derived with the simple model

of two different states. Notice that there is not a perfect SUzannot hold(see Sec. Vi because noise has not been taken
perposition of the traces in the part of the branch where théio account. For this reason we cannot reach the limit
laser intensity follows the pumjgFig. 6(b)]. This behavior is »/v—0 by choosing a very small value fdx,. There is
an artifact of the sweep imposed on the parameter, whic nother reason that restricts the approximationdefdt

prevents the system from being instantaneously at equilib- B _ o :
rium: the laser retains a memory of its state at the previous_x('“ x) by dx/dt=ux to the domairk<0. If x is a small

instant, and thus the intensity curve is slightly lower whenduantity, saye, then the linearized equatiamx/dt= ux is
the pump is being increased and higher when it is beindoalanged_only ifu is not small. That is, each me_mber of the
decreased. equation is proportional te. However, ifA, also is a small
Note that the slope of the triangular signal is a direct meaguantity, comparable te, then the right-hand sidgx is
surement of the parameter’s rate of change and this rate jgroportional tos? for small times while the left-hand side
still orders of magnitude smaller than the smallest relaxatiomemains proportional t@. This dependence is inconsistent,
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speedFig. 6), apparently disappears at low spe€dy. 5). If

true, the disappearance of bistability at low speed would con-
tradict the body of the results that we have discugsatbed,

no bistability loop exists in the static bifurcatiophe con-
tradiction is only apparent, as can be easily understood
through the following argumentsee Sec. VI for further de-
tails). The bistable cycle shrinks and, in theory, never disap-
pears when the scanning speed is reduced. Experimentally,
this statement can be verified by adjusting the oscilloscope’s
scales in such a way as to visualize the cycle at different
speeds, until the cycle becomes so small that it disappears
into the noise. The shrinking of the cycle comes from the
progressively lower speed at which the system advances
close tox=0 and x>0 (known as the unstable manifold
after crossing the static bifurcation point. In spite of the in-
creased time delafsee Fig. 7, the speed is slow enough to
reduce the total distance covered on the unstable manifold;
noise further reduces the portion of unstable manifold fol-
lowed by the lasefsee Sec. VI for further observations on
this poind. Hence, there is no contradiction between the in-
crease in the time delay and the decrease in the width for the
bistable loop for a decrease in the scanning speed. We point
out that this feature is characteristic of all dynamically in-
duced hysteresis cycles.

As mentioned in Sec. IV, a careful inspection of the oscil-
loscope trace in Fig.(®) shows that the transition from the
lower to the upper branch is accompanied bigmal) over-
shoot which relaxes on the upper branch with oscillatfdns.
This overshoot is an indication of the fact that the dimen-
sionality of our experimental system is larger than that of the
model we used to discuss the delayed bifurcatibr=(1),
because oscillations require a minimum dimensionality,

Fig. 7. Scaling law for the time at which the dynamical bifurcation is at-
tained, as a function of the pump voltage slof@.The time is plotted as a
function ofb=dV/dt for two different values of the initial pump\,). The
data superpose very well, irrespective of the chosen initial condition.
Log-log plot (base ¢ of the previous graph, which allows for the direct
determination of the scaling law; the values of the fitted paramétbes
straight line is shown to guide the ey&re given in the expression on top of
the graph.

D.in=2 to occu® Even though there are small deviations
that can be highlighted by careful experimental observations,
the one-dimensional description of the shifted bifurcation re-
mains an excellent description of the main features observed
in most two-dimensional systems.

VI. METHODOLOGICAL DIFFICULTIES

_ _ o ~Students have trouble realizing that only the titfeis

and it means that the linearization procedure we have appliegikperimentally accessible and that their efforts are best spent
to the nonlinear equatiotix/dt=x(w—X) is no longer valid  if they concentrate on it. In addition, the correct measure-
if both x andA, are very small. ment of t* requires care in the use of the oscilloscope—a

