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Critical Speed in Centrifugal
S. Gopalakrishnan

Mem. ASME Pumps
R. Fehlau In high pressure centrifugal pumps the magnitude of the critical speed is strongly

affected by the presence of liquid in the close clearance spaces of sealing rings and

J. Lorett
throttle bushings. The stiffening and damping effect resulting from the non-
axisymmetric pressure drop across such gaps is often large compared with the
elastic stiffness of the shaft. In many cases it raises the critical speed far above the

Technology Department, "dry" value, and in some cases it eliminates the critical speed altogether. As a
Byron Jackson Pump Division,

Borg-Wa rne r
consequence,	design specifications based on shaft critical speeds,	calculated

of Commmerce
merce,, CA

City of Commerce, disregarding the effects of the fluid, become quite meaningless. In this paper
simplified equations are derived for the calculation of the effect of the fluid gap.
The results have been verified by measurements on a test pump. Sample calculations

for a typical multistage boiler feed pump are included as illustration.

NOMENCLATURE P fluid density

C damping coefficient 0 angular coordinate

D bushing diameter ^1 entry-loss coefficient

e eccentricity r;2 entry-loss coefficient between groove and land
area

F force
a angular velocity

g acceleration due to gravity SUBSCRIPTS

H nominal radial clearance cr critical

K stiffness cr dry	dry critical

L bushing length cr wet	wet critical

M,n mass LOM	Lomakin

N RPM
s shaft

n number of lands
x gap

AP pressure drop across bushing
0 reference or nominal condition

r radial displacement
1 inlet of bushing

W weight
2 just inside bushing

Ww equivalent weight of water
3 outlet of bushing

SUPERSCRIPTS
short circuit factor

s smooth

1 friction factor G groove

narrower part of gap

wider part of gap

- average
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INTRODUCTION

It is well known that an important consideration
in the design of the rotating element in a turbomach-
ine is the avoidance of critical speeds. For machines
handling air or gases, the prediction of critical
speeds is a well-developed technique, and prediction
error of under 5% is common. Consequently, the mach-
ine designer can confidently avoid the operation of
the unit at or near a critical speed. The design
specifications for such machines naturally call for
adequate separation between the critical speed and
the operating speed.

Such design specifications are gradually making
their appearance in the pump industry as well. How-
ever, the mechanism of critical speed in pumps is
much more complex than in gas-handling machinery,
and only recently has it become clear that more care-
ful definitions of what is meant by critical speed
are necessary.

In particular, it is important to identify two
different critical speed concepts for pumps. The
first is often called "dry" critical speed or "air"
critical speed. This refers to the rotating speed at
which vibrations peak if the pump were to operate
with no liquid inside it. The second is called "wet"
critical speed referring to the normal operation of
the pump with liquid in it. Recent research work by
the authors has shown that the wet critical speed is
vastly different from the dry one, and in some cases,
a wet critical speed may not exist at all. Thus it
is becoming clear that in most instances, the speci-
fication of air critical speed is totally irrelevant.

It is the purpose of this paper to provide the
reader with a simplified method for calculating the
wet critical speed of pumps. To this end, the paper
contains first the theoretical formulation for criti-
cal speed calculation. (The necessary mathematical
derivation is provided in the Appendices). The cal-
culations are then verified in a suitable test arran-
gement which consists of a ball-bearing supported
rotor with integral wear rings (also called sealing
rings). The rotor is driven at a variable speed up
to 6000 RPM and vibrations of the shaft are measured
near the disk. The pressure difference across the
wear rings is controlled independently of the speed
by using a separate booster pump. With this arrange-
ment, the pump critical speed can be directly meas-
ured by observing the RPM at which vibration ampli-
tudes peak. Various types of wear-ring geometries
and clearances were tested and the results are shown
in comparison with the calculation. It can be seen
that good prediction accuracy is obtained in all the
cases. The paper finally concludes with an example
calculation for a typical multi-stage boiler feed
pump of Byron Jackson design.

