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1 Introduction

The purpose of this paper is to discuss some of the background solutions in topologically

gauged CFTs in 2 + 1 dimensions with N = 8 supersymmetry and an arbitrary SO(N)

gauge group [1, 2] and to point out some of their properties relevant in this context. Apart

from Minkowski, and well-known geometries like round AdS3 and null-warped AdS3 found

already in [2], we here identify a new more exotic one belonging to a different category

of solutions as will be explained below. The main point of this paper is to argue that

only very special solutions in topological massive gravity (TMG) will appear due to the

connection to the unbroken superconformal phase of the theory.

Topological gauged CFT refers in general to superconformal Chern-Simons(CS)/matter

field theories in three dimensions whose global symmetries have been gauged by coupling

the theory to conformal supergravity. In three dimensions conformal supergravity is gov-

erned by gravitational CS terms [3, 4] and is therefore topological in nature. Topologically

gauged CFTs of this kind were first discussed in [1] where the gauging was applied to the

ordinary N = 8 BLG theory [5–7]. For the N = 6 ABJ(M) theories [8, 9] the same type of

construction was obtained shortly afterwards in [10] where a new potential for the scalar
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fields was found as we will have reason to briefly discuss later. Entirely new theories with

local N = 8 conformal supersymmetry, SO(N) gauge groups for any N and new scalar

potential terms were subsequently discovered in [2] which also completed the task, set by

the authors of [1], of gauging the BLG theory. The topological properties of the gravita-

tional sector of the theory are important for what kind of degrees of freedom it describes.

Thus, one of our goals will be to initiate an analysis of the spectrum in the different broken

phases of the gauged theory with SO(N) gauge symmetry. The higgsing that turns the CS

gauge fields into massive vector fields will be discussed in detail, and we will present some

exact formulae for the interactions with the remaining scalar fields. We will also note that

the higgsed scalars satisfy the singleton field equation.

The construction of the topological gauged BLG theory was started in [1] and com-

pleted in [2] where it was also found that if one turns off the BLG interactions it becomes

possible to generalize the gauge symmetry from SO(4) to SO(N) for any N . This was shown

using three different methods, one of them being the Noether method.1 Since no details of

the derivation of the potential using the Noether method were given in [2] we present some

of the details in the appendix, restricting ourselves to the SO(N) theory which starts from

the free matter theory. We stop the presentation at the point where we can deduce the new

potential terms. The appendix also discusses the SO(N) gauge field and presents a more

direct argument for the normalization of the SO(N) CS term than that given in [2]. The

reader may consult [2] for the complete arguments showing the existence of these N = 8

topologically gauged SO(N) theories.

Before we turn to the theory with N = 8 let us very briefly review the situation for

N = 6. The topologically gauged ABJ(M) theories were obtained in [10] and discussed

further in [13] (see also [2]). Apart from the superconformal gravity sector and a standard

ABJ(M) theory it contains a new UR(1) CS gauge field and a number of new interaction

terms. In particular one finds a new scalar potential and the expected conformal coupling

term −1
8 |Z|

2R between the curvature scalar and two scalar fields ZAa which are complex

in this case: lower case indices are three-algebra and upper case fundamental SU(4) R-

symmetry indices (for details, see [10]). The potential is then found to consist of the

original (single trace (st)) term

V
(st)
ABJ(M) = 2

3 |Υ
CD

Bd|2, ΥCD
Bd = λfabcdZ

C
a Z

D
b Z̄

c
B + λfabcdδ

[C
B Z

D]
a ZEb Z̄

c
E , (1.1)

plus the following new terms: with one structure constant (double trace (dt))

V (dt)
new = −1

8gλf
ab
cd|Z|2ZCa ZDb Z̄cCZdD − 1

2gλf
ab
cdZ

B
a Z

C
b (ZDe Z̄

e
B)Z̄cCZ̄

d
D , (1.2)

and without structure constant (triple trace (tt))

V (tt)
new = −g2( 5

12·64(|Z|2)3 − 1
32 |Z|

2|Z|4 + 1
48 |Z|

6) , (1.3)

where λ = 2π
k (k is the CS level) and g the gravitational coupling constant.

1The other two methods used in [2] are the on-shell superalgebra method and superspace. In that

work the superspace method was finally successfully applied to this problem which has a number of special

features that make the analysis more complicated than for Poincaré supergravity theories, see, e.g., [11, 12].

– 2 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
7

We can now break the conformal symmetries by introducing a real VEV v for one of

the scalar fields ZaA [10] and consider the following terms in the lagrangian:2

L(v) = −1
gLCS(ω) −

v2

8
eR− eV (v), (1.4)

where only the triple trace terms contribute to the VEV of the potential V (v). By compar-

ing to the TMG Lagrangian discussed in the context of chiral gravity by the authors of [14]

(but with an opposite sign in front of the whole Lagrangian) we find that their parameters

can be expressed in terms of the ours, v and g, as follows (Λ = − 1
l2

)

µ = g
κ2
, κ2 = 8

v2
, 1

2l2
= g2v4

128 , (1.5)

which shows that the chosen VEV produces a theory that sits exactly at the chiral point:

µl = 1. (1.6)

Below we will repeat the above search for a critical AdS3 solution in the N = 8 case.

We will find that this does not work unless we generalize the VEV to several scalar fields, a

fact first observed in [2]. This step will generate a set of solutions which will be elaborated

upon in section 2. In section 3 we discuss the spectrum and supersymmetry in the various

backgrounds. Here relations to AdS3 singletons seem to appear. A few comments are

collected in section 4 and some computational details of the Noether construction of the

potential can be found in the appendix.

2 Field equations and background solutions

In this section we will find and discuss a number of background solutions. Two of these were

briefly mentioned in [2] and are known to be in some sense (see below) critical. Here we

will also identify a new solution that is unfortunately less well understood. Supersymmetry

and other properties of these backgrounds will be discussed in the following section.

2.1 The bosonic part of the lagrangian with SO(N) gauge symmetry

The bosonic part of the action consists of the following terms [2]

LBos = −1
gLCS(ω) + 2

gLCS(B) − 4
gLCS(A) − e

2g
µνDµX

i
aDνX

i
a − e

16X
2R− eV (X), (2.1)

where the various Chern-Simons terms are given in terms of the conventionally normalized

Lagrangians LCS(..):

LCS(A) =
1

2
εµνρ(Aabµ ∂νA

ab
ρ +

2

3
Aabµ A

ac
ν A

cb
ρ ). (2.2)

The conformal coupling X2R is the d = 3 version of the general case

L = −1
2(∂µΦ)2 − d−2

8(d−1)Φ2R, (2.3)

2The coupling constant g was later introduced in [13] but is not really crucial for the argument.
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and the new SO(N) potential, which is a special combination of triple trace terms (recall

that the BLG structure constants have been set to zero in this SO(N) theory), can be

written as a square as follows

V (X) = g2

2·32·32(X2Xi
a − 4Xj

aX
j
bX

i
b)

2, (2.4)

where the indices a, b, .. and i, j, ... are vector indices of the gauge group SO(N) and R-

symmetry group SO(8), respectively. The covariant derivative is Dµ = ∂µ +ωµ +Bµ +Aµ.

See the appendix for conventions and [2] for additional details.

We can now vary these terms to get the equations of motion for the bosonic fields which

we will later linearize to find the spectrum, analyze stability etc. To properly analyze the

issue of stability one needs, in fact, to go beyond the linear level (see, e.g., Maloney et

al. [15]) but that will not be done in this paper.

Since a single scalar VEV < X >= v (for one component X1
1 of Xi

a, say) solves the

Klein-Gordon equations we can just insert the VEV into the Lagrangian to analyze which

geometries will satisfy the gravitational field (Cotton) equation. To this end we need the

background value of the potential:

V (v) = 9g2v6

2·32·32 . (2.5)

This is, however, a factor of 9 wrong if we had expected to end up at the chiral point as in

the ABJ(M) case [10]! This is easily seen as follows. By considering the gravitational CS

term, the X2R term and the potential evaluated at the VEV we get

LV EV = −1
gLCS(ω) − v2e

16 R− eV (v). (2.6)

This may be compared to the action used by Li, Song and Strominger (LSS) [14] in their

analysis of the chiral point3:

LLSS = − 1
κ2

( 1
µLCS(ω) + e(R− 2Λ)). (2.7)

Thus in this case µ = g
κ2

and v2 = 16
κ2

. The chiral point condition is µl = 1 where l is

defined in terms of the cosmological constant as usual: Λ = − 1
l2

. This implies that, to end

up at a chiral point, the potential must satisfy

V (v) = −1
eLX6(v) = −2Λ

κ2
= 2

κ2l2
= 2µ2

κ2
= 2g2

κ6
= 2g2v6

163
= g2v6

2·32·32 , (2.8)

which differs from the background value above by a factor of 9. In [2] the observation was

made that if two scalar fields are given the same VEV this factor of 9 disappears and one

ends up at the chiral point with µl = 1. In fact, by giving three scalar fields the same VEV

we find instead that µl = 3 which has a null-warped solution. Below we will elaborate on

this situation and discuss the other values of µl that appear.

3Note that this is a TMG [16] type Lagrangian with signs opposite to those used by LSS in [14]: the

signs used in our paper are dictated by the unitarity of the scalar field sector together with supersymmetry

and can not be changed. However, even supersymmetric phases may have unitarity problems (appearing

here only at the boundary) as indicated by the results of [14] and [17].
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The reason we expect the chiral point value µl = 1, or other special values of µl,

to play a role here is that we want to avoid massive propagating gravity modes in the

bulk [15] which are not there in the conformal phase [1]. Introducing a similar kind of

VEV in the ABJ(M) case [10] leads, in fact, directly to the chiral point as was reviewed in

the previous section. That special “critical” values of µl are relevant for the broken phases

also in N = 8 theories will be a working hypothesis adopted in the following. This will be

crucial also for what kind of conformal field theories that can arise at the boundary of the

AdS or the null Killing vector backgrounds that we will find later. Note that Minkowski

does also arise as a solution which may have a rather special “boundary CFT” (see [19, 20]

and references therein). We will not discuss boundary theories in any detail in this paper

but we should mention here that one case that appears as a solution is the null-warped

AdS3 with its Schrödinger symmetries at the boundary discussed, e.g., in the context of

cold atoms [21–23].

