ﬁ“l'he International Journal of Time-Critical Computing Systems, 15, 249—-273 (1998)
'~ © 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Criticality- and QoS-Based Multiresource
Negotiation and Adaptation

J. HUANG* huang@htc.honeywell.com
Honeywell Technology Center, 3660 Technology Drive, Minneapolis, MN 55418

P.-J. WAN* pwan@htc.honeywell.com
Honeywell Technology Center, 3660 Technology Drive, Minneapolis, MN 55418

D.-Z. DU** dzd@cs.umn.edu
Department of Computer Science, University of Minnesota, Minneapolis, MN 55455

Abstract. This paper presents design, analysis, and implementation of a multiresource management system that
enables criticality- and QoS-based resource negotiation and adaptation for mission-critical multimedia applica-
tions. With the goal of maximizing the number of high-criticality multimedia streams and the degree of their
QoS, it introduces a dynamic scheduling approach using on-line QoS adjustment and multiresource preemption.
An integrated multiresource management infrastructure and a set of scheduling algorithms for multiresource pre-
emption and on-line QoS adjustment are presented. The optimality and execution efficiency of two preemption
algorithms are analyzed. A primal-dual-algorithm-based approximation solution is shown (1) to be comparable to
the linear-programming-based solution, which is near optimal; (2) to outperform a criticality-cognitive baseline
algorithm; and (3) to be feasible for on-line scheduling. In addition, the dynamic QoS adjustment scheme is shown
to greatly improve the quality of service for video streams. The multiresource management system is part of the
Presto multimedia system environment prototyped at Honeywell for mission-critical applications.

Keywords: multiresource management, adaptive resource management, QoS negotiation and adaptation, real-
time scheduling, optimization and analysis, system prototyping, multimedia system

1. Introduction

We consider a class of continuous multimedia applications that are dynamic and criticality-
driven. Continuous multimedi@omprises video, audio, and image streams, with each
having a data flow rate (e.g., 30 frames per second for a video stream). Supporting steady
flow of media streams is an essential task of the underlying system resource management
services.Criticality refers to the importance of multimedia applications. For instance, an
application performing periodic image capturing and flaw detection in advanced process
control (Guhaetal., 1995) can be more important than one that monitors floor activities inthe
controlled plant, and consequently, the image stream is more critical than the video stream.
Therefore, processing such media streams requires that the underlying system services
be criticality-cognitive and be able to support more critical multimedia data streams in
the presence of multiple service requests. In addition to the criticality-driven nature, the
multimedia applications are oftetynamicand may vary greatly in their demands on system

This work was supported in part by Rome Laboratory under Contract F30602-93-C-0172 and by the Honeywell
Initiatives R&D Program under grant 14560-ME-2000.
** This work was supported in part by the NSF under grant CCR-9530306.

250 HUANG, WAN, AND DU

resources. In mission management, for example, detection of a mobile target may trigger a
sequence of reactions such as video monitoring, infrared tracking, image library retrieval and
target matching and recognition, media data fusion and filtering, and command and control
(Robinson, 1993). Such dynamic workloads are not predictable a priori and therefore require
applications to negotiate on line for, and adapt to, available system resources, including disk
I/O bandwidth, CPU cycles, memory space, video compression/decompression capacity,
etc. Without sufficient resources and proper resource management, multimedia streams
may lose their data or timeliness in a random fashion, causing application malfunction.
We designate this type of criticality-driven, dynamic, and resource-bandwidth-sensitive
applications as mission-critical applications.

To support the mission-critical multimedia applications, we have developed and proto-
typed a multimedia system environment, calRrdsto(Huang et al., 1997c). The multire-
source management system is part oRhestothat enables quality-of-service (QoS)-based
dynamic resource negotiation and adaptation and criticality-based resource preemption.
We characterize the applications with three attributes—media stream flow timing, QoS,
and criticality—which are orthogonal to each other. Further, we model system resources as
“buckets,” with each having a capacity limit defined by its scheduling algorithm. The media
streams “flow” through the buckets, occupying a certain amount of space in each bucket.
The aim of our resource management system is to execute as many high-criticality media
streams as possible and at the same time provide the best QoS support, without violating
the bucket capacity constraints.

Our approach to this NP-hard multiresource management problem consists of several new
concepts. First, a two-phase QoS adjustment scheme is used for allocating resources for a
new stream. The first phase of this scheme, calledhini@king phasereduces the QoS of
executing streams to accommodate the new stream, achieving the goal of maximizing the
number of concurrent streams. The second phase, callexpaasion phasexpands the
QoS of the concurrent streams once the new stream is admitted, achieving the goal of QoS
maximization. Second, a criticality-based multiresource preemption scheme is employed
in case of resource contention where the system has no sufficient resources to meet the
minimum QoS requests. Two approximation algorithms are developed toward the goal of
supporting high-criticality applications and maximization of the total number of concurrent
applications. Finally, aresource negotiation and adaptation software mechanismis provided
to support the on-line QoS adjustment and criticality-based preemption. It enables all the
concurrent applications to participate in the negotiation (or re-negotiation) and adaptation
process upon a rate, QoS, or criticality change made by any of the applications.

The rest of this paper is organized as follows. In Section 2, we characterize the properties
of mission-critical multimedia applications from the user perspective. Section 3 establishes
a system resource management infrastructure and associated scheduling algorithms for the
individual resources. The core of this paper, namely the QoS-based resource negotiation
and adaptation and criticality-based multiresource preemption, is presented in Section 4.
We report our system implementation and performance analysis results in Section 5. The
related work is discussed in Section 6. We conclude this paper in Section 7.

MULTIRESOURCE NEGOTIATION AND ADAPTATION 251

2. Application Characterization

We characterize the mission-critical multimedia applications according to three factors:
timing, quality of service (Qo0S), and criticality. These factors are specified by application
users.

Timing—We consider two parameters regarding the continuous media timing con-
straints: rate and latency. Rate) (s defined in media data units per second, where a
unit can be a video frame or a group of audio samples consisting of a certain number of
bytes. Latency (L) is the tolerable end-to-end delay from the time the very first media
unit is produced at the stream source to the time it reaches the stream destination.

QoS—Quality of service specifies the degree of service quality expected by the applica-
tion from the underlying computer system. Examples include image resolution, jitter,
and so on, which depend largely on application semantics. In our work, we define the
QoS as Consecutive Loss Factor (CLF)—the maximum number of consecutive data
units allowed to be dropped between every two processed units. As illustrated in Fig-
ure 2-1, CLF= 2 means that two out of every three units can be dropped (or skipped).
Further, the application specifies its CLF using a rang€|[0n54, with O being the

best case without skipping aftlF.« the worst with the maximum number of allow-
able data units dropped. At run time, the application may adapt its CLF between 0 and
CLFnax depending on the availability of system resources.

l/?»l
I X X O KK 0O,
| Time

Figure 2-1. QoS definition.

