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Abstract
A critical transition for a system modelled by a concave quadratic scalar ordinary differ-
ential equation occurs when a small variation of the coefficients changes dramatically the
dynamics, from the existence of an attractor–repeller pair of hyperbolic solutions to the lack
of bounded solutions. In this paper, a tool to analyze this phenomenon for asymptotically
nonautonomous ODEs with bounded uniformly continuous or bounded piecewise uniformly
continuous coefficients is described, and used to determine the occurrence of critical transi-
tions for certain parametric equations. Some numerical experiments contribute to clarify the
applicability of this tool.

Keywords Critical transition · Rate-induced tipping · Nonautonomous bifurcation

Mathematics Subject Classification 37B55 · 37G35 · 37M22

All the authors were partly supported by Ministerio de Ciencia, Innovación y Universidades under project
RTI2018-096523-B-I00 and by the University of Valladolid under project PIP-TCESC-2020. I.P. Longo was
also partly supported by the European Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie grant agreement No 754462 and by TUM International Graduate School of
Science and Engineering (IGSSE).

B Carmen Núñez
carmen.nunez@uva.es

Iacopo P. Longo
longoi@ma.tum.de

Rafael Obaya
rafael.obaya@uva.es

1 Forschungseinheit Dynamics, Zentrum Mathematik, Technische Universität München, M8,
Boltzmannstraße 3, 85748 Garching bei München, Germany

2 Departamento de Matemática Aplicada, Universidad de Valladolid, Calle Doctor Mergelina s/n, 47011
Valladolid, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10884-022-10225-3&domain=pdf
http://orcid.org/0000-0002-4344-6956


Journal of Dynamics and Differential Equations

1 Introduction

Substantial and irreversible changes in the output of a system upon a negligible change in the
input are referred to as critical transitions or tipping points. Motivated by current exceptional
challenges in nature and society [18, 38], the study of the several mechanisms leading to a
critical transition has experienced a renewed scientific thrust. In recent years, for example, it
has been observed that a time-dependent transition connecting a past dynamical system to a
future one can give rise to critical transitions when the transition dynamics “fails to connect
the limit ones” [5]. This type of phenomenon has been identified in several real scenarios
including ecology [39, 42], climate [2, 5, 27, 43], biology [21], and quantummechanics [23],
among others.

Frequently in the literature (see for example [5, 24, 32, 34]), the evolution of the system
from the past to the future is modeled by an asymptotically autonomous differential equation.
An asymptotically nonautonomous version of this theory has been considered recently for the
first time in [29], where also the past and future systems are time-dependent: this reference
deals with scalar quadratic differential equations of the type

y′ = −(
y − �(t)

)2 + p(t) (1.1)

with�(t) := (2/π) arctan(ct) for c > 0 and p : R → R bounded and uniformly continuous.
There are two main reasons for this choice. First, the global dynamics induced by a quadratic
differential equation is basically described by the presence or the absence of a (classical)
attractor–repeller pair of (bounded) hyperbolic solutions. In consequence, these equations
offer a solid structure to formulate and study the possible occurrence of critical transitions:
small changes in the coefficients may cause an attractor–repeller pair to disappear. In fact,
quadratic differential equations have been identified as prototype models for the so-called
rated-induced tipping (which we will describe below) since the very beginning [6], and
have been further studied in this context [5, 20, 35]. Second, quadratic differential equations
appear as mathematical models in many different areas of applied sciences, which makes
this formulation interesting by itself. For instance: several model in mathematical finance
respond to this type of Eq. [7, 8]; the relation (1.1) is also the Riccati equation of a two-
dimensional linear hamiltonian system and the possible presence of the attractor–repeller
pair is related with the existence of an exponential dichotomy of this linear equation, which
in turn determines the existence of a local attractor or the lack of bounded solutions in some
associated nonlinear models [15, 22]; and Eq. (1.1) are simple models of concave differential
equations, which appear often in applications and share a common dynamical description
given by the presence or absence of an attractor–repeller pair [12, 31].

In this paper, with the aim to contribute to a more robust mathematical theory of critical
transitions, we go deeper in the theoretical and numerical analysis initiated in [29], which is
now extended to Eq. (1.1) with much more general coefficients, as well as to more general
types of critical transitions. When � and p are arbitrary measurable functions belonging to
the Banach space L∞(R, R), (1.1) fits in the class of Carathéodory differential equations,
which have well-known regularity properties. We analyze the case where these coefficients
are bounded and piecewise uniformly continuous functions with an at most countable set of
discontinuity points (BPUC, for short). A highly technical and far from trivial extension of
the methods used in [29] allows us to show that the description of the dynamical possibilities
there given remains valid in this extended framework. In particular, the bifurcation analysis
for y′ = −(y − �(t))2 + p(t) + λ associates a certain real value λ∗(�, p) to (1.1), in such
a way that (1.1) admits an attractor–repeller pair of hyperbolic solutions if λ∗(�, p) < 0
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(case A), it admits bounded but no hyperbolic solutions if λ∗(�, p) = 0 (case B), and
bounded solutions do not exist if λ∗(�, p) > 0 (case C). This description shows that the
map (�, p) �→ λ∗(�, p) is a strong tool to analyze the occurrence of critical transitions as �

and p vary. In fact, case A is equivalent to the existence of at least one bounded hyperbolic
solution, and a key point in this assertion is the choice of BPUC coefficients: we prove
that a BPUC function has a compact hull � for the L1

loc-topology and induces a continuous
skew-product flow on �×R; and these properties are required in the proof of the mentioned
equivalence. For reasons which will become clear in the next paragraphs, we need to deal
with bounded piecewise constant functions (which also appear in some applications), and
hence the set of BPUC maps provides an optimal framework to formulate our results.

We add two more hypotheses to our BPUC coefficients � and p: the asymptotic limits
�(±∞) exist and are finite; and the equation y′ = −y2 + p(t) has an attractor–repeller
pair, which implies this same dynamical structure for the past and future systems y′ =
−(y − �(±∞))2 + p(t). These conditions will be in force in the next paragraphs. They
ensure the existence of: a local pullback attractor for (1.1) which “connects with the attractor
for the past” as time decreases, meaning that the distance between both maps goes to 0 as
t → −∞; and of a local pullback repeller for (1.1) which “connects with the repeller for
the future” as time increases. When this local pullback attractor and repeller are globally
defined and different, they form an attractor–repeller pair which, in addition, connects those
of the past and the future, and we are in case A: this is the situation usually called (end-
point) tracking. If the local pullback attractor is globally defined and coincides with the local
pullback repeller, then they provide a unique bounded solution, and we are in case B. And
the only remaining possibility is that none of them is globally defined, which corresponds
to case C, and is sometimes called tipping. When a small variation of � and p changes the
dynamics from case A to case C (from tracking to tipping), we have a critical transition.

In this paper, we analyze the occurrence of critical transitions as a parameter c varies
for two different types of one-parametric equations of (1.1) type, which now we write as
y′ = −(y − �c(t))2 + p(t). For both models, the function λ∗(�c, p) varies continuously
with the parameter c, and the most basic type of critical transition (which we call transversal)
occurs when its graph crosses the vertical axis: this means a change from case A to case
C at a particular tipping value c0 of the parameter. In particular, as expected, the dynamics
fits in case B for c = c0. The previous description of these cases shows the link between
this type of tipping points and a simple nonautonomous saddle-node bifurcation pattern [30]:
a transversal critical transition occurs when the attractor–repeller pair collides in just one
bounded solution. Such a collision has been explored analytically and numerically in several
contexts: in one-dimensional systems [5, 26]; in higher-dimensional systems [1, 36, 44, 45];
in set-valued dynamical systems [11]; in random dynamical systems [20]; in regards to early-
warning signals [35, 36]; and in the nonautonomous formulation [29]. There are other points
of connection between the two considered cases. For instance, a large enough transition
�c(+∞) − �c(−∞) guarantees the occurrence of critical transitions, while a decreasing
function �c makes this occurrence impossible. The role played by the size of the coefficients
of the model in the occurrence of tipping points is a key question, which appears implicit in
several works, as [3, 32, 34].

For our first model, �c(t) := c�(t) for a C1 function � (always with finite asymptotic
limits), and p is a BPUC function. An in-depth analysis of the map c �→ λ̂(c) := λ∗(c�, p)
shows its continuity as well as some fundamental monotonicity properties. This allows us to
prove that, if � has a local increasing point, then λ̂(c) > 0 if c is large enough. Since, by
hypothesis, λ̂(0) < 0, at least a critical transition occurs. In addition, there is a unique zero
of λ̂ (a unique critical transition) if � is nondecreasing.
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Our secondmodel fits in a rate-induced tipping pattern, as in almost all the afore-mentioned
references. In this case, we take �c(t) := �(c t) for a fixed �, so that c determines the
speed of the transition from the past system to the future system, which are common for all
c > 0. As before, p is assumed to be BPUC; and now we include the analysis of bounded
piecewise constant transition functions �. These models seem to be physically reasonable.
When the rate c tends to infinite, the transition function tends to a new piecewise constant
function, and hence the limit equation is included in the theoretical formulation. The function
λ∗(c) := λ∗(�c, p) varies continuously with respect to c on R

+ ∪{∞}. From this continuity,
it is posible to deduce the tracking when the rate c is small and also the occurrence of tracking
or tipping when it is large enough, based on the analysis equation corresponding to c = ∞.
In addition, if the piecewise constant function �h is defined by coinciding with an initially
fixed continuous � at the discrete set { jh | j ∈ Z}, and �h

c (t) := �h(c t) (so that �h
c is

BPUC), then the function (�h
c , p) → λ∗(�h

c , p) varies continuously with respect to the L1
loc-

topology on the subset {(�h
c , p) | c ∈ R ∪ {±∞}, h ∈ [0, h0]} ⊂ BPUC × BPUC for any

h0 ≥ 0. Getting this continuity is one of the most challenging problems in this paper. (In fact,
the map (�, p) �→ λ∗(�, p) is locally Lipschitz for the L∞-norm on BPUC × BPUC, but
λ∗ is not a continuous function for the L1

loc-topology.) As a consequence of the continuity,
the properties of the continuous case can be understood by taking limits as h tends to 0.
These facts, combined with a simple numerical analysis and with an easy characterization
of λ∗(∞, h), allow us to show interesting tipping phenomena for a quite simple example (as
its possibly revertible character) and to explain the concept of partial tipping in our setting.
The occurrence of tipping points in piecewise constant transition functions is also analyzed
in [3, 27].

The paper is organized as follows. Section 2 extends to the most general situation con-
sidered in the paper some dynamical properties previously known for quadratic differential
equation with continuous coefficients. An important part of the (highly technical) proofs
is postponed to Appendix A. Section 3 starts an in-depth study of the bifurcation function
λ∗(�, p) and includes the analysis of the first model above mentioned. The last two sections
of the paper concern the occurrence of rate-induced tipping for the second model. Section
4 deals with the case where the functions � is continuous, whereas in Sect. 5 the transi-
tion function is taken piecewise constant. The phenomenon of partial tipping is described
in Sect. 4. Appendix B, which completes the paper, justifies the accuracy of the numerical
examples included in the previous sections.

2 General Results for Concave Quadratic Scalar ODEs

Throughout the paper, L∞(R, R) is the Banach space of essentially bounded functions
q : R → R endowed with the norm ‖q‖ given by the inferior of the set of real numbers
k ≥ 0 such that the Lebesgue measure of { t ∈ R | |q(t)| > k } is zero.

Let us consider the nonautonomous concave quadratic scalar equation

x ′ = −x2 + q(t) x + p(t) , (2.1)

where q, p belong to L∞(R, R). Later on, we will have to be more restrictive in the choice
of q and p, but we will first establish some general properties. Throughout this section,
t �→ x(t, s, x0) represents the unique maximal solution of (2.1) satisfying x(s, s, x0) = x0,
defined for t ∈ Is,x0 = (αs,x0 , βs,x0) with −∞ ≤ αs,x0 < s < βs,x0 ≤ ∞. Recall that, in
this setting, a solution is an absolutely continuous function on each compact interval of Is,x0
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which satisfies (2.1) at Lebesgue almost every t ∈ Is,x0 ; and that Is,x0 = R if x(t, s, x0)
is bounded. The results establishing the existence and properties of this unique maximal
solution can be found in [13, Chapter 2]. Recall also that the real map x , defined on an
open subset of R × R × R containing {(s, s, x0) | s, x0 ∈ R}, satisfies x(s, s, x0) = x0 and
x(t, l, x(l, s, x0)) = x(t, s, x0) whenever all the involved terms are defined. In fact, these
results hold for Carathéodory differential equations of more general type. For instance, those
of the form (2.1) with q, p ∈ L1

loc(R, R), where L1
loc(R, R) is the space of Borel functions

b : R → R which are integrable on compact intervals (which, as explained in Appendix A,
is a complete metric space).

2.1 Hyperbolic Solutions and Their Persistence

Let q, p belong to L∞(R, R). A bounded solution b̃ : R → R of (2.1) is said to be hyper-
bolic if the corresponding variational equation z′ = (−2 b̃(t) + q(t)) z has an exponential
dichotomy on R. That is (see [14]), if there exist kb ≥ 1 and βb > 0 such that either

exp
∫ t

s
(−2 b̃(l) + q(l)) dl ≤ kb e

−βb(t−s) whenever t ≥ s (2.2)

or

exp
∫ t

s
(−2 b̃(l) + q(l)) dl ≤ kb e

βb(t−s) whenever t ≤ s (2.3)

holds. If (2.2) holds, the hyperbolic solution b̃ is (locally) attractive, and if (2.3) holds, b̃ is
(locally) repulsive. In both cases, we call (kb, βb) a (non-unique) dichotomy constant pair
for the solution b̃ (or for the equation z′ = (−2 b̃(t) + q(t)) z).

Proposition 2.1 Assume that (2.1) has an attractive (resp. repulsive) hyperbolic solution
b̃q,p. Then, this hyperbolic solution is persistent in the following sense: for any ε > 0 there
exists δε > 0 such that, if q̄, p̄ ∈ L∞(R, R) satisfy ‖q̄ − q‖ < δε and ‖ p̄ − p‖ < δε , then
also the perturbed differential equation

x ′ = −x2 + q̄(t) x + p̄(t)

has an attractive (resp. repulsive) hyperbolic solution b̃q̄, p̄ which satisfies ‖b̃q,p− b̃q̄, p̄‖ < ε.
In addition, there exists a common dichotomy constant pair for the variational equations z′ =
(−2 b̃q̄, p̄(t)+ q̄(t)) z corresponding to all the functions q̄ and p̄ which satisfy ‖q̄ − q‖ < δε

and ‖ p̄ − p‖ < δε.

Proof The proof follows step by step that of [29, Proposition 3.2]. Note that given s ∈
L∞(R, R), the equation

y′ = (−2 b̃q,p(t) + q(t)) y + s(t) (2.4)

has a (unique) bounded solution, given by t �→ ∫ t
−∞ u(t) u−1(l) s(l) dl for u(t) :=

exp
∫ t
0 (−2b̃(l) + q(l)) dl. This allows us to define the operator T on the Banach space

of real bounded continuous functions on R as in [29], and repeat the whole argument used
there. �
The next result shows the persistence also of those solutions for which the variational equa-
tion has exponential dichotomy not in the whole of R, but in a half-line. We represent by
“sup esst∈I” the restriction of the L∞-norm to an interval I, and by L∞(I, R) the corre-
sponding Banach space.
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Proposition 2.2 Let q̂, p̂ : (−∞, t∗] → R belong to L∞((−∞, t∗], R), where t∗ ∈ R.
Assume that the equation

x ′ = −x2 + q̂(t) x + p̂(t) (2.5)

has a bounded solution b̃ p̂,̂q : (−∞, t∗] → R satisfying

exp
∫ t

s
(−2 b̃q̂, p̂(l) + q̂(l)) dl ≤ k e−β(t−s) whenever t∗ ≥ t ≥ s

for some constants k ≥ 1 and β > 0. Given ε > 0, there exists δε > 0 such that, if
q̄, p̄ : (−∞, t∗] → R belong to L∞((−∞, t∗], R) and satisfy sup esst≤t∗ |q̄(t) − q̂(t)| < δε

and sup esst≤t∗ | p̄(t) − p̂(t)| < δε , then the equation

x ′ = −x2 + q̄(t) x + p̄(t)

has a solution b̃q̄, p̄ : (−∞, t∗] → R such that supt≤0 |̃bq̂, p̂(t) − b̃q̄, p̄(t)| < ε and

exp
∫ t

s
(−2 b̃q̄, p̄(l) + q̄(l)) dl ≤ k̄ e−β̄(t−s) whenever t∗ ≥ t ≥ s (2.6)

for some constants k̄ ≥ 1 and β̄ > 0.
Let now q̂, p̂ : [t∗,∞) → R belong to L∞([t∗,∞), R), and assume that the Eq. (2.5) has

a bounded solution b̃ p̂,̂q : [t∗,∞)) → R satisfying

exp
∫ t

s
(−2 b̃q̂, p̂(l) + q̂(l)) dl ≥ k eβ(t−s) whenever t∗ ≤ t ≤ s

for some constants k ≥ 1 and β > 0. Then, the conclusions are analogous to those of the
first case.