As just mentioned, one important aspect of the critical point of Li, Song and Stro-

minger [14] is that there are no massive gravity modes present. The degeneration that

occurs in the spectrum when tuning the non-critical TMG theory to its critical value may

result in log-modes which would be problematic from a unitarity point of view4 (see, e.g.,

the recent review [24]). However, as explained in [15] by choosing the boundary conditions

one can consistently truncate the theory to a chiral subsector. A similar phenomenon may

be at work also in the null-warped case as argued in [25]. The behavior of scalar fields in

this context has been discussed for instance in [26]. Other general properties stemming

from the fact that the theory comes from a conformal phase may be extra symmetries as

found for the null-warped metric (see below).5

2.2 Bosonic field equations and background solutions

We here summarize the bosonic field equations found in [2]. The Cotton equation reads

1
gCµν −

eX2

16 (Rµν − 1
2gµνR) + e

2gµνV (X)

− e
2(DµX

i
aDνX

i
a − 1

2gµνD
σXi

aDσX
i
a)− e

16gµν�X
2 + e

16DµDνX
2 = 0. (2.9)

Turning to the matter sector we first give the scalar field equation. Discarding the

fermions it becomes �Xi
a− 1

8X
i
aR−∂Xi

a
V (X) = 0 which can be seen to be consistent with

the trace of the Cotton equation. Using the expression for the potential the Klein-Gordon

equation becomes

�Xi
a − 1

8X
i
aR =

g2

32·32(3Xi
a(X

2)2 − 8Xi
a(X

j
bX

k
b )(Xj

cX
k
c )− 16X2Xk

aX
k
bX

i
b + 48Xj

a(Xj
bX

k
b )(Xk

cX
i
c)) .

(2.10)

Finally, for the R-symmetry gauge field we have the following field equation

εµνρGijνρ + g egµνX [i
aDνX

j]
a = 0, (2.11)

4See, however, the previous footnote.
5Extra symmetries have, in fact, also been found at the chiral point [27].
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while for the SO(N) gauge field Aabµ we get

− 2εµνρ Fνρab + g egµνXi
[aDνX

i
b] = 0. (2.12)

The field equations for the two vector fields are trivially satisfied in the backgrounds we

use here. Thus we can concentrate our efforts on the Cotton and Klein-Gordon equations.

We now demonstrate that these last equations allow for a number of different back-

ground solutions two of which were briefly mentioned but not analysed in [2]. The first

step will be to solve the Klein-Gordon equation. To do this we introduce a VEV p× p unit

matrix v1p×p by setting6

Xi
a =< Xi

a > +xia = vδIA + xia, (2.13)

where the VEV term proportional to δIA (I = 1, 2, .., p, A = 1, 2, ..., p ≤ 8 or p ≤ N if

N < 8) means that the scalar fields that are given the same VEV v are the first p ones

along the diagonal starting from the upper left-hand corner of the rectangular matrix Xi
a

having 8 rows and N columns. Recall that the indices take the values i = 1, 2, ..., 8 and

a = 1, 2, ..., N where N can be any positive integer. The capital indices A,B, .. and I, J, ..

are thus of the same kind as far as their transformation properties are concerned and we

will not distinguish between them from now on. xia are the fluctuations relative these

VEVs. We thus have, e.g., X2 = Xi
aX

i
a = pv2 + 2vz + x2, where the trace xI I = z and

x2 = xiax
i
a.

For the index choice i = I, a = A the scalar field equation in the background of the

matrix VEV becomes

R̄ = 6Λ = − 6
l2

= − 6
16·16g

2v4(p− 4)2, (2.14)

where R̄ refers to the background value of the curvature scalar. This equation will be

a constraint valid in all considerations to be made in the rest of the paper whether the

background is maximally symmetric or not. In order to discuss the other scalar equations

we split the indices as follows:

i = (I, î), a = (A, â). (2.15)

We then note that using i = I, a = â etc, the remaining scalar field equations are trivially

satisfied since there are no VEVs connecting the two indices in these cases.

What remains to be solved is the Cotton equation. To do this for general values of p

we consider first the Lagrangian with the background put in for all fields except the metric:

LV EV = −1
gLCS(ω) −

epv2

16
R− ev6g2

2·32·32p(p− 4)2. (2.16)

Comparing this to the Lagrangian used in the analysis of LSS [14]

L = − 1
κ2

( 1
µLCS(ω) + e (R+ 2

l2
)), (2.17)

6There may be other ways to introduce scalar VEVs. Only some simple modifications of the VEV used

here have been checked and seen to give nothing new.
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we can read off its parameters expressed in terms of our variables v, g:

κ2µ = g, κ2 = 16
pv2
, 2

κ2l2
= p(p− 4)2 v6g2

2·32·32 , (2.18)

where κ2 and l have dimension L1 and µ dimension L−1 since g is dimensionless. Recall

that the field Xi
a and thus v has dimension L−1/2. The parameter relations above can be

written

µ = g
κ2

= gpv2

16 , l = 1
κ

2·32
|p−4|√pv3g = 16

|p−4|gv2 , (2.19)

and hence

µl = |1− 4
p |
−1. (2.20)

This equation gives the following values for p = 1, 2, ..., 8:

µl = 1
3 , 1, 3,∞, 5, 3,

7
3 , 2. (2.21)

The interesting cases are p = 2 which allows for an ordinary critical (chiral) round AdS

solution together with p = 3 and p = 6 both having a null-warped AdS (see [25, 28] and

references therein) as a possible solution. This latter solution has a non-zero Cotton tensor

but a constant curvature scalar as we saw above is a property all solutions must satisfy.

Also p = 4 is interesting since the potential vanishes and the solution is flat Minkowski

space-time. Recent work like [19, 20] might be relevant in this case. These geometries are

all very well-known and will be described briefly below. However, for p = 5 we get µl = 5

which is intriguing: a solution with µl = 5 was discovered only recently by Ertl, Grumiller

and Johansson (EGJ) [29] and as we will see below the way this solution is obtained is very

different from the other ones mentioned here.

Thus several of the µl values in the list above can be connected to solutions of TMG

that are critical or in some sense special, at least this is the case for p = 2, 3, 4, 5, 6. It

is therefore natural to wonder if the remaining values also have special solutions which,

however, have not yet been found in TMG.7 Note that non-critical solutions based on

the round AdS3 exist for any value of µl but then there are propagating massive (positive

energy) gravitons. In this context we may remind the reader that the theories discussed here

have a potential problem with unitarity due to negative energy black holes and boundary

modes. For a discussion of this issue in bosonic TMG, see [31]. Some perhaps relevant

comments concerning supersymmetric theories can be found in [17].

2.3 Some properties of the special (critical) solutions

In this subsection we discuss some of the special solutions of the Cotton equation that are

possible for the values of µl that appeared for the different choices of scalar VEVs. There

are several recent attempts to classify the known solutions of TMG, see for instance [32–34]

and [29].8 These papers also contain some new solutions as well as most of the original

7The value µl = 2 does in fact come up in the context of BTZ black holes [30]. I am grateful to H.R.

Afshar for pointing this out to me. See also Note added at the end of the last section.
8A complete classification of all homogenous solutions with constant scalar invariants in TMG, NMG

and GMG [35] can be found in [36].
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references for the previously found solutions which appear in various guises in the literature.

E.g., in [33] the Petrov-Segre classification is adapted to this situation and shown to directly

account for the known solutions as belonging to a very limited set of classes. We will,

however, be mostly concerned with a method discussed first by Clement [37] and later

used in [29]. In the latter work the authors divide the construction of stationary axi-

symmetric TMG solutions into sectors called Einstein, Schrödinger, warped and generic.

After observing that all known solutions belong to the first three classes they go on to

construct a new solution that belongs to the general class and which turns out to have

rather special properties. The metric has µl = 5 and is non-polynomial in the radial

coordinate r (see below).

It is convenient to use light-cone coordinates such that three-dimensional Minkowski

space-time with signature (−+ +) is described by the metric

ds2 = dρ2 + 2dudv, (2.22)

where ρ is the “radial” coordinate taking values from −∞ to +∞ and 2dudv = −dt2 +dx2.

In the literature other closely related coordinates appear: for instance the coordinate

r (0 < r < ∞) related to ρ by 2ρ/l = log(r/l) is often used. Note, however, that in the

reference [29] ρ corresponds to our radial coordinate r. Also, the commonly used coordinate

z can then be introduced by r/l = z−2.

The existence of global coordinate systems that turn the Poincaré patch into a geode-

cically complete space are very important in the cases below. This is one of the features

that may be common to all the solutions that we call “critical” in this paper. The global

coordinates for the round AdS3 are well-known and the null-warped case is thoroughly

discussed in [38] while the situation for the EGJ solution with µl = 5 is not clear.

Critical AdS3 (p = 2, µl = 1): The metric for the round AdS3 with radius l is

ds2 = dρ2 + 2e2ρ/ldudv = l2
dr2

4r2
+

2r

l
dudv =

1

z2
(l2dz2 + 2dudv). (2.23)

Criticality refers in this case to the fact that the massive bulk gravity mode disappears and

a potentially chiral boundary theory becomes possible as µl is tuned to one [14, 15]. In the

context of this paper with a large number of scalar fields present, the chiral limit should be

reconsidered. Some relevant results in this direction may be found in [26]. Since in three

dimensions the Weyl tensor vanishes, the Riemann tensor is given entirely by the traceless

Ricci tensor and the curvature scalar. It then follows that being Einstein is equivalent to

being maximally symmetric, and hence the above metric is the unique solution of TMG

with zero Cotton tensor.9 This corresponds to the class O in the Petrov-Segre classification

in [33] and to the Einstein sector in [29].