The CLF definition represents a class of QoS semantics, often tesimeal function

in the context of imprecise computing (Liu et al., 1991). Other examples in such a
QoS class are the “leaky bucket” used for network congestion control and the “period
overrun” in process control applications, where a control loop may afford to skip a few
consecutive periods yet still meeting its control objective.

Criticality—Ceriticality refers to the degree of application importance among concurrent
applications. Application criticality is classified by multiple levels. In general, we
consider three classes of applications: “critical,” “essential,” and “non-essential.” As
illustrated in Figure 2-2, the critical class requires a guarantee of the minimum QoS of
applications. Inthe essential class, as many applications as possible need to be executed
based on their criticality; they may be suspended in case of resource contention. In the
non-essential class, as many applications as possible need to be executed; they may be
suspended arbitrarily. In our work, the class of critical applications are guaranteed with
fixed resource allocation. Hence, our focus is on adaptive resource management for the

252 HUANG, WAN, AND DU

. QoSmin must be guaranteed.
“Critical” class | No preemption allowed.

Higher-criticality first.
“Essential” class 1 Preemption allowed.

“Non-essential” class | Arbitrary preemption.

Figure 2-2. Classification of criticality.

essential and non-essential classes of applications with the goal of executing as many
as possible higher-criticality applications in the two classes.

As shown in Figure 2-3, the timing, QoS, and criticality factors are orthogonal to each
other (i.e., a user may specify any of the parameter values independently of each other).
For example, a high-rate application may have low criticality or low QoS requirements,
and so on. Our objective is to allocate and schedule the system resources such that the
applications’ timing constraints are met, QoSs are maximized, and the number of executing
(high-criticality) applications are maximized.

Criticality

Timing
QoS

Figure 2-3. The relationship between timing, QoS, and criticality.

We further consider the dynamic behavior of mission-critical applications in terms of
workload imposed on the system resources. As illustrated in Figure 2-4, application work-
load, andinturnresource demand, varies fromtime to time depending on the operation mode
during an application life span (Stankovic & Ramamritham, 1988). A simple example is a
sequence of video operation modes (e.g., play, pause, fast forward) with each demanding
a certain amount of system resources over a period of time. Every mode change of ap-
plications requires allocation/re-allocation of system resources for the requested operation
mode. The objective of the resource management is to provide admission control service
up on each mode change request and to dispatch the new operation mode for execution if
it is schedulable according to its QoS.

MULTIRESOURCE NEGOTIATION AND ADAPTATION 253

3. System Resource Management Architecture

In this section, we briefly discuss th&restoresource management architecture initially
developed for an end system and the scheduling algorithms used for the individual re-
sources. Multiresource management with QoS negotiation and criticality preemption will
be discussed in the next section.

3.1. Session Model

We use the notion a$essiorto capture the execution behavior of continuous media appli-
cations. From the application perspective, a session corresponds to an operation mode as
illustrated in Figure 2-4. From the system perspective, a session consists of producer and
consumer threads and a double buffer between the producer and the consumer, according to
the real-time producer-consumer paradigm (Jeffay, 1993; Huang & Du, 1994). A session
may demand a certain amount of disk 1/0O bandwidth for storage access, memory space for
buffering, CPU cycle for media data processing, and/or video processing bandwidth. From
the system resource management point of view, session is the unit of resource allocation
and scheduling.

Workload Life span of application i

Operation

Operation Operation
Mode 1 Mode 2 r\aode 3
7 / Time
Mode Mode Mode
Change Change Change

C970323-03

Figure 2-4. Operation modes of application i and their workloads.

Specifically, a sessio§ is defined by i, Li, CLFmax, ¢, 7, m;), where

e 1, Lj, CLFmayx, c,—are the stream rate, latency constraint, and consecutive loss factor
of QoS and the application criticality as described in Section 2. Note that the actual
CLF of a session, denoted BLFa, is determined on line during the QoS negotiation
(to be discussed in Section 4). Therefore, the actual stream flow rate of the session will
be

~ 1+CLFg’

fi

where CLFa e [0, CLF max]

254 HUANG, WAN, AND DU

e 7;—are the producer and consumer threads with CPU executioretifoeprocessing
one unit of media data ang for a disk I/O operation. In our workg ande are
obtained through “profiling,”, i.e., measurement of actual CPU execution time. An-
other approach can be “compiler-assisted analysis” by tracing code instructions and
computing instruction overhead (Niehaus, 1991).

e m;—is the double buffer allocated to a session. Its size is equakia;(2 wherex; is
the number of data units processed by either the producer thread or the consumer thread
in every execution period ang is the size of one data unik; is determined on line
by the scheduling algorithms to be discussed below.

3.2. Resource Management Infrastructure

To schedule the application sessions, we employ a three-level resource management ap-
proach as shown in Figure 3-1. At the bottom level is a commercial (real-time) operating
system. Its function is to provide system primitive services such as setting the priority of a
thread and preempting an executing thread. Our design philosophy is to madkethe

system open and portable as opposed to inventing yet another operating system.

At the middle level are individual resource schedulers. We decouple the scheduling
algorithms and mechanisms of these schedulers: the mechanisms carry out actual scheduling
operations (e.g., creating a thread, changing a thread priority, suspending a thread, etc., in
case of CPU scheduling), whereas the scheduling algorithms are exercised by a system
resource manager for systemwide resource management. Withdgbmend system, we
consider four schedulers for CPU, disk I1/0, memory buffer, and video/display window
resources, respectivély

At the top level is the system resource manager, which allocates system resources on the
basis of sessions. It uses the scheduling algorithms of the individual resource schedulers for
systemwide schedulability analysis and coordinates the individual schedulers for session
execution. As highlighted in the figure, this paper focuses on the system resource managet,
discussing its criticality- and QoS-based multiresource scheduling.

3.3. Scheduling of Individual Resources

Before presenting our systemwide resource management approach, let us briefly review the
scheduling algorithms used for the individual resources.