The opposite limity — o, presents experimental difficul- point that does not always occur to them. The first snag
ties as well. If the values of the sweep rate are very l@ige  comes from keeping the whole signal on the screen, a natural
example, obtained by using a square function from the gentemptation, but one that renders the measurement inaccurate
erator, instead of a triangular oneve see that the delay time at low scanning speedfor lack of time resolution To com-
t* saturates. This saturation is due to the fact that the experpound the problem, this kind of visualization gives the im-
mental system is more properly described by a set of twgression that the delay time is reduced at low speeds, be-
coupled ordinary differential equations, characterized by difcause the width of the dynamical hysteresis loop shrinks.
ferent time scales. A discussion of the saturation in the delayhis difficulty is easily recognized by comparing Figs. 5 and
time is beyond the scope of this paper, and we refer to Re6(b), which have been taken at 5 Hz and 40 kHz, respec-
18 for a physical description of that process. In addition, fortively. Hence, the students’ first reaction is that the functional
the laser in question, the limitation of the electrical band-dependence on speed predicted in Sec. Ill is incofactf
width becomes relevant at high speeds. Because we can cdhey haven't yet been presented the theory, they will con-
rectly describe the behavior at the bifurcation over a range ofince themselves of the validity of the incorrect intuitive
speeds of about three orders of magnitude, this experiment ig1age discussed at the beginning of Sec.fIThe correct
a demonstration of the generality of the phenomenon. Evemeasurement requires plotting the delay time as a function of
though we described the more complex experimental systettiie input signal’s slope, as in Fig. 7. The measuremett of
with a one-dimensional model, E¢l), we still obtained a is best obtained with the help of the cursors of a digital
correct representation of the shifted bifurcation. oscilloscope and the delay features of the trigger so that a

The comparison between Figs. 5 and 6 may raise somsufficiently fine time scale is used to maintain a good level of
questions. The hysteresis cycle, visible at high scanningccuracy throughout the series of measurenténtbe zero
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for time is taken at the beginning of the ramp, a concept thabbservations. Many students will use these figures to argue
has to be sometimes stressed, together with the fact that difhat the slow modulation regime approaches the static bifur-
ferent series of measurements starting from different valuesation.

of the initial current(voltage offset provide information A closer look at the left-hand figures in Fig. 8 shows,
about the independender lack thereof of the phenomenon however, that this conclusion is a visual trick. If one mea-
on the distance from the critical poifgee Fig. 7. sures the delay time, rather than simply looking at the shape

An objection raised by some students is tlzaposteriori of the laser intensity, one realizes that it increases for de-
it is obvious that the delay time should be longer for slowercreasing driving frequency. This delay time is exactly the
scanning rates, because the time that the system takes @gantity measured in Fig. 7. An easier way of convincing
arrive at the bifurcation, starting from the same initial con-oneself that the “shrinking” bistability loops of Fig. 8eft)
dition, is longer. This objection is clearly valid, but the ap- Push the experimenter toward the wrong conclusion is to plot
parent triviality of the statement hides a subtle point onMultiple switch-on traces on the same soalee Fig. 9. We
which all of our considerations depend. The objection hold$€€ that the time is truly increasing for slower driving: the
when thinking about, but does not say anything abait experimental traces obtained for different frequencies are

A . . . plotted on two separate panels for better visualizattmsth
which, in the absence of a dynamically delayed bifurcationjme scales and intensity values differ too much for a single

could approach_in the slow scan. The latter conclusion is graph. The straight lines are plotted to guide the eye and
exactly what(the wrong intuition would suggest. qualitatively extend backward the functional dependence that

a slow scan with the following argument. We do not have arflid not exist. We remark thafl) all straight lines cross in
ind dent ofto show thatt* satisfies th (approximately the same pointas can be seen by comparing
Indepencdent measure O1o show thalt™ Salishies the con-y,a " apsolute 'scales in the two panels of Fig. @) the

ditions shown in Sec. Ill, but it is obvioUsee, for example,  gyyitch-on time is further reduced with increasing driving fre-
Fig. 6(b)] that during a fast scan the system changes statg ency:(3) the laser follows a larger portion of the unstable
well after the static threshold. Hence, we are sure that at highanifold at larger driving frequencigsvhich causes confu-
scanning speed t_here is a dynamical shift of the _bifurc:_;\tionsion between the increasing width of the bistable loop and
The graphs of Fig. (b) show that the delayed bifurcation the actual reduction of the time deayand (4) the laser
crossing also holds for a slow scan, because the scaling jgtensity jumps to higher intensity values when the time de-
found even at slow speed; this result remains (wih an  |ay is shorter(and the overshoot is largerNotice that the
accuracy of a few percent in the parameters calculated with grossing point of the straight lines corresponds to the instant
standard regression algorithrfor different initial values for  at which the swept current encounters the threshold, that is, it
the scan. Therefore, the shift that we measure is not simplgccurs when the traces are triggered by the oscilloscope. The
due to the fact that the slower scans require a longer time tfact that the value of the laser intensity is not zero at this
reach the static threshold: the linearity of the point distribu-time is a finer point which cannot be discussed here and
tion in Fig. 7b) shows thatt* increases with an inverse whose origin is related to the nature of class B ladfs.
power of the speed, that is, the amount of tinte<t) the The longer delay at the bifurcation is now evident, and the