In [32] the Killing spinor equation is solved and shown to have two solutions corre-

sponding to the two components of a spinor in three dimensions. Thus this background

allows for eight ordinary AdS3 supersymmetries in the context of this paper.

Null-warped AdS3 or Sch3(z = 2) (p = 3 and 6, µl = 3): The relation z = µl+1
2 is

obtained by using the ansatz ds2 = dρ2+2e2ρ/ldudv±e2zρ/ldu2 to solve the Cotton equation

9For non-Einstein solutions with µl = 1, see [39]. See also [33].
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in TMG. For the value 2 of the dynamical scaling parameter z, corresponding to µl = 3,

the solution is critical in the sense that among the solutions with a null Killing vector it has

no tidal forces, a global coordinate system [38] and an extra conformal generator [21, 22].10

As discussed in [25], it may also be possible to truncate the spectrum in a chiral fashion

similar to the µl = 1 case of the previous subsection. This metric can be written as follows

ds2 = dρ2 + 2e2ρ/ldudv ± e4ρ/ldu2 = l2
dr2

4r2
+

2r

l
dudv ± r2

l2
du2 =

1

z2
(l2dz2 + 2dudv)± du2

z4
,

(2.24)

where the properties of this geometry depend on the sign in front of the last term, see [28].

In this case we know from [32] that the three-dimensional geometry can only support

one (component) supersymmetry due to the presence of a null Killing vector (without being

the round AdS). In fact, the existence of a Killing spinor in this geometry implies that

there is a null vector Kµ satisfying

DµKν = −εµνρKρ. (2.25)

Turning the argument around [32], assuming a null Killing vector (not necessarily satisfying

the anti-symmetric part of the above equation), the TMG geometries are just the super-

symmetric ones given above allowing, however, also for their orientation flipped versions.

The EGJ solution (p = 5, µl = 5 ): This solution was first obtained by Ertl, Grumiller

and Johansson (EGJ) in [29]11 using an approach discussed originally by Clement [37].

To find all solutions of TMG that are stationary and axi-symmetric one may adopt the

following ansatz for the metric:

ds2 = (det h)−1dr2+hαβdx
αdxβ = (det h)−1dr2+h++dudu+2h+−dudv+h−−dvdv, (2.26)

where the three functions in the hαβ part of the metric depend only on the radial coordinate

r. (In this subsection we use the conventions of [29] apart from renaming their coordinate

ρ as r and denoting derivatives by a prime instead of an over-dot.) Thus we denote the

functions h++, h−− and h+− as X+, X−, Y , respectively, and note that

det h = X+X− − Y 2 := XiXjηij , (2.27)

defines an auxiliary flat metric η with signature (+,−,−). Setting Xi = (X+, X−, Y ),

we find that (the physical) Minkowski space corresponds to Xi = (0, 0, 1) and the max-

imally symmetric AdS3 to Xi = (0, 0, r) while the null-warped case is obtained from

Xi = (r2, 0, r). In all these cases X
′ · X′′

= 0 and X
′′2

= 0 which can be shown to

imply X
′′′

= 0. As emphasized in [29] the first two conditions reduce the phase space

to a four-dimensional hypersurface. The new solution with µl = 5 will not satisfy these

conditions and therefore seems to make use of the entire six-dimensional phase space. The

functions Xi then no longer satisfy X
′′′

= 0 and will, in fact, become non-polynomial in

the radial coordinate. No closed form of the solution is yet known.

10This fact is important for the condensed matter applications to Fermi gas/cold atom systems. For other

properties of this geometry relevant for applications, see [23, 40–42].
11For an earlier analysis using these methods, see [15].
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The set of equations obtained by using this ansatz for the metric in the Cotton equation

divides into a hamiltonian constraint, which involves fields acted upon by at most two r

derivatives (see below), and three equations for the Xi containing terms that are third order

in derivatives. However, one can integrate the third order equations once by employing the

fact that the ”angular momentum” associated to the Lorentzian symmetry of the dynamical

equations containing ηij and X is a constant of motion. In fact, acting with a derivative on

J = X×X
′
+ 1

µX× (X×X
′′
)− 1

2µX
′ × (X×X

′
), (2.28)

results in a cross product of X and the third order equations of motion. Thus one wants

to solve this last equation together with the following second order equation, which is the

hamiltonian constraint in the TMG theory,

1
2X

′2
+

2

l2
− 1

µ
εijkX

iX
′jX

′′k = 0. (2.29)

In fact, all the dynamical equations follow from the following TTM (topologically massive

mechanics) action [37]:

STMM =

∫
dρ e(1

2e
−2X

′2 − 2

l2
− 1

2µ
e−3εijkX

iX
′jX

′′k), (2.30)

where also an einbein e has been introduced.

These equations also imply that that the curvature scalar can be expressed as

R = 2X ·X′′
+

3

2
X

′2
= − 6

l2
, (2.31)

which, if combined with the hamiltonian constraint, implies

µX ·X′′
+ X ·X′ ×X

′′
= 0. (2.32)

Following Ertl et al. [29] for µl = 5, if we set (s = 0,±1)

XT|0 = (1, 0, 0), X
′T|0 = µ(s, 0, 2

5), (2.33)

we can start solving the equations in an iterative fashion. We find

X
′′T|0 = (X

′′+|0, 0, Y
′′ |0), (2.34)

where

Y
′′ |0 = 1

2µX
′′′−|0, X

′′+|0 = 125
32µ4

(X
′′′−|0)2 + 5s

4µX
′′′−|0. (2.35)

Thus, one difference between this solution and the critical ones discussed above is that the

component X− is non-zero starting at third order in r. How this affects the possibility for

this geometry to support supersymmetry remains to be clarified.

Minkowski (p = 4, µl =∞): Recall that we are in this paper assuming that the relevant

solutions are in some sense “critical” with properties that stem for their connection to a

conformal phase. In the context of Minkowski space this is a particularlry delicate issue.

However, we note that there are discussions in the literature concerning the possibility to
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tune an AdS bulk geometry to a flat space and follow what happens to the symmetries of

the CFT at the boundary, see, e.g., [19, 20]. This could be telling us to define a “critical”

Minkowski solution for p = 4 by relating it to the BMS algebra, see, e.g., [43].12

3 Mode analysis and supersymmetry

To study the spectrum we should expand the Lagrangian and the field equations around

the VEV v using

Xi
a =< Xi

a > +xia = vδIA + xia, (3.1)

where the VEV matrix is proportional to the p × p unit matrix, i.e., A, I = 1, 2, ..., p ≤ 8

(or p ≤ N if N < 8). Note that we have defined the upper index as the first one and the

lower as the second one (whether indices are upper or lower will not matter from now on)

and that we in the broken phases do not need to distinguish between the two sets of capital

Latin indices A,B, ... and I, J, ... As already mentioned we define also the remaining index

values î and â by setting i = (I, î), a = (A, â).

3.1 Symmetry breaking and massive vector fields

At this point we can insert the VEV into the Klein-Gordon term in the Lagrangian to

determine the symmetry breaking pattern. The terms proportional to v2 are

L(v2) = −1
2v

2(Aabµ δ
I
B +Bij

µ δ
J
A)2 = −1

2v
2((AâBµ )2 + (B îJ

µ )2 + (AABµ −BAB
µ )2), (3.2)

where a square (Aµ
AB)2 = AµABAABµ etc. Note also that we have adopted the summation

rule that Aabµ δ
I
B := AaBµ δIB etc. Thus the symmetry breaking of the bosonic gauge and

R-symmetries is governed by the coset

G/H : G = SO(N)× SO(8), H = SO(N− p)× SO(8− p)× SO(p)diag, (3.3)

where the factor SO(p)diag is the diagonal part of the two SO(p) groups coming from SO(N)

and SO(8) after breaking.

However, the two gauge fields involved in the SO(p) part of this system have differently

normalized CS terms and the equations of motion need to be properly diagonalized to find

the actual mass of the higgsed vector field. The combination of the two vector fields

that remains a gauge field after breaking is determined as follows. The linearized vector

equations read, for the R-symmetry gauge field, with δBµ := bµ and δAµ := aµ,

2ε̄µ
νρ∂νbρ + gv2ēδρµ(aρ − bρ) = 0, (3.4)

and for the SO(p) gauge field

4ε̄µ
νρ∂νaρ + gv2ēδρµ(aρ − bρ) = 0. (3.5)

12In relation to the second of these references we note that the limit used there to get the wanted flat

space CFT is similar to tuning the VEV v introduced here to zero keeping g fixed!
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As we will now see, the reduction of this system to a single vector field is similar to that

used by Mukhi and Papageorgakis in [44] but will here in addition to the Yang-Mills term

generate a topological mass term in a curved background. To see this we define

c′µ = 2aµ − bµ, cµ = aµ + 2bµ, (3.6)

which satisfy

ε̄µ
νρ∂νc

′
ρ = 0, ε̄µ

νρ∂νcρ = −5m
4 ē(aµ − bµ) = −m

4 ē(3c
′
µ − cµ), (3.7)

where the mass m = gv2. In the parity symmetric case studied in [44] the field cµ does not

appear on the right hand side of the second equation. The general non-symmetric situation

with arbitrary parameters in front of the various terms is, however, discussed in [45] and

contains the features seen here. Eliminating the field c′µ we obtain in our case the following

field equation for H̄IJ
µν = ∂µcν − ∂νcµ:

ē D̄νH̄νµ =
m

8
ε̄µ
νρH̄νρ, (3.8)

which is a topologically massive gauge theory [46, 47] in a curved background.13 Thus the

Yang-Mills coupling constant g2
YM is proportional to the mass parameter m = gv2.