CPU Scheduler

As discussed in Section 2, all the threads are periodic in nature. Further, thread access to
media data buffers is nonblocking when a double-buffering technique is employed. Thus,
we simply adopt the rate-monotonic analysis (RMA) approach (Liu & Layland, 1973) for

MULTIRESOURCE NEGOTIATION AND ADAPTATION 255

Systemwide Schedulability Analysis ource Allocation

Algorithm Algorithm | Algorithm Algorithm
Mechanism Mechanism Mechanism Mechanism
(set priority, (disk access (malloc, free, ...) (CODEC,
suspend, ...) dispatch, ...) display, ...)
CPU Disk I/0 Buffer Video/Window
Scheduler Scheduler Manager Manager

| | I 1

Commercial (Real-Time) Operating System

- Priority-based preemptive CPU scheduling - Thread management
- Memory management - Disk I/0O management

Figure 3-1. Three-level resource management infrastructure.

the CPU scheduling: that is, a number of n sessions are schedulable at the CPU if
n
> (ari+ /L) <In2 = Crax @
i=1

The condition is reasonable wharbecomes greater than 5. In practingakes a much
larger value.

Disk 1/0O Scheduler

Commercial disk subsystems usually provide 1/0O scheduling support, often with a SCAN
algorithm, at the SCSI controller level. To reduce the disk head movement overhead and
guarantee a bounded access time, we employ an interval-based 1/0 access policy (Huang
& Wan, 1996). With the policyn sessions are schedulable only if

n
Z mM; Ui + NSDhax < LDmax (2
i=1

wherelL is the latency tolerable by all the sessionsDnmax is the amount of contiguous
data that the disk can transfer in one secddd; the disk seek time for serving each 1/O
request withinL, andm; = [L7, which is the number of data units fetched wittin

Other disk I/0O scheduling algorithms for admission control can be found in the literature
(Gemmell et al., 1995; Vin et al., 1995).

256 HUANG, WAN, AND DU

Video and Window Display Scheduler

Under the currerPrestosystem, we treat the JPEG video processor and its window display
as one “black box” without real-time control. The associated scheduler performs only an
admission control function as part of the system resource manager.

Then sessions may deliver video frames at the aggregated rat& of Let Vinax be the
maximum supportable video rate. Thesessions can be schedulable if

n
Z r < Vmax (3)
i=1

Buffer Manager

The buffer manager is responsible for admission control as part of the system resource
manager. Its operations consists of memory allocation and deallocation using the underlying
n

operating system services. Thesessions consumesz X U; bytes of memory, where

i=1
X = [riL7] which is the number of data units processed withirif the maximum memory
space available iMnyax bytes,n sessions can be supported if

n
2) XU < Mmax 4)
i=1

Clearly,n sessions arechedulablesystemwide if Conditions (1), (2), (3), and (4) are met.

Note that instead of developing “yet another” individual resource scheduler, the focus
of our work is on integrated multiresource management in a framework where individual
schedulers can be “plugged-and-played”. As can be observed from Conditions (1), (2),
(3), and (4) above, a general formula that we consider for conducting admission control
(bandwidth reservation) on an individual resource can be expressed as

Resource consumption of n sessigngesource capacity

It means that other resource scheduling algorithms or policies may apply to our multire-
source management framework as long as they follow the general formula and exhibit linear
behavior required by the linear programming approach presented in the next section. For
example, the Earliest-Deadline-First (EDF) scheduling formula developed by Liu and Lay-
land (1973) can replace Condition (2) for the CPU admission control. Similarly, a disk
I/0 scheduling formula developed by Kenchammana-Hosekote & Srivastava (1996) can be
used for the disk 1/0 admission control. Therefore, the individual resource schedulers and
their admission control conditions presented in this section are instances under the general
multiresource management framework shown in Figure 3-1. The scheduling accuracy de-
pends on the accuracy of individual scheduling algorithms and the tightness of service time
supported by the underlying operating system.

Below we discuss the core of our work, i.e., integrated management of the individual
resource schedulers to meet sessions’ timing, QoS, and criticality requirements.

MULTIRESOURCE NEGOTIATION AND ADAPTATION 257

4. QoS- and Criticality-Based Resource Negotiation and Adaptation

Our approach to the multiresource scheduling problem consists of a scheduling mechanism,
a scheduling strategy, and a set of scheduling algorithms. The scheduling mechanism is
shown in Figure 4-1. The system resource manager (SRM) maintanitgcality-ordered

waiting queuefor arrival sessions and preempted sessions. The queues associated with
the individual resources are managed by the individual resource schedulers. If there are
sufficient resources, the system resource manager will dispatch a session for execution.
Otherwise, it conducts “automatic QoS negotiation” within the QoS rang€lB 4 of

the sessions for the available resources. Criticality-based session preemption may take
place when a higher-criticality session arrives but there are no sufficient resources after
QoS negotiation. The session preemption differs from the thread (or process) preemption
in traditional operating systems in that the session is preempted from the multiple resources
as opposed to from a single CPU. If a session cannot be scheduled with QoS negotiation and
preemption operations, the system resource manager may renegotiate with the application
on line for its willingness to lower its QoS specification. This renegotiation is called
“interactive QoS negotiation.”

Waiting Executing
Sessions Sessions

Interactive QoS Negotiation

-t
Criticality-Ordered Sessi
Waiting Queue D?ss::t):h
Session » Session Departure
Arrival .

Session Scheduling &
Automatic QoS

Negotiation III @

Thread Preemption

Session Preemption

Figure 4-1. Scheduling mechanism.

Our scheduling strategy is illustrated in Figure 4-2. The system resource manager is
triggered by either arrival of a new session or departure of a completed session. Ingeneral, as
highlighted in the diagram, the scheduling process consists of a two-phase QoS adjustment
and a session preemption, if necessary. The two-phase QoS adjustment consists of a QoS
shrinking phase and a QoS expansion phase. During the shrinking phase, the system
resource manager virtually shrinks the QoS of all executing sessions to their minimums
(i.e.,CLFa = CLFny) to yield the resources to waiting sessions. Its objective is to execute
as many waiting sessions as possible. During the expansion phase, the system resource
manager tries to increase the QoS of all the executing sessions toward their maximums (i.e.,

258 HUANG, WAN, AND DU

; there 15 no

arrival of o new departure of g | waiiing session
session Session

there is some

waiting session(s)

select the most critical
waiting session

Y

. Shink QoS ofall
cxepntneshvims

Re-negotiate with a
new (oS if required

the session is 1 the session is not
schedulable w/o schedulable with
any preemption precmption

the session is
schedulable
with preermption

the session will not be
admitted for execution

v

Figure 4-2. The scheduling strategy.