Proof The proof is almost identical to that of Proposition 2.1. The differences, in the first
case, are that nowwe work just on (−∞, t∗], and that (2.4) may have solutions different from
b̃ p̂,̂q which are bounded in this interval. Nevertheless, we can define the operator T by the
same expression, acting now on the Banach space of the bounded continuous real functions
on (−∞, t∗]; and the argument of [29] works. The proof of the second case is analogous. �

2.2 Concavity, and the Sets of Half-bounded and Bounded Solutions

Let q, p belong to L∞(R, R). The concavity on x of the function giving rise to (2.1) ensures
the concavity with respect to the state of the corresponding solutions:

Proposition 2.3 As long as the involved terms are defined, we have

x(t, s, ρ x1 + (1 − ρ) x2) > ρ x(t, s, x1) + (1 − ρ) x(t, s, x2) if ρ ∈ (0, 1) and t > s ,

x(t, s, ρ x1 + (1 − ρ) x2) < ρ x(t, s, x1) + (1 − ρ) x(t, s, x2) if ρ ∈ (0, 1) and t < s .

Proof We rewrite the equation as x ′ = f (t, x). Then, since f is strictly concave in its second
argument, f (t, ρ x1+(1−ρ) x2) > ρ f (t, x1)+(1−ρ) f (t, x2) ifρ ∈ (0, 1). This inequality
and the comparison result for Carathéodory equations given in [33, Theorem 2] (based on
the previous results of [10]) prove the assertions. �
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The concavity has also fundamental consequences on the properties of the sets

B− :=
{

(s, x0) ∈ R
2
∣
∣
∣ sup

t∈(αs,x0 ,s]
x(t, s, x0) < ∞

}

,

B+ :=
{

(s, x0) ∈ R
2
∣
∣
∣ inf

t∈[s,βs,x0 )
x(t, s, x0) > −∞

}

,

which may be empty. We fix ε > 0 and m > 0 large enough to satisfy −m2 +
|q(t)|m + |p(t)| ≤ −ε for all t ∈ R, which yields −x2 + p(t)x + q(t) ≤ −ε for all
t ∈ R and |x | ≥ m. Then, for all (s, x0) ∈ R

2, lim inf t→(αs,x0 )+ x(t, s, x0) > −m and
lim supt→(βs,x0 )− x(t, s, x0) < m. In other words, any solution remains upper bounded as
time increases and lower bounded as time decreases. We will use this property repeatedly
in the paper without further reference. In particular, αs,x0 = −∞ for all (s, x0) ∈ B− and
βs,x0 = ∞ for all (s, x0) ∈ B+; and B := B− ∩B+ is the (possibly empty) set of pairs (s, x0)
giving rise to (globally defined) bounded solutions of (2.1).

Remark 2.4 Recall that, given a continuous function f : [a, b] → R of bounded variation (as
is the casewith anymonotonic continuous function), there exists a finiteBorelmeasureμ such
that f (x) − f (a) = μ([a, x)). The Radon-Nikodym decomposition of μ with respect to the
Lebesgue measure l, μ = μac +μs , provides the singular part of f , fs(x) := μs([a, x)). In
addition, f is differentiable at l-a.e. t ∈ [a, b] and f ′ is L1 with respect to l. Moreover, if f is
nondecreasing, then f ′(t) ≥ 0 whenever it exists, and f (x) − f (a) = ∫ x

a f ′(t) dt + fs(x),
with fs nondecreasing and with f ′

s (t) = 0 for l-a.e. t ∈ [a.b]. Finally, f is absolutely
continuous on [a, b] if and only if fs ≡ 0. (See e.g. [37, Exercises 1.13 and 1.12, and
Theorem 6.10].) In particular, any bounded solution of a Carathéodory equation satisfies the
initial conditions of Theorem 2.5(v).

Theorem 2.5 Let B±,B and m be the sets and constant above defined.

(i) If B− is nonempty, then there exist a setR− coinciding with R or with a negative open
half-line and amaximal solution a : R− → (−∞,m) of (2.1) such that, if s ∈ R−, then
x(t, s, x0) remains bounded as t → −∞ if and only if x0 ≤ a(s); and if supR− < ∞,
then limt→(supR−)− a(t) = −∞.

(ii) If B+ is nonempty, then there exist a set R+ coinciding with R or with a positive open
half-line and amaximal solution r : R+ → (−m,∞) of (2.1) such that, if s ∈ R+, then
x(t, s, x0) remains bounded as t → +∞ if and only if x0 ≥ r(s); and if inf R+ > −∞,
then limt→(infR+)+ r(t) = ∞.

(iii) Let x be a solution defined onamaximal interval (α, β). If it satisfies lim inf t→β− x(t) =
−∞, then β < ∞; and if lim supt→α+ x(t) = ∞, then α > −∞. In particular, any
globally defined solution is bounded.

(iv) The set B is nonempty if and only if R− = R or R+ = R, in which case both
equalities hold, a and r are globally defined and bounded solutions of (2.1), and
B = {(s, x0) ∈ R

2 | r(s) ≤ x0 ≤ a(s)} ⊂ R × [−m,m].
(v) Let the function b : R → R be bounded, continuous, of bounded variation and with

nonincreasing singular part on every compact interval of R. Assume that b′(t) ≤
−b2(t)+q(t) b(t)+ p(t) for almost all t ∈ R. Then, B is nonempty, and r ≤ b ≤ a. If,
in addition, there exists t0 ∈ R such that b′(t0) < −b2(t0) + q(t0) b(t0) + p(t0), then
r < a. And, if b′(t) < −b2(t) + q(t) b(t) + p(t) for almost all t ∈ R, then r < b < a.
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Proof The proofs of (i)-(iv) repeat step by step those of [29, Theorem 3.1]. The unique
required change is in (iii), where we substitute “for all t ≥ s0" by “for Lebesgue a.a. t ≥ s0".
Let us prove (v). The comparison theorem for Carathéodory equations (see [33, Theorem 2])
yields x(t, s, b(s)) ≥ b(t) for all s ∈ R and t ≥ s, so that (s, b(s)) ∈ B+; and x(t, s, b(s)) ≤
b(t) for all t ≤ s, so that (s, b(s)) ∈ B−. Consequently, (s, b(s)) ∈ B for all s ∈ R: B is
nonempty, and r ≤ b ≤ a. If, in addition, there is t0 ∈ Rwith b′(t0) < −b2(t0)+q(t0) b(t0)+
p(t0) = (d/dt)x(t, t0, b(t0))|t=t0 , then an easy contradiction argument shows that there
exists t1 > t0 such that b(t1) < x(t1, t0, b(t0)). Hence, x(t, t0, b(t0)) and x(t, t1, b(t1))
are different bounded solutions of (2.1). Hence, (t1, b(t1)), (t1, x(t1, t0, b(t0)) ∈ B, which
ensures that r < a. Finally, under the last assumption in (v), we can adapt the argument in
[33] to prove that x(t, s, b(s)) > b(t) whenever t > s and x(t, s, b(s)) < b(t) whenever
t < s. Hence, a(t) = a(t, t − 1, a(t − 1)) ≥ x(t, t − 1, b(t − 1)) > b(t) and r(t) ≤
x(t, t + 1, b(t + 1)) < b(t) for any t ∈ R, which completes the proof. �
Remark 2.6 Note that (2.1) has a bounded solution if and only if there exist times t1 ≤ t2
(which can be equal) such that the solutions a and r defined in Theorem 2.5 are respectively
defined at least on (−∞, t2] and [t1,∞), and a(t) ≥ r(t) for t ∈ [t1, t2]. The “only if” follows
from Theorem 2.5(iv). To check the “if”, we assume that, despite the described situation, a
is unbounded. Then, it is not globally defined and, since it is upper bounded, its graph goes
to −∞ (that is, it has a vertical asymptote) at a certain time to the right of t2; but, if so, this
graph intersects that of r , impossible. Note also that the inequality a(t) > r(t) for t ∈ [t1, t2]
is equivalent to the existence of at least two bounded solutions.

2.3 Occurrence of an Attractor–Repeller Pair

As said before, the main results in this paper require us to be more exigent with the properties
assumed on the coefficients of the quadratic equation (2.1). Let � ⊂ R be a disperse set,
i.e., � = {a j ∈ R | j ∈ Z} with inf j∈Z(a j+1 − a j ) > 0 . We denote by BPUC�(R, R) the
set of bounded real functions which are defined and uniformly continuous on R−�. More
precisely, q : R−� → R belongs to BPUC�(R, R) if and only if

c1 there is c > 0 such that |q(t)| < c for all t ∈ R−�;
c2 for all ε > 0, there is δ = δ(ε) > 0 such that, if t1, t2 ∈ (a j , a j+1) for some j ∈ Z and

t2 − t1 < δ, then |q(t2) − q(t1)| < ε.

The “P" in the notationmakes reference to the piecewise continuity of q: it is clear that, if q ∈
BPUC�(R, R), then the lateral limits q(a+

j ) := limt→a+
j
q(t) and q(a−

j ) := limt→a−
j
q(t)

exist for all j ∈ Z, although possibly q(a+
j ) �= q(a−

j ). We will assume that any function
of BPUC�(R, R) is defined and right-continuous on the whole real line. This assumption
causes no difference in our results, but slightly simplifies the description of some of their
proofs.

Definition 2.7 A bounded function q : R → R is piecewise uniformly continuous (BPUC
for short) if there exists a finite number of disperse sets �1, . . . ,�n and functions qi ∈
BPUC�i (R, R) for i = 1, . . . , n such that q = q1 + · · · + qn .

Note that a finite union of disperse sets may be non disperse, which justifies this last
definition. Note also that the vector space BPUC(R, R) of BPUC functions is a subset of
L∞(R, R), and that the L∞-norm of a BPUC function coincides with ‖q‖ := supt∈R |q(t)|.
Clearly, any bounded and uniformly continuous function is BPUC.
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Many of our results referring (2.1) consider BPUC coefficients q and p. Let us explain
the reason for this restriction. Theorems 2.9 and 2.11 provide fundamental insight in the
dynamics of (2.1): they extend several properties proved in [29] for bounded and uniformly
continuous functions q, p to the BPUC case. As in that paper, the construction of the hull
�r in L1

loc(R, R
2) for r := (q, p) (i.e., the closure in L1

loc(R, R
2) of the set of shifts

rt (s) := r(s+ t)), as well as of continuous flows on�r and on�r ×R, are crucial tools: these
constructions, standard for nonautonomous differential equations, allow us to use techniques
from topological dynamics. The definitions of hull and flows, and the proofs of their proper-
ties, are more technical in the present setting of BPUC coefficients than in that of [29]. The
point is that taking r : R → R

d with any number d of BPUC component functions guarantees
the compactness of �r and the continuity of the flows. In order to avoid drawing focus away
from the objective of this work, we prefer to postpone a more detailed description of these
quite technical concepts and results, as well as their proofs, to Appendix A. We point out
here that, if r : R → R

d is almost-periodic, the topology used to define �r on L1
loc(R, R

d)

coincides with that of the uniform convergence on R: see, e.g., [16, Chapter 1].
Theorem 2.9 shows that, if q, p are BPUC functions, then the solutions a and r associated

to (2.1) by Theorem 2.5 are globally defined and uniformly separated if and only if they are
hyperbolic. Its proof is given in Appendix A.

Definition 2.8 Two globally defined solutions x1(t) and x2(t) of (2.1) with x1 ≤ x2 are
uniformly separated if inf t∈R(x2(t) − x1(t)) > 0.

Theorem 2.9 Let q, p : R → R be BPUC functions, assume that the Eq. (2.1) has bounded
solutions, and let a and r be the (globally defined) functions provided by Theorem 2.5. Then,
the following assertions are equivalent:

(a) The solutions a and r are uniformly separated.
(b) The solutions a and r are hyperbolic, with a attractive and r repulsive.
(c) The Eq. (2.1) has two different hyperbolic solutions.

In this case,

(i) let (ka, βa) and (kr , βr ) be dichotomy constant pairs for the hyperbolic solutions a and
r, respectively, and let us choose any β̄a ∈ (0, βa) and any β̄r ∈ (0, βr ). Then, given
ε > 0, there exist ka,ε ≥ 1 and kr ,ε ≥ 1 (depending also on the choice of β̄a and of β̄r ,
respectively) such that

|a(t) − x(t, s, x0)| ≤ ka,ε e
−β̄a(t−s)|a(s) − x0| if x0 ≥ r(s) + ε and t ≥ s ,

|r(t) − x(t, s, x0)| ≤ kr ,ε e
β̄r (t−s)|r(s) − x0| if x0 ≤ a(s) − ε and t ≤ s .

In addition,

|a(t) − x(t, s, x0)| ≤ ka e
−βa(t−s)|a(s) − x0| if x0 ≥ a(s) and t ≥ s ,

|r(t) − x(t, s, x0)| ≤ kr e
βr (t−s)|r(s) − x0| if x0 ≤ r(s) and t ≤ s .

(ii) The Eq. (2.1) does not have more hyperbolic solutions, and a and r are the only bounded
solutions of (2.1) which are uniformly separated.

Definition 2.10 In the situation described by Theorem 2.9, (a, r) is a (classical) attractor–
repeller pair for (2.1).
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Note that the global dynamics in the case of existence of an attractor–repeller pair is
described by Theorems 2.5 and 2.9.

We include in this subsection the definitions of local pullback attractors and repellers,
which are to some extent related to the classical ones, and which play a fundamental role
in the dynamical description of the next sections: see e.g. Remark 3.5. These definitions
adapt those given in Section 3.8 of [25] to the case of a (possibly) locally defined solution.
A solution ā : (−∞, β) → R (with β ≤ ∞) of (2.1) is locally pullback attractive if there
exist s0 < β and δ > 0 such that, if s ≤ s0 and |x0 − ā(s)| < δ, then x(t, s, x0) is defined
on [s, s0] and, in addition,

lim
s→−∞ max

x0∈[ā(s)−δ,ā(s)+δ] |ā(t) − x(t, s, x0)| = 0 for all t ≤ s0 .

Note that, in our scalar case, this is equivalent to say that, if s ≤ s0, then the solutions
x(t, s, a(s) ± δ) are defined on [s, s0] and, in addition,

lim
s→−∞ |ā(t) − x(t, s, ā(s) ± δ)| = 0 for all t ≤ s0 .

A solution r̄ : (α,∞) → R (with α ≥ −∞) of (2.1) is locally pullback repulsive if the
solution r̄∗ : (−∞,−α) → R of y′ = −h(−t, y) given by r̄∗(t) = r̄(−t) is locally pullback
attractive. In other words, it there exist s0 > α and δ > 0 such that, if s ≥ s0, then the
solutions x(t, s, r̄(s) ± δ) are defined on [s0, s] and, in addition,

lim
s→∞ |r̄(t) − x(t, s, r̄(s) ± δ)| = 0 for all t ≥ s0 .

2.4 One-Parametric Variation of the Global Dynamics

Let us now consider the parametric family of equations

x ′ = −x2 + q(t) x + p(t) + λ , (2.7)

where q and p are BPUC functions and λ varies in R. Let Bλ be the (possibly empty) set of
bounded solutions, and aλ and rλ the corresponding bounded solutions provided by Theorem
2.5 when Bλ is nonempty. The next result, proved in Appendix A, shows the existence of a
bifurcation valueλ∗: for smaller values of the parameter, there are no bounded solutions,while
for greater ones two hyperbolic solutions exist. We will talk hence about nonautonomous
saddle-node bifurcation.

Theorem 2.11 There exists a unique λ∗ = λ∗(q, p) ∈ [−‖q2/4 + p‖, ‖p‖ ] such that

(i) Bλ is empty if and only if λ < λ∗.
(ii) If λ∗ ≤ λ1 < λ2, then Bλ1 � Bλ2 . More precisely,

rλ2 < rλ1 ≤ aλ1 < aλ2 .

In addition, limλ→∞ aλ(t) = ∞ and limλ→∞ rλ(t) = −∞ uniformly on R.
(iii) inf t∈R(aλ∗(t) − rλ∗(t)) = 0, and (2.7)λ∗ has no hyperbolic solution.
(iv) If λ > λ∗, then aλ and rλ are uniformly separated and the unique hyperbolic solutions

of (2.7)λ.
(v) λ∗(q, p + λ) = λ∗(q, p) − λ for any λ ∈ R.
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Theorem 2.12 Let q, q̄, p, p̄ : R → R be BPUC functions which are norm-bounded by a
constant κ , and let λ∗(q, p) and λ∗(q̄, p̄) be the constants provided by Theorem 2.11. Then,
there exists a constant mκ such that

|λ∗(q̄, p̄) − λ∗(q, p)| ≤ mκ

( ‖q̄ − q‖ + ‖ p̄ − p‖ )
.

In particular, the map λ∗ : BPUC × BPUC → R is continuous for the L∞-topology.

Proof Theorem 2.11 ensures that λ∗(q, p) is bounded by κ + κ2/4. Let mκ ≥ 1 satisfy
−m2

κ + κ mκ + κ + κ2/4 < 0. Then, ‖b‖ ≤ mκ for any bounded solution b of x ′ =
−x2 + q(t) x + p(t) + λ∗(q, p): see Theorem 2.5. Consequently, at almost all t ∈ R, this
bounded solution b satisfies

b′(t) = −b2(t) + q̄(t) b(t) + p̄(t) + (q(t) − q̄(t)) b(t) + (p(t) − p̄(t)) + λ∗(q, p)

≤ −b2(t) + q̄(t) b(t) + p̄(t) + mκ

( ‖q̄ − q‖ + ‖ p̄ − p‖ ) + λ∗(q, p) .

