
Article

Applied Psychological Measurement

2017, Vol. 41(3) 178–194

� The Author(s) 2016

Reprints and permissions:

sagepub.com/journalsPermissions.nav

DOI: 10.1177/0146621616677520

journals.sagepub.com/home/apm

Critical Values for Yen’s Q3:
Identification of Local
Dependence in the Rasch
Model Using Residual
Correlations

Karl Bang Christensen1, Guido Makransky2, and Mike Horton3

Abstract

The assumption of local independence is central to all item response theory (IRT) models.

Violations can lead to inflated estimates of reliability and problems with construct validity. For
the most widely used fit statistic Q3, there are currently no well-documented suggestions of the

critical values which should be used to indicate local dependence (LD), and for this reason, a

variety of arbitrary rules of thumb are used. In this study, an empirical data example and Monte
Carlo simulation were used to investigate the different factors that can influence the null distri-

bution of residual correlations, with the objective of proposing guidelines that researchers and

practitioners can follow when making decisions about LD during scale development and valida-
tion. A parametric bootstrapping procedure should be implemented in each separate situation

to obtain the critical value of LD applicable to the data set, and provide example critical values

for a number of data structure situations. The results show that for the Q3 fit statistic, no single
critical value is appropriate for all situations, as the percentiles in the empirical null distribution

are influenced by the number of items, the sample size, and the number of response categories.

Furthermore, the results show that LD should be considered relative to the average observed
residual correlation, rather than to a uniform value, as this results in more stable percentiles

for the null distribution of an adjusted fit statistic.
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Introduction

Statistical independence of two variables implies that knowledge about one variable does not

change the expectations about another variable. Thus, test items, X1, . . . ,XI , are not indepen-

dent, because a student giving a correct answer to one test item would change the expectation

of his or her probability of also giving a correct answer to another item in the same test. A fun-

damental assumption in the Rasch (1960) model and in other item response theory (IRT) mod-

els is that item responses are conditionally independent given the latent variable:

P X1 = x1, . . . ,XI = xI juð Þ=
Y

I

i= 1

P Xi = xijuð Þ: ð1Þ

The items should only be correlated through the latent trait that the test is measuring (Lord &

Novick, 1968). This is generally referred to as local independence (Lazarsfeld & Henry, 1968).

The assumptions of local independence can be violated through response dependency and

multidimensionality, and these violations are often referred to under the umbrella term of ‘‘local

dependence’’ (LD). Both of these situations yield interitem correlations beyond what can be

attributed to the latent variable, but for very different reasons. Response dependency occurs

when items are linked in some way, such that the response on one item governs the response on

another because of similarities in, for example, item content or response format. A typical

example is where several walking items are included in the same scale. If a person can walk

several miles without difficulty, then that person must be able to walk 1 mile, or any lesser dis-

tance, without difficulty (Tennant & Conaghan, 2007). This is a structural dependency which is

inherent within the items, because there is no other logical way in which a person may validly

respond. Another form of LD could be caused by a redundancy–dependency, where the degree

of overlap within the content of items is such that the items are not independent (i.e., where the

same question is essentially asked twice, using slightly different language or synonymous

descriptive words). Yen (1993) offered an in-depth discussion of ways that the format and pre-

sentation of items can cause LD.

Violation of the local independence assumption through multidimensionality is typically seen

for instruments composed of bundles of items that measure different aspects of the latent vari-

able or different domains of a broader latent construct. In this case, the higher order latent vari-

able alone might not account for correlation between items in the same bundle.

Violations of local independence in a unidimensional scale will influence estimation of per-

son parameters and can lead to inflated estimates of reliability and problems with construct

validity. Consequences of LD have been described in detail elsewhere (Lucke, 2005; Marais,

2009; Marais & Andrich, 2008a; Scott & Ip, 2002; Yen, 1993). Ignoring LD in a unidimensional

scale thus leads to reporting of inflated reliability giving a false impression of the accuracy and

precision of estimates (Marais, 2013). For a discussion of the effect of multidimensionality on

estimates of reliability, see Marais and Andrich (2008b).

Detecting LD

One of the earliest methods for detecting LD in the Rasch model is the fit measure Q2 (van den

Wollenberg, 1982), which was derived from contingency tables and used the sufficiency prop-

erties of the Rasch model. Kelderman (1984) expressed the Rasch model as a log-linear model

in which LD can be shown to correspond to interactions between items. Log-linear Rasch mod-

els have also been considered by Haberman (2007) and by Kreiner and Christensen (2004,

2007), who proposed to test for LD by evaluating partial correlations using approach similar to
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the Mantel–Haenszel analysis of differential item functioning (DIF; Holland & Thayer, 1988).