CLFa = 0). Its goal is to maximize the QoS of the executing sessions. The preemption
of lower-criticality session(s) takes place between the QoS shrinking and expansion phases
when a higher-criticality session is not schedulable. The goalisto serve the higher-criticality
session while preempting as few sessions as possible.

The set of scheduling algorithms deal with QoS shrinking, session preemption, and QoS
expansion. In the following paragraphs, we discuss the design of the algorithms in detail.

(1) QoS Shrinking

Each time we schedule a candidate session in the waiting queue, wirfirally reduce
the QoSs of all executing sessions to their lowest level, i.e.,

QoS Shrinking:
fori =1tondo
CLFg = CLFmax
Let the CLFa of the candidate session be its GLE

Then we check if the new session is executable without any preemption. If so, we expand

MULTIRESOURCE NEGOTIATION AND ADAPTATION 259

Highest Criticality Level

Levelh+1 [<e— Candidate Session

Level h
Levelm Schedulable Criticality Level
Level 1 Lowest Criticality Level

Figure 4-3. Criticality levels within the essential/non-essential class.

the QoS of all executing sessions in the QoS expansion phase. If not, we consider session
preemption.

(2) Session Preemption

To conduct session preemption, we classify the executing sessions into criticality levels
according to their criticality value. In other words, each criticality level may contain a
number of sessions with the same criticality value. As illustrated in Figure 4-3, there can
be h different criticality levels below the level of the candidate session being scheduled.
Among the h levels, we define the lowest criticality level above which all the executing
sessions are still schedulable after insertion of the candidate session sthéueilable
criticality level. After the insertion of the candidate session, some executing sessions in
or below the schedulable criticality level may have to be preempted. For the preemption
process, we first need to find the schedulable criticality level and then schedule as many
sessions as possible from the levels at or below the schedulable criticality level.

The schedulable criticality level, denoted by m, can be found by a binary search procedure.
Afterwe find the schedulable criticality level m, we consider how to support as many sessions
as possible from lower m levels. This process is performed in the top-down manner, level
by level from the criticality level m to the lowest criticality level 1. Let the remaining CPU,
video processor, memory, and disk 1/O resources available to sessions at or beldw level
be denoted b¥Cem, Viem, Mrem, andD;em. Suppose that at levélthere aren, sessions
So1 S2, - - - Son- We associate each sessn with a 0-1 variabley; such that session
S j is scheduled if and only ii; = 1. Then the optimal restoration can be formulated as
the following integer linear programming:

Nk
(IPy) max Zij
i=1
Nk
s.t. Z Yiij (&jrkj + e,KJ-/L) < Urem
i=1

260 HUANG, WAN, AND DU

Nk
Z YkjXkj = Vrem

=1

Nk
Z Ykj Mkj < Mrem

i=1

Nk
Zykj(mkjukj + SDhnax) < Drem

j=1
Yy =00rl, 1<ng

Because this is an NP-hard optimization problem (Huang & Du, 1994), we want to find
an approximation solution that is near optimal on one hand and efficient for on-line use on
the other hand. Here we consider two solutions; the first is linear programming based add-
back and the second is primal-dual based removal. We examine the optimality-efficiency
tradeoff of these two solutions through the performance study presented in Section 5.2.

Approximation Solution 1: Linear Programming Based Add-Back

The idea is that at each criticality level we start with scheduled sessions and then add
back sessions in songgeedyorder. If there are sufficient resources to schedule a session,
the session will be scheduled. Otherwise, we consider the next session. The key to this
approach is to determine a good greedy order. In this linear-programming-based “add
back,” we first find an optimal solution alLPy), the linear programming relaxation of
(IPy), in which the integer constrairyi; = 0 or 1 is relaxed to the real-number constraint
0< y,’:]- < 1lforl< j < ng Then the sessions at level k are sorted in the non-increasing
order of this optimal solution, which results in the greedy order in which the sessions are
added back. The approximation algorithm can be formally described as follows:

LP-Based Approximation Algorithm:
Step 1. SolveLPy). Let(yyj, j =1,..., nk) be an optimal solution.
Step 2. Order y such that
Yo = Ykar 2 -0 2 Yy
Step 3. Add sessions back according to the order obtained from Step 2.

Approximation Solution 2: Primal-Dual Based Removal

A potential drawback of the linear-programming-based heuristic is its significant computa-
tion overhead. To improve the speed of the scheduler, we propose another greedy heuristic
based on the primal-dual theorem for the linear programming (Fang & Puthenpura, 1996).
The idea of this algorithm is that at each criticality level we start wltlsessions and then
remove sessions in sorgeeedyorder until resource violations disappear. The scheduling of
the sessions is performed in the reverse order of the linear-programming-based “add back”

MULTIRESOURCE NEGOTIATION AND ADAPTATION 261

employed by Solution 1, which starts with no sessions and then adds back sessions until
resource violation happens. The key to Solution 2 is to find a good greedy order, in which
the sessions are removed. In this algorithm, the order is determined in two steps. First, we
identify the most critical resource based on some greedy criteria, and then find the session
which consumes this critical resource most among all remaining sessions. This session
will then be removed (or preempted in terms of scheduling). The selection for identifying
the most critical resource is based on the primal-dual theorem for linear programming. To
simplify the description of the algorithm, we consider the abstract forthBf):

n
(P) max Zx,-
j=1
n
st. Za”xjgbi,lsi§4
=1
O<x<1L1<j<=n

The dual of the above linear program is as follows.
4 n
(D) min > by + Y 7
i=1 j=1

n
st. z+Y ay>=1L1<j<n
j=1
yi >0 1<i<4
z7>0,1<j<n

According to the primal-dual theorem, for any primal feasible soluigid < j < n)
and any dual feasible solution(1 < i < 4), z;(1 < j < n) willimply x; = 1 for any
1 < j < n. Consider the dual feasible solution

Yi=01<i<4),z7=11<j<n
and the corresponding primal solution
Xi=11<j=<n

If the primary solution is a primary feasible solution, there is no resource capability violation
and all sessions can be scheduled. Otherwise, we will have to remove some $dsgion
settingx; to 0. Thex; will be selected to minimize the dual objective function by maximally
increasing somg; while keeping others to be 0. To keep the dual solution feasible, the
zj's should be correspondingly decreased and sgmll vanish becausg; is maximally
increased. Supposg is chosen to be increased. Thgrcan be increased by at most:

o1 1
Ay; = min — =
1<j=n g;j 1Tja<)r(]aij

262 HUANG, WAN, AND DU

For each 1< j < n, z will decrease byg;; Ay; andz; will become 0 ifa; achieves
max<j<n &;. Therefore, the dual objective function will be reduced by

YL@ —b
Za,Ay. —bAy =T

j=1

Z?:l b

max aj
1<j<n

To maximize this reduction, we will increasg such that achieves

n
axLI 127D
1<i<4 mjaxa ’

because the correspondingnow becomes 0. Based on the above observation, we select

Oncey; is found, we will setx; to 0, wherea;; achieves max<n &;

the resource which has the biggest valuM as the most critical resource. This

max ajj

1<j=n

leads to our second greedy algorithm:

Primal-Dual-Based Algorithm:
Stepl. Let & {1,2,...,n}.
Step 2. While S is not the feasible solution of the primary problem, do

>_ai-b > @b
. . . jes
Step 2.1 Find i such tha#fW achievesnax <j <4 e
jes jes

Step 2.2 Find je S such that @ achievesnax s a;;.
Step2.3Set S S— {j}.