Theorem2.5(v) (see alsoRemark 2.4) ensures that x ′ = −x2+q̄(t) x+ p̄(t)+mκ

( ‖q̄ − q‖+
‖ p̄ − p‖ ) + λ∗(q, p) has a bounded solution, and hence Theorem 2.11(i) ensures that
λ∗(q̄, p̄) ≤ mκ

( ‖q̄ − q‖+‖ p̄ − p‖ )+λ∗(q, p). The same argument shows that λ∗(q, p) ≤
mκ

( ‖q̄ − q‖+‖ p̄ − p‖ )+λ∗(q̄, p̄), and both inequalities prove the first assertion. The sec-
ond one is clear. �

Remarks 2.13 1. Theorem 2.11 shows that the variation in λ of the family (2.7) determines a
nonautonomous bifurcation pattern of saddle-node type: the absence of bounded solutions for
λ < λ∗(q, p) gives rise to the existence of an attractor–repeller pair for λ > λ∗(q, p). See,
e.g., [4, 17, 30]. Note also that the equation corresponding to the bifurcation value λ∗(q, p)
has either a unique bounded solution or infinitely many ones, none of them hyperbolic. The
first situation is simpler and more common, but there are well-known examples of the second
case: we refer the interested reader to [30] for the details. Corollary 3.8(ii) provides a simple
way to get examples of this nontrivial bifurcation pattern.

2. The function λ∗ : BPUC×BPUC → R, which according to Theorem 2.12 is continuous
for the L∞-topology, is not continuous when the topology of convergence in L∞-norm on
compact sets (or a weaker one, as L1

loc) is considered, as the next simple example shows.
We fix � ≡ 0, define pn as the continuous piecewise linear map taking the values −1 on
(−∞,−n−1]∪ [n+1,∞) and 1 on [−n, n], and observe that the sequence (pn) converges
to p ≡ 1 for the compact-open topology of C(R, R) ⊂ BPUC(R, R). However, since
the equation x ′ = −x2 + pn(t) does not have bounded solutions, λ∗(0, pn) > 0, while
λ∗(0, p) = −1.

3 A Particular Case of Concave Quadratic Equations

Let us fix BPUC functions (see Definition 2.7) �, p : R → R such that the asymptotic limits
of�, γ± := limt→±∞ �(t), exist and are finite. These conditions will be in force in this initial
part of Sect. 3, whereas in some of the subsections we will impose more or less restrictive
conditions on � and p which we will describe in due time. Observe that −2� and p − �2

are also BPUC functions. In what follows, we will analyze some general facts concerning
the dynamical possibilities for

y′ = −(
y − �(t)

)2 + p(t) , (3.1)
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whose solution with value y0 at t = s is represented by y(t, s, y0). We understand � as a
transition from γ− (in the past) to γ+ (in the future). In this way,

y′ = −(y − γ+)2 + p(t) , (3.2)

and
y′ = −(y − γ−)2 + p(t) (3.3)

play the role of “limit" equations for (3.1) as t → ∞ and as t → −∞, respectively. We will
refer to them also as future equation and past equation. Note also that the global dynamics
of these two equations is “identical" to that of

x ′ = −x2 + p(t) (3.4)

since they are obtained from this one by the trivial changes of variables.

Definition 3.1 – The Eq. (3.1) is in case A if it has two different hyperbolic solutions.
– The Eq. (3.1) is in case B if it has at least one bounded solution but no hyperbolic ones.
– The Eq. (3.1) is in case C if it has no bounded solutions.

It follows from Theorem 2.11 that these three cases exhaust the possibilities. Theorem 2.9
proves that case A is equivalent to the existence of an attractor–repeller pair, which deter-
mines the global dynamics of (3.1). We will see below that much more can be said in any of
the three situations if the next condition (assumed when indicated) holds:

Hypothesis 3.2 The Eq. (3.4) has an attractor–repeller pair (̃a, r̃).

Remark 3.3 Hypothesis 3.2 is equivalent to any of these assertions: (̃a + γ+, r̃ + γ+) is
an attractor–repeller pair for (3.2); (̃a + γ−, r̃ + γ−) is an attractor–repeller pair for (3.3);
(̃a + �(0), r̃ + �(0)) is an attractor–repeller pair for y′ = −(y − �(0))2 + p(t).

The next result and Remark 3.5 below are fundamental to understand the dynamics of (3.1)
in cases A, B and C under Hypothesis 3.2.

Theorem 3.4 Assume Hypothesis 3.2, and let (̃a±, r̃±) := (̃a+γ±, r̃ +γ±) be the attractor–
repeller pairs for the future and past equations (3.2) and (3.3). Then,

(i) there exist the functions a and r associated to (3.1) by Theorem 2.5.
(ii) limt→−∞ |a(t) − ã−(t)| = 0, limt→−∞ |y(t, s, y0) − r̃−(t)| = 0 whenever a(s) exists

and y0 < a(s), limt→+∞ |r(t) − r̃+(t)| = 0, and limt→+∞ |y(t, s, y0) − ã+(t)| = 0
whenever r(s) exists and y0 > r(s).

(iii) The solutions a and r are respectively locally pullback attractive and locally pullback
repulsive.

(iv) If a and r are globally defined and different, then they are uniformly separated, and
hence (̃a, r̃) := (a, r) is an attractor–repeller pair for (3.1).

(v) If the Eq. (3.1) does not have hyperbolic solutions, then it has at most one bounded
solution a = r.

Proof (i) Proposition 2.1 applied to the attractor–repeller pair (̃a−, r̃−) of (3.3) states that,
given ε > 0, there exists δ− = δ−(ε) > 0 such that if

∥∥� − γ −∥∥ ≤ δ− then the equation
y′ = −(y − �(t))2 + p(t) also has an attractor–repeller pair (̃a�, r̃�) with ‖̃a� − ã−‖ ≤ ε

and ‖̃r� − r̃−‖ ≤ ε. It also states that there exists a common dichotomy pair (kε, βε) for all
these functions � which can be assumed to be valid for both hyperbolic solutions.
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We choose t− = t−(ε) < 0 such that |�(t) − γ −| ≤ δ− if t ≤ t−, and define �−(t)
as �(t) on (−∞, t−) and as �(t−) on [t−,∞). Then,

∥
∥�− − γ −∥

∥ ≤ δ, and hence y′ =
−(y − �−(t))2 + p(t) has an attractor–repeller pair (̃a�− , r̃�−), with

∥
∥̃a�− − ã−

∥
∥ ≤ ε and∥

∥̃r�− − r̃−
∥
∥ ≤ ε. In particular,

exp
∫ t

s
(−2 ã�−(l) + 2�−(l)) dl ≤ kε e

−βε(t−s) whenever t ≥ s . (3.5)

Let us now define â�− as the solution of (3.1) with value â�−(t−) = ã�−(t−). Our goal is
to check that â�− coincides with the function a of the statement. Since â�−(t) = ã�−(t) for
t ≤ t−, it remains bounded as t decreases, which proves that a exists and that â�− ≤ a. To
prove the converse inequality,we take y0 > â�−(t−) and check that y(t, t−, y0) is unbounded
as t decreases. This property follows from

1

kε

eβε(t−−t) ≤ exp
∫ t

t−
(−2 â�−(l) + 2�−(l)) dl ≤ y(t, t−, y0) − â�−(t)

y0 − â�−(t−)

if t ≤ t−: the first inequality comes from (3.5), and the second one can be obtained, for
instance, as (3.15) in [29].

To complete the proof of (i), we work with (̃a+, r̃+) and use an analogous argument in
order to obtain t+ such that r is defined al least on [t+,∞).

(ii) We keep the notation established in the proof of (i). There, we have checked that, given
ε > 0, there exists t− such that |a(t) − ã−(t)| = |̃a�−(t) − ã−(t)| ≤ ε if t ≤ t−, which
proves the first assertion for a in this case. On the other hand, if y0 < a(s), then there exists
t0 < t− such that y(t0, s, y0) < a(t0) = ã�−(t0). Since y(t, s, y0) = y(t, t0, y(t0, s, y0))
solves y′ = −(y − �−(t))2 + p(t) for t ≤ t0, we conclude from Theorem 2.9(i) that
limt→−∞ |y(t, s, y0) − r̃−(t)| = 0. The proofs of the two remaining assertions are similar.

(iii) Let us take ε ∈ ( 0, inf t∈R(̃a(t) − r̃(t)) ). We have obtained in (i) the time t− and
the functions ã�− and r̃�− satisfying infs∈(−∞,t−](a(s)− r̃�−(s)) = infs∈(−∞,t−](̃a�−(s)−
r̃�−(s)) > ε. Hence, Theorem 2.5(ii) applied to y′ = −(y − �−(t))2 + p(t) ensures that
its solutions y−(t, s, a(s) ± ε) are defined for any t ≥ s if s ≤ t−. Now we fix t ≤ t− and
take s ≤ t . If l ∈ [s, t], then a(l) = ã�−(l) and y(l, s, a(s) ± ε) coincide with the solutions
y−(l, s, ã�−(s) ± ε) of y′ = −(y − �−(t))2 + p(t). Therefore, Theorem 2.9(i) applied
to this last equation and ε provides, for any β0 ∈ (0, βε), a constant k0 = k0(β0, ε) ≥ 1
(independent of s) with

|a(t) − y(t, s, a(s) ± ε)| = |̃a�−(t) − y−(t, s, ã�−(s) ± ε)| ≤ k0 e
−β0(t−s)ε , (3.6)

which is as small as desired if−s is large enough. This proves (iii) in the case of a. The proof
for r is analogous.

(iv) Assume the global existence of a and r, with r < a. According to (ii), limt→−∞ |a(t)−
ã−(t)| = 0 and limt→−∞ |r(t)− r̃−(t)| = 0, so that their distance is bounded from below on
(−∞, 0]. Point (ii) also ensures limt→+∞ |a(t)−ã+(t)| = 0 and limt→+∞ |r(t)−̃r+(t)| = 0.
Therefore, a and r are uniformly separated. Theorem 2.9 proves that they form an attractor–
repeller pair.

(v) It follows from (iv) that the unique possibility for the existence of bounded solutions
but not of hyperbolic ones is that a = r, which proves (v). �
Remark 3.5 Assume the conditions on � and p described at the beginning of the section, and
Hypothesis 3.2, and let (̃a±, r̃±) := (̃a + γ±, r̃ + γ±) be the attractor–repeller pairs for the
future and past equations (3.2) and (3.3). Under the assumed conditions on� and p, Theorem
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3.4, combined with Theorems 2.11 and 2.9, proves the next statements (among many other
properties).

- Case A holds for (3.1) if and only if the equation has an attractor–repeller pair (̃a, r̃)

(see Definition 2.10); or, equivalently, if it has two different bounded solutions. In this case,
this attractor–repeller pair connects (̃a−, r̃−) to (̃a+, r̃+): limt→±∞ |̃a(t) − ã±(t)| = 0 and
limt→±∞ |̃r(t) − r̃±(t)| = 0. This situation is often referred to as end-point tracking. In
addition, ã(t) is the unique solution approaching ã− as time decreases, and r̃(t) is the unique
solution approaching r̃+ as time increases.

-Case B holds for (3.1) if and only if the equation has a unique bounded solution b. In this
case, this solution is locally pullback attractive and repulsive (see Sect. 2.3), and it connects
ã− to r̃+: limt→−∞ |b(t) − ã−(t)| = 0 and limt→+∞ |b(t) − r̃+(t)| = 0. In addition, no
other solution of (3.1) satisfies any of these two properties.

- Case C holds if and only if the equation has no bounded solutions. In this case, there
exists a locally pullback attractive solution a which is the unique solution bounded at −∞
approaching ã− as time decreases (i.e., with limt→−∞ |a(t) − ã−(t)| = 0); and it exists a
locally pullback repulsive solution rwhich is the unique solution bounded at+∞ approaching
r̃+ as time increases (i.e., with limt→+∞ |r(t) − r̃+(t)| = 0). This situation of loss of
connection is sometimes referred to as tipping.

The interested reader can in find [29, Figures 1-6] some drawings showing the dynamical
behavior in each one of these three cases. (There is a last-version typo there: the graphs of
cases A and C are interchanged).

We also point out that, in the three dynamical cases, the constants β0 and k0 appearing in
(3.6) can be chosen to get

|a(t) − y(t, s, y0)| ≤ k0 e
−β0(t−s)|a(s) − y0| for y0 ≥ r̃−(s) + ε and if s ≤ t ≤ t− .

That is, a(t) forwardly attracts exponentially fast all the solutions y(t, s, y0) starting above
r̃−(s) + ε for s < t− while t ≤ t−. Similar bounds can be found for r.

3.1 Some Fundamental Inequalities for �∗(20, p − 02)

Recall that Theorem 2.11 associates the value λ∗(2�, p − �2) to (3.1): λ∗(2�, p − �2) is
the bifurcation point in λ of x ′ = −(x−�(t))2+ p(t)+λ. We will establish some interesting
facts concerning this value under different assumptions on � and p which will be clarified
in the statement of each result. Hypothesis 3.2 is not in force in this subsection.

Our first “comparison" result relates λ∗(0, q) to λ∗(2�, p − �2) for certain functions q .
Recall that the construction of the hull �p of a BPUC function p, referred to in Sect. 2.3,
is detailed in Appendix A. The function p is recurrent when every orbit of the flow on its
hull is dense. It is well-known that every almost periodic function is recurrent. In addition,
the hull of any BPUC function contains recurrent functions. We say that a function q ∈ �p

belongs to the alpha limit (resp. to the omega limit) of p if there exists a sequence (tn)n≥1

with limit −∞ (resp. +∞) such that q = limn→∞ ptn on �p (where pt (s) := p(s + t) for
t, s ∈ R).

Proposition 3.6 Let �, p : R → R be BPUC functions and let � have finite asymptotic
limits. Assume that q : R → R belongs to the alpha limit or to the omega limit of p. Then,
λ∗(0, q) ≤ λ∗(2�, p−�2). In particular, if p is recurrent, then λ∗(0, p) ≤ λ∗(2�, p−�2).

Proof We fix q and � as in the statement, and denote λ∗ := λ∗(2�, p − �2). Theorem 2.11
ensures the existence of a globally bounded solution b of y′ = −(y − �(t))2 + p(t) + λ∗.
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Our goal is to check the existence of a bounded solution of x ′ = −x2 + q(t) + λ∗: this and
Theorem 2.11 prove that λ∗(0, q) ≤ λ∗.

Let us work in the case of existence of (tn) ↑ ∞ such that q = limn→∞ ptn in �p .
Then btn (t) := b(t + tn) solves y′ = −(y − �tn (t))

2 + ptn (t) + λ∗, where �tn (t) :=
�(t + tn). We can assume without restriction the existence of limn→∞ btn (0) =: b0. Clearly,
limn→∞(−2�tn , ptn −�2

tn +λ∗) = (−2γ+, q−γ 2++λ∗) in the common hull�−2�, p−�2+λ∗ .
Therefore, Theorem A.2 guarantees that the sequence of functions (btn )n≥1 converges uni-
formly on compact sets as n → ∞ to the solution bγ+ of y′ = −(y − γ+)2 + q(t) + λ∗ with
bγ+(0) = b0. In particular, bγ+ is defined on the wholeR and bounded. Hence, b := bγ+ −γ+
is a bounded solution of x ′ = −x2 + q(t) + λ∗, and the assertion is proved.

The proof is analogous if q = limn→∞ ptn in �p for (tn) ↓ −∞, working now with γ−
instead of γ+. The last assertion is a trivial consequence of the first one. �
The next result compares the values of λ∗(2�, p − �2) for two different functions � under
some conditions including the nondecreasing character of their difference.

Theorem 3.7 Let �1, �2, p : R → R be BPUC functions with �2 − �1 nondecreasing, and
let λi := λ∗(2�i , p − (�i )

2) be the values provided by Theorem 2.11.

(i) If �2 − �1 is continuous, then λ1 ≤ λ2. If, in addition, �2 − �1 is absolutely continuous
and nonconstant on a nondegenerate interval, and λ1 = λ2, then y′ = −(y − �1(t))2 +
p(t) + λ1 has infinitely many bounded solutions (but no hyperbolic ones), and the same
happens for all the equations y′ = −(y − �μ(t))2 + p(t) + λμ for μ ∈ (0, 1), where
�μ := μ�1 + (1 − μ)�2 and λμ := λ∗(2�μ, p − (�μ)2).

(ii) Assume that �1 and �2 have finite asymptotic limits. Then, λ1 ≤ λ2.

Proof (i) As recalled in Remark 2.4, the continuous nondecreasing function �2 − �1 is of
bounded variation, and hence there exists (�2 − �1)

′(t) ≥ 0 for Lebesgue-a.a. t ∈ R. Let b2
be a bounded solution of y′ = −(y − �2(t))2 + p(t) + λ2. Then, the bounded continuous
function b2 := b2− (�2−�1), which is of bounded variation and has nonincreasing singular
part on every compact interval of R (see Remark 2.4), satisfies b′

2(t) = −(b2(t)−�1(t))2 +
p(t)+λ2−(�2−�1)

′(t) ≤ −(b2(t)−�1(t))2+p(t)+λ2 for almost all t ∈ R. Theorem2.5(v)
guarantees the existence of at least one bounded solution of x ′ = −(x −�1(t))2 + p(t)+λ2.
Therefore, Theorem 2.11 ensures that λ1 ≤ λ2, which is the first assertion in (i).