The latter approach is readily implemented in standard software such as SAS or SPSS. Notably,

Kreiner and Christensen (2007) argued that the log-linear Rasch models proposed by

Kelderman that incorporate LD still provide essentially valid and objective measurement and

described the measurement properties of such models. Furthermore, a way of quantifying LD

has been proposed by Andrich and Kreiner (2010) for two dichotomous items. It is based on

splitting a dependent item into two new ones, according to the responses to the other item

within the dependent pair. LD is then easily quantified by estimating the difference d between

the item locations of the two new items. However, Andrich and Kreiner do not go on to investi-

gate whether d is statistically significant. For the partial credit model (Masters, 1982) and the

rating scale model (Andrich, 1978), a generalized version of this methodology exists (Andrich,

Humphry, & Marais, 2012).

Beyond the Rasch model, Yen (1984) proposed the Q3 statistic for detecting LD in the three

parameter logistics (3PL) model. This fit statistic is based on the item residuals,

di =Xi � E Xijû
� �

, ð2Þ

and computed as the Pearson correlation (taken over examinees),

Q3, ij = rdidj , ð3Þ

where di and dj are item residuals for items i and j, respectively. This method is often used for

the Rasch model, the partial credit model, and the rating scale model.

Chen and Thissen (1997) discussed X2 and G2 LD statistics that, although not more powerful

than the Q3, have null distributions very similar to the chi-square distribution with one degree

of freedom. Other methods for detecting LD are standardized bivariate residuals for dichoto-

mous or multinomial IRT models (Maydeu-Olivares & Liu, 2015), the use of conditional covar-

iances (Douglas, Kim, Habing, & Gao, 1998), or the use of Mantel–Haenszel type tests (Ip,

2001). Tests based on parametric models are also a possibility: Glas and Suarez-Falcon (2003)

proposed Lagrange multiplier (LM) tests based on a threshold shift model, but bifactor models

(Liu & Thissen, 2012, 2014), specification of other models that incorporate LD (Hoskens & De

Boeck, 1997; Ip, 2002), or limited information goodness-of-fit tests (Liu & Maydeu-Olivares,

2013) are also possible.

The Use of the Q3 Fit Statistic

Yen’s Q3 is probably the most often reported index in published Rasch analyses due to its inclu-

sion (in the form of the residual correlation matrix) in widely used software such as RUMM

(Andrich, Sheridan, & Luo, 2010). Yen (1984) argued that if the IRT model is correct, then

the distribution of the Q3 is known, and proposed that p values could be based on the Fisher

(1915) z-transform. Chen and Thissen (1997) stated, ‘‘In using Q3 to screen items for local

dependence, it is more common to use a uniform critical value of an absolute value of 0.2 for

the Q3 statistic itself’’ (pp. 284-285). They went on to present results showing that, although

the sampling distribution under the Rasch model is bell shaped, it is not well approximated

by the standard normal distribution, especially in the tails (Chen & Thissen, 1997, Figure 3).

In practical applications of the Q3 test statistic researchers will often compute the complete

correlation matrix of residuals and look at the maximum value:

Q3,max =maxi. jQ3, ij: ð4Þ
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Critical Values of Residual Correlations

When investigating LD based on Yen’s Q3, residuals for any pair of items should be uncorre-

lated, and generally close to zero. Residual correlations that are high indicate a violation of the

local independence assumption, and this suggests that the pair of items have something more in

common than the rest of the item set have in common with each other (Marais, 2013).

As noted by Yen (1984), a negative bias is built into Q3. This problem is due to the fact that

measures of association will be biased away from zero even though the assumption of local

independence applies, due to the conditioning on a proxy variable instead of the latent variable

(Rosenbaum, 1984). A second problem is that the way the residuals are computed induces a bias

(Kreiner & Christensen, 2011). Marais (2013) recognized that the sampling properties among

residuals are unknown; therefore, these statistics cannot be used for formal tests of LD. A third,

and perhaps the most important, problem in applications is that there are currently no well-

documented suggestions of the critical values which should be used to indicate LD, and for this

reason, arbitrary rules of thumb are used when evaluating whether an observed correlation is

such that it can be reasonably supposed to have arisen from random sampling.

Standards often reported in the literature include looking at fit residuals over the critical

value of 0.2, as proposed by Chen and Thissen (1997). For examples of this, see Reeve et al.

