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Critical Temperature Curve in the BEC-BCS Crossover

Evgeni Burovski,1 Evgeny Kozik,2, 3 Nikolay Prokof’ev,2, 3, 4 Boris Svistunov,2, 4 and Matthias Troyer3
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The strongly-correlated regime of the BCS-BEC crossover can be realized by diluting a system of
two-component fermions with a short-range attractive interaction. We investigate this system via
a novel continuous-space-time diagrammatic determinant Monte Carlo method and determine the
universal curve Tc/εF for the transition temperature between the normal and the superfluid states
as a function of the scattering length with the maximum on the BEC side. At unitarity, we confirm
that Tc/εF = 0.152(7).

PACS numbers:

In the area of ultracold gases, the problem of the
crossover between the Bardeen-Cooper-Schrieffer pair-
ing and the Bose-Einstein condensation of composite
molecules (the so-called BCS-BEC crossover) has re-
cently received a lot of theoretical and experimental at-
tention [1]. A dilute two-component Fermi gas, where the
inter-particle distance is much larger than the interaction
range, features a remarkable universality at low temper-
atures. Since the interaction is completely described by
the s-wave scattering length a, the only physically rel-
evant coupling parameter is κ = 1/kF a, where kF is
the Fermi momentum. One thus obtains a unified and
universal description of systems as diverse as ultracold
fermionic gases in magnetic or optical traps [1], fermions
in optical lattices, inner crusts of neutron stars [2, 3],
and, plausibly, excitonic condensates [4].

In the limit κ → −∞, the Fermi gas is described by
the BCS theory, while for κ → +∞ the fermions pair into
compact bosonic molecules which then form a BEC state
below the critical temperature. Separating these extreme
states is a strongly correlated regime which features the
so-called unitary point κ = 0. At unitarity, the scattering
length is infinite and the interaction thus drops out of
the relations between different thermodynamic potentials
making these relations formally identical to those of a
non-interacting Fermi gas [5]. On the experimental side,
using the technique of a (wide) Feshbach resonance in a
system of cold atoms, one can traverse the whole range
of parameter κ from the BEC to the BCS limit [1].

Despite considerable recent investigation, the quanti-
tative description of the BEC-BCS crossover is far from
being complete, even for the simplest case of the equal
mixture of two components. Due to the strongly corre-
lated nature of the problem, analytical mean-field-type
calculations (e.g. [6, 7, 8]) unavoidably involve approxi-
mations, the accuracy of which is difficult to access unless
the exact result is known. Renormalization group treat-
ments can be carried out as expansions in either ǫ = 4−d
[9], or 1/NF (where NF is the number of fermion species)

[10, 11], but the applicability of these calculations to the
physically relevant case of d = 3 and NF = 2 is not
known a priori.

Numerical studies of fermionic systems are computa-
tionally demanding and further complicated by the need
to study the limit of small densities to access the uni-
versal regime. Some numerical techniques avoid the
fermionic sign problem with a help of uncontrollable ap-
proximations. The restricted path-integral Monte Carlo
(R-PIMC) [12] relies on a variational ansatz for the nodes
of the density-matrix. In the dynamical mean-field the-
ory (DMFT) approach of Ref. [13] the physics of ex-
tended paired states is reduced to that of a single site cou-
pled to the self-consistently defined environment. Fortu-
nately, the unpolarized Fermi gas with contact attrac-
tion is an exceptional case which can be addressed by
sign-problem-free determinant methods without uncon-
trollable systematic errors [14, 15, 16]. Moreover, the de-
terminant diagrammatic MC approach (DDMC) for lat-
tice fermions [15] is completely free of any systematic
error. In simulations of the negative-U Hubbard model
[14] with an appropriate extrapolation to zero filling at
the unitary point we previoulsy obtained accurate results
for the critical temperature of the superfluid transition,
Tc/εF = 0.152(7), in the units of the Fermi energy εF .
This result, however, did not agree with the estimate ob-
tained by Ref. [16] from a visual inspection of the caloric
curve, using the standard auxiliary field approach [17].

To efficiently study the critical temperature curve away
from the unitarity point and to verify that the final re-
sults are model independent – thereby also resolving the
controversy on Tc/εF at unitarity – we develop a DDMC
technique for continuous space and time. We can now ef-
ficiently simulate models with a simple parabolic disper-
sion relation and have completely eliminated lattice cor-
rections. In this Letter, we first discuss the new scheme
and how to obtain an independent systematic-error-free
value for Tc/εF at unitarity. We are able to reach densi-
ties almost 20 times smaller than those typically accessi-
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FIG. 1: (Color online.) The universal results for the critical
temperature in the units of the Fermi energy plotted versus
κ = 1/kF a (circles). The solid lines for negative and positive
κ represent the limiting behavior of the BCS theory (with
the Gorkov-Melik-Barkhudarov correction) and the ideal BEC
respectively. For reference, we also plot non-universal results
for hard-sphere (triangles) and soft-sphere (squares) bosons
Ref. [23].

ble with the auxiliary field determinant method [16], This
allows us to perform a reliable extrapolation to the uni-
versal limit yielding Tc/εF = 0.152(7), in perfect agree-
ment with our previous value [14]. Next, we explore the
critical temperature at finite values of 1/kF a. Our re-
sults, shown in Fig. 1, fix the general shape of the uni-
versal curve Tc/εF versus 1/kF a. The main feature is a
substantial maximum of Tc/εF on the BEC side of the
crossover.