(3) QoS Expansion

Following our scheduling approach illustrated in Figure 4-2, we expand the QoS of all the
schedulable sessions at the end of the scheduling. We consider this process to be a policy
issue. We first sort all the schedulable sessions in increasing order of QoS and put them in
a circular list. Then we expand their QoS in round-robin order.

QoS Expansion:

Sort all selected sessions and put them in a circular linked list.
Let S be the first session.
While (the circular list is not empty) do
If (decreasing S.CLFa by 1 will still satisfy the resource
constraints) then
S.CLFa= SCLFa-1;
if (S.CLFa== 0) then remove S from the circular list;
else
remove S from the circular list;
S= Snext

Suppose the maximum &LFq.« is Q and the maximum number of sessions is N, then
the QoS expansion procedure will take tiO¢QN).

MULTIRESOURCE NEGOTIATION AND ADAPTATION 263

5. Performance Analysis and Prototyping

In this section, we examine the performance of the multiresource preemption algorithms
and the QoS maximization scheme in terms of their optimality (upper bound), baselines
(lower bound), and run-time overhead. This is done through both mathematical analysis
and simulation experimented on tReestosystem platform. We also briefly describe the
implementation of the multiresource scheduler.

5.1. Optimality Analysis

We have proposed two approaches to the multiresource preemption problem. As ob-
served from our simulation results, the linear-programming-based approach always per-
forms equally well as or slightly better than the primal-dual-algorithm-based approach with
respect to the goal of maximizing the number of concurrent high-criticality multimedia
streams. Hence we analyze the optimality of the linear-programming-based approach.

THEOREM For the linear-programming-based multiresource preemption approach, the dif-
ference between the number of sessions restored under our priority assignment and the
maximum number of sessions that could be added is at most four. That i§, ket the
optimal solution forIPy). Let y* be the solution obtained by the approximation algorithm.
Then

Nk Nk

A O
D Y= %4
=1 =1

Proof: It follows immediately from the fact that every basic feasible solutioLdf)

has at most four components that are not integers. This fact can be proved easily. In fact,
a feasible solution is bagicif and only if it is a vertex in the feasible region. Consider a
feasible solutiory, that has at most five components, S@¥ Vio, Year Yias Yis: Which are

not integers. From the system of equations

5

> z(arkj +€;/L) =0

=1

5 5
ZZJ' Mg Ukj + SDmaxZ Zi Xy = 0

=1 =1

264 HUANG, WAN, AND DU

we can find a nonzero solutian, z, z3, 4, Zs. Now, we consider point

Yo (&) = (Yka + €20, Yip + €22, Yig + €23, Yia + €24, Yis + €25, Yigs - - - » Yin,)

Because O< yi; < 1,for1 < j <5,y () is feasible for sufficiently smalk|. Moreover,
Y, (€) + ¥, (=€)

5 = yp,- Thereforey, is not a vertex of the feasible region.]

In tuition, the theorem indicates that if the optimal solution, which is unachievable in
practice, can admit a maximum number of streamshen our approximation solution is
very close to the optimal one with at legat— 4) streams admitted.

5.2. Simulation Evaluation

We further compare the two multiresource preemption (“restoration”) algorithms with a
lower-bound baseline via simulated workloads and system settings dtrébto system
platform (SPARC20 Station). We consider three system resource schedulers. The first
scheduler, denoted LP, is our system resource manager thatemploys the linear-programming-
based approximation optimization algorithm. The second scheduler, PD, employs the
primal-dual-algorithm-based approximation optimization algorithm. The third scheduler

is a criticality baseline scheduler, CB, in the sense that, like LP and PD, it performs session
preemption in the order of increasing criticality levels. However, unlike them, it does not
consider optimization while performing preemption within a criticality level. All three
schedulers perform both the QoS shrinking and expansion for QoS negotiation.

To compare the proposed two-phase QoS adjustment scheme, we consider a QoS base-
line scheduler, denoted as QB, which uses the same approximation algorithm as LP for
preemption optimization but does not perform QoS expansion.

All the schedulers are summarized in Table 5-1. Our objective is to understand the effect
of our optimized preemption schemes by comparing LP, PD, and CB and the effect of our
QoS expansion technique by comparing LP against QB.

Table 5-1.Evaluated resource management schemes.

Scheduler Criticality-Based Preemption QoS QoS
Shrinking Expansion
1. LP Linear-programming-based Yes Yes
algorithm

2. PD Primal-dual-based algorithm Yes Yes
3. CB (criticality Random selection for preemption Yes Yes
baseline) within each criticality level

4. QB (QoS baseline) Linear-programming-based Yes No

algorithm

MULTIRESOURCE NEGOTIATION AND ADAPTATION 265

Table 5-2.Workload and system setting specification.

Parameter Meaning Default
SesSiofax Total number of sessions in the system 400
CMax Number of session criticality levels 5
Ratenin, Ratenax ~ Session rate uniformly distributed in [Rag, Ratenax] [30, 30]
CLFmin, CLFnax ~ Session QoS uniformly distributed in [Clir, CLFmax] [0,30]
Latency Maximum tolerable latency (in seconds) for all the sessions 2
Dmin, Dmax Size of one data unit (JPEG frame) (in Kbytes), [5, 50]
uniformly distributed in [Bhin, Dmax]
CPUnin, CPUnax CPU time of processing one data unit (in microseconds) [2,3]
uniformly distributed in [CPhin, CPUnax]
CPUIO CPU time of processing one /O request (in microseconds) 1
SeekTime Average disk head seek time between two session streams 8

(in milliseconds)

Unmax Maximum capacity of the system processor 0.69
Mmax Maximum capacity of the system memory (in MBytes) 128
Dmax Maximum amount of contiguous data that the disk can 10

transfer in one second (in MBytes per second)

Viax Maximum JPEG video processing/display capability 500
(in frames per second)

The multimedia application workload and system settings for the simulation runs are
defined in Table 5-2. As an advantage of simulation-based performance evaluation, the
settings provide us with the flexibility to select and vary a number of parameters, such
as the large number of sessions (streams), which are otherwise impractical to generate
on the hardware/software platform constrained by the Parallax Video product. Note that
the specified stream workload is heterogeneous in the sense that individual streams differ
in the actual rate determined by [Ratga * (CLF.cwwa+ 1)]. Thus, it reflects practical
workloads in continuous multimedia environments. Further, the system parameter settings
are primarily based on therestosystem profiling and vendor specifications.