(2007); Hissbach, Klusmann, and Hampe (2011); Makransky and Bilenberg (2014); and

Makransky, Rogers, and Creed (2014). However, other critical values are also used, and there

seems to be a wide variation in what is seen as indicative of dependence. Marais and Andrich

(2008a) investigated dependence at a critical value of 0.1, but a value of 0.3 has also often been

used (see, for example, das Nair, Moreton, & Lincoln, 2011; La Porta et al., 2011; Ramp,

Khan, Misajon, & Pallant, 2009; Røe, Damsgård, Fors, & Anke, 2014), and critical values of

0.5 (Davidson, Keating, & Eyres, 2004; Ten Klooster, Taal, & van de Laar, 2008) and even 0.7

(González-de Paz et al., 2015) can be found in use.

There are two fundamental problems with this use of standard critical values: (a) there is lim-

ited evidence of their validity and often no reference of where values come from, and (b) they

are not sensitive to specific characteristics of the data.

Marais (2013) not only identified that the residual correlations are difficult to directly inter-

pret confidently when there are fewer than 20 items in the item set but also stated that the corre-

lations should always be considered relative to the overall set of correlations. This is because of

the magnitude of a residual correlation value, which indicates LD will vary depending on the

number of items in a data set. Instead of an absolute critical value, Marais (2013) suggested that

residual correlation values should be compared with the average item residual correlation of the

complete data set to give a truer picture of the LD within a data set. It was concluded that when

diagnosing response dependence, item residual correlations should be considered relative to

each other and in light of the number of items, although there is no indication of a relative criti-

cal value (above the average residual correlation) that could indicate LD.

Thus, under the null hypothesis, the average correlation of residuals is negative (cf. Marais,

2013) and, ideally, observed correlations between residuals in a data set should be evaluated

with reference to this average value. Marais proposes to evaluate them with reference to the

average of the observed correlations rather than the average under the null hypothesis. Thus,

following Marais, the average value of the observed correlations could be considered:

�Q3 =
I

2

� ��1
X

i. j

Q3, ij, ð5Þ

where
I

2

� �

is the number of item pairs and defines the test statistic:
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Q3, � =Q3,max � �Q3, ð6Þ

that compares the largest observed correlation with average of the observed correlations.

The problem with the currently used critical values is that they are neither theoretically nor

empirically based. Researchers and practitioners faced with making scale validation, and devel-

opment decisions need to know what level of LD could be expected, given the properties of their

items and data.

A possible solution would be to use a parametric bootstrap approach and simulate the resi-

dual correlation matrix several times under the assumption of fit to the Rasch model. This

would provide information about the level of residual correlation that could be expected for the

particular case, given that the Rasch model fits. To the authors’ knowledge, there is no existing

research that describes how important characteristics such as the number of items, number of

response categories, number of respondents, the distribution of items and persons, and the tar-

geting of the items affect residual correlations expected, given fit to the Rasch model. In the

current study, the possibility of identifying critical values of LD is investigated by examining

the distribution of Q3 under the null hypothesis, where the data fit the model. This is done using

an empirical example along with a simulation study.

Given the existence of the wide range of fit statistics with known sampling distributions out-

lined above, it is surprising that Rasch model applications abound with reporting of Q3 using

arbitrary cut-points without theoretical or empirical justification. The reason for this is that the

theoretically sound LD indices are not included in the software packages used by practitioners.

For this reason, this article presents extensive simulation studies that will (a) illustrate that Q3

should be interpreted with caution and (b) allow researchers to know what level of LD could be

expected, given properties of their items and data. Furthermore, these simulation studies will be

used to study whether the maximum correlation, or the difference between the maximum corre-

lation and the average correlation, as suggested by Marais (2013), is the most informative.

Thus, the objectives of this article are (a) to provide an overview of the influence of different

factors upon the null distribution of residual correlations and (b) to propose guidelines that

researchers and practitioners can follow when making decisions about LD during scale devel-

opment and validation. Two different situations are addressed: first, the situation where the test

statistic is computed for all item pairs and only the strongest evidence (the largest correlation)

is considered, and second, the less common case where only a single a priori defined item pair

is considered.