The last task concerning the vector fields is to rewrite the covariant derivative in terms

of the gauge field cµ which will also give us a hint about the structure of the full non-abelian

case. Thus, using the above expression for c′µ, we get

aµ =
1

5
(cµ + 2c′µ) =

1

3
(cµ −

8

5mē
ε̄µ
νρD̄νcρ), (3.9)

and

bµ =
1

5
(cµ + 2c′µ) =

1

3
(cµ +

4

5mē
ε̄µ
νρD̄νcρ). (3.10)

Now we rescale cµ to cancel the factor 1
3 , rename the field as Cµ and express the covariant

derivative as follows

DµX
I
A = ∂µX

I
A +AµABX

I
B +BIJ

µ XJ
A →

DµX
I
A −

4

5me
(2(εDCIJ)µX

J
A − (εDCAB)µX

I
B), (3.11)

where the new covariant derivative, also denoted Dµ, is

DµX
I
A = ∂µX

I
A + CµABX

I
B + CIJµ XJ

A. (3.12)

A more complete treatment using the non-abelian field strength HIJ
µν defined by the com-

mutator as usual is obtained by the replacement

(εDCIJ)µ → 1
2εµ

νρHIJ
νρ . (3.13)

13For a very nice discussion of the various mass terms that appear in this context and the relations

between them, see [45].
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To find the full non-abelian version of the above equations and to see how they can be

solved also with the scalar source terms present we write the field equations schematically as

2εF +m(A−B) = gXD(A,B)X, εG+m(A−B) = −gXD(A,B)X, (3.14)

where all terms are gauge covariant in the broken phase (A and B are then the same gauge

field up to covariant terms as we saw above). Solving for B from the first equation and

inserting the answer into the second one gives, in the limit g → 0 keeping m = gv2 fixed,

εF = 4
mεP (εF ) + 8

m2 ε(εF, εF ), (3.15)

where P = ∂ +A and where we have used

εG(B) = εG(A+ (B −A)) = εF (A) + 2εP (B −A) + 2ε(B −A,B −A). (3.16)

To linear order in 1
m this gives the same field equation as obtained for Cµ above. This may

be compared to [45] where a similar set of equations is discussed. As seen there, choosing

other combinations of the two gauge fields as the remaining one may lead to situations

which require unlimited iterations of the kind we will see below when the scalar source

terms are kept in the analysis.

Turning on g implies that one needs to solve the equations iteratively to eliminate B

in the derivative D = ∂ + A + B which only appears in the expression XDX. This will

produce an infinite series of terms in powers of 1
mX

2. In fact, the iteration needed is just

to consider the first equation in (3.14) and repeatedly eliminate B on the r.h.s. of

B = A+ 2
mεF −

g
mXPX −

g
mX(B −A)X. (3.17)

Formally the solution is (for m 6= 0)

m(B −A) = Σ∞n=0(Xv )n(2εF − gXPX)(Xv )n, (3.18)

which gives the final answer when inserted into the second field equation in (3.14).

To summarize the situation in the gauge field sector: the vector fields corresponding

to broken generators have all become massive in the higgs process and possess now one

propagating mode each. The SO(p) gauge field in the final version of the theory is massive

due to the appearance of both a Yang-Mills term and a CS term which is a generalized

version of the higgs effect found by Mukhi and Papageorgakis [44] (see also [45]). The fields

AâBµ and B îJ
µ , on the other hand, both get a mass from a term involving the square of the

gauge field which as we saw above gets added to their respective CS term, and there are

no Yang-Mills terms involved in these cases. In the next subsection we will identify the

scalar fields that get absorbed by the vector fields in the higgsing process.

3.2 Scalar mass terms

When we now turn to the scalar fields we need to divide them as follows:

xia = (x̂îâ, x
î
A, x

I
â, x

I
A), (3.19)
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where, since the indices A and I are identified, the last field must be further split into

xIA = (z, w
˜(IA), y[IA]). (3.20)

Here w is symmetric and traceless and z = xII = δIA x
I
A. The propagating modes absorbed

by the gauge fields in order to become massive are xI â, x
î
A and yIJ , respectively, for the

three mass terms in L(v2) (3.2) discussed in the previous subsection. These three scalar

fields are thus eliminated by the higgsing leaving only the scalars xîâ, z, w
IJ in the theory.

We need to expand the expression in (2.4) whose square gives the new potential around

the VEV. Using Xi
a = vδIA + xia we get

X2Xi
a − 4(Xi

bX
j
b )Xj

a = (pv2 + 2vz + x2)(vδIA + xia)

−4(v2δIJ + v(xiJ + xjI) + xibx
j
b)(vδ

J
A + xja))

= (p− 4)v3δIA + v2(pxia + 2zδIA − 4xIa − 4(xiA + xAI))

+v(x2δIA + 2zxia − 4xibx
A
b − 4xiJxJa − 4xjIxja) + x2xia − 4xibx

j
bx
j
a. (3.21)

The terms in the potential directly relevant for an analysis of the spectrum are of O(v4).

The expression that multiplies v4 in the square of (3.21) reads

(3p2 − 8p)x2 + (12p− 64)z2 − 16(p− 3)xIaxIa

−16(p− 3)xiIxiI + 48xIJxIJ − 16(p− 6)xIAxAI . (3.22)

We start by analyzing the scalar fields xîâ. We find

L((xîâ)
2) = −1

2(Dµx
î
â)

2 − 1
16(xîâ)

2R̄− v4g2

2·32·32p(3p− 8)(xîâ)
2. (3.23)

Inserting the constant background value for R, that is

R̄ = − 6
16·16g

2v4(p− 4)2 = 6Λ(p) = − 6
l2
, (3.24)

gives

L((xîâ)
2) = −1

2(Dµx
î
â)

2 − 2g2v4

16·16 (p− 3)(xîâ)
2. (3.25)

Comparing the BF bound to the p = 2 scalar xîâ mass value we see that they coincide:

m̂2(p = 2) = − 1
64g

2v4 = Λ(p = 2). (3.26)

Also the flat Minkowski case is consistent with unitarity since m̂2(p = 4) > 0. One might

also note that the two null-warped cases p = 3 and p = 6 with the same geometry (and

perhaps without a BF-bound as argued in [48, 49]) seem nevertheless to be different since

the masses are not the same for the two values of p.

We now turn to the trace z = xII . Using XI
A = (v + z

p)δIA + ...., we get

�̄z − 1
8zR̄−

pv
8 R

(1) − g2v4

32·3215(p− 4)2z = 0, (3.27)
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where we have included the first variation of the scalar curvature in case there is a mixing

between z and a gravity mode. Inserting also the expression for the background curvature

scalar R̄ quoted above it reads

�̄z − 3
16·16g

2v4(p− 4)2z − pv
8 R

(1) = 0. (3.28)

To see if there is a mixing with gravity recall that

R(1) := δR = −�̄h+ ∇̄µ∇̄νhµν − hµνR̄µν , (3.29)

where R̄µν is the background Ricci tensor which is non-trivial in all geometries except the

round AdS. In our case we must allow for null-warped, and even more exotic, metrics

with non-zero Cotton and traceless Ricci tensors. As we saw above, however, the scalar

curvature is constant in all cases. We will continue the analysis of the field equation for z

in the next subsection since we will need also the linearized Cotton equation which is the

main subject of that subsection.

Next we consider the field wIJ which is symmetric and traceless. We have

�̄w + g2v4

32 (p− 6)w = 0, (3.30)

corresponding to the mass

m̂2(w) = −g2v4

16 (p− 6). (3.31)

Note that once again the null-warped cases p = 3 and p = 6 are different with even a zero

mass value in the latter case (which also happens for p = 3 in the case of xîâ). This is a

property that will be significant for some of the other scalar fields in the discussion of the

higgs effect below.

For xîA and xIâ we find the same linearized field equation:

�x− 1
8R̄ x−

3
32·32g

2v4(p− 4)2x = 0. (3.32)

Inserting the background value for the curvature scalar we find for each of these fields that

the total mass term vanishes for all values of p:

�xîA = 0, �xIâ = 0. (3.33)

We may note that in three dimensions and for the round AdS3, this happens to be the

upper bound of the mass, using the standard formula also for d = 3, where both Dirichlet

and Neumann boundary conditions are allowed.

The final scalar field to analyze is the anti-symmetric part of xIA. Recall the definition

xIA = (z, w
˜(IA), y[IA]), with w traceless and z the trace of xIA. One easily checks that the

field yIJ = x[IJ ] behaves the same way as the last two scalar fields just discussed, namely

�yIJ = 0. (3.34)

Thus all scalar fields that are eaten by the vector fields corresponding to broken symmetries

behave this way and this is so in all the backgrounds discussed here. More interesting is,
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however, the fact that for some values of p also physical scalar fields behave this way. The

zero mass Klein-Gordon equation is also the equation for the singleton in AdS3 [50], the

implications of which need further study. However, it may be noted that in [50] the authors

mention two different methods to realize singletons in the AdS3 bulk theory, either as vector

fields or by involving �2 field equations. If and how any of these options is realized in the

present context of the topologically gauged theories considered in this paper is not clear

(see, however, the next subsection).

3.3 Linearized field equations for maximally symmetric backgrounds (p = 2, 4)

Due to the complications in the warped cases we will in this subsection restrict ourselves

to the conformally flat cases, i.e., we assume that the background is either the maximally

symmetric AdS or Minkowski obtained for p = 2 and p = 4, respectively. We will continue

to use p dependent formulae when possible but we should be careful to remember that in

this subsection the results are only valid for these two values of p.

For maximally symmetric backgrounds we have a zero Cotton tensor and

R̄µν = 2Λgµν = − 2
16·16g

2v4(p− 4)2gµν . (3.35)

The first variation of the curvature scalar then becomes

R(1) := δR = −�̄h+ ∇̄µ∇̄νhµν − hµνR̄µν = −�̄h+ ∇̄µ∇̄νhµν − 2Λh. (3.36)

Using this expression in the Klein-Gordon equation for the field z we find

�̄( zp + v
8h) + Λ(3 zp + v

4h) = v
8H, (3.37)

where ∇̄µ∇̄νhµν = H and h = hµµ.