Effect of Criticality

Based Preemption—As shown in Table 5-3, we run our simulation with the workloads of
50, 100, 150, 200, 250, and 300 sessions, respectively. For each workload, we compare
the performance of the three schedulers—LP, PD, and CB—in terms of the number of
sessions actually scheduled for execution. As indicated in the table, LP, PD, and CB are
comparable when the number of sessions in the system is set at 50. This is because there

266 HUANG, WAN, AND DU

Table 5-3.Effect of criticality-based session preemption.

Total Number of Sessions vs. Number of Scheduled Sessions
Criticality 50 100 150 200 250 300

c L P C L P C L P C L P C
B P D B P D B P D B P D B

L P C
P D B

Level5(High) 9 9 9 19 19 19 34 34 34 44 44 44 56 56 56 61 61 61

Level 4 7 7 7 20 20 20 24 24 24 28 28 17 6 6 3 0 0 O
Level 3 15 15 15 26 26 21 5 5 2 0 0 O 0 0 O 0 0 O
Level 2 10 10 10 2 2 0 1 1 O 0 0 O 1 1 O 0 0 O
Levell(Low) 9 9 9 0 0 O 0 0 O 0 0 O 0 0 O 0 0 O

are sufficient system resources. The effect of session preemption can be observed at 100,
where sessions belonging to the lower-criticality levels are preempted. Specifically, the
sessions at level 1 are completely preempted under CB. When there are more sessions in
the system, only higher-criticality sessions can be executed. Compare LP, PD, and CB at
criticality level 4 for 200 sessions: LP and PD scheduled 28 while CB 17. That is, both of
our approximate optimization algorithms, LP and PD, scheduled about 60% more sessions
than CB, performing significantly better than the baseline approach, which is criticality-
cognitive but does random preemption within each criticality level. When the total number
of sessions reaches 300, LP, PD, and CB perform the same, admitting 61 sessions. This is
understandable, since the system resources are saturated with capacities being able to run
sessions only at the highest-criticality level.

The reader may notice that there is a “scheduling anomaly” for the workload of 250
sessions, where both LP and PD algorithms scheduled 1 session from level 2, and none
from level 3. To explain the “scheduling anomaly”, consider an example, where at the very
last scheduling point, there was one session, A, left in Criticality Level 2 and one session,
B, in Level 3. At this point, the system resources could accommodate only the resource
demand of session A but not that of session B. With the goal of maximizing the number
of (higher-criticality) sessions, the system run session A even though its criticality is lower
that of session B. Therefore, this result actually demonstrates the correct behavior of the
resource management system.

Effect of Algorithm Run-time Overhead

A key issue in developing optimization algorithms for on-line scheduling is algorithm
computation overhead. Consider a single live video stream with the data rate of 30 frames
per second. To be able to capture the live stream, the system scheduling operation must
be completed in less than 33 milliseconds (ms). Hence, an algorithm with a high overhead
is not feasible for scheduling multimedia streams, no matter how good the algorithm is
in terms of optimality. In this experiment, we compare the computation overheads of the

MULTIRESOURCE NEGOTIATION AND ADAPTATION 267

three schedulers: LP, PD, and CB. The experiment is conducted on a Sun SPARCstation
20/Solaris 2.5. Due to lack of a precise system clock to measure CPU time, we use the Sun
Solaris 2.5 Trace Normal Form (TNF) Utilities (SunSoft, 1995) to measure the elapsed time
between start and end of each algorithm computation with the precision of 1 microsecond.

As shown in Figure 5-4, the LP computation time increases sharply as the number of
sessions being optimized increases, whereas PD and CB have relatively low computation
overheads. When the number of sessions is 60, LP’s computation time is 126.85 ms, PD’s
is 2.76 ms, and CB'’s is 0.26 ms. It is especially interesting to compare LP and PD—the
two approximation optimization algorithms—using Table 5-1 and Figure 5-4: LP and PD
are comparable in terms of optimality. However, PDis overhead is significantly lower than
LPis and is reasonable for practical use.

140
120

100 -
e
e P

80

60

40

Computation Overhead (ms)

20 4

10 20 30 40 50 60

Number of Sessions Actually Processed by LP,
PD, and CB

Figure 5-4. Computation overhead of the three preemption algorithms.

Note thatthe actual number of sessions processed by each of the three algorithms presented
by the x-axis is lower than the total number of sessions in the system. There are two reasons
for this. First, the system has 5 criticality levels. For a total of 400 sessions with equal
distribution of application criticality across the five levels, each of the algorithms deals
with at most 80 sessions at each level. Second, in our algorithm implementation, we add a
preprocessing stage to reduce the number of sessions to be processed by the approximation
algorithms. Therefore, the algorithms deal with only a relatively small number of sessions
while making the preemption (“restoration”) decision.

268 HUANG, WAN, AND DU

Effect of QoS-Based Resource Negotiation and Adaptation

Next we examine the effect of the QoS expansion mechanism employed by the system
resource manager as described in Section 4. In particular, we compare LP with QB—a
baseline approach that does not increase the QoS of the scheduled sessions even if there
are some “left-over” resources. We define a performance metric, datiedmulated QoS
Improvement (AQl)as:

Cmax Ni

AQI = Z Z(CLFmaxj — CLFaj)

i=1j=1

wheren; is the number of sessions being executed at the criticality lev@his metric
measures how many data units (specifically JPEG video frames) are saved from unnecessary
dropping, given the possible worst-case droppiBdFmax Specified by the application

users. In this experiment, we vary the total number of sessions submitted to the system
from 50 to 400, in increments of 50.