If, in addition, �2 − �1 is absolutely continuous and nonnonconstant on an interval [s, t],
with s < t , it follows from (�2−�1)(t)−(�2−�1)(s) = ∫ t

s (�2−�1)
′(l) dl (seeRemark 2.4)

that there exists t0 ∈ R such that (�2 −�1)
′(t0) > 0. Therefore, Theorem 2.5(v) ensures that

x ′ = −(x − �1(t))2 + p(t) + λ2 has more than one bounded solution. The fact that λ1 = λ2
implies infinitely many bounded nonhyperbolic solutions for x ′ = −(x−�1(t))2+ p(t)+λ1
follows hence from Theorem 2.11, as explained in Remark 2.13. Finally, if we define �μ and
λμ as in the statement, the initial assertion of (i) shows that λ1 ≤ λμ ≤ λ2 for anyμ ∈ [0, 1].
If μ ∈ (0, 1] and �2 − �1 is nonconstant, so is �2 − �μ, which is also absolutely continuous
on compact intervals of R. Therefore, the argument used for �1 allows us to show the last
assertion for all these functions �μ.

(ii) Let us fix ε > 0. Our goal is to prove that λ1 ≤ λ2 + ε, which ensures (ii). Let κ be
a common bound for ‖�1‖ and ‖�2‖. Theorem 2.12 provides a constant δε = δε(ε, κ) > 0
such that if �̃1 and �̃2 are BPUC functions norm-bounded by κ such that

∥∥�̃1 − �̃2
∥∥ ≤ δε,

then |λ∗(2 �̃1, p − (�̃1)
2
) − λ∗(2 �̃2, p − (�̃2)

2
)| < ε/2. We call γ ±

i := limn→±∞ �i (t),
and look for a common tε > 0 such that |�i (t) − γ ±

i | ≤ δε/2 if ±t ≥ tε for i = 1, 2,
assuming without restriction that �i (t) is continuous at ±tε for i = 1, 2. Let us define the
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BUPC functions �∞
i,ε for i = 1, 2 by

�∞
i,ε(t) :=

⎧
⎨

⎩

�i (−tε) if t < −tε ,

�i (t) if − tε ≤ t < tε ,

�i (tε) if t ≥ tε ,

so that
|λ∗(2�i , p − �2

i

) − λ∗(2�∞
i,ε, p − (�∞

i,ε)
2)| < ε/2 for i = 1, 2 . (3.7)

Nowwe take the smallest (finite) ordered set {a0, . . . , am} composed by the points of (−tε, tε)
at which either �1 or �2 are not continuous and by a0 := −tε and am := tε . Recall that �i is
right-continuous on a j for all j = 0, . . . ,m and i = 1, 2.We call h := inf j∈{0,...,m−1}(a j+1−
a j ) > 0. For all n ∈ N and for i = 1, 2, we define �n

i,ε : [−tε, tε] → R as follows: if
t ∈ [a j , a j+1 − h/n), then �i,ε(t) := �i (t), whereas if t ∈ [a j+1 − h/n, a j+1), then
�i,ε(t) := �i (a j+1) + (a j+1 − t)(n/h)

(
�i (a j+1 − h/n) − �i (a j+1)

)
. We complete the

definition to the whole line as follows:

�n
i,ε(t) :=

⎧
⎨

⎩

�i (−tε) if t < −tε ,

�n
i,ε(t) if − tε ≤ t < tε ,

�i (tε) if t ≥ tε ,

Clearly, each function �n
i,ε is continuous on R but it is BPUC, and limn→∞ �n

i,ε(t) = �∞
i,ε(t)

for all t ∈ R. In particular, Lebesgue’s dominated convergence theorem ensures that the
sequence (�n

i,ε)n≥1 converges to�∞
i,ε in L

1
loc(R, R); i.e., limn→∞

∫ b
a |�n

i,ε(t)−�∞
i,ε(t)| dt = 0

whenever a < b. In addition, �n
1,ε − �n

2,ε is nondecreasing for all n ∈ N: it coincides with
the function (�1 − �2)

n
ε which we obtain by the same procedure starting with �1 − �2, and

this procedure provides a nondecreasing function. Hence, according to (i), λ∗(2�n
1,ε, p −

(�n
1,ε)

2) ≤ λ∗(2�n
2,ε, p−(�n

2,ε)
2). Our next purpose is showing that limn→∞ λ∗(2�n

i,ε, p−
(�n

i,ε)
2) = λ∗(2�∞

i,ε, p − (�∞
i,ε)

2) for i = 1, 2, which yields

λ∗(2�∞
1,ε, p − (�∞

1,ε)
2) ≤ λ∗(2�∞

2,ε, p − (�∞
2,ε)

2) .

In turn, this inequality and (3.7) prove λ1 ≤ λ2 + ε and complete the proof.
Since the proof is the same for both values of i , we fix one and omit the subindex.

Let us call λε(n) := λ∗(2�n
ε , p − (�n

ε )2) for n ∈ N ∪ {∞}, i.e., the index associated to

y′ = −(
y − �n

ε (t)
)2 + p(t) by Theorem 2.11 for n ∈ N ∪ {∞}. We must prove:

1 given λ < λε(∞), there exists n1 such that λ ≤ λε(n) for all n ≥ n1,
2 given λ > λε(∞), there exists n2 such that λ ≥ λε(n) for all n ≥ n2.

Let us check 1. Reasoning by contradiction, we assume the existence of λ̄ < λε(∞) and a
subsequence (�k

ε )k≥1 of (�n
ε )n≥1 such that λ̄ > λε(k) for all k ≥ 1. Theorem 2.11(i) ensures

the existence of a bounded solution bkε of y′ = −(
y − �k

ε (t)
)2 + p(t) + λ̄ for k ≥ 1. The

existence of a common bound for
∥∥�k

ε

∥∥ for all k ≥ 1 ensures the existence of m > 0 and
ρ > 0 such that −m2 + 2 |�k

ε (t)|m + |p(t) − (�k
ε )

2(t) + λ̄| < −ρ for all t ∈ R and k ≥ 1.
Hence,

∥∥bkε
∥∥ ≤ m for any k ≥ 1: see Theorem 2.5(iv). Now we take a new subsequence

(�
j
ε ) j≥1 of (�k

ε )k≥1 such that there exists y0 := lim j→∞ b
j
ε (0). Theorem A.3 ensures that

the solution y∞
ε (t, 0, y0) of y′ = −(

y−�∞
ε (t)

)2+ p(t)+λ̄ coincides with lim j→∞ b
j
ε (t) for

any t in its maximal interval of definition; therefore, it is bounded by m (and hence globally
defined). This and Theorem 2.11(i) contradict λ̄ < λε(∞). Thus, 1 is proved.
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Let us now sketch the idea to prove 2. We fix λ̄ > λε(∞), so that the equation

y′ = −(
y − �n

ε (t)
)2 + p(t) + λ̄ (3.8)

corresponding to n = ∞ has an attractor–repeller pair (̃a∞
ε , r̃∞ε ). We will check that, if n is

large enough, then there exist the functions anε and rnε associated to (3.8)nε by Theorem 2.5,
they are respectively defined at least on the intervals (−∞, tε] and [tε,∞), and they satisfy
anε (tε) ≥ rnε (tε). As explained in Remark 2.6, this proves the existence of a bounded solution,
and hence that λ̄ ≥ λε(n), as 2 asserts.

Observe that, outside the interval [−tε, tε], the coefficients of the Eq. (3.8)nε are common
for any n ≥ 1 .We can repeat the proof of Theorem 3.4(i), working with the attractor–repeller
pair (̃a∞

ε , r̃∞ε ) of (3.8)∞ε instead of (̃a−, r̃−), and with time −tε instead of t−. In this way
we prove that, for any n ≥ 1, anε is defined at least on (−∞,−tε], where it coincides with
ã∞
ε . Analogously, for any n ≥ 1, rnε is defined at least on [tε,∞), where it coincides with

r̃∞ε . We call ρ := mint∈[−tε,tε]
(
ã∞
ε (t)− r̃∞ε (t)

)
> 0. Theorem A.3 provides n2 such that, for

n ≥ n2,

max
t∈[−tε,tε]

∣
∣ynε (t,−tε, ã

∞
ε (−tε)) − y∞

ε (t,−tε, ã
∞
ε (−tε))

∣
∣ ≤ ρ ,

where ynε (t, s, y0) is the solution of (3.8)nε with value y0 at t = s. Hence,

min
t∈[−tε,tε]

(
ynε (t,−tε, ã

∞
ε (−tε)) − r̃∞ε (t)

) ≥ 0 .

Altogether, we conclude that, if t ∈ [−tε, tε] and n ≥ n2, then

anε (t) = ynε (t,−tε, a
n
ε (−tε)) = ynε (t,−tε, ã

∞
ε (−tε)) ≥ r̃∞ε (t) :

the lower bound ensures that anε is also defined on [−tε, tε]. Taking t = tε in the previous
formula provides the sought-for inequality and ensures 2. �
Corollary 3.8 Let p : R → R be a BPUC function.

(i) Let �+, �− : R → R be bounded, uniformly continuous, and nondecreasing, and define
� := �+−�−. Then,λ∗(−2�−, p−(�−)2) ≤ λ∗(2�, p−�2) ≤ λ∗(2�+, p−(�+)2).

(ii) Let � : R → R be nondecreasing, and either be a BPUC function and have finite
asymptotic limits or be bounded and uniformly continuous. Then, λ∗(−2�, p − �2) ≤
λ∗(0, p) ≤ λ∗(2�, p − �2). Moreover,

– λ∗(−2�, p − �2) = λ∗(0, p) if p is recurrent and � has finite asymptotic limits.
– Assume also that � is continuous, and absolutely continuous and nonconstant on

a nongenenerate compact interval of R. If λ∗(0, p) = λ∗(−2�, p − �2), then
y′ = −(y+�(t))2+ p(t)+λ∗(−2�, p−�2) has infinitely many bounded solutions;
and λ∗(0, p) < λ∗(2�, p−�2) if x ′ = −x2+ p(t)+λ∗(0, p) has just one bounded
solution.

Proof Theorem3.7(i) ensures (i). The first (or second) inequality in (ii) follows fromTheorem
3.7 applied to �1 := 0 and �2 := � (or �1 := −� and �2 := 0). The assertion in (ii)
concerning a recurrent p follows from Proposition 3.6, and the last assertions follow also
from Theorem 3.7(i). �
Corollary 3.9 Let p : R → R be a BPUC function, and assume that x ′ = −x2 + p(t) does
not have bounded solutions. Then, the equation y′ = −(y − �(t))2 + p(t) has no bounded
solutions in the following cases:
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(a) if p is recurrent and the function � : R → R is BPUC and has finite asymptotic limits;
(b) or if the function � : R → R is nondecreasing and either is BPUC and has finite asymp-

totic limits or is bounded and uniformly continuous.

Assume now that x ′ = −x2 + p(t) has an attractor–repeller pair and the conditions of (b).
Then, the equation y′ = −(y + �(t))2 + p(t) has an attractor–repeller pair.

Proof Assume the lack of bounded solutions. In case (a), the result is an easy consequence
of Proposition 3.6 and Theorem 2.11: the lack of bounded solutions for x ′ = −x2 + p(t)
means λ∗(0, p) > 0, so that λ∗(2�, p − �2) > 0, and hence y′ = −(y − �(t))2 + p(t) has
no bounded solutions. The same arguments and Corollary 3.8(ii) prove case (b), as well as
the last assertion. �

3.2 Tipping Induced by a Local Increment of the Transition Function

The results already proved allow us to analyze the existence of tipping values of c (see
Definition 3.10 below) for the parametric family of equations

y′ = −(
y − c�(t)

)2 + p(t) (3.9)

for c ∈ R under more restrictive conditions on � and p which we will describe in due
time. We will represent by (3.9)c the equation corresponding to a fixed c. Observe that
the corresponding future and past equations also depend on the value of the multiplicative
parameter c.

Our tipping analysis studies the change of the global dynamics as c varies under some
assumptions involving the existence of an strictly increasing point for �. This dynamics
corresponds to cases A, B or C of Definition 3.1. Recall that Theorem 2.9 shows that
case A is equivalent to the existence of an attractor–repeller pair. With the aim of talking
about occurrence of tipping when an attractor–repeller pair “persists for a while and then
disappears", we define:

Definition 3.10 The point c0 ∈ R is a tipping value for the family (3.9)c if the equation (3.9)c
is in case A for c in an open interval of endpoint c0, but not at c0.

Theorem 3.4 and Remark 3.5 provide more details concerning the three dynamical situations
under Hypothesis 3.2 and the conditions assumed on � and p at the beginning of Sect. 3.
But these conditions will not in force unless otherwise indicated. Theorem 2.11 establishes
a one-to-one relation between the dynamical case of (3.9)c and the sign at c of the map

λ̂ : R ∪ {±∞} → R , c �→ λ̂(c) := λ∗(2 c�, p − c2�2) , (3.10)

given by the value associated to (3.9)c by this theorem; that is, the bifurcation point in λ of
x ′ = −(x − c�(t))2 + p(t) + λ. More precisely, case A (resp. case B, resp. case C)
occurs if and only if λ̂(c) is strictly negative (resp. null, resp. strictly positive). The next result
implies that, as one might expect, if (3.9)c undergoes a tipping at c0 then (3.9)c0 is in case
B.

Proposition 3.11 Let �, p : R → R be BPUC functions, and let λ̂ be the map defined by
(3.10). Then,

(i) for every κ > 0 there exists mκ > 0 such that, if c1, c2 ∈ [−κ, κ], then |̂λ(c1)− λ̂(c2)| ≤
mκ |c1 − c2|. In particular, λ̂ is continuous and locally Lipschitz on R.
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(ii) If, in addition, � is C1 and
∥
∥�′∥∥ := supt∈R |�′(t)| < ∞, then |̂λ(c1) − λ̂(c2)| ≤∥

∥�′∥∥ |c1 − c2| for all c1, c2 ∈ R. That is, under these conditions, λ̂ is Lipschitz on R.

Proof Assertions (i) follow easily from Theorem 2.12. Under the hypothesis of (ii), for each
c ∈ R, the (bounded) change of variable x = y − c�(t) takes (3.9)c to

x ′ = −x2 + p(t) − c�′(t) , (3.11)

without changing its dynamics: cases A, B or C are preserved. From this point, we check
(ii) by repeating the argument of the proof of [29, Theorem 4.13(ii)]. �
Proposition 3.12 Let p : R → R be a BPUC function.

(i) Assume that � : R → R is C1 and that there exists a point t0 at which it is strictly
increasing. Then, there exists a value c0 > 0 such that (3.9)c is in case C for all c ≥ c0.
Moreover, limc→∞ λ̂(c) = ∞.

(ii) Assume that Hypothesis 3.2 holds, that � : R → R is nonincreasing, and that either is
BPUC and has finite asymptotic limits or is bounded and uniformly continuous. Then,
(3.9)c is in case A for all c ≥ 0.

Proof (i) To avoid extra technical difficulties in the proof, we assume that �′(t) ≥ δ > 0 for
all t ∈ [0, 1]. The general case can be proved by adapting the argument we will follow. For
each c ∈ R, the (bounded) change of variable x = y−c�(t) takes (3.9)c to (3.11)c, preserving
its global dynamics. We look for c0 > 0 such that c0�′(t) ≥ π2 + p(t) for all t ∈ [0, 1], and
observe that the same inequality holds for all c ≥ c0. Then, if c ≥ c0, the solution xc(t, 0, x0)
of (3.11)c with value x0 at t = 0 satisfies xc(t, 0, x0) ≤ π tan(−π t + arctan(x0/π)) (which
is the solution of x ′ = −x2 − π2 with value x0 at t = 0) for all the values of t ∈ [0, 1]
for which they are defined. (As usual, we take arctan(x0/π) ∈ (−π/2, π/2).) Since −π +
arctan(x0/π) < −π/2, there exists t0 ∈ [0, 1] such that limt→t−0

tan(−π t+arctan(x0/π)) =
−∞. Consequently, xc(t, 0, x0) is unbounded for any x0 ∈ R and c ≥ c0, which proves the
first assertion in (i).

Let us now take k > 0. The previous property provides ck > 0 such that λ∗(2 c�, p+k−
c2�2

)
> 0 for all c ≥ ck , and hence Theorem 2.11(v) ensures that λ∗(2 c�, p − c2�2

)
> k

for all c ≥ ck . This proves the last assertion in (i).
(ii) It follows from Corollary 3.8(ii) and Hypothesis 3.2 that λ∗(2 c�, p − c2�2) ≤

λ∗(0, p) < 0 whenever c ≥ 0, which proves (ii). �
Proposition 3.13 Let p : R → R be a BPUC function. Assume that Hypothesis 3.2 holds,
and that � : R → R has finite asymptotic limits and is C1, nondecreasing, and nonconstant.
Then there exists exactly a tipping value ĉ for the family (3.9)c, which is strictly positive.