Our specific model is described by the Hamiltonian

H =
∑

σ=↑,↓

∫

dxΨ†
σ(x)

(

K̂ − µ
)

Ψσ(x)

+ U

∫

dxΨ†
↑(x)Ψ†

↓(x)Ψ↓(x)Ψ↑(x) , (1)

where Ψσ(x) is the fermion field operator (σ =↑, ↓), x is a
continuous three-dimensional coordinate, µ is the chem-
ical potential, U < 0 is the contact interaction strength,
and K̂ is the kinetic energy operator, K̂eikx = εkeikx,
with εk being the single-particle dispersion.

The scattering length a is given by the sum of the
vacuum ladder diagrams [18] leading to (~ = 1)

m

4πa
= U−1 +

∫

dk

(2π)3
1

2εk

, (2)

where m is the fermion mass. For the continuous space
model with εk = k2/2m an ultraviolet regularization of
Eq. (2) is required. Keeping in mind comparison with
Ref. [16], where the parabolic dispersion with an ultravi-
olet cutoff was used, we introduce a microscopic length

scale l0 such that

εk =

{

k2/2m , k < 2π/l0 ,

∞ , k > 2π/l0 ,
(3)

yielding

m/4πa = U−1 − U−1
∗ , U∗ = −πl0/m . (4)

It is straightforward to generalize the DDMC method
for resonant fermions [14] to the continuous model (1).
One starts by expanding the partition function Z =
Tre−βH , where β = 1/kBT , in powers of U . The re-
sulting Feynman diagrams consist of four-point inter-
action vertices connected by free single-particle prop-

agators G
(0)
σ . A diagram of a given order p is de-

scribed by the space-time configuration of the vertices
Sp = {(xj , τj), j = 1, . . . , p)} (τ ∈ [0, β] is the imagi-
nary time) and the topology of propagator lines connect-
ing them without integration over the vertex positions—
the latter is done by the Monte Carlo sampling process.
Next, one observes [19] that the sum over all topologies
is given by detA

↑(Sp) detA↓(Sp), where A
σ is the p× p

matrix, Aσ
ij(Sp) = G

(0)
σ (xi − xj , τi − τj). In the case of

equal densities of the spin components, the weight of a
configuration Sp is positive definite:

dP(p,Sp) = (−U)p |detA(Sp)|
2

p
∏

j=1

dτj dxj . (5)

The partition function Z =
∑∞

p=0

∫

Sp

dP is calculated

stochastically according to the standard Metropolis-
Rosenbluth2-Teller2 algorithm ensuring that configura-
tions Sp are generated with the probability density given
by Eg. (5). The Monte Carlo updates are based on a
worm-algorithm for the four-point correlation function
[15] G2(x, τ ;x′, τ ′) =

〈

TτP (x, τ)P †(x′, τ ′)
〉

, where Tτ in-
dicates time-ordering, P (x, τ) = Ψ↑(x, τ)Ψ↓(x, τ) is the
pair annihilation operator, and 〈· · · 〉 is the thermal aver-
age. The asymptotic value of

∫∫

dτdτ ′ G2(x, τ ;x′, τ ′) as
|x − x

′| → ∞ is proportional to the condensate density.
Up to statistical errors, the DDMC calculations yield

exact results for a finite system – in our case a cubic box
of a linear size L with periodic boundary conditions. An
efficient way of finding Tc in the thermodynamic limit
L → ∞ is to employ the technique of Binder crossings
[20] for R = L1+η

∫

dxdx′dτdτ ′G2(x, τ ;x′, τ ′)/(βL3)2

(where η ≈ 0.038 for the 3D U(1) universality class),
as discussed in detail in Ref. [15]. It is expected that at
the critical point R becomes scale invariant. By analyz-
ing the crossings of the family of R(L, β) curves one can
obtain Tc with an accuracy of a fraction of percent with a
relatively small number of particles. The thermodynamic
limit of the number density is obtained from a linear ex-
trapolation of n(L) as a function of 1/L. An example of
the finite-size analysis for a typical set of parameters is
given in Fig. 2.
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FIG. 2: (Color online.) Finite-size analysis for c = 0.83,
µ = 0.36, corresponding to U ≈ −7.519 and a ≈ 1.52 (in the
units of m = 1/2, l0 = 1) yielding βc = 1.290(8). The error
bars are one standard deviation and were calculated using the
blocking method. Inset: the thermodynamic limit value of the
number density is obtained via a linear fit of n(L) vs. 1/L.
In this case, nl30 = 0.119(2), which results in ζ = 0.492(3),

T
(ζ)
c /ε

(ζ)
F = 0.335(6), and κ = 0.432(3).

