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Abstract: In this research, an empty freight wagon with Y25 bogies have been modelled.
Non-linear creep forces with spin moment between wheel and rail have been used, and also
all impacts and friction forces have been modelled. Non-linear equations of motion and kine-
matical constraints have been solved in time domain, and limit cycles, saddle nodes, and critical
speeds have been shown. Both primary and secondary hunting can be seen in the responses of
the wagons. The relation between frequency of oscillations and speed can be seen, also, there
are chaotic oscillations. Results show that stiffness in impacts affects calculation time and
limit cycles.
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1 INTRODUCTION

In the dynamics of rail vehicles limit cycles, chaos
and bifurcation behaviour [1] appear and perform-
ances depend on initial conditions [2]. Pascal [3]
simulated a derailment of a standard two-axle freight
wagon in France and showed that the derailment
might be connected with chaotic motions. In recent
years, True et al. [4–8] have considered the non-
linear dynamics of rail vehicles and wheelsets with
dry friction. They have showed that non-linearity in
the suspension elements of rail vehicles can affect
the hunting behaviour of the vehicle. Also, they
have illustrated that the actual critical speed is less
than linear critical speed, which can be evaluated
by linear methods.

Suspension systems of conventional freight bogies
have dry friction contacts [9] mainly because they are
much cheaper than hydraulic dampers, and the
damping force can be adjusted to the load by

simple means. The disadvantages, however, are
that the friction parts are open to the atmosphere,
thus, they are influenced, for instance, by humidity
and dirt and also by natural on wear. In addition to
dry friction, impacts and also the contact between
wheel and rail generate non-linear kinematical and
dynamical terms [10, 11].

Y25 has been a UIC standard freight bogie since
1967 and is well designed for ratios of loaded to
tare weight of 5 : 1. It originated from the Y21A
designed by the French railway about 1960. In Y25,
stiffness is load-dependent and the load-dependent
friction damping is provided with Lenoir-Link
(Fig. 1).

Empty wagons are one of the sources of noise in
freight transportation. They have low critical speed
and can oscillate with high amplitudes. In this
research, completely non-linear equations of
motions and constraints for the Y25-freight truck
with empty wagons and 25 degrees of freedom have
been derived. The property of primary suspension
had been tested in TU-Berlin, all dry frictions have
been modelled by the Kolch method, and impacts
in clearances have been modelled by non-linear
springs. Figure 2 shows the freight wagon with an
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Eaos807 carbody, and Table 1 shows the value of
masses, the position for the centre of masses, and
the moment of inertia for the empty wagon.

Wheel/rail contact creep coefficients and kinema-
tical constraints have been derived by means of
RSGEO software. Wheelset and rail have been
defined in Table 2.

2 SIMULATION OF FORCES

2.1 Wheel/Rail contact forces

Several theories have been developed to approximate
the creep forces between wheel and rail. Kalker’s
[10] linear theory was combined with Johnson-
Vermeulen’s [10] non-linear theory by White et al.
in 1978 to include the effect of spin creepage on
non-linear creep forces [12, 13]. The same method
was proposed by Shen et al. in 1983 [10, 14], but in
the method of White et al., the effects of the instan-
taneous normal force on creep coefficients was con-
sidered using a simple formula, and spin moment
was calculated using Kalker’s linear method. Non-
linear longitudinal (Fx

0) and lateral creep forces (Fy
0)

and spin creep moment Mz were defined as

F 0

x ¼ 1Fx

F 0

y ¼ 1Fy

Mz ¼ �f23jy þ f33jsp

(1)

where directions (x, y, z) and creepage j are in the
‘contact coordinate system’ and

Fx ¼ f11jx

Fy ¼ f22jy þ f23jsp
(2)
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N0

� �4=3

f330 (3d)

where N is the total instantaneous normal force and
N0 the total nominal normal force. fij and fij0 are
creep coefficients that depend on the wheel and
rail geometry, the material properties, and the
normal force acting at the contact surface. fij0 is
the nominal value computed with nominal load
N0 using RSGEO software and fij the corresponding
value for instantaneous load N. The magnitude of
the resultant creep force cannot exceed the pure
slip value, mN, therefore, a creep force saturation
coefficient, 1, is used
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Where in m ¼ 0.3 and

FR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
x þ F2

y

q

(5)

Fig. 1 Y25-freight bogie

Fig. 2 Freight wagon with Eaos802 carbody
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2.2 Forces in primary suspension

In the Y25 freight bogie, the play between the axle
box and the bogie frame in a vertical direction is
roughly 55 mm, in a lateral direction, þ/210 mm,
and in a longitudinal direction there is a 4 mm play
on one side. Impacts between parts, after clearances,
have been modelled by non-linear springs with a
high stiffness of 107 N/m (Fig. 3). The stiffness must
be enough high to simulate solid contact and the
effect of this high stiffness has been considered.