Proof Hypothesis 3.2 ensures λ̂(0) < 0, and Proposition 3.12 provides at least a value
of c > 0 with λ̂(c) > 0. The continuity of λ̃ established by Proposition 3.11(i) shows the
existence of a minimum c1 > 0 with λ̂(c1) = 0. Let us assume for contradiction the existence
of c2 > c1 with λ̂(c2) = 0. By applying Theorem 3.7(i) to �1 = c1 � and �2 = c2 �, we
deduce that y′ = −(y − c1 �(t))2 + p(t) has infinitely many bounded solutions but no
hyperbolic ones. But this contradicts the information provided by Remark 3.5 in case B. �
To close this section we point out that the tipping analysis just performed can also be under-
stood as a bifurcation analysis depending on c: Proposition 3.13(ii) establishes conditions
under which the c-parametric family (3.9) follows a global saddle-node nonautonomous
bifurcation pattern (see also Remark 2.13).
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4 Rate-Induced Tipping in the Continuous Case

In the rest of the paper, � : R → R represents a continuous map with finite asymptotic limits
γ± := limt→±∞ �(t), and p : R → R is a BPUC function. One of the main goals of the
paper is to analyze the possibility of occurrence of rate-induced tipping for the one-parametric
family of equations

y′ = −(
y − �c(t)

)2 + p(t) , with �c(t) := �(c t) (4.1)

for c ∈ R (which will be referred to as (4.1)c if c is fixed). The parameter c is the rate. For
c > 0,�c is often understood as a transition from γ− to γ+ as time increases, and c determines
the velocity of this transition. Note that the function �−(t) := �(−t) for t ∈ R maintains
the same properties required to �, and �−(ct) = �(−ct) for every c ∈ R. Therefore, the
analysis of (4.1)c for c < 0 is implicitly contained in the analysis of (4.1)c for any � and
c > 0. However, we will formulate several properties also for c < 0, to provide a better
understanding of the global picture.

In our rate-induced tipping analysis for (4.1), a fundamental role is played by theCarathéo-
dory equations

y′ = −(y − �∞(t))2 + p(t) , where �∞(t) :=
{

γ− if t < 0 ,

γ+ if t ≥ 0 ,
(4.2)

and

y′ = −(y − �−∞(t))2 + p(t) , where �−∞(t) :=
{

γ+ if t < 0 ,

γ− if t ≥ 0 .
(4.3)

Note that (4.2) and (4.3) can be respectively understood as the limiting systems of (4.1)c
as c → ∞ and c → −∞. (We will describe this limiting behaviour more precisely in
Sect. 5.) From now on, (4.1)∞ and (4.1)−∞ represent (4.2) and (4.3). Note also that �±∞ ∈
BPUCR−{0}(R, R) (see Sect. 2.3).

Following the ideas explained in Sect. 3.2, our tipping analysis studies the change of the
global dynamics, determined by cases A, B or C:

Definition 4.1 The point c0 ∈ R is a tipping rate for the family (4.1)c if the equation (4.1)c
is in case A for c in an open interval of finite endpoint c0, but not at c0. A tipping rate c0 is
transversal if there is an open interval containing c0 such that, for values of c at one side of
c0, the equation (4.1)c is in case A whereas at the other side is in case C. In the case of
existence of a (transversal) tipping point c0, we have a (transversal) rate-induced tipping at
c0.

Observe that a transversal tipping can be understood as a local saddle-node bifurcation
phenomenon occurring as the parameter c varies. In Sect. 4.1, we will explain why we use
the word transversal in Definition 4.1. We now anticipate that it is related to the properties
of the map c �→ λ∗(c) = λ∗(2�c, p − �2

c ) for fixed � and p, where λ∗(2�c, p − �2
c ) is

the value associated to (4.1)c by Theorem 2.11 for c ∈ R ∪ {±∞}; that is, the bifurcation
point in λ of x ′ = −(x − �c(t))2 + p(t) + λ. In particular, the sign of λ∗(c) determines the
dynamics of (4.1)c. Observe that, unlike the situation in Sect. 3.2, Theorem 2.12 does not
imply immediately the continuity of the map λ∗ on the extended real line. But we will prove
this continuity in Sect. 5. Therefore, as in Sect. 3.2, if (4.1) undergoes a rate-induced tipping
at c0, then (4.1)c0 is in case B.

Observe that the future and past equations are given for any c > 0 by

y′ = −(y − γ+)2 + p(t) (4.4)
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and
y′ = −(y − γ−)2 + p(t) , (4.5)

while the roles of (4.4) and (4.5) are interchanged for c < 0. We consider also the Eq. (4.1)0,
namely

y′ = −(y − γ0)
2 + p(t) (4.6)

for γ0 := �(0). Note that the global dynamics of these three equations is “identical", since
all of them are obtained from

x ′ = −x2 + p(t) (4.7)

by trivial changes of variables: see Remark 3.3.
For the reader’s convenience, we complete this initial part of the section by repeating the

fundamental Hypothesis 3.2:

Hypothesis 4.2 The equation (4.7) has an attractor–repeller pair (̃a, r̃).

Remarks 4.3 1. Under this condition, all the information provided by Theorem 3.4 and
Remark 3.5 applies to (4.1)c for any c ∈ R ∪ {±∞}. But one must have in mind that
the future and past equations, and hence the corresponding attractor–repeller pairs, depend
on the sign of c: (̃a + γ+, r̃ + γ+) is the future (resp. past) pair for c > 0 (resp. c < 0),
(̃a + γ−, r̃ + γ−) is the past (resp. future) pair for c > 0 (resp. c < 0), and (̃a + γ0, r̃ + γ0)

is the future and past pair for c = 0.
2. Proposition 5.2, proved in the next section, shows that part of the dynamical properties

described in Theorem 3.4 and Remark 3.5 also hold when Hypothesis 4.2 is substituted by
the existence of attractor–repeller pair for (4.2) or (4.3).

4.1 The Bifurcation Curve �∗(c)

Let us define

λ∗ : R ∪ {±∞} → R , c �→ λ∗(c) := λ∗(2�c, p − (�c)
2) (4.8)

and recall the relation between the dynamical situation of (4.1)c (case A, B, or C) and the
sign of λ∗(c) (negative, null, or positive). In particular, Hypothesis 4.2 can be reformulated
as λ∗(0) < 0: see Remark 3.3. This hypothesis is not in force for the next result, already
mentioned, and proved by Theorem 5.3 in the next section.

Theorem 4.4 Let λ∗ : R ∪ {±∞} → R be defined by (4.8). Then,

(i) the map λ∗ is bounded: it takes values in [−||p||, ||p|| + ||�||2].
(ii) the map λ∗ is continuous on the extended real line.

So, according to Definition 4.1, c0 ∈ R is a tipping rate if λ∗(c0) = 0 and there is δ0 > 0 such
that λ∗(c) < 0 either for c ∈ (c0 − δ0, c0) or for c ∈ (c0, c0 + δ0); and a transversal tipping
rate if, in addition, λ∗(c) > 0 either for c ∈ (c0 − δ0, c0) or for c ∈ (c0, c0 + δ0). Hence,
the graph of the continuous map λ∗ crosses the horizontal axis transversally at a transversal
tipping-rate c0. Although one might expect this situation to be the most frequent one, other
types of tipping are also possible.

Assuming Hypothesis 4.2, the continuity of λ∗ established in Theorem 4.4 allows us to
determine the dynamical case of (4.1)c for small values of the rate, and also for large ones
under additional conditions. This is what the next theorem states. Its scope will be clearer in
Sect. 4.2.
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Theorem 4.5 Assume Hypothesis 4.2, and let (̃aλ, r̃λ) be the attractor–repeller pair for x ′ =
−x2 + p(t) + λ for λ > λ∗(0) (with (̃a0, r̃0) = (̃a, r̃)). Then,

(i) there exists c0 > 0 such that (4.1)c is in case A for c ∈ (−c0, c0).
(ii) If ã(0) − r̃(0) > γ+ − γ−, then the Eq. (4.2) has an attractor–repeller pair, and hence

there exists a minimum cM ≥ 0 such that (4.1)c is in case A for c > cM.
(iii) If ã(0)−r̃(0) < γ+−γ−, then the Eq. (4.2) has no bounded solutions, and hence there is

aminimumc∗
M > 0 such that (4.1)c is incase C for c > c∗

M. In this case,λ∗(∞) = λ∞,
where λ∞ > 0 is the unique value of the parameter such that ãλ∞(0) − r̃λ∞(0) =
γ+ − γ−.

(iv) If ã(0) − r̃(0) > γ− − γ+, then the Eq. (4.3) has an attractor–repeller pair, and hence
there exists a maximum cm ≤ 0 such that (4.1)c is in case A for c < cm.

(v) If ã(0) − r̃(0) < γ− − γ+, then the Eq. (4.3) has no bounded solutions, and hence
there is a maximum c∗

m < 0 such that (4.1)c is in case C for c < c∗
m. In this case,

λ∗(−∞) = λ−∞ > 0, where λ−∞ is the unique value of the parameter such that
ãλ−∞(0) − r̃λ−∞(0) = γ− − γ+.

Proof This result is included in Theorem 5.5, proved in the next section. �
Remark 4.6 It follows from Theorems 4.5 and 3.4 that the Eq. (4.2) (or (4.3)) has only a
bounded solution if and only if ã(0) − r̃(0) = γ+ − γ− (or ã(0) − r̃(0) = γ− − γ+). But
λ∗(∞) = 0 (or λ∗(−∞) = 0) does not lead us to any conclusion for large values of c (or
−c). Observe also that, since ã and r̃ depend just on p while γ + and γ − depend just on �, a
suitable choice of � once p is fixed (or the converse) determines the dynamical situation of
(4.2): tipping occurs when ã(0) − r̃(0) < γ+ − γ− (which is not possible if γ+ < γ−), and
there is tracking whenever γ + − γ − is large enough. Analogous conclusions hold for (4.3).

Remark 4.7 Proposition 5.7 applied to the case h = 0 establishes some inequalities regarding
λ∗(c)which provide valuable information about the corresponding dynamical case for (4.1)c
depending on that for (4.1)0 = (4.7).

4.2 Partial and Total Tipping on the Hull

Partial tipping and total tipping are phenomena introduced in [1] in the context of two-
dimensional asymptotically autonomous systems. In particular, the attractors of the future and
past systems in [1] are compact sets, each given by the trajectory of an orbitally asymptotically
stable solution. The associated pullback attractor for the nonautonomous system is hence a
compact nonautonomous set which is not a singleton. Upon the variation of the rate, it is
shown that the associated pullback attractor can break up in the sense that some of the
trajectories limiting at the limit cycle of the past limit system also limit at the limit cycle of
the future system, but others fail to do so, and partial tipping occurs. If all the trajectories
which determine the pullback attractor do not limit to the limit cycle of the future system,
then a total tipping happens.

While the current state of the art does not allowus topose the samequestion in the context of
two-dimensional asymptotically nonautonomous systems, the results of the previous section
do allow us to address a different phenomenon which can still be regarded as an instance of
partial and total tipping.

The key point is that, in the nonautonomous case, our Hypothesis 4.2 of existence of an
attractor–repeller pair for the equation x ′ = −x2 + p(t), and hence for the future and past
equations y′ = −(y−γ±)2 + p(t), means the existence of two hyperbolic copies of the base
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for the corresponding skew-product flow defined on the hull�p of p (described in Sect. 3.1).
The proof of this assertion is the fundamental point in the proof of [29, Theorem 3.5], where
the interested reader can find a more detailed explanation of the meaning of hyperbolic copy
of the base. What is interesting for us, now, is that this property ensures that each equation
x ′ = −x2 + q(t) given by q ∈ �p , as well as the corresponding future and past equations,
has an attractor–repeller pair (given by the corresponding sections of the hyperbolic copies
of the base). So, a natural question arises: for a given value of c > 0 (or c = ∞), are all the
equations y′ = −(y − �c(t))2 + q(t), where � is fixed and q varies in the hull �p , in the
same dynamical case? We will talk about partial tipping on the hull when cases A and C
coexist for different functions in the hull for a given value of c, and about total tipping on
the hull when the dynamics is always in case C. The global occurrence of case A is total
tracking on the hull.

The next example has a double purpose: to illustrate a simple way to determine the
dynamical situation of (4.2)= (4.2)∞, and hence that of (4.1)c for large enough c; and to
show a situation of partial tipping on the hull. Let us define

�(t) := 2

π
arctan(t) and p(t) := 0.962 − sin(t/2) − sin(

√
5 t). (4.9)

The choice of � and p is not coincidental: it permits a direct connection to the numerical
analysis carried out in [29], which features the problem given by the same � and p(t) :=
0.895−sin(t/2)−sin(

√
5 t). Theorem 2.11(v) guarantees that the bifurcation curve λ∗ of the

Eq. (4.1), defined by (4.8) for the chosen� and p in (4.9), is a vertical translation (of−0.067)
of that depicted in Figure 8 of [29]. As justified in [29], we can assume that Hypothesis 4.2
holds. We can also assume that, for all c ∈ (0, 50]∪ {∞}, we are able to approximate beyond
machine precision the (possibly locally defined) solutions ac and rc associated to (4.1) by
Theorem 2.5. A detailed clarification supporting this last assumption is given in Appendix B.

As said in Sect. 2.3, since p is a quasiperiodic function, the corresponding hull �p is
constructed as the closure of the set of the shifts ps(t) := p(t + s) in the uniform topology.
For this reason (as we will explain later), instead of working with the whole hull, it suffices
to our purposes working with the shifts of p. Therefore, we consider the equations

y′ = −(
y − �c(t)

)2 + ps(t) (4.10)

and their limits as c → ∞,

y′ = −(y − �∞(t))2 + ps(t) , (4.11)

for s ∈ R. Let us call ãs(t) := ã(t + s) and r̃s(t) := r̃(t + s). It is easy to check that (̃as, r̃s)
is the attractor–repeller pair of x ′ = −x2 + ps(t). Theorem 4.5(ii) and (iii) (see also their
proofs) reveal that, for a given value of s, (4.11) is in case A (resp. case C), and hence the
same happens with (4.1)c for large enough c, if and only if

d∞(s) := γ+ − γ− − ãs(0) + r̃s(0) = 2 − ã(s) + r̃(s)

is strictly negative (resp. positive). That is, if the distance from r̃(s) to ã(s) is large enough,
then (4.11) and all the Eq. (4.10)c for large enough c (depending on s) have an attractor–
repeller pair which, according to Remark 3.5, connects that of the past equation y′ = −(y +
1)2 + ps(t) to that of the future equation y′ = −(y − 1)2 + ps(t); i.e, (̃as − 1, r̃s − 1) to
(̃as + 1, r̃s + 1). And if the distance is small, then the tracking is lost and tipping occurs:
there are no longer bounded solutions. This guarantees the existence of at least a tipping rate
c0 > 0 for the c-parametric family (4.10), as Theorem 4.5(iii) ensures.
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Fig. 1 Characterization of the dynamics for the differential equation (4.11) for s ∈ [−40, 40]. In the upper
panel the attractor ã (in red) and repeller r̃ (in blue) of x ′ = −x2 + p(t). In the lower panel, the curves
λ∞(s) (solid green curve in the lower panel) and d∞(s) = 2 − ã(s) + r̃(s) (magenta in the lower panel).
The (common) points s on which they are strictly positive (i.e., the points s for which ã(s) and r̃(s) are close
enough) are highlighted in thick red on the axis y = 0 in both panels. These are the points for which (4.11) has
no bounded solutions, The complementary of the closure of this set, given by the points for which λ∞(s) and
d∞(s) are strictly negative, is composed by the points for which (4.11) has an attractor–repeller pair (Color
figure online)

We point out that the argument of the proofs of Theorem 4.5(ii) and (iii) relies on showing
that d∞(s) is strictly positive or negative whenever λ∞(s) is strictly positive or negative,
where λ∞(s) := λ∗(2�∞, ps − (�∞)2) is the bifurcation value associated to (4.11) by
Theorem 2.11. This fact provides two methods to identify the values of s ∈ R at which
(4.11) is in cases A or C (with tracking or tipping: see Remark 3.5): one can numerically
calculate λ∞(s), which is rather computationally expensive; or calculate d∞(s), which is a
considerably more economic alternative. In the upper panel of Fig. 1, the attractor–repeller
pair (̃a, r̃) of x ′ = −x2 + p(t) is depicted on the plane (s, y) for s ∈ [−40, 40], and the
values of s ∈ R for which d(s) > 0 are highlighted in thick red on the axis y = 0. The lower
panel shows the graphs of λ∞ (in green) and d∞(s) (in magenta). Of course, the two curves
have the same signs. We recall once more that, when this sign is positive (resp. negative), we
can assure the tipping (resp. the tracking) for (4.10)c if c > 0 is large enough.

In Fig. 2,we showhow the bifurcation curveλ∞(s) (green curve) of y′ = −(y−�∞(t))2+
ps(t) depending on the variation of s ∈ [−20, 20] seems to be rapidly approached by the
bifurcation curve λ∗(c, s) of (4.10)c as c increases: λ∞(s) is very similar to λ∗(50, s).