Because the QoS maximization mechanism is independent of the criticality-based opti-
mization dealt with by LP and PD, we simply pick up LP forthe QoS performance evaluation.
Figure 5-5 shows the performance of LP and QB against the AQI metric. The x axis values
shown in the square brackets represent the number of executing sessions measured at run
time. Of course, the AQI value under QB is zero, meaning no QoS improvement, as QB
never readjusts the QoS of the scheduled sessions. With the QoS expansion operation under
LP, the AQI value increases as the number of schedulable sessions increases. A saturation
point is reached at 300 [99], beyond which the AQI start decreasing. This is because, as the
degree of resource contention becomes higher, there is less room available for QoS expan-
sion. Overall, the system resource manager performing the QoS expansion significantly
improves the application performance with respect to AQI.

5.3. System Implementation

The QoS- and criticality-based multiresource scheduling approach has been implemented
in the Prestosystem on a Sun SPARC20/Solaris 2.5 with C++, Parallax JPEG video card,
SCSI disks, and video and audio devices (Huang, 1995). Recently, a “CPU only” version
of the multiresource scheduler has been ported on a Pentium PC platform/Windows NT 4.0
with Visual C++ and QuickTime Video (Huang et al., 1997b).

Tollustrate the basic implementation approach, Figure 5-6 shows the system software ob-
jects and the object interaction mechanism implemented along the path of system resource
management (SRM) and CPU scheduling. Three classes of objects are defined: Session
with each object instance representing an application, SRM (a single object instance), and
CPUScheduler (a single object instance). The SRM and CPUScheduler provide operating-
system-independent resource management services. The CPUScheduler services are im-
plemented using Solaris’ thread and Light Weight Process (LWP) manipulation services
and Windows NT 4.0’s thread manipulation services, respectively.

MULTIRESOURCE NEGOTIATION AND ADAPTATION

Accumulated QoS Improvement (AQI)

100 + —X—QB
50 +
0 % >3 g P W P2 K .
50 100 150 200 250 300 350 400
[50] [67] [90] [90] [93] [99] [98] [85]

Total Sessions [Executing Sessions]

Figure 5-5. Effect of QoS expansion.

Responsibility Objects Programming
Interface

* Session management
- Session generation Sessions

* srm->Register(...)

* srm->ChangeMode(...)

* Resource requirements generation * srm->Deregister(...)

* QoS- & criticality-based
multiresource scheduling SRM

* Session execution

* cpu->Registery(...)
* cpu->Execute(...)
* cpu->Suspend(...)
v « cpu->Deregister(...)

CPUScheduler

« Solaris thread and Light-Weight
Process (LWP) manipulation se

* Session thread management
(Operating system independent)

» System thread management
(Operating system dependent)

Figure 5-6. An instance oPrestosoftware design.

rvices

» Windows NT thread manipulation services

269

270 HUANG, WAN, AND DU

A user interface has been developed to enable the application users to negotiate on line
for available system resources by setting the value of criticality, QoS, or media flow rate for
their applications. In addition to the system resource management capabiliBrette
system provides a block-based application programming model associated with a visual
programming tool and a continuous multimedia file system built on top of UNIX raw I/O.

All these capabilities have been reported and demonstrated elsewhere (Huang, 1995; Huang
et al., 1997b).

6. Related Work

In recent years, many system resource management and scheduling techniques have been
developed to support continuous multimedia applications (Huang, 1995). Among them, a
few address the issue of multiresource scheduling. D. Anderson proposed a metaschedul-
ing approach and formulated high-level admission control conditions with CPU, buffer
space, and disk I/O resources (Anderson, 1993). However, low-level system activities such
as thread scheduling and stream preemption were not addressed. K. Ramakrishnan et al.
prototyped a multiresource management system for multimedia servers (Ramakrishnan et
al., 1995). It supports not only media streams, but also aperiodic tasks and non-real-time
tasks. On the other hand, the system admission control is static in the sense that it does not
support resource negotiation. S. Chatterjee and J. Strosnider developed a heterogeneous
resource management framework for providing timing guarantees to distributed multime-
dia applications (Chatterjee, 1995). The work focuses on classification and modeling of
multimedia data flow and heterogeneous resources and high-level analysis of end-to-end
media flow latency. The issue of multiresource allocation optimization was investigated by
J. Huang and D.-Z. Du (1994). But their work did not consider application criticality and
QoS requirements.

System support for application QoS has been an important topic for multimedia system
researchers and developers (Mogel et al., 1995). H. Tokuda and T. Kitayama (1993) de-
veloped a QoS-based admission control technique in an end system that allows on-line
resource negotiation in terms of spatial and temporal constraints of media data. Although
their work did not deal with application criticality and multiresource optimization issues, it
inspired our work on dynamic QoS negotiation. Dynamic QoS-based scheduling was also
reported recently in Kaneko et al. (1996). The work mainly focused on the CPU resource
and did not address how the task QoS is specified by applications.

Supporting application criticality has long been an issue of system resource management
in the real-time community (Stankovic & Ramaritham, 1988); however, it was not addressed
in the context of either multimedia or multiresource allocation optimization.

The uniqueness of our work lies in the fact that it considers application criticality as well
as QoS and stream rate in multiresource scheduling and that it addresses optimization issues
in the context of dynamic resource negotiation. It also provides a scheduling mechanism
that enables application users to make on-line tradeoffs among application criticality, media
QoS, and stream rate.

MULTIRESOURCE NEGOTIATION AND ADAPTATION 271

7. Conclusions

Presented in this paper is the design and performance analysis of a multiresource manage-
ment system of th@restomultimedia environment developed at Honeywell for mission-
critical multimedia applications. We introduced the notion of criticality to capture the
semantics of application importance. We developed a multiresource admission control and
scheduling approach that is able to support higher-criticality multimedia streams through
the mechanisms of on-line QoS negotiation and multiresource preemption. To minimize
the number of applications from preemption, we developed two approximation algorithms:
one based on linear programming and the other on the primal-dual theorem. To maximize
the number of executing applications and their QoS, we introduced a dynamic two-phase
QoS adjustment approach.

Through analysis and experimentation, we compared the performance of our algorithms
against both their upper (optimum) and lower (baseline) bounds. For the criticality-based
multiresource preemption approach, we showed that the difference between the linear-
programming-based approximation solution and the optimal solution is at most 4 (i.e., the
approximation solution schedules at most 4 streams less than the optimal one does); that
both the approximation algorithms (the linear-programming-based and the primal-dual-
algorithm-based) perform better than the baseline scheme, which does random preemption;
and that the primal-dual-algorithm-based approximation solution can reduce the computa-
tion overhead of the linear-programming-based solution by nearly a magnitude of two and
is feasible for on-line scheduling use. We further showed that the QoS expansion approach
can significantly increase the QoSs of executing video streams.