A measurement structure (Fig. 4) for the primary
suspension system of Y25 has been developed in
TU-Berlin [15]. Results show that there are hysteresis
loops in three directions. Hysteresis can be assumed,
as shown in Fig. 5, for different vertical preloads.
Table 3 shows the results for a vertical load of
18.9 KN.

To model primary suspension force elements, the
Kolsch method [16] has been used, explained in
equation (6), in which the valuem denotes sharpness
of diagram (Fig. 6) in the transition areas between
stick and slip motions. Figure 6 shows force displace-
ment in the vertical direction with m ¼ 10.

C0 ¼ Ch � Cg

_K ¼ C0
_X 1� 0:5 sign( _XK )þ 1

� � 2K

FD

�

�

�

�

�

�

�

�

m� �

F ¼ CgX þ K

(6)

2.3 Forces between carbody and bogies

The bogie frame is connected to the carbody through
a central pivot and side bearers [17]. Figure 7 shows
the central pivot that is a spherical joint. The bogie

frame has angular motions about the joint centre
with respect to the carbody. Contact surfaces and
their relative motions generate dry friction in the
central pivot. Researches and tests by Nielsen [18]
show that the moments in the central pivot have
maximum value, which can be evaluated as in
equation (7). These values are in the slip mode, and
in the stick mode the angular stiffness is about

Table 1 Mass, moment of inertia, and centre of mass for the Y25-freight truck

Y25 assembly Centre of mass� (m)

Moment of inertia (kg m2) Mass [kg]

Ixx Iyy Izz One unit

Wheelset with axle box hwh ¼ 0.46 902 108 906 1380 Bogie: 4750
Bogie hb ¼ 0.61 1188 1484 2582 1990
Carbody hc ¼ 1.31 11 389 219 667 225 378 11 400

Empty wagon 0.9522 20 900

�Centre of mass is with respect to the railhead surface

Fig. 3 Non-linear spring for axle box clearance in

longitudinal direction

Fig. 4 Test structure for primary suspension of Y25

bogies

Table 2 Wheel and rail refinitions

Wheel profile Wheel base
Wheelset tape
circle distance Wheel radius

S1002 1800 mm 1500 mm 460 mm

Rail profile Rail gauge Inclination Type
UIC60 1435 mm 1/40 Straight/no

irregularities
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107 Nm/Rad. 0.22 [17] has been used for dry friction
coefficient.

Mx ¼ My ¼ 0:17 � mCentPiv � FN

Mz ¼ 0:18 � mCentPiv � FN

(7)

Figure 8 shows the spring loaded side bearer. The
stiffness in the vertical direction is 5.7 � 105 N/m
and the preload is 16 KN. There is a 12 mm clearance
play for springs. It is approximately equal to 0.014 rad
relative to the roll movement of the carbody and
bogie. So, the minimum force on the side bearer is
about 9160 N, after 22 840 N there will be solid
contact. For damping in the vertical direction,
1000.0 Ns/m has been used [17]. Dry friction
between the side bearers and the carbody has been
modelled using the Kolsch method, with 0.22 for
dry friction coefficient and 106 N/m for stick stiffness.

3 EQUATIONS OF MOTIONS

As is common, rotation around the longitudinal, lat-
eral, and vertical axes have been defined as roll (w),
pitch (x), and yaw (c). Wheelsets have four degrees
of freedom (longitudinal, lateral, pitch, and yaw
motions). Vertical and roll motions of wheelsets are
dependent on the lateral and yaw motions of wheel-
sets and can be calculated from kinematical con-
straints between wheelset and track. Bogies have
four degrees of freedom (lateral, vertical, roll, and
yawmotions). The track is straight, without irregular-
ity, and the pitch motion of the bogie frame can be
ignored. The carbody (with bogies) is massive and,

Fig. 5 Hysteresis in the force-displacement diagram

Table 3 Test results for Y25 suspension in empty wagon

x y z

Ch (N/m) Cg (N/m) FD(kN) Ch (N/m) Cg (N/m) FD (kN) Ch (N/m) Cg (N/m) FD (kN)

1.3 � 107 8.9 � 105 2.5 2.2 � 106 4.3 � 105 5.0 1.7 � 107 8.5 � 105 4.0

Fig. 6 Force-displacement in the vertical direction

(Table 3)

Fig. 7 Central pivot for Y25 Bogies (all dimensions

in mm)

Fig. 8 Side bearer of Y25 (all dimensions in mm)
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therefore, acceleration can be ignored in the longi-
tudinal direction. Longitudinal velocity is thus con-
sidered to be constant or known for bogies and
carbody. Assuming the spherical joint in the central
pivots of carbody reduces its freedom, it has one
degree of freedom (roll motion) around the line
connecting its central pivots.