system spends following the unstable solution also increasé""esponding jump toward higher intensity values is obvi-
in the same way. The graphs and this careful analysis of th us, while the_larger_ overshoot is again a feature connected
results prove the nontriviality of the result. O the larger dlrgsnsmnalltytwo) of the phase space repre-

A more direct way of visualizing the previous consider- Se\?\yengtizlsssl?ﬁat.the curves in Eia. 9 are drawn by taking a
ations can be obtained in the following way, although we ortion of the data of Fig. Sleft) gbue to the lon g,/r timeg
stress that even though a visual tool is very helpful, Oné;cales of the slower scghs and t0 the fixadd ﬁmited
should not attach too much importance to it. Figure 8 show : : -

2 series of measurements pergormed for differgent values d umber of points that the oscilloscope allows, the rendition

the triangle wave frequency and fixed amplitudes. For thesgf- t.hg(;)i]e.talls becomes poorgespecially for the curves of

. ; i
measurements, the oscilloscope trigger has been set Very?:inally, we remark that the predicted and observed expo-
close to the static bifurcation valu@vithin ~19%). This  ants are not the santeee Sec. Il and Fig.)7 This discrep-
choice gives the best visualization of the delay, but is nogncy is a point that bothers those students who believe that
appropriate for quantitative measurements, because the inip disagreement is to be expected in science. We believe that
tial time is not COI‘I’eCtly defined in this Way. The left column th|s Conﬂict between theory and experiment offers the in_
shows the initial portion of the period of modulation where stryctor an excellent opportunity to remark on the scope of
the laser emits light, and we can easily recognize(#ppar-  models and on the limitations of the validity of their predic-
ently) increasing part of the modulation where blStabI'Ity is tions. A simp|e model is preferab|e to a very Comp|ex one,
present. The right column shows the corresponding bistablgut one must be aware of its limitations and use it only as far
loops obtained by plotting the laser intensity as a function ofas appropriate.
the injected current. The latter clearly shows a reduction in However, we can offer some comments that help in under-
the width of the bistable loop when the driving frequency isstanding the origin of the discrepancy. First of all, we would
reduced. This result is in agreement with the visual concluexpect the difference in the exponent to be related to the
sion that one could draw from the left-hand figures in Fig. 8complexity of the semiconductor laser, normally described
and would appear to support tkiecorrecy intuitive conclu- by two coupled differential equatio® although the model
sion that the delay time is reduced when the frequency ishat we discuss is limited to one dimension. Although the
lowered. We show this figure and stress the discussion of thidifferent phase space dimensionality is a limitation of the
point because it is exactly what students conclude from theicomparison, it turns out not to be the most important one,
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Fig. 8. Details of the upward-scanned laser intensity near threshold for different values of the triangle-wave frequency and fixed @mipihadealue of

the triangleV,,;,=1.0 V, maximal valueV,=3.0 V). The left-hand column shows the temporal intensity behavior, the right-hand the corresponding
laser-intensity vs pump. The bistability loops are well visible in Figs. c.tafiid can be guessed in Fig.)b.Frequency values of the driving sign&) f
=1kHz, (b) f=3 kHz, (c) f=10 kHz, (d) f =20 kHz, (e) f =50 kHz, (f) f =80 kHz. The oscilloscope’s trigger is set very close to threshaithin 1%) for

best visualization.