We thus seem to need another equation relating the fields z, h and H. This equation

must come from the untraced Cotton equation since the traced one just gives back the

scalar field equation for z. In fact, by decomposing the metric according to

hµν = hTTµν + D̄(µV
T
ν) + (D̄µD̄ν − 1

3 ḡµν�)φ+ 1
3 ḡµνh, (3.38)

we will obtain such an equation below. The Cotton equation is, after using the Klein-

Gordon equation to eliminate some terms,

1
gCµν −

eX2

16 (Rµν − 1
4gµνR)− e

4gµνV (X)

−3e
8 DµX

i
aDνX

i
a + e

8gµνD
σXi

aDσX
i
a + e

8X
i
aDµDνX

i
a = 0, (3.39)

which now has to be linearized. This has been done in many places in the literature (usually

with at most one scalar field present) and we just quote the result

−v2

16(ē δβ(µ −
1
µ ε̄(µ

αβD̄|α)(−1
2�̄hβ|ν) + 1

2∇̄β|∇̄
ρhν)ρ

+1
2∇̄ν)∇̄ρhβρ − 1

2∇̄β|∇̄ν)h+ Λhβ|ν) − Λhḡβ|ν))

+ ēvΛ
8 ( zp −

v
4h)ḡµν + ēv2

64 (−�̄h+H)ḡµν + v
8 ēD̄µ∂ν

z
p = 0. (3.40)
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If the Cotton equation is traced we get

(�̄ + 3Λ) zp + v
8 (�̄ + 2Λ)h = v

8H (3.41)

which as expected is identical to the equation coming from the Klein-Gordon equation for

z given above.

We now need to analyze also the vector part of the Cotton equation. That is, we should

keep the vector fields and get the equation for Wµ = ∇µhµν . Using the decomposition of

the metric given above we find after some algebra

3
2

Λ
µ εµ

αβD̄αWβ = 8
v D̄µ((�̄ + 3Λ) zp + v

8 (�̄ + 2Λ)h− v
8H). (3.42)

The scalar equation for z obtained above puts the expression in the r.h.s. bracket to zero

and hence

εµ
αβD̄αWβ = 0. (3.43)

Relating V T
µ in the metric decomposition to Wµ we get an equation whose divergence

becomes

H = 2
3�̄(�̄ + 3Λ)φ+ 1

3�̄h, (3.44)

and using this in the scalar equation for z leads to the following result:

(�̄ + 3Λ)( zp + v
12(h− �̄φ)) = 0, (3.45)

which means that there is actually only one physical index-free scalar field in the theory.

In order to choose a convenient gauge14 we note that the equation εµ
αβD̄αWβ = 0

suggests the gauge choice V T
µ = 0. Choosing also �̄φ = h it follows that

hµν = hTTµν + (D̄µD̄ν − 1
3 ḡµν�̄)φ+ 1

3 ḡµνh = hTTµν + D̄µD̄νφ, (3.46)

and

H = D̄µD̄νD̄µD̄νφ = (�̄ + 2Λ)�̄φ = (�̄ + 2Λ)h. (3.47)

As in the previous subsection, we find also here some features indicating that AdS3 bulk

singletons play a role. Writing the parameter of coordinate transformations as ξµ = ξTµ +∂µξ

we get a transformation of the trace of the metric involving a � which together with the

appearance of �2 above should be compared to the discussion in [50].

Finally, the equation for the traceless transverse part of the metric hTTµν is identical to

the one obtained in pure TMG [14] namely

(D̄(µ)D̄(l)D̄(−l))(µ
ρhTTν)ρ = 0, (3.48)

where the operators D(l) etc are defined as

D̄(l)µ
ρ = ēδρµ − 1

l ε̄µ
αρD̄α. (3.49)

An analysis with more properties of supergravity taken into account can be found in the

work by Becker et al. [17]. In particular, it is found there that at the critical point (and only

there) super-TMG theories with N = (1, 0), N = (0, 1) and N = (1, 1) supersymmetry but

without a matter sector satisfy a positive energy theorem (in the sign conventions of [14])

and are chiral in the same sense as in the bosonic case studied in [14].

14Fixing the gauge completely, e.g., using the physical light-cone gauge as done in [51], one finds that all

non-zero components of the metric can be expressed in terms of the stress tensor for the matter fields.
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3.4 Susy rules for any p

In this subsection we will briefly discuss what the transformation rules tell us about the

multiplet structure in the different backgrounds. The following formulae are valid for all

values of p.

The fields that appear after the superconformal symmetry breaking will organize them-

selves into supermultiplets according to their number of SO(N − p) vector indices for the

simple reason that the supersymmetry parameter does not have any such indices. Thus

we find one multiplet with 8(N − p) d.o.f. for both bosons and fermions containing the

following fields (the â-vector multiplet)

xîâ, ψâ, A
Aâ
µ (massive), (3.50)

and one with 8p d.o.f. for both bosons and fermions containing (the â-scalar multiplet)

Cµ
IJ(massive), wIJ , z, ψA, B

îJ
µ (massive). (3.51)

The remaining vector fields Aâb̂µ (massless) and B îĵ
µ (massless) couple to both multiplets as

usual for CS gauge fields carrying no degrees of freedom. These two multiplets will also

couple to the gravitational field with spin 2 which is still massless and without propagating

degrees of freedom. The corresponding statement for the spin 3/2 fields depends on the

number of surviving supersymmetries.15 Below we will present some properties of the

transformation rules that support this picture.

The supersymmetry transformation rules are as quoted from [1, 2], with εm = Aεg and

A2 = 1
2 ,

δeµ
α = iε̄gγ

αχµ, (3.52)

δχµ = D̃µεg, (3.53)

δBij
µ = − i

2e ε̄gΓ
ijγνγµf

ν − 3ig
8 ψ̄aγµΓ[iεmX

j]
a −

ig
16 ψ̄aγµΓijkεmX

k
a

− ig
4 χ̄µΓk[iεgX

j]
a X

k
a −

ig
32 χ̄µΓijεgX

2, (3.54)

δXi
a = iε̄mΓiψa, (3.55)

δψa = γµΓiεm(D̃µX
i
a − iAχ̄µΓiψa) + g

8ΓiεmX
i
bX

j
bX

j
a −

g
32ΓiεmX

i
aX

2, (3.56)

δAabµ = ig
4 ε̄mγµΓiψ[aX

i
b] + ig

8 χ̄µΓijεgX
i
aX

j
b , (3.57)

which we want to linearize around a general background. Consider first δψa written as

δψa = γµΓiεm(D̃µX
i
a − iAχ̄µΓiψa) − g

32Γiεm(X2Xi
a − 4Xi

bX
j
bX

j
a), (3.58)

where we recognize in the last term the expression whose square is the potential and which

has been expanded in powers of the VEV in the previous section.

Choosing first a = A we get

δψA = γµΓîεmDµX
î
A + γµΓIεmDµX

I
A − gv3

32 ΓIεm(p− 4)δIA

+gv2

8 ΓIεm(xIA + 2x(IA))− gv2

32 ΓIεm(p xIA + 2δIAz)

−gv2

32 Γîεm(p− 4)xîA + O(x2). (3.59)

15This number will depend on p as is clear from the analysis of [32].
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Note that in all non-Minkowskian backgrounds (p 6= 4) there are non-zero constant

terms indicating a symmetry breaking of the superconformal symmetry. However, these

terms can be removed by adding a special superconformal transformation

δSψa =< Xi
a > Γiηm, ηm = εm

gv2

32 (p− 4). (3.60)

Thus, the Q transformations present in any of the broken phases (except the Minkowski

one) are obtained by this special combination of the Q and S transformations in the

unbroken conformal phase. For instance, in the round AdS case obtained for p = 2 this

leads to the covariant derivative

δχµ = Dµεg + γµηg = (Dµ − gv2

16 γµ)εg := D̂µεg, (3.61)

where we assumed that the same relation between ηm and ηg is true as for the ordinary susy

parameters. Note that as expected the new term is related to the cosmological constant

Λ = − 1
l2

= − g2v4

16·16(p− 4)2, (3.62)

as gv2

16 = 1
2l . Thus for p = 2 we find that

D̂µ = Dµ − 1
2lγµ, (3.63)

which is the same result as found in the ABJM case in [13]. In fact, this form of the

covariant derivative is valid for all values of p (with l =∞ for p = 4).

With this understanding of the mixing of Q and S transformations we have

δψA = γµΓIεmD
′
µ(wIA + 1

pδ
IAz)− v(AIAµ −BIA

µ )) + γµΓîεmvB
îA
µ

+gv2

8 ΓIεm(3wIA + 3
pδ
IAz)− gv2

32 ΓIεm(pwIA + 3δIAz)] + O(x2), (3.64)

where D′µx
I
A = ∂µx

I
A + AµABx

I
B + BIJ

µ xJA and where we have only kept the physical

scalar fields that are not eaten in the higgs effect. At this point we should recall the

discussion in the beginning of this section concerning the reduction of the two gauge fields

to a single massive one and the structure of the interaction terms involving the remaining

scalar fields that arose in that analysis. Using that information we will find that the above

transformation rule is in fact rather non-trivial when written out in detail.

Next we consider the transformation rule for the other choice of index, i.e., a = â,

which after higgsing reads

δψâ = γµ(ΓîεmD
′
µx

îâ + vΓIεmA
âI
µ )− gv2p

32 Γîεmx̂
î
â +O(x2), (3.65)

which also supports the multiplet structure given above. There are many features here

that need further study. These will be studied elsewhere.
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4 Comments

The topologically gauging [1] of free matter CFTs in three dimensions with eight super-

symmetries gives rise to an O(N) type model with a novel six order scalar potential [2].