For deriving equations of motion and constraint of
this wagon, multiple coordinate systems have been
used. Superscripts denote the coordinate systems
and r denotes the inertial coordinate system in the
centreline of the track. Subscripts or superscripts 1,
2, 3, and 4, have been used for the first, second,
third, and fourth wheelsets, 5 and 6 have been used
for the first and second bogie frame, and 7 has
been used for the carbody (Fig. 9).

Equations of motions for wheelsets are as follows.
Subscripts cl and cr denote left and right contact
points, and pl and pr denote left and right primary
suspensions, respectively. Also, tc denotes move-
ment around the centre of mass of wheelsets that is
generated from forces of spin movement in the
wheel/rail contact surface

mw €xi ¼ f riclx þ f ricrx þ f riplx þ f riprx

mw €yi ¼ f ricly þ f ricry þ f riply þ f ripry

Iwy €xi ¼ t i
iy, cl þ t i

iy, cr

Iwz €ci ¼ tiiz, cl þ tiiz, cr þ a f f
i
iprx � a f f

i
iplx

i ¼ 1, 2, 3, 4

(8)

In simulations with curve radii larger than 200 m,
the effect of the wheelset’s yaw motion on the geo-
metrical parameters of wheel/rail contact is negli-
gible [19]. In this research, simulations on a
straight track have been considered and, therefore,
geometrical parameters depend only on the lateral
displacement of the wheelset. Vertical and roll
motions versus lateral displacement of wheelset

have been defined by RSGEO software

mb €y5 ¼ �( f r1ply þ f r1pry þ f r2ply þ f r2pry)

þ f r5cy þ f r5sly þ f r5sry

mb €z5 ¼ �( f r1plz þ f r1prz þ f r2plz þ f r2prz)

þ f r5cz þ f r5slz þ f r5srz �mbg

Ibx €f5 ¼ a f ( f
5
1prz þ f 52prz � f 51plz � f 52plz)

� h f ( f
5
1pry þ f 52pry þ f 51ply þ f 52ply)

þ as( f
5
5slz � f 55srz)þ t55cx � hbcf

5
5cy

Ibz €c5 ¼ a f ( f
5
1plx þ f 52plx � f 51prx � f 52prx)

þ lw( f
5
2pry þ f 52ply � f 51pry � f 51ply)

þ t55cz þ as( f
5
5srt � f 55slt)

(9)

Equations of motion for the first bogie have been
defined in equation (9), wherein sl and sr denote
the left and right side bearers, respectively, and t

denotes the movement in the central pivot. Subscript
t is the friction force between side bearers and car-
body (Fig. 10). Using the samemethod, the equations
of motion for the second bogie is as shown in
equation (10).

mb €y6 ¼�( f r3ply þ f r3pry þ f r4ply þ f r4pry)

þ f r6cy þ f r6sly þ f r6sry

mb €z6 ¼�( f r3plz þ f r3prz þ f r4plz þ f r4prz)

þ f r6cz þ f r6slz þ f r6srz �mbg

Ibx €f6 ¼ a f ( f
6
3prz þ f 64prz � f 63plz � f 64plz)

� h f ( f
6
3pry þ f 64pry þ f 63ply þ f 64ply)

þ as( f
6
6slz � f 66srz)þ t66cx � hbcf

6
6cy

(10)

Fig. 9 Top view of the wagon
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Ibz €c6 ¼ a f ( f
6
3plx þ f 64plx � f 63prx � f 64prx)

þ lw( f
6
4pry þ f 64ply � f 63pry � f 63ply)

þ t66cz þ as( f
6
6srt � f 66slt) (10)

As mentioned before, the central pivots of the car-
body generate constraints that can be explained
approximately as (11). With these constraints, the
equations of motion for the carbody are as shown
in (12) (Fig. 10).

yr7 ¼
(yr6 þ yr5)

2

zr7 ¼
(zr6 þ zr5)

2

x r
7 ¼

(zr6 � zr5)

2lc

c r
7 ¼

(yr5 � yr6)