Simulation Study

Methods

The simulated data sets used are as follows: (a) I dichotomous items simulated from

P Xi = xjuð Þ=
exp x u� bið Þð Þ

1 + exp u� bið Þ
i= 1, . . . , Ið Þ, ð7Þ

with evenly spaced item difficulties bi ranging from 22 to 2,

bi = 2
i� 1

I � 1

� �

i = 1, . . . , Ið Þ, ð8Þ

or (b) I polytomous items simulated from
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P Xi = xjuð Þ=

exp
P

x

h= 1

u� bihð Þ

� �

1 +
P

3

l = 1

exp
P

l

h= 1

u� bihð Þ

� � x= 0, 1, 2, 3; i= 1, . . . , Ið Þ, ð9Þ

with item parameters defined by

bih = 2
i� 1

I � 1

� �

+ h� 1ð Þ i= 1, . . . , I ; h= 1, 2, 3ð Þ: ð10Þ

The person locations were simulated from a normal distribution with mean m and SD 1. All

combinations of the four conditions—(a) number of items (I = 10, 15, 20), (b) number of per-

sons (N = 200, 250, . . . , 1,000), (c) number of response categories (two, four), and (d) mean

value in the distribution of the latent variable u (m = 0, 2)—were simulated. This yielded 204

different setups, and for each of these, 10,000 data sets were simulated and the steps followed

to find the empirical 95th and 99th percentiles:

i. Estimating item parameters using pairwise conditional estimation (Andrich & Luo,

2003; Zwinderman, 1995),

ii. Estimating person parameters using weighted maximum likelihood (WML; Warm,

1989),

iii. Computing the residuals (Equation 2),

iv. Computing the empirical correlation matrix,

v. Extracting the largest value from the correlation matrix.

Note that only data sets under the null hypothesis are simulated; there is no LD in the simulated

data sets.

Results

Figure 1 reports the empirical 95th and 99th percentiles in the empirical distribution of the max-

imum residual correlation for dichotomous items. The top panel shows m = 0 (labeled ‘‘good

targeting’’) and the bottom panel shows m = 2 (labeled ‘‘bad targeting’’). The reason for this

labeling is that the average of the item locations (the item difficulties) is zero.

The percentiles decrease as the sample size increases, and they increase with the number of

items. The latter finding is hardly surprising in a comparison of the maximum of 45, 105, and

190 item pairs, respectively. However, it is evident that the targeting does not have an impact on

the percentiles. Figure 2 reports the empirical 95th and 99th percentiles in the empirical distribu-

tion of the maximum residual correlation for polytomous items. Again the top panel labeled

‘‘good targeting’’ shows m = 0 and the bottom panel labeled ‘‘bad targeting’’ shows m = 2.

For N = 200, some of these percentiles were very large. Again, the percentiles decrease as

sample size increases and the mean m had little impact on the percentiles.

When item pairs are considered individually and computed the empirical distribution Q3 for

selected item pair, there was quite a big difference across item pairs and, again, the percentiles

decrease as sample size increases while the mean m had little impact on the percentiles.

Comparing the percentiles in the distribution of the correlation for a single a priori specified

item pair shows that percentiles increase with the number of items (results not shown). Thus,

the above finding that the percentiles in the distribution of the maximum correlation increase

with the number of items is not solely due to the increase in the number of item pairs. Figures
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Figure 1. The empirical 95th and 99th percentiles in the empirical distribution of Q3,max for

dichotomous items.
Note. Gray horizontal dashed lines indicate 0.2 and 0.3, respectively.

Figure 2. The empirical 95th and 99th percentiles in the empirical distribution of Q3,max for polytomous

items.
Note. Gray horizontal dashed lines indicate 0.2 and 0.3, respectively.
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3 and 4 show the empirical distribution of Q3,* for dichotomous and polytomous items,

respectively.

When using Q3,* rather than Q3,max, there is a smaller effect of the number of items, but again

the critical values decrease as sample size increases.

Makransky and Bilenberg Data

Methods

The empirical data example uses the Attention Deficit Hyperactivity Disorder Rating Scale–IV

(ADHD-RS-IV), which has been validated using the Rasch model in a sample consisting of

566 Danish schoolchildren (52% boys), ranging from 6 to 16 years of age (M = 10.98) by

Makransky and Bilenberg (2014). The parent and teacher ADHD-RS-IV (Barkley, Gwenyth, &

Arthur, 1999) which is one of the most frequently used scales in treatment evaluation of chil-

dren with ADHD consists of 26 items which measure across three subscales: Inattention,

Hyperactivity/Impulsivity, and Conduct Problems. Parents and teachers are independently

asked to rate children on the 26 items on a 4-point Likert-type scale, resulting in six subscales

(three with ratings from parents and three with ratings from teachers). In this study, the authors

will specifically focus on the nine items from the teacher ratings of the Hyperactivity/

Impulsivity subscale. They attempted to find the empirical residual correlation critical value

that should be applied to indicate LD. They did this by simulating data sets under the Rasch

model, that is, data sets without LD. Using an implementation in SAS (Christensen, 2006), the

simulation study was conducted by simulating 10,000 data sets under the Rasch model and, for

Figure 3. The empirical 95th and 99th percentiles in the empirical distribution of Q3,* for dichotomous

items.
Note. Gray horizontal dashed lines indicate 0.2 and 0.3, respectively.
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each of these, performing the Steps (i) to (v) outlined above to find the empirical 95th and 99th

percentiles.