THEORY

A liquid surrounding a rotating shaft influences
its dynamic behavior in several ways. In low pres-
sure pumps the effect of the virtual mass in close
clearances can reduce the critical speed, and the
hydrodynamic bearing effect can offer some additional
stiffness. In high pressure pumps, however, the
strongly predominant effects are those of dynamic
stiffness and damping, resulting from the asymmetry
of the pressure field of the leakage flow. Both

these effects can greatly increase the value of the
critical speed over that determined by the mechanical
stiffness of the shaft alone.

Numeric expression for these effects are derived
in the Appendices, but a simplified explanation in
physical terms is as follows:

a) Stiffness.

If a shaft running in a close clearance bushing
deflects under the influence of an out-of-balance
centrifugal force and assumes an eccentric position
in the bushing, the pressure field of the leakage
flow along the bushing becomes asymmetrical. This
results in a hydraulic force F, resisting the deflec-
tion. This force is proportional to the deflection r,
and to the pressure drop along the bushing AP. The
effect can be expressed as a pseudo mechanical stiff-
ness K, where

F = - K • r AP

Since in fluid machines pressures are usually
proportional to squares of running speeds, the above
expression can be rewritten as

F = - (K •	)	r • m2
CO

Where AP O is the pressure drop at a nominal
speed of mo .

In this form it becomes analogous to one descri-
bing the centrifugal force caused by a "negative"
mass of the magnitude:

__	APO
MLOM (K 

mo )

This equation is more convenient to use, and the
value of MLOM is usually referred to as Lomakin mass,
in recognition of the originator of this interpreta-
tion of the effect (1).

b) Damping.

The whirling motion of a shaft running in a close
clearance bushing gives rise to induced perturbation
velocities superimposed upon the velocities of the
leakage flow along the bushing. This also causes an
asymmetric pressure distribution around the periphery
of the bushing and results in forces resisting the
whirling motion. These forces are proportional to
the velocity of the displacement, and can be expressed
as

F = - C • dt = - C	r • w

The value of C is derived in the Appendix. It is,
among other things, proportional to the pressure drop
along the bushing and its effect can be estimated by
comparing it with the magnitude of the critical damp-
ing;

CC

Cc - 4 KM

Here C = damping coefficient
C cr = critical damping coefficient
K, M = stiffness and mass of simplified system

K
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c)	Effect upon Critical Speed

The effect of the Lomakin mass upon the criti-
cal speed can be explained as follows.

Assume a simplified system,
comprising a weightless shaft of
mechanical stiffness K s , a concen-
trated mass m with an initial
eccentricity e, and sealing rings
and bushings represented by a
Lomakin mass MLOM.	Running at an
angular velocity w the shaft will
deflect under the influence of ([^
the centrifugal force by the
amount r, determined by the
equilibrium of the centrifugal
and the restoring forces:	s^ ^-

m (r+e) w 2 = (Ks + MLOM - w 2 ) r

This gives the relative
deflection as:

r	m w2
e	Ks - (m-MLOM) w2

Ignoring for the moment the effect of damping
and solving for the critical speed, defined by the

condition that r }	results ine
w 2	_	Ks

m - MLOM

The same shaft running in air, that is with
MLOM = 0, would show a critical speed of

w2 =	Ks
m

Evidently, the presence of the Lomakin effect
increases the critical speed of the shaft by the
factor of:

wwet =	
1

wdry	1 - MLOM /m

In particular, one should note that if MLOM
equals or exceeds m, the critical speed is completely
eliminated. This idea can be physically understood
as follows: At any given operating speed, the wear
ring has a certain stiffness, and this gives a calcu-
lable critical speed. If the operating speed is
raised to reach this critical speed, the pressure
difference across the wear ring will increase, the
stiffness will increase, and hence the new calculable
critical speed will be higher. Thus increasing the
operating speed can keep raising the critical speed
such that an actual critical speed can never be
reached. Under such circumstances, we can say that a
true critical speed is non-existent. It is evident
that the condition for such complete suppression of
critical speed is simply that the total Lomakin mass
of all close-clearance spaces exceed the total mass
of the rotating element. This method of appreciating
the significance of Lomakin mass was proposed by
H. F. Black. (2).