Coming back to our notion of partial tipping,whatwe have in this example is the following.
For a small value of c0 > 0,we have tracking for all the Eq. (4.10)c0 for s ∈ R.More precisely,
if c0 is small enough, we have λ∗(c0, s) < −ε for all s ∈ R and an ε > 0. From the hull
definition and the continuity of s �→ λ∗(c0, s) guaranteed by Theorem 2.12, it can be easily
deduced that this means tracking for all the equations corresponding to c0 and any q in the
hull of p: we have total tracking on the hull. This means that the whole hyperbolic copiess2
of the base existing for the future and past families of equations on the hull are connected by
the hyperbolic families existing for c0. But at a certain value c1 > c0, λ(c, s) is no longer
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Fig. 2 Numerical simulation of the bifurcation map λ∗(c, s) of (4.10)c (surface with gradient color). The red
grid identifies the plane λ = 0. Consequently, the points of the surface below it correspond to Case A, the
points above to Case C, and the points of intersection to Case B. The curve in green is the graph of the
bifurcation curve λ∞(s) of (4.11) (see also Fig. 1). Theorem 5.3 guarantees the convergence of λ∗(c, s) to
λ∞(s) as c increases. The figure indicates how fast this convergence is

Fig. 3 Total tipping on the hull for y′ = −(
y − 2�c(t)

)2 + ps (t) for large enough c

negative for all s ∈ R, and for c2 > c1, it takes positive and negative values at non degenerate
intervals. The functions ãs and r̃s for which λ∗(c2, s) is negative, which are contained in the
hyperbolic copies of the base for the past family, approach the hyperbolic families of the
future as time increases (by the action of (4.10)c2 ). But the function ãs for which λ∗(c2, s) is
positive gives rise to unbounded solutions (always under the action of (4.10)c2 ). Therefore,
the global connection is lost. This is the phenomenon which we have called partial tipping on
the hull. Observe that the continuity of the function s → λ∗(c2, s) guaranteed by Theorem
2.12 ensures that case B also occurs for some s ∈ R in this situation. (Incidentally, observe
also that Fig. 2 shows the existence of many values of s ∈ R such that tracking occurs for
the all the systems in c-parametric family (4.10), since λ(c, s) < 0 for all c ≥ 0.)

Figure 2 also indicates that partial tipping persists for c ∈ (c1,∞) ∪ {∞}. The simple
modification of changing� by 2� gives rise to an always positive d∞ (see the next paragraph
to understand this phenomenon), and hence to an always positive λ∞. This fact combined
with the previous arguments of continuity of s �→ λ∗(c, s) for a fixed c means the existence
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of a large enough value of c3 (for 2�) such that the tipping is total on the hull for c > c3.
See Fig. 3.

We want to insist in the fact that Theorem 4.5 is the key to talk about partial and total
tipping (or total tracking) on the hull for the family (4.11), which corresponds to c = ∞
(and hence also for the family (4.10)c if c is large enough). As explained in Remark 4.6, a
suitable choice of � once p is fixed can determine this dynamical situation: partial tipping
on the hull occurs when s �→ ã(s) − r̃(s) takes values greater and smaller than γ + − γ −;
when γ+ − γ− < 0, there is total tracking on the hull for (4.11); and, a large enough value
of γ + − γ − guarantees the occurrence of total tipping.

The phenomenon that we have described admits also a different interpretation: the change
of variable s + t = l transforms (4.10) and (4.11) into

y′ = −(y − �c(l − s))2 + p(l), (4.12)

and
y′ = −(y − �∞(l − s))2 + p(l) , (4.13)

respectively. Observe that (4.13) is obtained from (4.12) by taking limits as c → ∞. There-
fore, one can read Figs. 1 and 2 as a characterization of the dynamical scenario for (4.12)c
depending on s for c sufficiently large. In particular, a time shift of the connecting function
� can change the scenario, from the occurrence to the absence of rate-induced tipping.

We close this section by recalling that, recently, other notion of partial tipping has been
described for some switched predator-prey models, in [3]: tipping as the climate varies
occurs or not depending on the initial point of the phase space. The model is given by a
Carathéodory equation, which can be understood as a limit of equations with bounded and
uniformly continuous coefficients, as (4.11) is the limit of (4.10)c as c → ∞. In this way,
our analysis of partial tipping on the hull for (4.11) is, to some extent, related to that of [3].

5 Approaching 0 by Piecewise Uniformly Continuous Functions

Throughout thiswhole section, and unless otherwise indicated,� : R → Rwill be a (bounded
and uniformly) continuous function such that there exist the real limits γ± := limt→±∞ �(t).
From this map, we define �±∞ as in Eqs. (4.2) and (4.3), and �c as in Eq. (4.1). We also
define, for c ∈ R and h > 0,

�0
c (t) := �c(t) , �0±∞(t) := �±∞(t) ,

�h
c (t) := �(cjh) if t ∈ [ jh , ( j + 1)h ) for j ∈ Z ,

�h∞(t) :=
⎧
⎨

⎩

γ− if t < 0 ,

γ0 if 0 ≤ t < h ,

γ+ if t ≥ h ,

�h−∞(t) :=
⎧
⎨

⎩

γ+ if t < 0 ,

γ0 if 0 ≤ t < h ,

γ− if t ≥ h .

Note that, if h > 0, then �h
c ∈ BPUCR−�h (R, R) if c ∈ R for �h := { jh | j ∈ Z}, and

that �h±∞ ∈ BPUCR−{0,h}(R, R). We fix (also for the whole section) a BPUC function
p : R → R and consider the equations

y′ = −(y − �h
c (t))2 + p(t) . (5.1)

We will represent by (5.1)c,h the equation (5.1) for fixed c ∈ R ∪ {±∞} and h ≥ 0, and by
yc,h(t, s, y0) its maximal solution with value y0 at t = s. Note that (5.1)0,h , (5.1)c,0, (5.1)∞,0

and (5.1)−∞,0 respectively coincide with (4.6), (4.1)c, (4.2) and (4.3), that (5.1)±∞,h play
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the role of limit equations for (5.1)c,h when c → ±∞ for any fixed h ≥ 0, that (5.1)c,0 plays
the role of limit equation for (5.1)c,h when h → 0 for any fixed c ∈ R ∪ {±∞}, and that
(4.4) and (4.5) are the future and past equations of (5.1)c,h for all c ∈ R − {0} and h ≥ 0.
In this formulation, c is again the rate of the transition function �c. The notions of tipping
rate and transversal tipping rate of Definition 4.1 are extended without changes to the newly
presented context of families (5.1)c,h0 (given by piecewise uniformly continuous transition
functions �h

c ) for a fixed h0 ≥ 0.

Remark 5.1 Theorem 3.4 establishes a fundamental consequence of the existence of an
attractor–repeller pair for (4.7) for the dynamics induced by (5.1)c,h : the existence of the
special functions ac,h and rc,h provided by Theorem 2.5 for any c ∈ R ∪ {±∞} and for any
h ≥ 0. In particular, under Hypothesis 4.2, the description made in Remarks 3.5 and 4.3.1 of
the dynamics incase A (or tracking),B andC (or tipping) forh = 0 and c ∈ (R−{0})∪{±∞}
is also valid for any h > 0.

As indicated inRemark 4.3.2 for the continuous case, the information provided in the previous
remark can be partially extended to some situations in which Hypothesis 4.2 does not hold,
but instead an attractor–repeller pair for one of the Eq. (5.1)±∞,0 exists. It establishes the
existence of a local pullback attractor and a local pullback repeller of (5.1)c,h for±c > 0 and
h ≥ 0, respectively connecting with the attractor and repeller of (5.1)±∞,0 as times decreases
and increases, as well as the behavior of the rest of (at least) half-bounded solutions. If both
equations have an attractor–repeller pair, the comments in Remarks 5.1 also apply.

Proposition 5.2 (i) Assume that (4.2)= (5.1)∞,0 has an attractor–repeller pair, (̃a∞, r̃∞).
Then, there exist the functions ac,h and rc,h associated to (5.1)c,h by Theorem 2.5 for
c ∈ (0,∞) ∪ {∞} and h ≥ 0, and they satisfy: limt→−∞ |ac,h(t) − ã∞(t))| = 0,
limt→−∞ |yc,h(t, s, y0) − r̃∞(t)| = 0 whenever y0 < ac,h(s), limt→+∞ |rc,h(t) −
r̃∞(t)| = 0, and limt→+∞ |yc,h(t, s, y0) − ã∞(t)| = 0 whenever y0 > rc,h(s).

(ii) Assume that (4.3)= (5.1)−∞,0 has an attractor–repeller pair, (̃a−∞, r̃−∞). Then,
there exist the functions ac,h and rc,h associated to (5.1)c,h by Theorem 2.5 for
c ∈ {−∞} ∪ (−∞, 0) and h ≥ 0, with limt→−∞ |ac,h(t) − ã−∞(t)| = 0,
limt→−∞ |yc,h(t, s, y0) − r̃−∞(t)| = 0 whenever y0 < ac,h(s), limt→+∞ |rc,h(t) −
r̃−∞(t)| = 0, and limt→+∞ |yc,h(t, s, y0) − ã−∞(t)| = 0 whenever y0 > rc,h(s).

(iii) In both cases, the solutions ac,h and rc,h are respectively locally pullback attractive
and locally pullback repulsive.

(iv) Assume that (4.3) and (4.2) have attractor–repeller pairs. If ac,h and rc,h are globally
defined and different, then they are uniformly separated, and hence (̃ac,h, r̃c,h) :=
(ac,h, rc,h) is an attractor–repeller pair for (5.1)c,h. Consequently, if the Eq. (5.1)c,h
does not have hyperbolic solutions, it has at most one bounded solution.

Proof We assume the existence of an attractor–repeller pair (̃a∞, r̃∞) for (4.2), and take
c ∈ (0,∞) ∪ {+∞} and h ≥ 0. We repeat the arguments of the proof of Theorem 3.4(i) and
(ii) taking (̃a∞, r̃∞) instead of (̃a−, r̃−) as starting point, and working just on (−∞, 0]. This
requires to make now use of Proposition 2.2 instead of Proposition 2.1, which provides (3.5)
just for 0 ≥ t ≥ s. In this way, we prove the existence of ac,h , as well as the limit behavior
as time decreases of all the functions which are bounded at −∞. To check the rest of the
assertions in (i), we work on [0,∞). The proof of (ii) is analogous, and the proofs of (iii)
and (iv) repeat those of (iii) and (iv) in Theorem 3.4. �
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5.1 The BifurcationMap �∗(c, h)

For each c ∈ R ∪ {±∞} and h ≥ 0, we represent by λ∗(c, h) the value of the parameter
associated to (5.1)c,h by Theorem 2.11; that is, the bifurcation value of y′ = −(y−�h

c (t))2+
p(t) + λ,

λ∗(c, h) := λ∗ (
2�h

c , p − (�h
c )2

)
.

Theorem 5.3 Let λ∗ : (R ∪ {±∞}) × [0,∞) → R be defined as above. Then,

(i) the map λ∗ is bounded: it takes values in [−||p||, ||p|| + ||�||2].
(ii) The map λ∗ is jointly continuous.

Proof (i) This assertion is a consequence of the first statement of Theorem 2.11, since ‖�‖ ≥∥
∥�h

c

∥
∥ ≥ ∥

∥�h±∞
∥
∥ if c ∈ R − {0} and h ≥ 0, and ‖�‖ ≥ ∥

∥�h
0

∥
∥ if h ≥ 0.

(ii) We will prove (ii) in three steps.
Step 1. First we will check the continuity at (c0, h0) with c0 ∈ R ∪ {±∞} − {0} and

h0 ≥ 0. We begin by assuming c0 > 0. Let us take a sequence ((ck, hk))k≥1 with limit
(c0, h0), and assume without restriction that ck ≥ c0/2 for all k ≥ 1. What we do in the
following paragraphs reproduces the ideas of the proof of Theorem 3.7(ii), where we also
prove a continuity property for the bifurcation function. The reader is referred there for the
details which we omit here.

We will associate below a suitable time tε > 0 to any ε > 0. Once fixed, we represent the
index associated by Theorem 2.11 to

y′ = −(
y − (�h

c )ε(t)
)2 + p(t) , where (�h

c )ε(t) :=
⎧
⎨

⎩

γ− if t < −tε ,

�h
c (t) if − tε ≤ t < tε ,

γ+ if t ≥ tε

as λε(c, h). To check that limk→∞ λ∗(ck, hk) = λ∗(c0, h0) we will prove that, given ε > 0,
there exists tε > 0 such that

1 |λ∗(ck, hk) − λε(ck, hk)| < ε for any k, including k = 0; and,
2 limk→∞ λε(ck, hk) = λε(c0, h0).

Let us fix ε > 0 and prove 1. Theorem 2.12 ensures that, for each k ≥ 1, there exists
δε > 0 such that, if

∥∥�
hk
ck − (�

hk
ck )ε

∥∥ ≤ δε , then |λ∗(ck, hk) − λε(ck, hk)| < ε. The goal is
finding tε and hence δε such that this bound works for all k ≥ 0. We look for κ > 0 and
η > 0 such that ck ≥ κ and hk ≤ η for any k ≥ 0, and for tε = tε(ε, κ, η) > η such
that |�(t) − γ−| ≤ δε if t ≤ −κ tε and |�(t) − γ+| ≤ δε if t ≥ κ tε. If t ≤ −tε , then
ckt ≤ −κ tε , so that |�0

ck (t)−γ−| ≤ δε; and if, in addition, hk > 0 and t ∈ [ jhk, ( j +1)hk),

then jhkck ≤ ckt ≤ −κ tε, so that |�hk
ck (t) − γ−| ≤ δε . If t ≥ tε , then ck t ≥ κ tε ,

so that |�0
ck (t) − γ+| ≤ δε; and if, in addition, hk > 0 and t ∈ [ jhk, ( j + 1)hk), then

jhkck ≥ ckt ≤ κ tε, so that |�hk
ck (t) − γ+| ≤ δε . Hence, the time tε is fixed once ε > 0 is

fixed, and 1 is proved.
Let us fix ε > 0, which determines tε > 0 and hence λε . To prove 2, it suffices to check

that

2.1 given λ < λε(c0, h0), there exists k0 such that if k ≥ k0 then λ ≤ λε(ck, hk),
2.2 given λ > λε(c0, h0), there exists k0 such that if k ≥ k0 then λ ≥ λε(ck, hk).

The proof of 2.1 reproduces without changes that of point 1 of Theorem 3.7(ii). The same
happens with the idea to prove 2.2 and point 2 of that theorem. We take λ̄ > λε(c0, h0), so
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that the equation
y′ = −(

y − (�h
c )ε(t)

)2 + p(t) + λ̄ , (5.2)

corresponding to (c, h) = (c0, h0) has an attractor–repeller pair (̃a0, r̃0). The goal is to check
the existence of at least one bounded solution for (5.2)εck ,hk if k is large enough, what we

achieve by checking the existence corresponding functions akε and rkε given by Theorem 2.5
at least on (−∞, tε] and [tε,∞), with akε(tε) ≥ rkε(tε).

Observe that the coefficients of the Eq. (5.2)εck ,hk are common for any k ≥ 0 outside the
interval [−tε, tε]. This fact allows us to repeat the procedure followed to prove 2 in Theorem
3.7(ii) in order to check the previous assertion. This completes step 1 for c0 > 0, and the
proof is analogous if c0 < 0.

Step 2. We will prove that limc→0 λ∗(c, 0) = λ∗(0, 0). Recall that �0
c (t) = �(c t).

Let us assume first that � is C1 with �′ : R → R bounded. For each c ∈ R, the change
of variables x = y − �(c t) takes equation y′ = −(y − �(c t))2 + p(t) + λ to x ′ =
−x2−c�′(c t)+ p(t)+λ, and transforms bounded solutions in bounded solutions. Therefore,
the role of λ∗(c, 0) does not change. Let us take c �= 0, and let bc be a bounded solution for
x ′ = −x2−c�′(c t)+ p(t)+λ∗(c, 0). Then b′

c(t) ≤ −b2c (t)+ p(t)+|c|∥∥�′∥∥+λ∗(c, 0), so
that Theorem 2.5(v) and Theorem 2.11(i) ensure that λ∗(0, 0) ≤ |c|∥∥�′∥∥ + λ∗(c, 0); that is,
λ∗(0, 0) − λ∗(c, 0) ≤ |c|∥∥�′∥∥. Now, let b0(t) be a bounded solution of x ′ = −x2 + p(t) +
λ∗(0, 0), so that b′

0(t) ≤ −x2 + p(t) + |c|∥∥�′∥∥ + λ∗(0, 0). Reasoning as before, we get
λ∗(c, 0)−λ∗(0, 0) ≤ |c|∥∥�′∥∥. Consequently, |λ∗(c, 0)−λ∗(0, 0)| ≤ |c|∥∥�′∥∥, which proves
the assertion in this case.

Still in step 2, we look for a sequence (�n)n≥1 of bounded C1 functions with bounded
derivatives and such that limn→∞ �n = � uniformly on R. This can be easily done since �

is asymptotically constant and C1(I, R) is dense in C(I, R) for any compact interval I. We
represent by λ∗

n(c, 0) the parameter associated to the equation y′ = −(y − �n(c t))2 + p(t)
by Theorem 2.11. Then |λ∗(c, 0)−λ∗(0, 0)| ≤ |λ∗(c, 0)−λ∗

n(c, 0)|+|λ∗
n(c, 0)−λ∗

n(0, 0)|+
|λ∗

n(0, 0) − λ∗(0, 0)|. Let us take ε > 0. Note that supt∈R |�n(c t) − �(c t)| ≤ ‖�n − �‖
for any c ∈ R (in fact they are equal if c �= 0). Theorem 2.12 provides n0 ∈ N such
that

∥∥�n0 − �
∥∥ is small enough as to guarantee that |λ∗

n0(c, 0) − λ∗(c, 0)| ≤ ε/3 for any
c ∈ R. Besides, we have proved in the previous paragraph that |λ∗

n0(c, 0) − λ∗
n0(0, 0)| ≤

|c|∥∥�′
n0

∥∥. Let us take c0 > 0 such that if |c| ≤ c0 then |c|∥∥�′
n0

∥∥ ≤ ε/3. Altogether, we have
|λ∗(c, 0) − λ∗(0, 0)| ≤ ε if |c| ≤ c0, and this completes the second step.