Results

In this section, the authors describe an empirical example where they illustrate the practical

challenge of deciding whether or not the evidence of LD provided by the maximum value

Q3,max of Yen’s (1984) Q3 is large enough to violate the assumptions of the Rasch model.

Makransky and Bilenberg (2014) reported misfit to the Rasch model using a critical value of

0.2 to indicate LD. Using this critical value, they identified LD between Item 2 (‘‘Leaves seat’’)

and Item 3 (‘‘Runs about or climbs excessively’’) where Q3 was 0.26, and also between Item 7

(‘‘Blurts out answers’’) and Item 8 (‘‘Difficulty awaiting turn’’) where Q3 was 0.34 (Table 1).

They were able to explain the LD based on the content of the items, for example, that stu-

dents would have to leave their seat to run about or climb excessively within a classroom envi-

ronment, where students are usually required to sit in their seat, and they went on to adjust the

scale based on these results. Thus, the observed value of Q3,max is 0.34, and as the average cor-

relation �Q3 in Table 1 is 20.12, the observed value of Q3,* is 0.46.

As described above, there are examples in the literature where this procedure has been used

with critical values of Q3 ranging from 0.1 to 0.7. The choice of the critical value has implica-

tions for the interpretation of the measurement properties of a scale. This will, in turn, impact

upon any amendments that might be made, as well as the conclusions that are drawn. Using a

critical value of 0.3 would lead to the conclusion that the residual correlation value of 0.26 iden-

tified between Items 2 and 3 is not in violation of the Rasch model. A critical value of 0.7 would

Figure 4. The empirical 95th and 99th percentiles in the empirical distribution of Q3,* for polytomous

items.
Note. Gray horizontal dashed lines indicate 0.2 and 0.3, respectively.
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lead to the conclusion that there is no LD in the scale. Alternatively, a critical value of 0.1 would

result in the conclusion that three additional pairs of items also exhibit LD within this data set.

Based on the estimated item and person parameters in the Makransky and Bilenberg data,

10,000 data sets from a Rasch model were simulated without LD, computed residuals, and their

associated correlations. The empirical distribution of the maximum value Q3,max based on these

10,000 data sets is shown in Figure 5.

The 95th and 99th percentiles in this empirical distribution were 0.19, and 0.24, respectively,

indicating that Makransky and Bilenberg were correct in concluding that Q3,max = 0.34 indicated

misfit. Using the parametric bootstrap results reported in Figure 1, Makransky and Bilenberg

could have rejected the assumption of no LD with a p value of\.001. For nine items (as in the

Makransky and Bilenberg data), there are 36 item pairs, and based on the simulated data sets,

the authors are able to determine critical values for Yen’s Q3 for each item pair. If a hypothesis

about LD had been specified a priori for a single item pair (e.g., between Items 2 and 3), then it

would make sense to compare the observed correlation with a percentile in the empirical distri-

bution of correlations for this item pair. In Table 2, the median and four empirical percentiles

are shown.

Table 2 illustrates that the median value of the Q3 test statistic for any item pair is negative.

Table 2 further outlines the critical values that could be used for tests at the 5% and 1% level,

respectively, if the hypothesis about LD was specified a priori for an item pair. These values

ranged from 0.05 to 0.07 with a mean of 0.06 for the 95th, and from 0.09 to 0.14 with a mean of

0.12 for the 99th percentiles. As no a priori hypotheses about LD were made in the Makransky

and Bilenberg study, the results indicate that the conclusions made using a critical value of 0.2

were reasonable. As the simulation performed is based on the estimated item and person para-

meters in the Makransky and Bilenberg data, it can be viewed as a parametric bootstrap

approach.

The empirical distribution of Q3,* (the difference between Q3,max and the average correlation
�Q3) based on these 10,000 data sets is shown in Figure 6.