The multiresource management system has been implemented on a Sun SPARCstation
20/Solaris 2.5 and is being used in tAeestomultimedia environment. A version of the
scheduler with the capability of QoS-based CPU scheduling has been ported on a Pentium
PC/NTA4.0.

The work presented in this paper is being extended to provide end-to-end resource manage-
ment services with the capabilities of distributed QoS negotiation and session preemption.
The design and prototyping work is reported elsewhere (Huang et al., 1997a, 1997d).

Acknowledgments

The authors would like to thank M. Agrawal, D. Kenchamana-Hosekote, Jim Richardson,
Satya Prabhakar, Duminda Wijesekera, and Eric Engtrom for their work on design and
implementation of th€restosoftware infrastructure, multimedia file system, user interface,
and block-based programming tool. Also thanks to the anonymous reviewers for their
constructive comments on the early version of this paper.

Notes

1. Distributed resource management with network scheduling is out of the scope of this paper. We report our
extended work on distributed scheduling elsewhere (Huang et al., 1997a, 1997d).

272 HUANG, WAN, AND DU

2. The term “basic feasible solution” is explained as follows. The linear programming considered here is to
minimize a linear function over a region bounded by linear constraints. This region is called a feasible region.
Every point in the feasible region is called a feasible solution. Since the boundary of the feasible region is
formed by the linear constraints, the feasible region for the linear programming is a polyhedra. Moreover,
each variable varies in [0,1]. Thus, the feasible region considered here is actually a polytope. (A polytopy is
a bounded polyhedra.) Each vertex of this polytope is callbdsic feasible solutianA fundamental result
about the linear programming is that the optimal solution can be found among basic feasible solutions.

References

Anderson, D. 1993. Metascheduling for continuous mediaM Transactions on Computer Systehis 3.

Chatterjee, S., and Strosnider, J. 1995. A generalized admission control strategy for heterogeneous, distributed
multimedia systemsProceedings of the Third ACM International Multimedia Confergi8an Fransisco.

Fang, S.-C. and Puthenpura, S. 19BBiear Optimization and Extensions: Theory and AlgoritHPnentice Hall.

Gemmell, D. J., Vin, H. M., Kandlur, D. D., Rangan, P. V., and Rowe, L. A. 1995. Multimedia storage servers: A
tutorial. IEEE ComputeMay.

Guha, A., Pavan, A,, Liu, J. C. L., and Roberts, B. A. 1995. Controlling the 97ess with distributed multimedia.
IEEE MultimediaSummer.

Huang, J., and Du, D.-Z. 1994. Resource management for continuous multimedia database applRations.
ceedings of the 15th IEEE Real-Time Systems SympoBuerto Rico, December.

Huang, J. 1995. Real-time scheduling technology for continuous multimedia applicdt@ctare Notes of the
3rd ACM Multimedia Conferen¢&an Francisco, October.

Huang, J., and Wan, P.-J. 1996. On Supporting Mission-Critical Multimedia Applicatidreeeedings of the
Third IEEE International Conference on Multimedia Computing and Systéume.

Huang, J., Wang, Y., Vaidyanathan, N. R., and Cao, F. 1997a. GRMS: A global resource management system for
distributed QoS and criticality suppoRroceedings of the 4th IEEE Intl. Conference on Multimedia Computing
and SystemsJune.

Huang, J., Heimerdinger, W., and Kappler, P. 1997b. QoS-Based Middleware Scheduling on NT. Honeywell
Technology Center, 3660 Technology Drive, Minneapolis, MN 55418, August, Honeywell Technical Report
SST-R97-004.

Huang, J., Kenchamanna-Hosekote, D., Agrawal, M., and Richardson, J. F388t—A system environment
for mission-critical multimedia applicationdournal of Real-Time Syster8gptember.

Huang, J., Jha, R., Heimerdinger, W., Muhammad, M., Lauzac, S., Kannikeswaran, B., Schwan, K., Zhao, W.,
and Bettati, R. 1997d. RT-ARM: A real-time adaptive resource management system for distributed mission-
critical applications Proceedings of the IEEE Workshop on Middleware for Distributed Real-Time Systems and
ServicesDecember.

Jeffay, K. 1993. The real-time producer/consumer paradigm: A paradigm for the construction of effective,
predictable real-time systemBroceedings of the 8th SIGAPP Symposium on Applied Computing

Kaneko, H., Stankovic, J. A., Sen, S., and Ramamritham, K. 1996. Integrated scheduling of multimedia and
hard-real-time task€roceedings of the IEEE Real-Time Systems SymppBiecember.

Kenchammana-Hosekote, D., and Srivastava, J. 1996. /O scheduling for digital continuous/A@GMidlulti-
media Systems Journal

Liu, C. L., and Layland, J. W. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment.
JACM 20.

Liu, J. W. S,, Lin, K.-J., Shih, W.-K., Yu, A. C., Chung, J.-Y., and Zhao, W. 1991. Algorithms for scheduling
imprecise computationsEEE ComputerMay.

Niehaus, D. 1991. Program representation and translation for predictable real-time sy&teceedings of the
12th IEEE Real-Time Systems SymposiDatember.

Ramakrishnan, K. K., Vaitzblit, L., Gary, C., Vahalia, U., Ting, D., Tzelnic, P., Glaser, S., and Duso, W. 1995.
Operating system support for a video-on-demand file seri@M Multimedia Systens

Robinson, S. R. (Ed.). 199&merging Systems and Technologi8®IE Optical Engineering Press.

Stankovic, J., and Ramamritham, K. (Eds.). 1988torial: Hard-Real-Time System$EEE Computer Society
Press.

MULTIRESOURCE NEGOTIATION AND ADAPTATION 273

SunSoft. 1995. Programming utilities guide: TNF utilities (beta release). SunSoft document (beta draft), 2550
Garcia Avenue, Mountain View, CA 94043.

Tokuda, H., and Kitayama, T. 1993. Dynamic QoS control based on real-time thieemtedings of the 4th
International Workshop on Network Support for Digital Audio and Videancaster, U.K., November.

Vin, H., Goyal, A., and Goyal, P. 1995. Algorithms for designing multimedia seré@saputer Communications
18(3): 192—-203.

Vogel, A., Kerherve, B., von Bochmann, G., and Gecsei, J. 1995. Distributed multimedia and QoS: a survey.
IEEE Multimedia Summer.