The influence of damping is a further, slight
increase in the value of the critical speed, but a
much more important effect is that of drastic reduc-
tion of deflection when running actually at the

critical speed. Expressed in terms of relative de-
flection the effect of damping is to limit actual
deflections at critical speed to the value of:

_L . - _ L_ _ 1	Ccr
e	2	2

Since in most high speed machines the initial
eccentricity, e is very small indeed, even a relative-
ly small damping factor of 0.2 limits the critical
deflection to approximately 2.5 times the initial
eccentricity, a value acceptable in most machines.

TEST ARRANGEMENT

The test pump is a modified Byron Jackson
8 x 10 x 15 DSJH process pump. This is a single
stage, double suction, horizontal pump with a ball
bearing and a mechanical seal on each end. For the
present tests, the impeller was replaced with a solid
disk of about the same mass. Wear rings are provided
on either side as shown in Figure 1.

E

PROet

The pump has top suction and top discharge and is
driven by a motor powered by a Borg-Warner frequency
inverter. The variable speed capability in this set-
up was from 0 to about 6500 RPM.

To vary the pressure difference across the wear
rings independently of the operating speed, a separate
injection pump was used. As shown in Figure 2,

INJECTION PUMP

2.3=11%GSJA

VALVE
r	I TEST TANK

DISCHARGE	
SUCTION U

FLOW METER

J OP WEAR RING

PROXIMITY

PROBES

TEST PUMP

8.10-15 DSJH

Figure 2.	T= Laop

the injection pump is a Byron Jackson 2 x 3 x 112GSJA
two stage process pump. The output of this pump is

3
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fed to the discharge side of the test pump so that
the flow will leak past the two wear rings in the
normal direction. This flow then exits the test pump
through the suction pipe and returns to the test tank
The pressure difference across the wear rings is con-
trolled by the valve shown in Figure 2, and measured
directly. The flow rate is measured using a venturi-
type flowmeter.

Shaft vibration amplitudes are measured with
two Bently-Nevada proximity probes located close to
the disk and circumferentially separated as shown in
Figures 1 and 2. The phase shift is measured with
respect to a fixed mark on the rotating shaft. The
vibration data are reduced to a frequency spectrum
at each running speed. All test data shown in this
paper are at once/rev. frequency.

TEST RESULTS
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1. Tests in Air: The first tests were perform-
ed with no water in the test pump and with the wear
rings removed. Figure 3 shows the dynamic response

Q WJ W
W ir
co0
Q W
a '

Z
W o

W YU a
Q U)
-.1-i

N
a

o	t	z	3	4	5	$	7	a	f

RPM • 10

Figure 3. Response in Air

for this case as measured with one of the proximity
probes. A clear critical speed at 4000 RPM is ob-
served along with a nearly 180 0 phase shift.

2. Tests in Water: When water is introduced
into the pump, the amplitude response characteristics
change dramatically. The response depends strongly
on the geometry of the wear rings. The geometrical
parameters that were studied are the following:

i) Diametral clearance: Three clearances

	

were tested.	.016", .024", and .032"

ii) Grooving Configurations: Tests were made for
smooth rings as well as for grooved rings. Effect of
grooving only one component (rotor or the stator) and
both components were studied separately. Each groove
configuration was tested at different clearances.

Figure 4 shows the vibration response for the
case of smooth rings with nominal diametral clearance
2H = .016", and pressure difference across wear rings
AP z 250 psi. These are approximately the design
point conditions for a pump of this type. No

RPM •10

Figure 4. Vibration Response with Smooth Rings and
Nominal Diametral Clearance= .016"; SP = 250 psi

discernable critical speed is evident within the
tested speed range, and there is virtually no phase
shift. Figure 5 shows the response for a larger

-3
RPM • 10

Figure 5. Vibration Response for Smooth Rings with Nominal
Diametrai Clearsnce = .032"; AP = 50 psi

clearance 2H = .032" and 4P z 50 psi. Here the
critical speed at 4100 RPM is quite evident and
occurs with a 180° phase shift.