2lc

(11)

mc €y7 ¼�( f r5cy þ f r5sly þ f rsry þ f r6cy þ f r6sly þ f r6sry)

mc €z7 ¼�( f r5cz þ f r5slz þ f r5srz þ f r6cz þ f r6slz þ f r6srz)�mcg

Icx €f7 ¼ (Icy � Icz) _x7 _c7 � t75cx � t76cx � hc( f
7
5cy þ f 76cy)

þ as(f
7
5srz � f 75slz þ f 76srz � f 76slz)

Icy _x7 ¼ (Icz � Icx) _f7
_c7 þ lc(f

7
5cz þ f 75slz þ f 75srz

� f 76cz � f 7slz � f 76srz)þ hc( f
7
5cx þ f 76cx)

þ hs( f
7
5slt þ f 75srt þ f 76slt þ f 7srt)� t75cy � t76cy

Icz €c7 ¼ (Icx � Icy) _x7
_f7 þ as( f

7
5slt � f 75srt þ f 76slt � f 76srt)

þ lc( f
7
6cy � f 75cy)� t75cz � t76cz

(12)

4 RESULTS

Normally, critical speed refers to the non-linear criti-
cal speed in the railway vehicle system dynamics.
The non-linear critical speed is the lowest speed for
which a periodical motion exists, and it will be

determined by bifurcation analysis. Periodical
motions appear with two saddle-node bifurcations.
The velocity of the first saddle-node bifurcation is
the non-linear critical velocity, which can be found
by driving the perturbed vehicle at a velocity suffi-
ciently higher than the critical speed. After some
time, the solution will be converged to a limit cycle
oscillation. The next step is an adiabatic reduction
of the velocity, which can be done by making the vel-
ocity a linear function of time. This reduction is done
until passing the saddle node, which is clearly seen
because the amplitude of the oscillation suddenly
drops to zero.

The dynamical systems of Y25-freight trucks are
very complicated because of the non-smoothness
and the discontinuities caused by impacts and the
stick–slip motions originating from clearance and
dry friction. The time for computation of the necess-
ary data for fine visualization of bifurcation is very
long. To find the limit cycles for non-linear systems,
there is no unique method. In this research, wagon
perturbation was simulated at different speeds (start-
ing from 1.0 m/s, with step size of 1.0 m/s). With this
method, limit cycles can be seen and saddle nodes
can be found as a jump in the limit cycle amplitude.
To find the other saddle node, the vehicle speed was
simulated at a speed more than that with jumped
amplitudes. After 25 s, the speed was decreased line-
arly until the amplitude of oscillations became zero.
In addition, the speed was increased to find the
behaviour of the vehicle at speeds more than critical
speed.

4.1 Critical speed

Figure 11 shows the amplitude for limit cycles in
different speeds and, as can be seen, the limit cycle
appears in 21 m/s. There is a jump in the amplitude
at a speed of 25 m/s.

More detailed simulations between 20 and 21 m/s
and also between 24 and 25 m/s show that the limit
cycle starts from 20.9 m/s and an excessive ampli-
tude appears in 24.1 m/s.

To find the critical speed, simulation was started
from a speed of 30 m/s and after 10 s the speed was
reduced 0.02 m/s. The simulation was done for
910 s and with 18 200 000 loops. Non-linear critical
speed for this wagon with Y25 bogie is 17 m/s
(61.2 km/h). As Fig. 12 shows, all lateral displace-
ments jumps down in 17 m/s Fig. 12 shows the
change in the limit cycle diagram of the carbody
with a change in the speed.

In Fig. 13 the positions of two saddle-nodes can
be seen. The first one, or the critical speed, is
attained in 17 m/s and the second one in about
24.0 m/s. The speed 20.9 m/s is known as linear

Fig. 10 Front view of the wagon
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Fig. 11 Search for limit cycles in different speeds

Fig. 12 Non-linear critical speed for the wagon with Y25 Bogie
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Fig. 14 Longitudinal and lateral forces in the primary suspension system

Fig. 13 Non-linear critical speed and saddle nodes

Fig. 15 Changes of lateral displacements in limit cycles by speed
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critical speed, and it is more than non-linear critical
speed.

Figure 14 shows force-displacement loops for the
primary suspension system in the left side of the

second and fourth wheelsets at 25 m/s (for the last
5 s of Fig. 11). The damping source is dry friction
and the hysteresis loops can be seen in the figure.
The effect of one-side clearance (24 mm) for primary

Fig. 16 State-space diagrams for limit cycles in different speed

Empty freight wagon with Y25 bogies 355

JRRT67 # IMechE 2006 Proc. IMechE Vol. 220 Part F: J. Rail and Rapid Transit



suspension of Y25 can be seen. After, solid impact
stiffness of 1.0E7 N/m has been used. Figure 14
shows that after 10 mm lateral displacement, there
is solid impact.