because the exponent differs from —1 even for lasers mentg, we are forced in the experiment to introduce a dif-
whose dynamics can be correctly describped as oneferent definition. The most convenient is the one used in Sec.
dimensionaf’ IV, because it provides the best sensitivity. However, because
One cause of the discrepancy, which alert students mathe growth of the laser intensity from the zero solution is
notice, is in the different definitions of the delay time used inexponentially fast, the amount of time spent betwe&enas
the theoretical discussion and in the experiment. In Sec. lltdefined in the theory, and the end of the measured delay time
t* is defined as the time at which the solution begins tois always very short and does not change much at all with the
diverge[see Eq.(6)]. Because such a time cannot be mea-frequency of the scan. By adding to the theoretical delay
sured experimentally due to the smallness of the intensityime this nearly constant contribution, we obtain a depen-
values compounded by the presence of the intrinsic noisdence of the delay time with an exponent somewhat larger
(both the laser’'s and the electronics used for the measur¢han —1. Numerical integration of the dynamics with the
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Fig. 8. (Continued.

time definition corresponding to that of the experimentphysics. The laser below threshold operates with a popula-
shows, however, that the variation in the exponent amountgon inversion value that is insufficient to support amplifica-
to only ~10%. An additional factor that increases the expo-tion of the optical field. While growing, the injected current
nent is the presence of noise in any experimental systenfthe pump reaches the value corresponding to the point of
This factor has been neglected in the theoretical discussiomaser emissiorthe thresholid This instant correspondst_o
because we wanted to demonstrate the deterministic Contrbecause the bifurcation has been reached by the control pa-
bution to the delayed bifurcation. The analySiS of the effeCtSrameter_ However’ the amount of Cha(gember of Carrie[S
of noise is beyond the scope of this paper, but, as can be segcumulated in the semiconductor junction is not yet at the
from Ref. 8, noise added to a dynamical system near a bifullasing level because the accumulation is achieved at a finite
cation point drives the system away from the unstable manirate, starting from an amount of carriers below the critical
fold and anticipates the jump to the other solution. In thispne. An additional time period is needed to accumulate the
way, the exponent is further reduced. number of carriers necessary to attain their threshold value;
A physical interpretation of the delay times can be offeredthis will occur at timet* and corresponds to reaching the
to those students who have sufficient knowledge of lasegiynamical bifurcatiorf®
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0.008 - T T (5) Would it be a good idea to set the trigger level in such a

0.007  (a) 3 way as to start the trace at the point from which we want
0.006 - '_;/'_ to measure the delafthe bottom point of the triangle
Z 0005 L . /'5” ] wave_)’? This procedure would avoid having to use the
S g pretrigger and the cursofat least one of theimbecause
£ 0.004 F 4»*’ i we could read the time directly off the oscilloscope’s
§ 0.003 Y scale. Comment on this procedure and explain which is
= 0.002 i the best choice.
0.001 i (6) Why are Figs. 8 and 9 taken with the trigger set close to
0 e / threshold for better visualization purposes?
-5¢-06  -2.5e-06 t:)s) 25e-06  5e-06 VIIl. CONCLUSION
0.035 T T T We have shown that sweeping a control parameter across a
003 ® 4 critical point does not bypass critical slowing down. We did
so by solving a simple analytic model and by conducting an
= 0025 T experiment involving a semiconductor laser and standard lab
£ o002 i equipment.
> Although we have concentrated on the simplest aspect of
E oo15 the delay problem, generalizations are quite obvious. Experi-
£ o0t mentally, we could ask if* vanishes for large values of the
0.005 sweep rate. Intuitively we would say thathfis sufficiently
’ large, the delay time becomes equal to the response time of
0 == the system, and therefore independent of the sweep rate. This

effect, that is the dependence of the response time of the
system on the initial pumping value—the “memory time"—
and the dependence of the first peak amplitude on the delay
Fig. 9. () and(b) The variation of the delay at the bifurcation starting from time, can be easily measured in a similar experiment, but
the instant when the driving signériangle wavg crosses threshold. This will be the subject of future work. We note that the linear
_choice provides the best visualization_bu.t is not the best choice for measugquation(z) can still be solved analytically if we add a con-
ing the delay—see the text. (a) the solid line represents the laser response stant term (modeling an imperfectidm a modulation, or

at f =3 kHz, the dashed line dt=10 kHz. The curve af =1 kHz has too . Th lizati di din Ref. 11. Finall
low a resolution(see the tejtand is not shown. The straight lines are noise. ese genera 'Z_a 1ons E_lre ISCussed In Rer. - Finally,
superimposed on the linear part of the laser intensity response and are ifvhether we deal with a first- or second-order phase

tended to guide the eye to show the expected behavior of the laser intensityansition-like model does not change any of our conclu-

in the absence of a delayed bifurcation. The shift toward positive values ogions.