This potential consists of three different triple trace terms, one of them being (X2)3 where

X2 := Xi
aX

i
a with i = 1, 2, .., 8 and a = 1, 2, .., N . Neglecting the R-symmetry index this

term is precisely the scalar term (φiφi)3 that has been discussed recently, see, e.g., Aharony

et al. [52], in the context of the AdS4/CFT3 correspondence relating O(N) models in three

dimensions to four-dimensional Vasiliev higher spins systems [53]. Note that when con-

struction the other two sixth order terms appearing in the potential of this topologically

gauged model the R-symmetry index play a key role. These two terms in the potential

are therefore not present in the usual treatments of marginal deformations of O(N) type

models in three dimensions but are crucial for the critical solutions to appear in our models.

In relation to the AdS4/CFT3 correspondence it may also the pointed out that in these

topologically gauged O(N) models the Chern-Simons terms of both the vector fields and

the spin connection are multiplied by the same coupling constant (denoted g). Thus if the

interpolation between the A and B type HS models in [53], parametrized by the parameter

θ0, is related to the introduction of gauge interactions and a non-parity symmetric Chern-

Simons term as argued in [54], and hence also to the related bosonization phenomenon,

then in versions with N = 8 supersymmetry also gravitational Chern-Simons terms will

enter on the field theory side. One may speculate that such spin two terms may be related

to turning on θ2, the second coefficient among the θ2n parameters defining the HS theories

that interpolate between the A and B type models in Vasiliev’s system in AdS4.

Some features of topologically gauged CFTs indicate that they may have a deeper

role to play in the context of AdS/CFT . The AdS4/CFT3 correspondence was mentioned

above but also the AdS3/CFT2 correspondence has recently been investigated in depth in

many papers using WN algebras in two dimensions and its connection to Vasiliev’s higher

spin systems in three dimensions, see [55]. In view of the fact that AdS3 arises naturally as

a spontaneously broken phase of a three-dimensional topologically gauged superconformal

theory as discussed in this paper, one may ask if this conformal theory could not itself be the

boundary theory of an AdS4 theory. The sequential AdS/CFT that is suggested by these

facts was first discussed in [56]. The new information since that paper was written, namely

that the topologically gauged CFT3 with eight supersymmetries is actually a kind of O(N)

model, may thus be important. Also the possible role of singletons found in this paper may

be pointing in the direction of such a sequence. In the topologically gauged ABJ(M) models

first derived in [10] and developed further in [13] the situation is a bit more complicated

since in that case there are more than one independent coupling constant for any choice of

gauge group. The idea that several AdS/CFT s may follow one after the other has appeared

previously in the literature. Based on higher spin and unfolding arguments, Vasiliev raised

this possibility in [57] and made it explicit in a recent paper [58]. Speculations with the

same goal based on AdSd foliations of AdSd+1 can be found in [59] (see also [60] for related

comments). However, the scenario of a “sequential AdS/CFT” coming from a topologically

gauged CFT3 is the first one which relies on a dynamical model and a conformal symmetry

breaking mechanism interpolating between two AdS/CFT s as pointed out in [56].
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The main purpose of this paper was to elaborate on the observation that the topologi-

cally gauged O(N) theory with eight supersymmetries has a number of special background

solutions with interesting properties. These solutions, of which two were found in [2], de-

pend on the number of scalar fields that are given a VEV and can be characterized by the

value of µl where µ is the coupling constant of the gravitational CS term and l is related

as usual to the cosmological constant. The solutions that appear correspond to the values

µl = 1
3 , 1, 3,∞, 5, 3,

7
3 , 2. Here we recognize the second one as connected to chiral grav-

ity, the third and sixth ones to the null-warped, or Schrödingier(z = 2), geometry while

µl = 5 can be associated with a solution recently discovered in [29]. µl = ∞ corresponds

to Minkowski space and requires a separate discussion.

In this paper we have tried to argue that although for each of these values there

are more than one kind of solution, the ones that are relevant as broken phases of the

superconformal topologically gauged theory are only the “critical” ones.16 For µl = 1 this

is based on the fact that the critical, or chiral, case has no propagating massive gravitons

which should be a direct consequence of the connection to the superconformal unbroken

phase which is also lacking such modes. The µl = 3 null-warped, or Schrödingier(z = 2),

case has also been argued to be chiral in [25] but is also “critical” for seemingly different

reasons, see, e.g., [38]. The working hypothesis adopted here that all the above values of

µl have special solutions is indeed also supported by the existence of a special solution for

µl = 5 [29]. The topologically gauged ABJ(M) theory [10] have similar properties but for

a smaller set of solutions.

For p = 8 we get µl = 2 which stands out because it is even. If there is a special solution

of this kind it should contain odd powers17 of eρ/l. Examples with such a dependence on

ρ are known in theories containing a scalar field with a potential, see, e.g., [61]. In [62] the

Fefferman-Graham expansion for NMG is discussed in detail and a generalized expansion

introduced that can accommodate both novel boundary behavior in AdS as well as entirely

different non-AdS boundary behavior like for the µl = 3 null-warped solution. There are

also generalizations with higher values µl = 5, 7, ... [63, 64].

The “critical” null-warped, or Schrödinger(z = 2), solution is one of the most attractive

three-dimensional geometries for condensed matter applications. This geometry (often with

extra flat directions) is designed to have Schrödinger symmetries on the boundary that play

a crucial role in, e.g., unitary Fermi gases (cold atoms) etc. Finally, let us return to the

topologically gauged ABJ(M) case mentioned in the introduction. There we recalled the

result from [10] that giving a real VEV v to one of the complex scalar fields gives rise to

a background solution corresponding to a super-TMG theory at the chiral point. In the

context of the topologically gauged SO(N) model investigated in this paper the VEV was

generalized to a p×p diagonal VEV matrix leading to a number of interesting backgrounds.

16A way to make this more concrete may be to consider the unitary representations of SO(3, 2) that are

involved and how they behave under the symmetry breaking. This way of looking at it could, e.g., explain

why only the representations of SO(2, 2) with the correct properties appear in AdS3.
17See Note added at the end of this section for recent developments.
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Repeating this step for the ABJ(M) case we find, for p ≤ 4,

µl =

√
−3p2

5p2 − 24p+ 16
. (4.1)

The values produced by this formula are

µl = 1, 1,
√

27
11 ,∞, (4.2)

where we recognize the first two as critical round AdS and the last one as Minkowski.

This analysis for ABJ(M) is valid for infinite level but one should note that if the other

two sets of potential terms (i.e., the single and double trace terms) are kept they may be

non-zero in some of these backgrounds. From the properties of the structure constants

fabcd summarized in [56] we see that even the part of the potential linear in the structure

constant may contribute: fabab → N2N ′ − NN ′2 giving p(p − 1) in a vector model (that

is, for N ′ = 1) with N = p in the background.

Note added. Since this paper appeared on the ArXiv, there has been developments

relevant for the list of known solutions realizing the values of µl listed in (2.21) and discussed

in section 2.3. There the value µl = 2 was not discussed since no such solution seemed to

be known in the literature. However, a solution with µl = 2 was found recently in extended

topologically massive gravity with (1, 1) supersymmetry in [65]. That solution involves in

a crucial way a topologically massive vector field. All the necessary ingredients for the

µl = 2 solution used in [65] are at hand also in the topologically gauged N = 8 theory

discussed in the present paper and we thus expect this kind of µl = 2 solution to exist also

here. Note that this µl = 2 solution is a null-warped one [65] of the kind that is known to

appear in our case for µl = 3.
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A Cancelation of terms in δL with one or no D

Before starting the computation we give our conventions. We use a mostly plus metric and

a Levi-Civita tensor defined by

εµνρ : ε012 = +1. (A.1)

Then

εµνρετνρ = −2e2δµτ , εµνρεαβρ = −2e2δµναβ. (A.2)
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Our gamma matrices satisfy

{γµ, γν} = 2gµν , (A.3)

and are chosen such that

eγµνρ = εµνρ, eγµν = εµνργρ, 2eγµ = −εµνργνρ. (A.4)

The lagrangian that we need in the following reads

L = 1
gL

conf
sugra + 1

αLCS(A) − 1
2eg

µνDµX
i
aDνX

i
a + i

2eψ̄aγ
µDµψa

+ieAχ̄µΓiγνγµψa(DνX
i
a −

i

2
Âχ̄νΓiψa)

−iA′εµνρχ̄µΓijχν(DρX
i
a)X

j
a

+iA′′f̄ · γΓiψXi
a + iA12f̄ · χX2 +A13eRX

2

+ieA14ψ̄aψaX
2 + ieA′14ψ̄aψbX

i
aX

i
b + ieA15ψ̄aΓ

ijψbX
i
aX

j
b

+ieχ̄ · γΓiψa(A16X
i
aX

2 +A′16X
j
aX

i
bX

j
b )

+ieχ̄ · χ(A17(X2)2 +A′17(Xi
aX

j
a)(Xi

bX
j
b ))

+ieεµνρχ̄µγνχρ(A18(X2)2 +A′18(Xi
aX

j
a)(Xi

bX
j
b ))

+eA19(X2)3 + eA′19(X2)(Xi
aX

j
a)(Xi

bX
j
b ) + eA′′19(Xi

aX
j
a)(Xj

bX
k
b )(Xk

cX
i
c), (A.5)

where all the terms in the first four lines (except 1
αLCS(A)) were determined in [1] with the

following result:

Â = A, A′ = −1
4 , A

′′ = A, A12 = 1
4 , A13 = − 1

16 , and A2 = 1
2 . (A.6)

1
αLCS(A) plus the potential were found in [2] by various methods. This appendix is a

continuation of the Noether computation started in [1] and supplies the missing details of

the presentation in [2] where the final result was first presented. Here we also give a more

direct argument leading to the normalization of 1
αLCS(A) than that given in [2]. The new

terms in δψ and δBij
µ will be crucial. We therefore give them explicitly:

δψa = γµΓiεm(DµX
i
a − iAχ̄µΓiψa) +B5ΓiεmX

i
aX

2 +B6ΓiεmX
i
bX

j
aX

j
b , (A.7)

where A = ± 1√
2
, and

δBij
µ = − i

2e
ε̄gΓ

ijγνγµf
ν − ig

16 ψ̄aγµΓijkεmX
k
a −

3ig
8 ψ̄aγµΓ[iεmX

j]
a

− ig
4 χ̄µΓk[iεgX

j]
a X

k
a −

ig
32 χ̄µΓijεgX

2. (A.8)

Now we add also a variation of the gauge field but without the usual three-algebra

structure constant, i.e.,

δAµab = 2iqε̄mγµΓiψ[aX
i
b] + q′iχ̄µΓijεgX

i
aX

j
b , (A.9)
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leading to the following form of the covariant derivative

DµX
i
a = ∂µX

i
a +Bij

µ X
j
a +Aµa

bXi
b. (A.10)

The various kinds of terms with one derivative D that can appear in δL and need to

be canceled are with two fermions

εDψX3, εDχX4, (A.11)

and a D together with four fermions

εDψχψ, εDψχχX, εDχχ2X2. (A.12)

The D2 and D3 terms in δL were dealt with in [1].