Step 3. Note now that λ∗(0, h0) = λ∗(0, 0), since �
h0
0 = �0

0 ≡ �(0). Therefore, in
the third and last step we will prove that, if the sequence ((ck, hk))k≥1 tends to (0, h0),
with h0 ≥ 0, then limk→∞ λ∗(ck, hk) = λ∗(0, 0). We write |λ∗(ck, hk) − λ∗(0, 0)| ≤
|λ∗(ck, hk) − λ∗(ck, 0)| + |λ∗(ck, 0) − λ∗(0, 0)|. We have proved in the second step that

limk→∞ |λ∗(ck, 0) − λ∗(0, 0)| = 0. In addition, limk→∞
∥∥∥�

hk
ck − �0

ck

∥∥∥ = 0, since |ckhk j −
ckt | ≤ |ckhk | → 0 if t ∈ [ jhk, ( j + 1)hk) for a j ∈ Z and � is uniformly continuous.
Hence, Theorem 2.12 ensures that limk→∞ |λ∗(ck, hk) − λ∗(ck, 0)| = 0, and this completes
the proof of (ii). �
Remarks 5.4 1. Observe that Theorem 2.11 and the definition of tipping rate given at the
beginning of Sect. 5 (which repeats Definition 4.1) ensure that, for a fixed value of h0 ≥ 0,
c0 is a tipping rate for the c-parametric family of Eq. (5.1)c,h0 if λ∗(c0, h0) = 0 and there is
δ > 0 such that λ∗(c, h0) < 0 either for c ∈ (c0 − δ, c0) or for c ∈ (c0, c0 + δ); and that
the tipping rate is transversal if, in addition, λ∗(c, h0) > 0 either for c ∈ (c0 − δ, c0) or for
c ∈ (c0, c0 + δ). This characterization combined with the just proved joint continuity of λ∗
shows that, at a tipping rate c0, the graph of the continuous map c �→ λ∗(c, h0) reaches the
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horizontal axis coming from negative values to the left side or to the right side of c0; and it
crosses the horizontal axis transversally at c0 if the tipping rate is transversal.

2. Assume that the family (4.1)c = (5.1)c,0 has a transversal tipping rate at c0, passing
from case A to C as c increases. This means the existence of δ > 0 such that λ∗(c, 0) < 0
for c ∈ (c0 − δ, c0) and λ∗(c, 0) > 0 for c ∈ (c0, c0 + δ). In particular, λ∗(c0, 0) = 0. The
continuity of λ∗(c, h) ensures the existence of h0 > 0 such that λ∗(c0−δ, h) > 0 and λ∗(c0+
δ, h) < 0 for every h ∈ [0, h0]. Therefore, c(h) := min{c ∈ (c0 − δ, c0 + δ) | λ∗(c, h) = 0}
is a (non necessarily transversal) tipping rate of the c-parametric family (5.1)c,h , and in
addition limh→0+ c(h) = c0. In consequence, every transversal tipping rate of (4.1)c can be
approximated by tipping rates of the piecewise continuous transition equations (5.1)c,h as
h → 0+. The other type of rate-induced transversal tipping leads to the same conclusion.

The next theorem, which includes and extends Theorem 4.5, combines Hypothesis 4.2 with
the continuity of λ∗ in order to analyze the dynamical case of (5.1)c,h for small and large
values of |c| and a fixed h ≥ 0. We represent by x(t, s, x0) the solution of x ′ = −x2 + p(t)
with value x0 at t = s.

Theorem 5.5 Assume Hypothesis 4.2, and let (̃aλ, r̃λ) be the attractor–repeller pair for x ′ =
−x2 + p(t) + λ for λ > λ∗(0). Let us fix h ≥ 0. Then,

(i) there exists c0,h > 0 such that (5.1)c,h is in case A for c ∈ (−c0,h, c0,h).
(ii) If there exists x(h, 0, ã(0) + γ− − γ0) > r̃(h) + γ+ − γ0, then the Eq. (5.1)∞,h has

an attractor–repeller pair (̃a∞,h, r̃∞,h). In this case, there exists a minimum cM,h ≥ 0
such that (5.1)c,h is in case A for c > cM,h.

(iii) If x(h, 0, ã(0)+γ− −γ0) does not exist, or if x(h, 0, ã(0)+γ− −γ0) < r̃(h)+γ+ −γ0,
then the Eq. (5.1)∞,h has no bounded solutions. In this case, there is a minimum c∗

M,h >

0 such that (5.1)c,h is in case C for c > c∗
M,h. In addition, if ã(0) + γ− < r̃(0) + γ+,

then λ∗(∞, 0) = λ∞, where λ∞ > 0 is the unique value of the parameter such that
ãλ∞(0) − r̃λ∞(0) = γ+ − γ−.

(iv) If there exists x(h, 0, ã(0)+γ+ −γ0) > r̃(h)+γ− −γ0, then the Eq. (5.1)−∞,h has an
attractor–repeller pair (̃a−∞,h, r̃−∞,h). In this case, there exists a maximum cm,h ≤ 0
such that (5.1)c,h is in case A for c < cm,h.

(v) If x(h, 0, ã(0)+γ+ −γ0) does not exits, or if x(h, 0, ã(0)+γ+ −γ0) > r̃(h)+γ− −γ0
then the Eq. (5.1)−∞,h has no bounded solutions. In this case, there is a maximum
c∗
m,h > 0 such that (5.1)c,h is in case C for c < c∗

m,h. In addition, if ã(0) + γ+ <

r̃(h) + γ−, then λ∗(−∞, 0) = λ−∞ > 0, where λ−∞ is the unique value of the
parameter such that ãλ−∞(0) − r̃λ−∞(0) = γ− − γ+.

Proof (i) Hypothesis 4.2 ensures that λ∗(0, h) < 0 for any h ≥ 0, and hence (i) is a trivial
consequence of the continuity of λ∗.

(ii) The goal is proving that the functions a∞,h and r∞,h associated to (5.1)∞,h byTheorem
2.5 form an attractor–repeller pair if x(h, 0, ã(0) + γ− − γ0) > r̃(h) + γ+ − γ0. In these
conditions, Theorem 2.11 ensures λ∗(∞, h) < 0, and hence the continuity established in
Theorem 4.4 provides the value cM,h of statement (ii).

The existence of (̃a, r̃) ensures that of the attractor-repeler pairs (̃a±, r̃±) := (̃a+γ±, r̃ +
γ±) for the future and past equations y′ = −(y − γ±)2 + p(t): see Remark 3.3. Let us prove
that a∞,h(t) = ã−(t) for all t ≤ 0. First, we observe that the existence of a∞,h on (−∞, 0] is
guaranteed by the existence of a solution of (5.1)∞,h bounded on (−∞, 0], which is the case
of y∞,h(t, 0, ã−(0)): it coincides with ã−(t) for t ≤ 0, since �h∞(t) = γ− for t < 0. This
fact also proves that a∞,h(t) ≥ ã−(t) for t ≤ 0. To prove the converse inequality, we take
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Fig. 4 Numerical simulation of the bifurcationmapλ∗(c, h) of (5.1)c,h for� and p as in (4.9) and c, h ∈ [0, 5].
On the left: the gradient surface represents the graph of λ∗(c, h); the red grid identifies the plane λ∗ = 0: the
points of the surface below this plane correspond to Case A, the points above to Case C, and the points
of intersection to Case B. The red dashed line is the graph of the bifurcation curve λ∗(c, 0) = λ∗(c) of
the family (4.1), whereas the solid green line is the graph of the bifurcation curve λ∗(∞, h) of (5.1)∞,h ,
represented at c = 6 for convenience. On the right: a projection of the same picture on the plane c = 0

s ≤ 0 and y0 > a∞,h(s). Then, the solution y−(t, s, y0) of y′ = −(y − γ−)2 + p(t), which
coincides with y∞,h(t, s, y0) for t ≤ 0, is unbounded as t decreases, so that y0 > ã−(s) and
hence a∞,h(s) ≥ ã−(s).

The same argument allows us check that r∞,h(t) = r̃+(t) for t ≥ h. Note also that for those
values of t ∈ [0, h] for which a∞,h(t) exists, it coincides with x(t, 0, ã−(0)−γ0)+γ0. These
previous properties and the existence and inequality assumed in (ii) ensure that a∞,h(h) =
x(h, 0, ã−(0) − γ0) + γ0 > r̃+(h) = r∞,h(h). According to Remark 2.6, (4.2) has at least
two bounded solutions, and hence the information provided by Remark 3.5 ensures that it
has an attractor–repeller pair. This completes the proof of (ii).

(iii) Under the assumptions on (iii), and according to the proof of (ii), either a∞,h(h) does
not exist or we have a∞,h(h) < r∞,h(h). This precludes the existence of globally bounded
solutions for (5.1)∞,h , and hence Theorem 2.11 ensures that λ∗(∞) > 0. This fact combined
with the hypothesis λ∗(0) < 0 and the continuity of λ∗ ensures the existence of a maximum
c∗
M > 0 with λ∗(c∗

M ) = 0, which proves the first assertion in (iii).
Assume now that h = 0 and that ã(0) + γ− < r̃(0) + γ+. Theorem 2.11(ii) ensures the

existence of a unique value λ∞ > 0 of the parameter with ãλ∞(0) − r̃λ∞(0) = γ+ − γ−. We
repeat the arguments of the proof of (ii) taking as starting point the attractor–repeller pair
(̃aλ∞ , r̃λ∞) of x ′ = −x2 + p(t) + λ∞ in order to conclude that the functions ā∞,0 and r̄∞,0

associated to the equation y′ = −(y−�0∞(t))2+p(t)+λ∞ byTheorem2.5 satisfy ā∞,0(0) =
ãλ∞(0)+γ− = r̃λ∞(0)+γ+ = r̄∞,0(0). This ensures that y′ = −(y−�0∞(t))2+ p(t)+λ∞
has a unique bounded solution, which in turn yields λ∗(∞) = λ∞, as asserted.

(iv) and (v) The arguments to prove these properties are the analogues of those previously
used. �

Remark 5.6 Theorems 5.5 and 3.4 show that the Eq. (5.1)∞,h (or (5.1)−∞,h) has only a
bounded solution if and only if there exists x(h, 0, ã(0) + γ− − γ0) > r̃(h) + γ+ − γ0 (or
x(h, 0, ã(0) + γ+ − γ0) > r̃(h) + γ− − γ0). But λ∗(∞, h) = 0 (or λ∗(−∞, h) = 0) does
not take us to any conclusion for large values of c (or −c).

We complete this subsection by adapting to Eq. (5.1) part of the information obtained in
Sect. 3.1. Observe that the valueλ∗(0) appearing in the next statement coincideswithλ∗(0, h)
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for any h ≥ 0, since �h
0 (t) ≡ γ0 := �(0) and dynamics of x ′ = −x2 + p(t) and y′ =

−(y − γ0)
2 + p(t) are identical.

Proposition 5.7 Let λ∗(0) := λ∗(0, p) be the value associated to x ′ = −x2 + p(t) by
Theorem 2.11.

(i) If p is recurrent, then λ∗(0) ≤ λ∗(c, h) for all c ∈ R and h ≥ 0.
(ii) If � is nondecreasing (resp. nonincreasing), then

λ∗(−c, h) ≤ λ∗(0) ≤ λ∗(c, h), (resp. λ∗(c, h) ≤ λ∗(0) ≤ λ∗(−c, h))

for all c > 0 and h ≥ 0. If, in addition, p is recurrent, then: λ∗(0) = λ∗(−c, h)

(resp. λ∗(0) = λ∗(c, h)) for all c > 0 and h ≥ 0; and λ∗(0) < λ∗(c, 0) (resp. λ∗(c, 0) <

λ∗(0)) if the equation x ′ = −x2 + p(t) + λ∗(0, p) has just one bounded solution.

Proof Statement (i) is a direct consequence of Proposition 3.6. The properties of (ii) follow
from Corollary 3.8(ii), having in mind that �h

c and −�k−c are nondecreasing for c > 0 if � is
nondecreasing, and that �h−c and −�k

c are nondecreasing for c > 0 if � is nonincreasing. �
The bifurcation map λ∗(c, h) of (5.1)c,h when � and p are given by (4.9) and c, h ∈ [0, 5]
is depicted in Fig. 4. Besides the joint continuity of λ∗, observe that the section map h �→
λ∗(c, h) is not increasing for a fixed c > 0, unlike the map h �→ �h

c .
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Appendix A. Compactness of the Hull and Continuity of the Flow

Hereby, we recall some facts on nonautonomous equations of the type (2.1),

x ′ = −x2 + q(t) x + p(t) , (A.1)

where p andq areBPUC functions: seeDefinition 2.7. Thefirst objective is provingTheorems
2.9 and 2.11, which rely on Theorem A.2 (in turn based on Theorem A.1). The second one
is to prove Theorem A.3, a result on continuous variation of the solutions with respect to the
coefficients which we have used several times.

Let � = {a j ∈ R | j ∈ Z} ⊂ R be a disperse set (see Sect. 2.3). Recall that q : R → R

belongs to BPUC�(R, R) if and only it is right-continuous and

c1 there is c > 0 such that |q(t)| < c for all t ∈ R;
c2 for all ε > 0, there is δ = δ(ε) > 0 such that, if t1, t2 ∈ (a j , a j+1) for some j ∈ Z and

t2 − t1 < δ, then |q(t2) − q(t1)| < ε.
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Recall also a function q ∈ BPUC(R, R) is a finite sum of a finite number of functions
qi ∈ BPUC�i (R, R), for possibly different disperse sets�i . It is clear that BPUC(R, R) ⊂
L∞(R, R) ⊂ L1

loc(R, R). Recall that L1
loc(R, R) is a complete metric space for the distance

defined by

d(q1, q2) :=
∞∑

k=1

1

2k

∫ k
−k |q1(t) − q2(t)| dt

1 + ∫ k
−k |q1(t) − q2(t)| dt

.

In addition, for every q ∈ BPUC(R, R) and s ∈ R, the shift qs : R → R defined by
qs(t) := q(t + s), belongs to L∞(R, R) and has norm ‖q‖. We define

�q := closureL1
loc(R,R){qt | t ∈ R} ⊂ L1

loc(R, R) ∩ L∞(R, R) .

The set �q is the hull of q (in L1
loc(R, R)). Theorem A.1 shows that �q is a compact metric

space, and that the time-translation map

σ : R × �q → �q , (t, ω) �→ ωt , with ωt (s) := ω(t + s)

defines a (real) continuous flow on �q . Recall that being a flow means that σ0 = Id and
σs+t = σt ◦ σs for each s, t ∈ R, where σt (ω) := σ(t, ω).

Theorem A.1 Let q : R → R belong to BPUC(R, R). Then its hull �q is a compact subset
of L1

loc(R, R), and σ defines a continuous flow.

Proof Let� ⊂ R be a disperse set, and let us take q ∈ BPUC�(R, R).Wewill first prove the
compactness of �q in this case. Note that, since q is bounded, there exists a common bound
for all the shifts qs . Therefore, and according to [40, Theorem 1], to prove the compactness
of �δ it suffices to show that given ε > 0 and a compact interval I ⊂ R there exists
δ = δ(ε, q, I) > 0 such that, for any s ∈ R,

∫

I
|qs(t + τ) − qs(t)| dt < ε whenever |τ | < δ . (A.2)

Let us write � = {a j ∈ R | j ∈ Z} and define h := inf j∈Z(a j+1 − a j ) > 0. We fix
ε > 0, a non-degenerate interval I = [r1, r2], and s ∈ R, and look for ak+1, ak+m−1 ∈ �

(depending on s), if they exist, such that [ak+1, ak+m−1] ⊆ (r1 + s, r2 + s) ⊂ [ak, ak+m].
We set ãk := r1 + s, ã j := a j for j = k + 1, . . . , k + m − 1 and ãk+m := r2 + s, so that
ã j+1 − ã j ≤ r2 − r1 for j = k, . . . , k + m − 1. Then,

∫

I
|qs(t + τ) − qs(t)| dt =

∫

I+s
|q(t + τ) − q(t)| dt ≤

k+m−1∑

j=k

∫ ã j+1

ã j

|q(t + τ) − q(t)| dt .

Condition c1 gives δ1 = δ1(ε, q, I) > 0 such that, if 0 ≤ τ < δ1 and d ∈ R, then

∫ d

d−τ

|q(t + τ) − q(t)| dt <
ε

2m
.

In addition, c2 provides δ2 = δ2(ε, q, I) ∈ (0, h] such that, if 0 < τ < δ2, then

|q(t + τ) − q(t)| <
ε

2m(r2 − r1)
for all j ∈ Z and all t ∈ (a j , a j+1 − τ) .
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Let us call δ := min(δ1, δ2) and fix τ ∈ [0, δ). For j ∈ {k + 1, . . . , k + m − 2} (if there is
any),
∫ ã j+1

ã j

|q(t + τ) − q(t)| dt =
∫ a j+1−τ

a j

|q(t + τ) − q(t)| dt +
∫ a j+1

a j+1−τ

|q(t + τ) − q(t)| dt

<
ε

2m(r2 − r1)
(a j+1 − τ − a j ) + ε

2m
≤ ε

m
.