Figure 6 shows a typical response curve for the
case with both rotor and stator grooved. The groove
depth is 3/64", and the land width is 1/16". There
are 8 starts, and the grooving direction is to
counteract the flow. The clearance 2H = .024", and
AP = 250 psi. The response is harder to interpret,
but it is fairly clear that there is a heavily
damped critical speed at about 4300 RPM. The phase
shift is not 180 0 but it seems to be on the increase.
Such difficulties in interpretation were often en-
countered with increasing pressures at moderate clear-
ances with the grooving geometry, where the main in-
fluence of the liquid film was damping rather than
stiffness.
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KLOM = Lomakin stiffness at the appropriate
pressure drop across the wear ring

g	= acceleration due to gravity

For smooth rings, from Appendix 1

Ks = ^r D.L aL/2/(l+El)
LOM 4	[XL/2/(1+^1) + H]2 AP

With D = 8.5" • L = 1.625" ; A = .02 ;	= 0.5, we
get for two rings:

KLOM	
20.8 [.0108 + H12 ^P lb/in

where H is radial clearance.

Similarly for grooved rings:

KG	= 	D L	(l+l)	OP ¢LOM	
[	+ (1+E 1+ nE 2 )H] Z

where n = number of lands

and	E2 = entrance loss coefficient between a land
and a groove

KLOM = 20.8
	

[.01625 + (1.5+11	
^P lb/in

The subscripts s and G refer to smooth and
grooved configurations respectively. The constant E2
depends upon the groove depth to gap ratio. It can
be as low as 0.05 for low values, and up to 0.5 for
very large values of this ratio.

Using the above equations, it is a relatively
simple matter to calculate the critical speed for all
the configurations tested. Figure 7 shows the con-

UCO
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zY
wa
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0	1	2	3	4	5	f	7	a	f

RPM •10

Figure 6. Vibration Response for both Rotor and Stator Grooved
Nominal Clearance= .024"; IF = 250 psi

COMPARISON WITH CALCULATION

1. Test in Air: The calculation of the criti-
cal speed is quite str aightforward. The basic dimen-
sions are

Shaft Diameter
	

2.625"
Bearing Span
	

34. 0"

Impeller Weight
	

160 lbs
Shaft Weight
	

60 lbs

From Figure 15.9 of ( 3 ) the empirical stiffness
coefficient for this configuration is 56, hence

Ks = 56 *	- (2 .625) 4 * 30 * 106 = 99600 lb/in

0O0

W	SOO(

U d
U

U

400C

'V

I fr--------
CALC. TEST

---

•
•

SMOOTH
GROOVED R

---- A

TN $

GROOVED//

DIAMETRAL CLEARANCE I

100	200	300	400

PSI

AP ACROSS WEAR RING

Figure 7. Critical Speed as Function of AP across
Wear Ring; .016 Clearance

The combined mass of shaft and impeller is

m = 13 60 2+ 60
2 = 0.569 lb. sec t /in

and the critical speed, in RPM, calculates to

30	
3995 RPMNcr.dry =	s

m

This agrees very closely with the measured value
of 4000 RPM.

2. Tests in Water: It was noted earlier that
the Lomakin effect is usually treated as a virtual
mass because its restoring force generally increases
as the square of the speed of the pump. In the pre-
sent test, the pressure across the wear ring is held
constant as the test pump speed is increased. Hence
the Lomakin effect is independent of speed, and has
to be treated as a stiffness. The critical speed is
then:

	

30	Ks + KLOM
Ncr.wet	n	(W + Ww)	g

where W = total weight of impeller and shaft
= 220 lbs

Ww = equivalent weight of displaced water
= 25 lbs.

Ks = shaft stiffness = 99600 lb/in.