As the average value �Q3 is negative, it is not surprising that the distribution of the Q3,* is

shifted to the right compared with the distribution of Q3,max. The relevant critical value for a

test at the 5% level is 0.26, and the relevant critical value for a test at the 1% level is 0.31. The

observed value of the average correlation being �Q3 = � :12, as computed from Table 1, we see

that Q3, � = 0:46. Based on this, Makransky and Bilenberg were correct in concluding that LD

exists in the data.

Table 1. The Observed Residual Correlation Matrix in the Makransky and Bilenberg (2014) Data for the

Teacher Ratings of Hyperactivity/Impulsivity in the ADHD-RS-IV.

Item 1 2 3 4 5 6 7 8 9

1. Fidgets or squirms 1.00
2. Leaves seat .12 1.00
3. Runs about or climbs excessively .03 .26 1.00
4. Difficulty playing quietly 2.05 2.04 .04 1.00
5. On the go 2.09 2.25 2.02 2.14 1.00
6. Talks excessively 2.20 2.25 2.26 2.21 .03 1.00
7. Blurts out answers 2.34 2.26 2.23 2.25 2.18 .00 1.00
8. Difficulty awaiting turn 2.29 2.21 2.23 2.24 2.19 2.12 .34 1.00
9. Interrupts 2.20 2.12 2.14 2.14 2.24 2.32 .12 .12 1.00

Note. Boldface indicates values above 0.1. ADHD-RS-IV = Attention Deficit Hyperactivity Disorder Rating Scale–IV.
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Formally, the results in Figures 1 and 2 would enable us to reject the overall hypothesis

about absence of LD and conclude that there is LD for the Item Pair 7 and 8. Of course, a para-

metric bootstrap approach like this could be extended from looking at the maximum value

Q3,max to looking at the empirical distribution of largest and the second largest Q3 value.

Makransky and Bilenberg report that LD between the items was successfully dealt with by

combining the item pairs with LD into single combination items, and evaluating fit for the

resulting seven-item scale. They further argue that item deletion is not desirable because the

Hyperactivity/Impulsivity subscale in the ADHD-RS-IV is ‘‘. . . developed to assess the diagno-

sis in the DSM-IV and DSM-5, and the elimination of the items would decrease the content

validity of the scale’’ (Makransky & Bilenberg, 2014, p. 702). A third alternative is to model

the LD using log-linear Rasch models (Kelderman, 1984). Table 3 outlines the result obtained

using item deletion and combining items, respectively. Item fit was evaluated using comparison

of observed and expected item-restscore correlation (Kreiner, 2011), while Andersen’s (1973)

conditional likelihood ratio test was used to evaluate scale fit.

Based on the results in Table 3, we see that combining items yields the best item and

scale fit. The four models are also compared with respect to the test information function

(Figure 7).

Figure 7 shows that combining items yields the highest test information.

Discussion

Local independence implies that, having extracted the unidimensional latent variable, there

should be no leftover patterns in the residuals (Tennant & Conaghan, 2007). The authors simu-

lated the distribution of residuals that can be expected between two items when the data fit the

Rasch model under a number of different conditions. In all instances, the critical values used to

Figure 5. The empirical distribution of Q3,max based on 10,000 data sets simulated using item and

person parameters from the Makransky and Bilenberg (2014) data.
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indicate LD were shown to be lower when there are fewer items, and more cases within a data

set. Similar patterns were observed for dichotomous and polytomous items.

In the first part of this study, empirical percentiles were reported from the empirical distribu-

tion of the Q3,max test statistic and the Q3,* test statistic. We reported critical values across a

number of situations with differing numbers of items, response options, and respondents and

with different targeting. Each of these conditions was based on 10,000 data sets simulated under

the Rasch model. The outlined parametric bootstrap method could be applied on a case-by-case

basis to inform research about a reasonable choice of cut-point for the maximum value of the

Q3,max and for the Q3,* test statistics. The second part of this study made it clear that the critical

Table 2. Empirical 95th and 99th Percentiles in the Empirical Distribution of the Correlations of

Residuals.