A.1 Terms with one D and two fermions: εDψX3 terms

Starting with the cancelation of εDψX3 these terms arise from a number of places, namely

δLKG|δB=εψX , δLDirac|δψ=εX3 and δL14(Yuk)|δψ=εDX .

Adding these should give something that can be canceled by adding a term χψX3 and

vary χ. Note that B5 and B6 are obtained from the computation now to be done.

δLKG|δB=εψX,δA=εψX

= −e(DµXi
a)X

j
a(− ig

16 ψ̄bγµΓijkεmX
k
b −

3ig
8 ψ̄bγµΓ[iεmX

j]
b )

−iqe(DµXi
a)X

i
bε̄mγµΓj(ψaX

j
b − ψbX

j
a), (A.13)

where we see that the first term needs to be canceled by the Yukawa term containing Γij

and the other can be written with the antisymmetry written out and with an index b on

the spinor and i on the Γ in all terms:

δL4−KG|δB=εψX,δA=εψX

= −e(DµXi
a)X

j
a(− ig

16 ψ̄bγµΓijkεmX
k
b −

3ig
16 ψ̄bγµΓiεmX

j
b + 3ig

16 ψ̄bγµΓjεmX
i
b)

−iqe(DµXj
b )Xj

a ε̄mγµΓiψbX
i
a + iqe(DµXj

a)Xj
b ε̄mγµΓiψbX

i
a. (A.14)

Next we derive the contribution from δL5(Dirac)|δψ=εX3 :

δL5−Dirac|δψ=εX3

= ieψ̄bΓ
iγµD̃µεm(B5X

i
bX

2 +B6X
j
bX

i
aX

j
a)

+ieψ̄bΓ
iγµεmD̃µ(B5X

i
bX

2 +B6X
j
bX

i
aX

j
a), (A.15)

and from δLYuk|δψ=εDX we get:

δLYuk|δψ=εDX

= 2ieA14ψ̄bΓ
iγµεm(D̃µX

i
b)X

2 + 2ieA′14ψ̄bΓ
iγµεm(D̃µX

i
a)X

j
aX

j
b

+2ieA15ψ̄bΓ
jkΓiγµεm(D̃µX

i
a)X

j
bX

k
a

= 2ieA14ψ̄bΓ
iγµεm(D̃µX

i
b)X

2 + 2ieA′14ψ̄bΓ
iγµεm(D̃µX

i
a)X

j
aX

j
b

+2ieA15ψ̄bΓ
ijkγµεm(D̃µX

i
a)X

j
bX

k
a

+ieA15ψ̄bΓ
iγµεm(D̃µX

2)Xi
b − 2ieA15ψ̄bΓ

iγµεm(D̃µX
j
a)Xj

bX
i
a. (A.16)
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Since we are avoiding derivatives on ψ we must cancel terms as they are without

integrations by part. Then all terms except the Dε must cancel directly. The first terms

to cancel are the Γijk terms giving

2A15 − g
16 = 0. (A.17)

Then from the cancelation of ψ̄...εmX
2D̃µX

i
b and ψ̄...εmX

i
bD̃µX

2 we get

B5 + 2A14 = 0, B5 +A15 = 0, (A.18)

which implies

B5 = − g
32 , B5 = −2A14, A15 = g

32 . (A.19)

Looking now at the terms (DµXj
a)Xi

aX
j
b and (DµXi

a)X
j
aX

j
b we find cancelation for

− 3g
16 +B6 − 2A15 + q = 0, (A.20)

and
3g
16 +B6 + 2A′14 = 0, (A.21)

and for the last kind of such terms (DµXj
b )Xi

aX
j
a:

B6 − q = 0, (A.22)

giving the result

B6 = q = g
8 , A

′
14 = −5g

32 , using A15 = g
32 . (A.23)

Finally to cancel the D̃µε term we must add

ieχ̄ · γΓiψb(A16X
i
bX

2 +A′16X
j
bX

j
aX

i
a) (A.24)

with

A16 = −AB5 and A′16 = −AB6 (A.25)

A.2 Terms with one D and two fermions: εDχX4 terms

These come from the following variations

δL4(KG)|δB=εχX,δA=εχX = e(D̃µX
i
a)X

j
a( ig4 χ̄

µΓk[iεgX
j]
b X

k
b + ig

32 χ̄
µΓijεgX

2)

−q′ie(D̃µX
i
a)X

i
bχ̄µΓjkεgX

j
aX

k
b , (A.26)

δL9(SC)|δψ=εX3 = ieAB5χ̄νΓiΓjγµγνεm(D̃µX
i
a)X

j
aX

2

+ieAB6χ̄νΓiΓjγµγνεm(D̃µX
i
a)X

j
bX

k
aX

k
b , (A.27)

δL10|δψ=εX3 = iA′′B5f̄
µγµΓiΓjεmX

j
aX

2Xi
a + iA′′B6f̄

µγµΓiΓjεmX
j
bX

k
aX

k
bX

i
a

= iA′′B5f̄
µγµεm(X2)2 + iA′′B6f̄

µγµεmX
i
aX

j
aX

i
bX

j
b , (A.28)

since the Γij term vanishes! Next term is

δL16|δψ=εD̃X = ieχ̄ · γΓiδψb(A16X
i
bX

2 +A′16X
j
bX

j
aX

i
a)

= ieχ̄ · γΓiΓkγµεm(DµX
k
a )(A16X

i
aX

2 +A′16X
j
aX

j
bX

i
b). (A.29)
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Here there will be a nice test of the coefficients so far since all Γij terms must cancel when

summing up the expressions above. The reason is that no χ2X4 terms can be written down

with Γij matrices.

We now have all the contributions and can start to require cancelations from susy.

First, the Γij matrix terms give for the X2 terms, using also the relation for B4,

g
32g

µνεg +AB5γ
µγνεm −A16γ

νγµεm = 0, (A.30)

which means
g
32g

µνεg +A2B5γ
µγνεg −AA16γ

νγµεg = 0, (A.31)

giving for the γµν terms
1
2B5 +AA16 = 0, (A.32)

and for the gµν terms
g
32 + 1

2B5 −AA16 = 0. (A.33)

Adding and subtracting them give the following two equations

B5 = − g
32 , AA16 = g

64 . (A.34)

Next we turn to the Γij matrix terms give for the non-X2 terms

ig
8 e(D̃µX

i
a)X

j
a(χ̄µΓkiεgX

j
bX

k
b − χ̄µΓkjεgX

i
bX

k
b )

−q′ie(D̃µX
i
a)X

j
aχ̄µΓjkεgX

i
bX

k
b

+ieAB6χ̄νΓijγµγνεm(D̃µX
i
a)X

j
bX

k
aX

k
b

+ieA′16χ̄ · γΓikγµεm(DµX
k
a )Xj

aX
j
bX

i
b = 0 (A.35)

Changing indices to get the same factor of (DX)X and then dropping it gives

−g
8 χ̄

µΓikεgX
j
bX

k
b + g

8 χ̄
µΓjkεgX

i
bX

k
b − q′χ̄µΓjkεgX

i
bX

k
b

+AB6χ̄νΓikγµγνεmX
k
bX

j
b −A

′
16χ̄ · γΓikγµεmX

j
bX

k
b = 0. (A.36)

The γ-terms must give rise to an anticommutator which means that

A′16 = −AB6, (A.37)

and then the whole equation becomes

−g
8 χ̄

µΓikεgX
j
bX

k
b + g

8 χ̄
µΓjkεgX

i
bX

k
b − q′χ̄µΓjkεgX

i
bX

k
b

+2AB6χ̄νΓikεmX
k
bX

j
b = 0. (A.38)

Using that εm = Aεg then gives

−g
8ΓikXj

bX
k
b + g

8ΓjkXi
bX

k
b − q′ΓjkXi

bX
k
b + 2A2B6ΓikXk

bX
j
b = 0, (A.39)

implying

q′ = g
8 , 2A2B6 = g

8 or B6 = g
8 . (A.40)
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Now we check the remaining terms, i.e., those without Γ-matrices

ie
4 AB5χ̄νγ

µγνεmD̃µ(X2)2 + ie
4 AB6χ̄νγ

µγνεmD̃µ(Xi
aX

i
bX

j
aX

j
b )

+iA′′B5f̄
µγµεm(X2)2 + iA′′B6f̄

µγµεmX
i
aX

i
bX

j
aX

j
b

+ ie
4 A16χ̄νγ

νγµεmD̃µ(X2)2 + ie
4 A
′
16χ̄νγ

νγµεmD̃µ(Xi
aX

i
bX

j
aX

j
b ), (A.41)

where the last two terms come from the above variation of ω̃ in the RX2 term. Note that

the very last term then cancels the second term!