TOR/

,TOR

ROOVED

=.0 46"
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_
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/ a

CALC_ TEST

1^ -- — ■

SMOOTH

GROOVED S

— -- •

H

GROOVED/

DIAMETRAL C LEARANCE1

parison for the .016" clearance case. At any given
AP, the critical speed is highest for the smooth rings
The calculated critical speed agrees very well with
the measured values. With one ring grooved, the cri-
tical speed is lowered significantly. The calcula-
tion tracks this decrease quite well. If both rings
are grooved, the critical speed decreases a little
bit more, and this trend is also followed by the cal-
culation. It can be seen that, in general, the in-
crease of measured critical speed with pressure is
not linear. At high AP values, some non-linearities
enter into the picture and are not included in the
calculations. Figures 8 and 9 show similar results
for the .024", and .032" clearance cases. The cal-
culations again provide reasonably good agreement
with the measured results.

600o

4000

ATOR/

rOR

ROOVED

=.024"

100	200	300	400

PSI

A P ACROSS WEAR RING

Figure 8. Critical Speed as Function of SP across
Wear Ring; .024" Clearance

It has sometimes been pointed out that the Lomakin
effect rapidly decreases when the ring clearances open
up to wear in operation ( 4 ). To verify the truth of
this statement, the calculated results of Figures 7,
8, and 9 are replotted in Figure 10 showing the vari-
ation of critical speed with the clearance. The cri-
tical speed with smooth rings can be seen to fall
rather rapidly when the clearance is opened up. The
decrease is much less rapid for the grooved case.
These results are remarkably similar to Figure 6 of
(4). However, we find that the rate of decrease is
significantly lower than indicated in ( 4 ). For ex-
ample, even if the clearance is opened to 300% of
normal value, the critical speed falls only to about
70% of the nominal clearance value. However, since
the pump geometries in ( 4 ) may be different, direct
comparisons can be misleading.

SoOC

WI
t `
V ^

•C
V

6000

_____H

•

■, •

CALC_ TEST

---- •
SMOOTH

GROOVED I

--- — • GROOVED/

DIAMETRAL CLEARANCE

100	200	300	400

PSI

GP ACROSS WEAR RING

Figure 9. Critical Speed as Function of AP across
Wear Ring; .032" Clearance
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Figure 10. Effect of Wear on Calculated Critical Speed
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EXAMPLE CALCULATION
	

3. Stepanoff, A.J.; "Centrifugal and Axial Flow
Pumps" 2nd Edition, John Wiley & Sons, New York.

In this section, the wet critical speed is cal-
culated for a 12 x 12 x 14 HSB boiler feed pump con-
taining six stages. The total weight of shaft and
impeller is 870 lbs. The important close-clearance
spaces are: 6 eye wear rings, 4 hub wear rings, one
center-stage piece, and one balance bushing-sleeve.
The pressure drop across each ring is carefully de-
termined by allowing for disk friction effects etc.
The eye wear rings are smooth, and using the equation
in Appendix 1, their equivalent Lomakin weight is
calculated to be 6 * 69 = 414 lbs. The hub wear
rings are also smooth and their Lomakin weight turns
out to be 4 * 53 = 212 lbs. The center stage piece
is grooved, but the pressure difference across it is
large, i.e., half of the total pump differential
pressure. This gives rise to a significant Lomakin
weight of 200 lbs. The balance piece is also grooved,
and has the same pressure difference. Its Lomakin
weight is 195 lbs. If we add up all the Lomakin
weights, we find the total to be 1021 lbs, which is
well in excess of the shaft plus impeller weight of
870 lbs. Thus the critical speed will be non-
existent for this case.

CONCLUSIONS

1) The Lomakin effect in the close-clearance
spaces of pumps has a very strong influence on the
critical speeds. The effect with smooth rings is
much stronger than with grooved rings.	In special
cases, it is possible for the Lomakin effect to be
so strong that critical speed becomes non-existent.

2) The Lomakin effect decreases as the clear-
ance opens up due to wear. Thus the pump critical
speed can decrease after many hours of operation.
This decrease can be calculated and suitable allow-
ance made at the design stage.