In order to obtain the universal answer for Tc/εF one
finally has to take the limit of ζ = n1/3l0 → 0 by extrap-

olating numerical data for T
(ζ)
c /ε

(ζ)
F to the dilute limit.

We keep l0 constant and take the limit by lowering the
chemical potential µ and diluting the system. One can
show [15] that the leading-order corrections should be lin-

ear in ζ ≪ 1: T
(ζ)
c /ε

(ζ)
F = Tc/εF + const × ζ + o(ζ). The

calculation strategy is as follows: at unitarity (κ ≡ 0),
we fix U = U∗ according to Eg. (4) and perform a se-
ries of simulations for different values of µ, yielding a

set of T
(ζ)
c /ε

(ζ)
F . Then, the universal value of the criti-

cal temperature follows from the linear extrapolation of

T
(ζ)
c /ε

(ζ)
F to ζ → 0.

To obtain Tc/εF away from the resonance, the pro-
cedure has to be modified. Taking the dilute limit for
each value of κ 6= 0 requires that a → ∞ in such a
way that 1/kF a tends to a fixed finite value κ. We
note that the universal value of the chemical potential
obeys µ(Tc)/εF ≡ 2mg(κ), with some function g(κ), or,
equivalently, limζ→0 µ(ζ)(Tc)a

2 = g(κ)/κ2 implying that
for each κ one has to keep µa2 = const. Substituting
a2 = µ/c into (4) gives

U = U∗

(

1 ±
mU∗

4π

√

µ

c

)−1

, (6)

where the upper (lower) sign corresponds to the BEC side
a > 0 (BCS side a < 0). We thus pick a value of c and
perform a series of simulations for smaller and smaller
values of µ with U from Eq. (6). Each simulation yields

a finite-ζ estimate for the critical temperature T
(ζ)
c (c),

density n(ζ)(c) and κ(ζ)(c). After linear extrapolations
to ζ → 0 we determine the physical value of Tc/εF and
the corresponding value of κ.

FIG. 3: (Color online.) The extrapolation of the simulation

results to the universal limit ζ = n1/3l0 → 0. The proce-
dure yields Tc/εF = 0.152(9), 0.202(9), and 0.252(15) for
κ = 1/kF a = 0 (squares), 0.217(2) (circles), and 0.474(8)
(triangles) correspondingly. For comparison, we also plot our
results for the Hubbard model (open squares) adapted from
Ref. [14]. The estimate of Ref. [16] at κ = 0 (obtained for fi-
nite ζ ≈ 0.93) is shown by the diamond. Solid lines are linear
fits.

In Fig. 3 we show results for the critical temperature as
a function of ζ. For comparison and consistency analysis
of Tc at unitarity, we also plot the data for the Hubbard
model [14] as a function of the filling factor ν, which
plays the same role as ζ in the present model. Note that
the non-universal corrections to Tc/εF in ζ turn out to
be positive and much smaller (at unitarity) than for the
Hubbard model. The former fact is important for the
simulation efficiency, since the computational complexity
of the DDMC technique scales as (βUN)3, where N is the
number of fermions, and it is advantageous to simulate
at higher temperatures.

It is important to note that at high densities the

T
(ζ)
c /ε

(ζ)
F curves are almost constant and the true asymp-

totic low-ζ behavior develops only below ζ ≈ 0.75. For
a reliable extrapolation it is crucial to vary the density
by at least an order of magnitude, and we did so by di-
luting the system down to n ≈ 0.04/l30 (ζ ≈ 0.35), where
we were limited by the low values of the absolute criti-
cal temperature itself. Unfortunately, no dilute-limit ex-
trapolation was performed in Ref. [16] (their value for
ζ ≈ 0.93 is shown by the diamond in Fig. 3). The total
simulation time required to obtain this set of data was
approximately 106 CPU hours on Opteron-class worksta-
tions.
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At unitarity, the extrapolated result for T
(ζ)
c /ε

(ζ)
F yields

an answer which is in perfect agreement with Tc/εF =
0.152(7) obtained independently from the ν → 0 extrap-
olation of the Hubbard model data [14]. In the latter
case, the universal value is approached from below (see
Fig. 3). This agreement unambiguously demonstrates
that our treatment of non-universal corrections is reli-
able in the simulated parameter range (linear fits for
ζ < 0.75). Away from unitarity we find Tc/εF = 0.202(9)
and 0.252(15) for κ = 0.217(2) and 0.474(8), respectively.