Then with eγµν = εµνργρ the X2 terms containing f become (the rest of the terms

work the same way)

+iA′′B5f̄
µγµεm(X2)2 = i

2A
′′B5ε

µνρD̃νχ̄ργµεm(X2)2

= − i
2A
′′B5ε

µνρχ̄ργµ(D̃νεm)(X2)2 − i
2A
′′B5ε

µνρχ̄ργµεm(D̃ν(X2)2) + contortion

= ie
2 A
′′B5χ̄µγ

µν(D̃νεm)(X2)2 − ie
2 A
′′B5χ̄µγ

µνεm(D̃ν(X2)2) + contortion, (A.42)

after an integration by parts.

We can now collect and cancel the D(X2)2gµνεm terms:

AA16 = −1
2B5, (A.43)

while the antisymmetric part implies

− 1
4AB5 + 1

4A16 + 1
2A
′′B5 = 0, (A.44)

which just means that the previous relation is obtained once again.

Add now term 18 in L

L18 = ieA18ε
µνρχ̄µγνχρ(X

2)2, (A.45)

which varies into

δL18 = 2ieA18ε
µνρD̃µε̄gγνχρ(X

2)2 − 4eA18ε
µνρχ̄µγνχρ(X

2)Xi
aε̄mΓiψa. (A.46)

Thus if

2A18εg = 1
2AB5εm, (A.47)

the one-derivative terms cancel so (sing 2A2 = 1)

A18 = 1
8B5. (A.48)

Since the other terms work the same way the full new term in L is

L18 = ieA18ε
µνρχ̄µγνχρ(X

2)2 + ieA′18ε
µνρχ̄µγνχρX

i
aX

i
bX

j
aX

j
b , (A.49)

with

A18 = 1
8B5 and A′18 = 1

8B6. (A.50)

Note that no χ2X2 term without the Levi-Civita tensor is not needed just as in ABJM.

With the obtained values we see that

A18 = − g
256 and A′18 = g

64 (A.51)
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A.3 The normalization of the CS term for the gauge field Aabµ

After having determined the coefficients q and q′ in the variation δAabµ we must now return

to the question of the corresponding CS term appearing in L and its normalization in terms

of the parameter α. We will trace the places in the previous derivation of the lagrangian

where the field strength F abµν appears simply by looking for where Gabµν appears as a result

of evaluating the commutator of two covariant derivatives acting on Xi
a. Note that this

computation also arises acting on the supersymmetry parameter in some cases but then

F abµν will not appear since the susy parameter is inert under gauge symmetry.

There are two places where F abµν appears: in the variation of the Dirac kinetic term

giving
i
2ε
µνρψ̄aγρΓ

iεm(GijµνX
j
a + F abµνX

i
b), (A.52)

and from the variation of the term denoted L′

iA′εµνρχ̄µΓikεg(G
ij
µνX

j
a + F abµνX

i
b)X

k
a . (A.53)

These contributions to δL must be cancelled by adding terms to the variation of the

gauge fields using

δLCS(B,A) = 1
g ε
µνρδBij

µ |newG
ij
νρ + 1

2αε
µνρδAabµ |newF

ab
νρ . (A.54)

For the R-symmetry terms this implies

B2 = −g
2 , B3 = gA′, (A.55)

as we already have seen. However, for the gauge field Aabµ the results are new and read

α = −2q, 2αA′ = q′, (A.56)

which must give the same answer for α. Inserting q = q′ = g
8 and A′ = −1

4 we find that

this is indeed the case:

α = −g
4 . (A.57)

A.4 Cancellation of terms with no D and two fermions

Here we concentrate on the cancellations that will lead us to the form of the potential.

Start by varying the X6 potential

LX6 = eA19(X2)3 + eA′19(X2)(Xi
aX

j
a)(Xi

bX
j
b ) + eA′′19(Xi

aX
j
a)(Xj

bX
k
b )(Xk

cX
i
c). (A.58)

We find that varying this term gives

δLX6 = ie(ε̄gγ
µχµ)(A19(X2)3 +A′19(X2)(Xi

aX
j
a)(Xi

bX
j
b )

+A′′19(Xi
aX

j
a)(Xj

bX
k
b )(Xk

cX
i
c))

+ieA196(X2)2Xi
aε̄mΓiψa

+ieA′19(2Xk
c ε̄mΓkψc(X

i
aX

j
a)(Xi

bX
j
b ) + 4X2(Xi

aε̄mΓjψa)(X
i
bX

j
b ))

+ieA′′19(6ε̄mΓiψaX
j
a)(Xj

bX
k
b )(Xk

cX
i
c). (A.59)

– 28 –



J
H
E
P
0
4
(
2
0
1
4
)
1
0
7

From the χ terms we can obtain uniquely the A16 coefficients in front of the χψX3

terms using δψ = εX3. This variation reads

δLχψX3 |δψ|εX3
= ieχ̄ · γΓi(δψa)|εX3(A16X

i
aX

2 +A′16X
j
aX

i
bX

j
b )

= ieχ̄ · γΓiΓkεm(B5X
k
aX

l
cX

l
c +B6X

k
cX

l
aX

l
c)(A16X

i
aX

2 +A′16X
j
aX

i
bX

j
b ). (A.60)

Here all Γik terms vanish since all expressions in terms of six scalars are symmetric in two

free ik indices. Thus the above becomes

δLχψX3 |δψ|εX3
= ieχ̄ · γεm(B5X

i
aX

l
cX

l
c +B6X

i
cX

l
aX

l
c)(A16X

i
aX

2 +A′16X
j
aX

i
bX

j
b )

= −ieε̄mγ · χ(B5A16(X2)3 + (B5A
′
16 +B6A16)X2XijXij +B6A

′
16X

ijXjkXki). (A.61)

Thus the cancelation of these terms gives the relations

A19 = B5(AA16), A′19 = B5(AA′16) +B6(AA16), A′′19 = B6(AA′16) (A.62)

Now recall

δL5(Dirac)|δψ=εX3

= ieψ̄bΓ
iγµD̃µεm(B5X

i
bX

2 +B6X
j
bX

i
aX

j
a)

+ieψ̄bΓ
iγµεmD̃µ(B5X

i
bX

2 +B6X
j
bX

i
aX

j
a), (A.63)

where only the Dε terms remain to be canceled which is done by the term

LχψX3 = ieχ̄ · γΓiψa(A16X
i
aX

2 +A′16X
j
aX

i
bX

j
b ). (A.64)

The δχµ = Dµεg variation gives

δLχψX3 |δχµ=Dµεg = ieDµε̄gγµΓiψa(A16X
i
aX

2 +A′16X
j
aX

i
bX

j
b )

= ieψ̄aγµΓiDµεg(A16X
i
aX

2 +A′16X
j
aX

i
bX

j
b ). (A.65)

Cancelation implies

AB5 = −A16, AB6 = −A′16. (A.66)

Hence we know the six order potential:

A19 = −A2
16 = −(AB5)2 = − g2

2·32·32 ,

A′19 = −2A16A
′
16 = −2A2B5B6 = g2

8·32 ,

A′′19 = −(A′16)2 = −(AB6)2 = − g2

2·8·8 . (A.67)

With a potential the theory should have an AdS vacuum that puts the theory at a

chiral point. If we set the VEV < X >= v we find that the potential gives

LX6(v) = (A19 +A′19 +A′′19)v6. (A.68)
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Adding the gravitational CS term and the X2R term evaluated at the VEV we get

LAdS = LCS(ω) − v2e
16 R+ LX6(v) (A.69)

We should compare this to Li, Song and Strominger (LSS) for the chiral point but with

TMG signs in the lagrangian:

LLSS =
1

κ2
(
1

µ
LCS(ω) − e(R− 2Λ)). (A.70)

Thus µ = 1
κ2

and v2 = 16
κ2

. The chiral point condition is µl = 1 where l is defined by means

of the cosmological constant as Λ = − 1
l2

. This implies that, to end up a chiral point, the

potential must satisfy

1
eLX6(v) = 2Λ

κ2
= − 2

κ2l2
= −2µ2

κ2
= − 2

κ6
= −2v6

163
. (A.71)

Thus we see that for the theory to be at the chiral point we must require

A19 +A′19 +A′′19 = − 2
163

= − 1
2048 , (A.72)

(which strangely enough happens to be exactly A19 above!).

Next we consider the variation of the Yukawa terms that connect to the variation of

the X6 potential above

LYuk = ieA14ψ̄aψaX
2 + ieA′14ψ̄aψbX

i
aX

i
b + ieA15ψ̄aΓ

ijψbX
i
aX

j
b (A.73)

Vary this using the ψ = εX3 expression

δψa|εX3 = B5ΓkεmX
k
aX

l
bX

l
b +B6ΓkεmX

k
bX

l
aX

l
b (A.74)

We get

δLYuk = 2ieA14ψ̄aδψaX
2 + 2ieA′14ψ̄aδψbX

i
aX

i
b + 2ieA15ψ̄aΓ

ijδψbX
i
aX

j
b

= 2ieA14ψ̄a(B5ΓkεmX
k
aX

2 +B6ΓkεmX
k
bX

l
aX

l
b)X

2

+2ieA′14ψ̄a(B5ΓkεmX
k
bX

2 +B6ΓkεmX
k
cX

l
bX

l
c)X

i
aX

i
b

+2ieA15ψ̄aΓ
ij(B5ΓkεmX

k
bX

2 +B6ΓkεmX
k
cX

l
bX

l
c)X

i
aX

j
b (A.75)

From the conformal variation of the spin 3/2 field in the 16’th term in L we get

(δL16 + δL16′)|χ=γεX2 = 3ieB7ε̄mΓiψa(A16X
i
a(X

2)2 +A′16X
j
aX

i
bX

j
bX

2) (A.76)

Cancelation gives the relations

(X2)2Xi : 6A19 = 2B5(A14 +A15)

(XjkXjk)Xi : 2A′19 = 2B6A15

X2XjiXi : 4A′19 = 2B5(A′14 −A15) + 2B6A14

XkjXjiXi : 6A′′19 = 2B6(A′14 −A15). (A.77)

Inserting the values of the various parameters on the right hand sides as derived previously

we confirm the values of A19, A
′
19, A

′′
19 found above.
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