3) A simplified method for calculation of the
wet critical speed of pumps is proposed. This
method has shown good accuracy against test values
for a single stage pump.
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APPENDIX 1

DERIVATION OF LOMAKIN MASS

The close clearance geometries that are of in-
terest in the pump industry are the wear rings, cen-
ter stage pieces and balance bushing sleeves. In
order to develop quantitative expressions for the
Lomakin mass in such geometries, a simplified model
of these rings is made as shown in Figure 11. It in-
dicates a shaft of diameter D located inside an outer
stationary ring with a nominal radial clearance given
by H. As the shaft executes whirling motion, it is
assumed that the shaft center moves in a centered
circular orbit of radius e. At any instant of time,
the maximum and minimum clearances of H + e and H - e
will be established around the periphery. This pro-
duces an asymmetry in the pressure distribution
around the periphery. The resultant effect of such a
pressure distribution is to produce a radial force
which will be proportional to the eccentricity of•the
shaft center.

The pressure distribution along a smooth, narrow
sealing gap is characterized by an entry pressure drop,
representing the velocity head and an entry loss,
followed by a linear pressure drop caused by fluid
friction along the flow path. The entry pressure drop
can be expressed as

Z V2 (1+E 1 )
g

where V = velocity in the gap
^j = entry loss coefficient
p = density of fluid

The friction loss can be expressed as:

2	V2X L-g

where
X = friction ceofficient

H = nominal radial clearance

It is assumed that there will be no pressure
recovery at the discharge end.
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If a shaft, running in a sealing ring with a
radial clearance H, is displaced from the concentric
position by the amount e, the gap will vary around
the periphery from a maximum of (H+e) to a minimum of
(H-e). The overall pressure drop (P1 - P3), deter-
mined by the performance of the pump, will remain the
same around the periphery, but the ratio of the fric-
tion to the total pressure drop will vary with the
size of the gap. Referring to Figure 11, in the

- 3

Figure 11. Derivation of Lomakin Mass for
Smooth Rings

Defining Al' = (P1 - P3), and using (1), (2),
and (3), we can get:

=	
AP [AL/2(l+l)

(AL/2(1+ 1 ) +H) -e

- XL/2(1+ 1 )

(XL/2(1+1) +H) +e

For small deflections, i.e., e<<H, the common
denominator simplifies to:

(XL/2(1+1) +H) 2

and the pressure difference between the smallest and

the widest gap becomes:

-	XL/2(1+i)	*
Ap = AP (AL/2(1+1) +)2	e	(4)

Integration of the pressure difference around
the periphery of the ring results in a restoring force:

2r

F = -L I -	cos 2 S	dO	- - DLP

j	
2	2

0

where the negative sign implies a force resisting the
displacement. Assuming that the pressure difference
generated by the pump follows a square law:

AP= AP O	(a/a)2

the restoring force can be expressed. by:

F = - - D L	 e * a 2 (5)
AP1

(AL/2(1+1) +H	
() *-	

)2 
0

and collecting all constants into

s	TT

MLOM = 4-
D  L AL/2(l+1)	AP

	

2	
(6)

(AL/2(l+1) +H)	a0

equation (5) can be written as:

F = MLQM a a 2

which is analgous to a centrifugal force exerted by a
negative mass equal in magnitude to MLOM. Consequent-
ly, the dynamic behavior of the shaft running in close
clearance bushings can be calculated by replacing the
variable stiffness effects of the bushings by the
imaginary negative mass MLOM.

(1) The expression is quite accurate for short rings.
In long bushings the circumferential flow tends to re-
duce the Lomakin effect. The influence can be express-
ed by a short circuit factor:

(7)

(2) The Lomakin effect is also present in grooved
rings, but is usually less significant. It's magni-
tude can be derived as follows:

narrowest spot it will be:

-	- XL/2 (H-e)

Fl - P3 - (1+i) + XL/2(H-e)

- XL/2(1+1)
- (XL/2(1+1) + H) -e

and in the widest

P - P3 - XL/2(H+e)

PI - p 3 - (l+i) + XL/2(H+e)

- XL/2(1+1)

- (AL/2(l+1) + H) +e

From Figure 11 it can be seen that the asymmetry
of the pressure pattern will cause a mean pressure
difference acting upon the shaft of

+ (P2'-P)	 (3)

Figure 12 shows a typical configuration. The
entry pressure drop can be again expressed as

V2 (H)

N.
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APPENDIX 2

FLUID DAMPING IN SEALING RINGS (Figure 13)

P3

Figure 12. Derivation of Lomakin Mass for
Grooved Rings

but the pressure drop along the flow path now consists
of the friction loss and of multiple re-entry losses

Zg V 2 (AL/2H + n • E2)

where n is the number of lands.