In the case or cases j = k and j = k+m−1, the length of the interval [̃a j , ã j+1] can be less
than h, and hence greater than τ . We proceed in the same way as before if ã j ≤ ã j+1 − τ ,

getting the bound ε/m; if this is not the case, we forget about
∫ ã j+1−τ

ã j
(which is negative),

getting ε/(2m) as a bound. It follows that (A.2) holds for 0 ≤ τ < δ. To work with τ < 0,

we write
∫ ã j+1
ã j

= ∫ ã j−τ

ã j
+ ∫ ã j+1

ã j−τ and use the same arguments. This proves the compactness
of �q in the case q ∈ BPUC�(R, R).

To extend the result to the general BPUC case, it is enough to observe that (A.2) holds for
q = q1 + · · · + qn if it holds for every qi . It is also easy to check that σ defines a flow on
�q , and its continuity follows from [41, Theorem III.11]. �

The function f (x, t) := −x2+q(t) x+ p(t) giving rise to (A.1) is Lipschitz Carathéodory
whenever q, p ∈ BPUC(R, R). Recall that a function f : R×R → R is said to be Lipschitz
Carathéodory, which we represent by f ∈ LC(R2, R), if

– f is Borel measurable,
– for every compact interval I ⊂ R there exists a function mI ∈ L1

loc(R, R) such that
| f (t, x)| ≤ mI(t) for any x ∈ I and almost every t ∈ R,

– for every compact interval I ⊂ R there exists a function lI ∈ L1
loc(R, R) such that

| f (t, x1) − f (t, x2)| ≤ lI(t)|x1 − x2| for any x1, x2 ∈ I and almost every t ∈ R.

We endow the set LC(R2, R) with the TQ topology, which is generated by the countable
family of seminorms

n[r1,r2],s( f ) =
∫ r2

r1
| f (t, s)| dt for r1, r2, s ∈ Q with r1 < r2 ,

and for which LC(R2, R) is a locally convex metric space: see e.g. [40].
The results on existence, uniqueness, and basic properties of the solutions of the initial

value problems of equations x ′ = f (t, x) for f ∈ LC(R2, R) are classical: see e.g. [13,
Chapter 2]. But working with f ∈ LC(R2, R) with the topology TQ does not allow to define
a continuous flow from the solutions of the equation via the hull procedure, which is required
to apply techniques from topological dynamics. One needs to restrict to a suitable subset
of functions f . Theorem A.2 deals with this question when f (x, t) takes the shape −x2 +
q(t) x + p(t) with q, p ∈ BPUC�(R, R). An in-depth analysis of different topologies and
additional conditions in different spaces of Carathéodory functions giving rise to continuous
flows appears in [28].

Before stating Theorem A.2, we fix some notation. Given q, p ∈ BPUC(R, R), we can
consider the joint hull of (q, p),

�q,p := closureL1
loc(R,R2){(qt , pt ) | t ∈ R} ⊂ L1

loc(R, R
2) .

For every (q̄, p̄) ∈ �q,p and x0 ∈ R, the map t �→ x(t, q̄, p̄, x0) is the unique maximal
solution of x ′ = −x2 + q̄(t) x + p̄(t) with x(0) = x0; and U ⊆ R ×�q,p × R is the domain
of the function x .
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Theorem A.2 Let q, p : R → R belong to BPUC(R, R). Then, U is an open set, and

� : U ⊆ R × �q,p × R → �q,p × R,
(
t, (q̄, p̄), x0

) �→ (
(q̄t , p̄t ), x(t, q̄, p̄, x0)

)

defines a continuous local flow on �q,p × R, which is C1 in x0.

Proof The flow properties follow easily from the uniqueness of the solutions. Since �q,p ⊂
�q × �p , it is compact, and the continuity of the flow translation follows from those of �q

and �p . Hence, it remains to check the continuity of the second component of �.
Set f (ω, x) := −x2 + q(t) x + p(t), and let HullTQ

( f ) be the closure in LC(R2, R)

endowed with TQ of the set { ft | t ∈ R} of time-translations of f . There exists a one-to-
one correspondence between HullTQ

( f ) and �q,p: for (̃q, p̃) ∈ �q,p we define f̃ (t, x) :=
−x2 + q̃(t) x + p̃(t) and check that it belongs to HullTQ

( f ); and given f̃ ∈ HullTQ
( f ), we

define q̃(t) := f̃ (t, 0) and p̃(t) := f̃ (t, 1) + 1 − q̃(t), and check that (̃q, p̃) ∈ �q,p. In
addition, it is not hard to check that the bijection (̃q, p̃) �→ f̃ is continuous, and hence a
homeomorphism between both compact spaces.

On the other hand, the expression of f makes it easy to check that, for every j ∈ N, there
is κ j > 0 such that, for a.e. t ∈ R,

| f (t, x1) − f (t, x2)| < κ j |x1 − x2| whenever x1, x2 ∈ [− j, j] .
In this situation, [28, Theorem 5.9(i)] (which is formulated for HullTQ

( f )) shows that U is
open aswell as the continuity of the second component of�. TheC1 character in x0 follows in
a standard way from the fact that the derivative solves the corresponding variational equation
(see [9, Theorem 2.3.1]) combined with the just established continuity. �
Proofs of Theorems 2.9 and 2.11 Once established the continuity of the flow induced by (2.1)
on�q,p×R, in TheoremA.2, we can repeat the arguments leading to the (long and complex)
proof of [29, Theorem 3.5], which deals with the analogous properties in the case of bounded
and uniformly continuous functions q, p. These arguments allow us to prove (a)⇒(b), as well
as points (i) and (ii) of Theorem 2.9 when (a) (and hence (b)) holds. The proof of the analogue
of [29, Theorem 3.5] requires to apply the first approximation theorem to a scalar equation of
the type z′ = (−2 b̃(t)+ q(t)) z − z2, where b̃(t) is a bounded continuous function, but with
q ∈ L∞(R, R) instead of bounded continuous. This is not a problem: the proof of Theorem
III.2.4 in [19] works without changes for this situation.

The assertion (b)⇒(c) of Theorem 2.9 is trivial, and (c)⇒(a) can be deduced, for
instance, of Theorem 2.11(iv), whose proof is independent of Theorem 2.9. The whole
proof of Theorem 2.11 repeats that of [29, Theorem 3.6]. The results required there for
bounded and uniformly continuous coefficients q, p have been established in this paper for
q, p ∈ BPUC(R, R). �

Now we consider, as in the previous sections, a BPUC function p : R → R and a contin-
uous function � : R → R with finite asymptotic limits γ± := limt→±∞ �(t). And we define
�h
c for all c ∈ R ∪ {±∞} and h ≥ 0 as at the beginning of Sect. 5.

Theorem A.3 Let us define f hc (t, y) := −(y − �h
c (t))2 + p(t) for c ∈ R ∪ {±∞} and

h ≥ 0. Then, f hc ∈ LC(R2, R). In addition, let us denote by ỹc,h(·, 0, y0) the solution of
y′ = f hc (t, y) with y(0) = y0. If the sequence ((ck, hk)) in R×[0,∞) converges to (c0, h0),
with c0 ∈ R ∪ {±∞} and h0 ∈ [0,∞), and the sequence (yk) in R converges to y0 ∈ R,
then

lim
k→∞ ỹck ,hk (t, 0, yk) = ỹc0,h0(t, 0, y0)
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uniformly in t varying in any compact interval contained in the maximal interval of definition
of ỹc0,h0(·, 0, y0).
Proof Note first that, if j ∈ N and y1, y2 ∈ [− j, j], then

| f hc (t, y1) − f hc (t, y2)| ≤ (2 j + 2 ‖�‖)|y1 − y2|
for all c ∈ R ∪ {±∞} and h ≥ 0. This ensures the third of the conditions ensuring that
f hc ∈ LC(R2, R), and the two first ones are easier to check. Now, let us take a sequence
((ck, hk)) in R×[0,∞)with limit (c0, h0), as in the statement. According to Theorem 5.8(i)
in [28], to prove the last assertion it suffices to check that

lim
k→∞

∫ r2

r1
| f hkck (t, y) − f h0c0 (t, y))| ds = 0

for all r1, r2, y ∈ Q with r1 < r2. Clearly, this limiting behavior is guaranteed by

lim
k→∞

∫ r2

r1

∣
∣ �hk

ck (t) − �h0
c0 (t)

∣
∣ dt = 0 for r1, r2 ∈ Q with r1 < r2 ,

which is hence the property to be proved. In turn, this property follows from the dominated
convergence theorem, since � is bounded and limk→∞ �

hk
ck (t) = �

h0
c0 (t) for almost every

t ∈ R. The detailed proof of this last assertion is a nice exercise, for which we give some
hints. Given h > 0 and t ∈ R, if j t is the unique integer number with t ∈ [ j t h, ( j t + 1) h),
we have j t h ∈ (t − h, t ]. This is the key point to prove that in the case c0 = 0 and h0 ≥ 0,
as well as in the case c0 ∈ R − {0} and h0 = 0, the convergence holds for every t ∈ R.
If c0 ∈ R − {0} and h0 > 0, the convergence holds when t �= j h0 for every j ∈ Z. For
c = ±∞ and h0 = 0, it holds for t �= 0. And finally, for c = ±∞ and h0 > 0, it holds for
every t �= h0. �

Appendix B. Clarification on the Numerical Analysis

Hereby, we clarify the way in which we obtain the figures in Sects. 4.2 and 5.1, corresponding
to the differential equation (5.1)c,h (equal to (4.1)c for h = 0) for

�(t) := 2

π
arctan(t) , p(t) := 0.962 − sin(t/2) − sin(

√
5 t), c ≥ 0, and h ≥ 0 .

All the involved equations have been numerically integrated using the MATLAB function
ode45 with double precision and the options on the relative and absolute tolerance respec-
tively set to RelTol=1e-9 and AbsTol=1e-9. The numerical method used to compute
λ∗ is based on the bisection idea outlined in [29], to which we refer the reader for further
details. In that example, � is the same, and p(t) := 0.892 − sin(t/2) − sin(

√
5 t). We point

out here that the section λ∗(c, 0) of the bifurcation map λ∗ (see Sect. 5.1) corresponding to
our present example coincides with λ̃(c) − (0.962 − 0.895) = λ̃(c) − 0.067, where λ̃(c) is
the function corresponding to the example in [29]: see Theorem 2.11(v). In particular, the
detailed justification given in [29], taken for valid also in what follows, allows us to ensure
that λ∗(c, 0) < 0 for c ∈ [0, 0.25] (at least). Hence, Hypothesis 4.2 is fulfilled for our
coefficients � and p.

Wework under the next fundamental assumption, which is based on a consistent numerical
evidence and which we will explain later: if �̃ belongs to BPUC�(R, R) for a disperse set
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� and satisfies ‖�̃‖ ≤ 0.1, then the equation x ′ = −(x − �̃(t))2 + p(t) has an attractor–
repeller pair. In these conditions, Hypothesis 3.2 and Theorem 3.4 guarantee the existence
of the (possibly locally defined) solutions ac,h and rc,h of (5.1)c,h for c ∈ R ∪ {±∞} and
h ≥ 0 described in Theorem 2.5. In addition, since the constant m = 3.4 satisfies the
condition required in Theorem 2.5 for all the differential equations (5.1)c,h (as deduced from∥
∥�h

c

∥
∥ ≤ 1 and ‖p‖ ≤ 3), we know that ac,h(t) < 3.5 and rc,h(t) > −3.5 on their respective

domains, and that any bounded solution, if it exists, takes values in (−3.5, 3.5).
We already know that λ∗(c, 0) < 0 for c ∈ [0, 0.25]. Therefore, ac,0 and rc,0 are globally

defined hyperbolic solutions for c ∈ [0, 0.25]. We will now check that ac,h and rc,h are
respectively defined on (−∞,−35] and [35,∞) whenever c ≥ 0.25 (including c = ∞) and
h ∈ (0, 6]. Let us define

(�h
c )−(t) :=

{
�h
c (t) if t < −35 ,

�h
c (−35) if t ≥ −35 ,

(�h
c )+(t) :=

{
�h
c (35) if t < 35 ,

�h
c (t) if t ≥ 35 ,

and observe that (�h
c )−(t) ∈ (−1,−0.9) and (�h

c )+(t) ∈ (0.9, 1). In the case of c = ∞
and h ∈ (0, 6], these assertions are trivial. In the remaining cases, they follow from these
facts: given h > 0 and t ∈ R, if j t is the unique integer number with t ∈ [ j t h, ( j t + 1) h),
then j t h ∈ (t − h, t ] ⊆ (t − 6, t]; −1 < (2/π) arctan(c j t h) < (2/π) arctan(c t) ≤
(2/π) arctan(0.25·(−35)) < −0.9 if t ≤ −35 and c ≥ 0.25; and 1 > (2/π) arctan(c j t h) >

(2/π) arctan(c (t − 6)) ≥ (2/π) arctan(0.25 · (35− 6)) > 0.9 if t ≥ 35 and c ≥ 0.25. Then,
y′ = −(

y − (�h
c )−(t)

)2 + p(t) has an attractor–repeller pair (̃a−
c,h, r̃

−
c,h), since the trivial

change of variables x = y + 1 provides the equation x ′ = −(
x − (1 + (�h

c )−(t))
)2 + p(t),

with ‖1 + (�h
c )−‖ < 0.1. As before, we have −3.5 < r̃−

c,h(t) < ã−
c,h < 3.5 for all t ∈ R. In

addition, by reviewing the proof of Theorem 3.4, we observe that ac,h(t) = ã−
c,h(t)whenever

t ≤ −35. This proves our assertion concerning ac,h . To prove it for rc,h , we work with (�h
c )+

and with the change of variables x = y − 1, using now that ‖1 − (�h
c )+‖ < 0.1.

Our goal now is finding suitable pairs (initial time, initial value) to reliably approximate
ac,h and rc,h in the range of values c ∈ (0, 50] ∪ {∞} and h ∈ [0, 6] by finite integration.
Recall that ac,h behaves like ã−

c,h on (−∞,−35], and hence it attracts exponentially fast

solutions starting above r̃−
c,h as time increases: see Theorem 2.9. Having in mind this fact,

and trusting the simplicity of the numerical integration that we are performing, we can
say that the computer does not distinguish ac,h(−35) from yc,h(−35,−500, 3.5). In fact,
independently of the value of (c, h) ∈ (0, 50]× ∈ [0, 6], we observe that the graph of
any solution yc,h(t, s, 3.5) with s ≤ −85 “collides" after less that 20 units of time with
the graph of yc,h(−35,−500, 3.5): see Fig. 5. And the same happens with rc,h(35) and
yc,h(35, 500,−3.5), so that the data we are taking are very precautionary.

The way to proceed is clear now. If we can continue the solution yc,h(t,−500, 3.5)
at least until t = 35, and observe that yc,h(35,−500, 3.5) > yc,h(35, 500,−3.5), then
we are in case A (see Remark 2.6). If this is not the case, we will find ta > −35 with
yc,h(ta,−500, 3.5) < −3.5, which means that the graph of yc,h(ta,−500, 3.5) intersects
that of any function taking values on [−3.5, 3.5], as is the case of any possible bounded
solution; therefore, there are no bounded solutions, and hence the dynamics is given by case
C.

Let us justify our initial assumption. First, we check that the equation x ′ = −x2 −
0.2 |x | − 0.011 + p(t) has a bounded solution. In fact, using the same MATLAB routine
to represent a large number of solutions of this equation, we observe that, independently
of the initial time, the numerical approximation of every solution starting at an initial value

123



Journal of Dynamics and Differential Equations

Fig. 5 Phase planes for two values of (c, h). In the left figure, an attractor–repeller pair exists (Case A), while
in the right one there are no bounded solutions (Case C). The observed behavior is similar for any value of
(c, h) ∈ (0, 50] × [0, 6], being the collision time always less than 20

Fig. 6 Global dynamics of x ′ = −x2 − 0.2 |x | − 0.011 + p(t). The behavior is analogous at any interval of
integration

greater than 3 eventually falls onto the graph of the function represented in solid red in
Fig. 6. The analogous behavior is observed backwards in time when computing solutions
with initial value less than −3, which are eventually mapped on the graph of the function
represented in dashed blue in Fig. 6. In addition, the solution corresponding to any initial
pair (initial time, initial value) between the graphs of both functions falls onto the red curve
as time increases and onto the blue curve as time decreases. In other words, we observe
numerically that the dynamics for the (concave) equation x ′ = −x2 −0.2 |x |−0.011+ p(t)
is that of existence of an attractor–repeller pair, which is more than required. Let b be a
bounded solution, and take �̃ ∈ BPUC�(R, R) for a disperse set � with ‖�̃‖ ≤ 0.1. Then
b′(t) = −b2(t) − 0.2 |b(t)| − 0.011+ p(t) < −(b(t) − �̃(t))2 + p(t) for all t ∈ R−�, and
hence Theorem 2.5(v) (see also Remark 2.4) ensures that x ′ = −(x − �̃(t))2 + p(t) has at
least two different bounded solutions. According to Remark 3.5, this ensures the existence of
the attractor–repeller pair, which was our initial assumption. This completes our explanation,
and the appendix.
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