Percentile

Item 1 Item 2 Median IQR 95th 99th

1 2 20.07 20.11 to 20.02 0.06 0.12
3 20.06 20.11 to 20.02 0.06 0.12
4 20.08 20.13 to 20.02 0.06 0.12
5 20.07 20.12 to 20.02 0.06 0.13
6 20.07 20.11 to 20.02 0.07 0.14
7 20.07 20.12 to 20.02 0.06 0.12
8 20.07 20.12 to 20.02 0.06 0.13
9 20.07 20.12 to 20.02 0.06 0.13

2 3 20.08 20.12 to 20.03 0.05 0.10
4 20.09 20.15 to 20.04 0.05 0.10
5 20.08 20.13 to 20.03 0.06 0.13
6 20.08 20.13 to 20.03 0.06 0.12
7 20.08 20.13 to 20.03 0.05 0.12
8 20.08 20.12 to 20.03 0.05 0.12
9 20.08 20.13 to 20.03 0.05 0.12

3 4 20.10 20.15 to 20.05 0.03 0.09
5 20.08 20.13 to 20.03 0.05 0.11
6 20.07 20.13 to 20.02 0.06 0.12
7 20.08 20.13 to 20.03 0.05 0.11
8 20.08 20.13 to 20.03 0.05 0.11
9 20.08 20.13 to 20.03 0.05 0.11

4 5 20.09 20.15 to 20.04 0.05 0.12
6 20.08 20.14 to 20.03 0.06 0.12
7 20.10 20.15 to 20.04 0.04 0.11
8 20.09 20.15 to 20.04 0.05 0.10
9 20.09 20.15 to 20.04 0.05 0.12

5 6 20.08 20.13 to 20.02 0.06 0.13
7 20.08 20.13 to 20.03 0.06 0.12
8 20.08 20.13 to 20.03 0.06 0.13
9 20.09 20.14 to 20.03 0.06 0.13

6 7 20.08 20.13 to 20.02 0.06 0.13
8 20.08 20.13 to 20.02 0.06 0.13
9 20.08 20.13 to 20.02 0.06 0.13

7 8 20.08 20.13 to 20.03 0.06 0.12
9 20.08 20.13 to 20.03 0.06 0.12

8 9 20.08 20.13 to 20.03 0.06 0.12

Note. Based on 10,000 data sets simulated under the Rasch model using estimated parameters from the Makransky

and Bilenberg (2014) data. IQR = interquartile range.
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value of the Q3,max test statistic depends heavily on the number of items, but that the Q3,* test

statistics are more stable.

In the second part of this study, the empirical 95th and 99th percentiles were reported from

the empirical distribution of the maximum value Q3,max of Yen’s (1984) Q3 test statistic in

10,000 data sets, which were simulated under the Rasch model using the estimated item and

person parameters from the Makransky and Bilenberg (2014) data. Based on this, a critical

Figure 6. The empirical distribution of Q3,* based on 10,000 data sets simulated using item and person

parameters from the Makransky and Bilenberg (2014) data.

Table 3. Evaluation of Item and Scale Fit in Four Models With Item Deletion and a Model With Item

Combination: The Makransky and Bilenberg Data.

Deleting items

Original scale 2 and 7 3 and 7 2 and 8 3 and 8 Combining items

Item fit
1. (Fidgets or squirms) 0.981 0.880 0.251 0.697 0.428 0.297
2. (Leaves seat) 0.989 0.558 0.695 0.650
3. (Runs about or climbs excessively) 0.005 0.008 0.009
4. (Difficulty playing quietly) 0.001 0.010 0.016 0.005 0.010 0.037
5. (On the go) 0.716 0.123 0.208 0.180 0.319 0.168
6. (Talks excessively) 0.030 0.124 0.171 0.108 0.150 0.345
7. (Blurts out answers) 0.023 0.116 0.095 0.735
8. (Difficulty awaiting turn) 0.394 0.761 0.613
9. (Interrupts) 0.772 0.996 0.782 0.854 0.906 0.196
Scale Fit 0.036 0.019 0.218 0.002 0.045 0.081

Note. Boldface indicates p\ .05. Item fit evaluated using comparison of observed and expected item-restscore

correlations, total fit based on Andersen’s (1973) conditional likelihood ratio test, p values reported.
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value of 0.19 was observed at the 95th percentile, and a critical value of 0.24 was observed at

the 99th percentile. As the observed value was Q3,max = 0:34, it is reasonable to conclude that

there is LD in the data set.

Having disclosed evidence of LD when it is found to exist, several ways of dealing with it

have been suggested. These include the deletion of one of the LD items or by fitting the partial

credit model to polytomous items resulting from summation locally dependent Rasch items

(Andrich, 1985; Kreiner & Christensen, 2007; Makransky & Bilenberg, 2014). Other

approaches include using testlet models (Wang & Wilson, 2005; Wilson & Adams, 1995) or a

bifactor model (Reise, 2012). In the analysis of the Makransky and Bilenberg (2014) data, we

found that combining items yielded the best item and scale fit and the highest test information.