Algebraic manipulation, similar to that leading
from (1) to (4) gives the mean pressure difference
between the narrowest and the widest side

4	4P
 (xL/2)(1+E1)
	e

p	(AL/2+(l+C1 + n•C2) H;2

and further transformation results in the following
expression for the Lomakin mass in grooved bushings

MG	Tr D L (AL/2)(',+E1)	APo
LOM	4	(XL/2 + (1+^ 1+ n	12)H)2 ago ($)

The value of	depends strongly upon the geo-
metry of the grooves, and influences the magnitude
of MLOM accordingly.

Figure 13. Derivation of Damping for Smooth Rings

The Lomakin effect, described in Appendix 1,
resulted in a restoring force in phase with and pro-
portional to the displacement of the shaft. The
fluid damping also results in a force resisting the
motion, but acting out of phase with the displacement,
and proportional to the velocity of the displacement.
Its basic cause is, as before, the asymmetry of the
pressure distribution around the periphery of the ring.

Figure 13 illustrates the velocities and pres-
sures. With a motionless concentric shaft, the flow
is axi-symmetrical, and the velocity V o is constant
along the gap and around the periphery. Shaft dis-
placement with the velocity V s induces in the sealing
gap squeeze film velocities, superimposed upon the
steady flow velocity Vo . The continuity equation de-
fines the maximum value of the induced velocity

L
Vx = Vs 2H

The velocity along the gap is now not a constant
Vo , but it varies in the closing gap from (V o - Vx )

to (Vo + Vx), and in the opening gap from (V o + Vx )

to (Vo - Vx).
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This results both in a difference in the entry
pressure losses, and in a distortion of the pressure

gradient from a straight line to a parabola.	̂ r 	DL 2	pAP

	C  = 4	
2H (3 + .166 n)	

2g 1.25 + .25 n

For Vx <<Vo the pressure variation can be de-
scribed as follows: The difference in the entry
pressure drop:

APA = Zg (1+E 1 ) [(V0+Vx) 2-(V0-Vx ) 2 ]

-f--
2g
 (1+E 1 ) 4 V0V,

and the parabolic distortion of the pressure along
the gap:

pAL 2
APB = 2g
	

4H [V0 - (V0 -	) ] --- 4H Vo Vx

The average pressure difference between the
opening and the closing side becomes:

AP = 2 APA + 3 AP B + Zg [2(1+E1) + 

•
XL
	Vo Vx	(10)

Vx has been defined in (9) and Vo follows from

/ 2	AP
Vo ,/ p	(1+^1) + XL/2H	

(11)

Integration around the periphery gives the
damping force as

F 4 • L •D•AP	 (12)

Defining the damping coefficient as

C = F	 (13)
Vs

and combining equations (10) to (13) gives the value
of the damping coefficient in smooth rings with pres-
sure drop across to:

C	rr DL 2 . (1+E1 + AL/6H) . 	4P •	(14)4	H	1+ + XL/2H	2g

	

with the short circuit factor	as defined in (7).
Damping in grooved rings can be derived in a similar
manner, and the pressure gradients are similar to
Figure 13. The induced velocity is again

L
Vx = Vs 2H

and the difference in the entry pressure drop is

APA = Zg (1+E1) 4 • Vo Vx

The camber of the parabolic pressure gradient
can be approximated by

2
AP B = Zg 2 2 [(vs +V2)  Vol] = Z z 2 Vo Vx

g

Using as typical values	= .5, and C2 = .25,
the same transformation which led from (10) to (14)
gives the damping coefficient in grooved rings with
pressure drop to
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