the intensity of the crossing point of the straight lifasthe trigger timgis Another generalization is provided by optically bistable

discussed in the text(b) Same as(a) for f=20 kHz (solid line), f system§.9 In this case, the minimal equation, E(q.), must

=50 kHz (long-dashed ling and =80 kHz (short-dashed lineA reduc- 5.6 5 cybic nonlinearity and therefore the dependence on

tion in the delay time for increasing frequentys clearly visible throughout . . .

the graphgnotice the change in horizontal scale betwéanand (b)]. the swe_ep rate will be C_haraCterlzed by dlffe_rent eXponent_S'_
The basic problem remains the same: sweeping across a criti-
cal point (here, a limit poink induces a delay generated by
critical slowing down and the dynamical hysteresis is larger

VII. QUESTIONS FOR STUDENTS than the static one.

We offer a few questions that can be posed to students taCKNOWLEDGMENTS
test their degree of understanding of the physics behind the

experiment and their mastery of the techniques involved. ~ The work in Brussels was supported by the Fonds Na-

i . i ) ) tional de la Recherche Scientifique and the Interuniversity
(1) If the delay in reaching the bifurcation point grows when attraction Pole program of the Belgian government. We are
reducing the frequency, then why was the static threshgrateful to M. Giudici for comments and discussions.
old determined by using a very slow ramp-% Hz in
Sec. IV? dCorresponding author; electronic mail: Gian-Luca.Lippi@inin.cnrs.fr
(2) Is it possible in practice to obtain an actual measurement’Undergraduate student at the Department of Physics at the time of the

of the true static threshold in a real experiment? Justify work. ) ) )
IN. B. Tufillaro and A. M. Albano, “Chaotic dynamics of a bouncing ball,”

your answer. )

) . . Am. J. Phys.54, 939-944(1986; T. M. Mello and N. B. Tufillaro,
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ing Ir.ltenSIty front (Se.e SE(_:. IV, frmd. (c) the zero- amorphous ribbons,” J. Appl. Phy89, 5736—-57381991.
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What are the advantages and the disadvantages of eacks of bifurcations in spin-wave instabilities,” J. Appl. Phyg, 5430—
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the triangular driving, does not possess enough resolution to show the
detail of the transition: an overshoot of the intensity beyond the triangular
shape, with damped oscillations. This can only be seen by triggering
aroundV* and expanding the scale. However, one can recognize an indi-
cation of a more complex evolution from the jagged trace at the sharp
front.
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tween considering the explanation obvious, when looking at the theory,
and totally wrong, when sitting in front of the experiment. It may take
some time and patient discussion to convince them of the fact that the
experimental results truly agree with the theoretical interpretation and that
their intuition and some of the experimental visualizations suggest the
wrong conclusion.

Swith digital oscilloscopes that provide the derivative of the signal, it is
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related to the fact that due to the continuous sweep, the laser maintains a
certain degree of memory of its state at the previous instant. As a conse-
guence, the initial slope of the laser intensity versus time is smaller than it
ought to be, and the extrapolated straight lines meet at a nonzero vertical
coordinate. A discussion of the various consequences on the output inten-
sity of a class-B laser of sweeping the pump can be found in Ref. 24. As
an illustration, the flatter slope in the initial phases of lasing for growing
pump values can be recognized clearly in Figh)fwhere the linear re-
sponse regime appears to be doubled; the upsweep corresponds to the
lower of the two curves. In Fig. 8 the same effect is less visible because of
the scale on which the curves are plotted.
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function generator, directly into the laser circuit with a jack connector.
High Speed Silicon Detector, 1 GHz bandwidth, Model DET 210 by Thor-

labs,~$100. 2

of points measured in Fig. 7, is beyond the scope of this paper. An under-
standing of its physical origin can be gained from Sec. V.A of Ref. 20.

%P. Jung, G. Gray, R. Roy, and P. Mandel, “Scaling law for dynamical

15This system is no longer sold by Thorlabs and we do not know of another hysteresis,” Phys. Rev. Let65, 1873-18761990; J. Zemmouri, B. Se
company selling this device. A possible replacement for this laser system gard, W. Sergent, and B. Macke, “Hesitation phenomenon in dynamical

could be the PMA Laser Module by Power Technologwww.pow-
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hysteresis,"ibid. 70, 1135-11381993.
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