4.2 Changes in limit cycles by speed

Figure 15 shows lateral displacements in limit
cycles between 30 and 57 m/s. By increasing the
speed, limit cycles change, and after about 52 m/s
oscillations are chaotic. These chaotic motions
diverge at a speed of about 56.3 m/s with a time
step of 5.0E-5 sec. Figure 16 shows limit cycles in
different speeds. These results have been calculated
by running 25 s with perturbed vehicle. All dia-
grams in Fig. 16 are the last 5 s of calculations.
From critical speed up to 30.0 m/s, lateral displace-
ment of bogies is about 1 cm. Bogie frames have
maximum lateral oscillations from all bodies. This
kind of oscillation is known as primary hunting.
Chaotic behaviour appears around 42 m/s and
after 52 m/s.

There are wheel–flange contacts with huge forces
after 52.0 m/s; so, after 56.3 m/s, time steps for simu-
lations must be ,1.0E-5 s. After 49 m/s, wheelsets
have maximum lateral displacements. This kind of
oscillation is known as secondary hunting.

4.3 Frequencies for limit cycles

With regard to the Klingel [20] theory, for a simple
wheelset with coned wheels that runs on a knife-
edge straight track, and where the track is two paral-
lel lines, there is a direct relation between speed and
frequency of oscillation (frequency / speed). The
author’s model is completely different and complex,
but there is dependency between the speed and
frequency. Figure 17 shows lateral oscillations and
its power spectrum for the second bogie frame
between 20 and 21 s. As the figure shows, by increas-
ing speed, the frequency of oscillations is increased.
This model differs from that in the Klingel theory
mainly in vehicle dynamics, profiled wheels, and
profiled rails.

For 22 m/s, there are two limit cycles. In the
second limit cycle, the lateral amplitude for wheel-
sets is about 6 mm. Therefore, the high forces act
on the flanges of wheels and increase the frequency
of oscillations.

4.4 Effect of clearance stiffness

The stiffness Kclear ¼ 1.0E7 N/m has been used for
solid impacts between parts. Figure 18 shows force-
displacement diagrams in the primary suspension
system. For Kclear ¼ 10.0E7 N/m and V ¼ 25 m/s

Fig. 17 lateral displacement in the limit cycles and

related frequencies
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Fig. 19 Effect of Kclear in the lateral oscillation of first bogie V ¼ 25 m/s

Fig. 18 Longitudinal and lateral force in the primary suspension system

Fig. 20 Effect of Kclear in the lateral oscillation of first bogie V ¼ 49 m/s
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in the longitudinal direction, there is ,0.4 mm
deflection, and in the lateral direction there
is ,0.5 mm deflection after impact. Figures 18
and 14 show that in the primary suspension
system, deflections after impacts are reduced by
50 per cent. Also, increasing this stiffness changes
the oscillations of the first bogie in the wagon.
This can be seen clearly by comparing Fig. 19
with Fig. 16. The lateral displacements of the first
bogie parts for Kclear ¼ 5.0E7 and 10.0E7 N/m are
,5 mm. The difference between the oscillations of
the front and rear bogies that can also be seen in
other speeds (compare Fig. 16 and 20) shows that
for a more accurate value, one must measure and
evaluate Kclear.

Searching for the first saddle node shows that
Kclear has less effect on the non-linear critical
speed value (Fig. 21). In contrast, the time step for
calculations must be less than 0.000 01, and so
more time is required for analysing.

5 CONCLUSIONS

In this research, the critical speed of the Y25-freight
truck has been found to be 61.2 km/h. Results show
that in dynamical responses of this freight truck,
there are chaotic limit-cycles and saddle nodes.
Also, it has been shown that speeds between 21
and 24 m/s that depend on initial conditions, there
are two limit-cycles.

The amplitude of oscillations of different parts in
limit cycles depends on the vehicle speed. Primary
hunting happens between 17.0 and 30.0 m/s and sec-
ondary hunting after 49.0 m/s. Increasing the speed
increases the frequency of oscillations in limit
cycles, but there is no linear relation. Results show

that increasing the stiffness in impacts affects calcu-
lation time and limit cycles, but the critical speed of
the freight wagon is approximately the same for
Kclear between 1.0E7 and 1.0E9 N/m. The best value
for Kclear can be achieved bymeans ofmeasurement.
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