The results for the strongly correlated regime essen-
tially determine the general shape of the universal curve
[Tc/εF ](κ) shown in Fig. 1. Deep in the BEC regime
(κ ≫ 1) the critical temperature is that of a weakly in-
teracting Bose gas of strongly bound dimers which is ex-
pected to increase on approach to the resonance. In the
BCS limit (κ < 0, |κ| ≫ 1) the Tc-curve starts from
exponentially small values for κ → −∞, and thus the
crossover between the two limiting regimes necessarily
features a maximum in Tc/εF . The results in Fig. 1
clearly show that this maximum must be on the BEC
side (κ > 0). The value at the maximum appears to be
surprisingly high. For comparison, we show in Fig. 1 the
critical temperatures of a Bose gas with hard- and soft-
core sphere potentials with scattering length aB = 0.6a.
The tremendous computational cost required to deter-
mine each point in the crossover regime reliably did not
allow us to precisely locate the position of the maximum
in the kF a ∼ 1 region.

The behavior of the critical temperature on the BEC
side revealed by our simulations, suggests that the short-
range structure of the strongly correlated state is radi-
cally different from that of the compact-molecule Bose
gas (and, obviously, also from that of the BCS state) in
a broad range of κ. In other words, we are dealing with
two crossovers—one is from BCS to the substantial uni-
tarity regime and the other is from the unitarity regime
to BEC.

To summarize, we performed first-principle simulations
of the two-component unpolarized Fermi gas with res-
onant inter-particle interaction obtaining the universal
critical temperature Tc/εF = 0.152(7) at the unitarity
point κ = 1/kF a = 0 thereby resolving the earlier con-
troversy between the results of Refs. [15] and [16]. We
also obtain Tc away from unitarity on the BEC side al-
lowing one to sketch the general dependance [Tc/εF ](κ)
with a maximum on the BEC side, in a good quantitative
agreement with the mean-field-type prediction by Hauss-
mann et al. [8]. After our results were announced [21],
the Seattle group reconsidered their previous estimate of
the critical temperature [22]. The new results are in ex-
cellent agreement with the values claimed here both at
and away from unitarity.

The simulations were performed on the supercomput-

ers Hreidar at ETH Zurich, Mammoth at the Univer-
sity of Sherbrooke, Typhon and Athena at the College of
Staten Island, CUNY. The work was supported by the
National Science Foundation under Grant PHY-0653183.
E.B. was partially supported by IFRAF.
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[10] P. Nikolić and S. Sachdev, Phys. Rev. A 75, 033608

(2007).
[11] M.Y. Veillette, D.E. Sheehy, and L. Radzihovsky, Phys.

Rev. A 75, 043614 (2007).
[12] V.K. Akkineni, D.M. Ceperley, and N. Trivedi, Phys.

Rev. B 76, 165116 (2007).
[13] N. Barnea, arXiv:0803.1349.
[14] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer,

Phys. Rev. Lett. 96, 160402 (2006).
[15] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer,

New J. Phys. 8, 153 (2006).
[16] A. Bulgac, J.E. Drut, and P. Magierski, Phys. Rev. Lett.

96, 090404 (2006).
[17] D.J. Scalapino and R.L. Sugar, Phys. Rev. Lett. 46,

519 (1981); R. Blankenbecler, D.J. Scalapino, and R.L.
Sugar, Phys. Rev. D 24, 2278 (1981).

[18] E.M. Lifshitz and L.P. Pitaevskii, Statistical Mechanics,
Part 2, (Pergamon Press, New York, 1980).

[19] A.N. Rubtsov, V.V. Savkin, and A. I. Lichtenstein Phys.
Rev. B 72, 035122 (2005).

[20] K. Binder, Phys. Rev. Lett. 47, 693 (1981).
[21] See, e.g., http://online.itp.ucsb.edu/online/coldatoms07/svistunov
[22] A. Bulgac, J.E. Drut, and P. Magierski, arXiv:0803.3238.

Since the lowest density reported was about n & 0.7/l30 ,
we can only speculate that an additional lattice dis-
cretization present in the model somehow helps in re-
ducing the non-universal corrections.

[23] S. Pilati, S. Giorgini, and N. Prokof’ev, Phys. Rev Lett.
100, 140405 (2008).

http://arXiv.org/abs/0706.3360
http://arXiv.org/abs/0803.1349
http://online.itp.ucsb.edu/online/coldatoms07/svistunov
http://arXiv.org/abs/0803.3238

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2008

	Critical Temperature Curve in BEC-BCS Crossover
	E Burovski
	E Kozik
	N Prokof'ev
	B Svistunov
	M Troyer
	Recommended Citation


	tmp.1297893080.pdf.hKW1U