Summary and Recommendations

In summary, several methods for identifying LD have been suggested, but the most frequently

used one appears to be Yen’s Q3 based on computing residuals (observed item responses minus

their expected values), and then correlating these residuals. Thus, in practice, LD is identified

through the observed correlation matrix of residuals based on estimated item and person para-

meters, and residual correlations above a certain value are used to identify items that appear to

be locally dependent.

It was shown that a singular critical value for the Q3,max test statistics is not appropriate for

all situations, as the range of residual correlations values is influenced by a number of factors.

The critical value which indicates LD will always be relative to the parameters of the specific

data set, and various factors should be considered when assessing LD. For this reason, the rec-

ommendation by Marais (2013) was that LD should be considered relative to the average resi-

dual correlation, and thus that the Q3,* test statistic should be used. For neither of the test

statistics, a single stand-alone critical value exists.

Figure 7. The test information in four models with item deletion and in the model with item

combination.
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Despite no single critical value being appropriate, the simulations show that the Q3,* critical

value appears to be reasonably stable around a value of 0.2 above the average correlation.

Within the parameter ranges that were tested, any residual correlation .0.2 above the average

correlation would appear to indicate LD, and any residual correlation of independent items at a

value .0.3 above the average would seem unlikely.

Finch and Jeffers (2016) proposed a permutation test for LD based on the Q3 and found it to

have good Type I error control, while also yielding more power for detecting LD than the use

of the 0.2 cut-value. Bootstrapping and determining critical values for the Q3 is one option, but

using one of the statistics with known null distribution listed in the introduction is a better

option. For researchers for whom these tests are not available, the results presented in Figures 3

and 4 yield guideline for choosing a critical value of the Q3,max and the results presented in

Figures 5 and 6 yield guideline for choosing a critical value of the Q3,* for certain data structure

situations, and the parametric bootstrap approach outlined illustrates how a precise critical

value can be ascertained. A complete summary of the simulation studies is available online on

the home page (http://publicifsv.sund.ku.dk/~kach/Q3/critical_values_Yens_Q3.html).

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or pub-

lication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123-140.

Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43, 561-573.

Andrich, D. (1985). A latent trait model for items with response dependencies: Implications for test

construction and analysis. In S. E. Embretson (Ed.), Test design: Developments in psychology and

psychometrics (pp. 245-275). New York, NY: Academic Press.

Andrich, D., Humphry, S., & Marais, I. (2012). Quantifying local, response dependence between two

polytomous items using the Rasch model. Applied Psychological Measurement, 36, 309-324.

Andrich, D., & Kreiner, S. (2010). Quantifying response dependence between two dichotomous items

using the Rasch model. Applied Psychological Measurement, 34, 181-192.

Andrich, D., & Luo, G. (2003). Conditional pairwise estimation in the Rasch model for ordered response

categories using principal components. Journal of Applied Measurement, 4, 205-221.

Andrich, D., Sheridan, B., & Luo, G. (2010). RUMM2030 [Computer software and manual]. Perth,

Australia: RUMM Laboratory.

Barkley, R., Gwenyth, E. H., & Arthur, L. R. (1999). Defiant teens: A clinician’s manual for assessment

and family intervention. New York, NY: Guilford Press.

Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory.

Journal of Educational and Behavioral Statistics, 22, 265-289.

Christensen, K. B. (2006). Fitting polytomous Rasch models in SAS. Journal of Applied Measurement, 7,

407-417.

das Nair, R., Moreton, B. J., & Lincoln, N. B. (2011). Rasch analysis of the Nottingham extended activities

of daily living scale. Journal of Rehabilitation Medicine, 43, 944-950.

Davidson, M., Keating, J. L., & Eyres, S. (2004). A low back-specific version of the SF-36 Physical

Functioning Scale. Spine, 29, 586-594.

192 Applied Psychological Measurement 41(3)



Douglas, J., Kim, H. R., Habing, B., & Gao, F. (1998). Investigating local dependence with conditional

covariance functions. Journal of Educational and Behavioral Statistics, 23, 129-151.

Finch, W. H., & Jeffers, H. (2016). A Q3-based permutation test for assessing local independence. Applied

Psychological Measurement, 40, 157-160.

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples of an

indefinitely large population. Biometrika, 10, 507-521.

Glas, C. A. W., & Suarez-Falcon, J. C. (2003). A comparison of item-fit statistics for the three-parameter

logistic model. Applied Psychological Measurement, 27, 87-106.
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