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It has been hypothesized that the brain optimizes its capacity for computation by

self-organizing to a critical point. The dynamical state of criticality is achieved by

striking a balance such that activity can effectively spread through the network without

overwhelming it and is commonly identified in neuronal networks by observing the

behavior of cascades of network activity termed “neuronal avalanches.” The dynamic

activity that occurs in neuronal networks is closely intertwined with how the elements

of the network are connected and how they influence each other’s functional activity. In

this review, we highlight how studying criticality with a broad perspective that integrates

concepts from physics, experimental and theoretical neuroscience, and computer

science can provide a greater understanding of the mechanisms that drive networks

to criticality and how their disruption may manifest in different disorders. First, integrating

graph theory into experimental studies on criticality, as is becoming more common

in theoretical and modeling studies, would provide insight into the kinds of network

structures that support criticality in networks of biological neurons. Furthermore, plasticity

mechanisms play a crucial role in shaping these neural structures, both in terms of

homeostatic maintenance and learning. Both network structures and plasticity have

been studied fairly extensively in theoretical models, but much work remains to bridge

the gap between theoretical and experimental findings. Finally, information theoretical

approaches can tie in more concrete evidence of a network’s computational capabilities.

Approaching neural dynamics with all these facets in mind has the potential to provide

a greater understanding of what goes wrong in neural disorders. Criticality analysis

therefore holds potential to identify disruptions to healthy dynamics, granted that robust

methods and approaches are considered.
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INTRODUCTION

Researchers have long grappled with the question of how
the brain is able to process information, and many have
recently turned to studying brain dynamics armed with tools
from statistical physics and complexity science. In many
physical systems, such as magnetic or gravitational systems,
certain macroscopic features arise from the interactions of the
constituent elements in a way that is unpredictable even from a
perfect understanding of the behavior of each component; this is
known as emergence (Chialvo, 2010). In the context of the brain,
emergent phenomena encompass behavior and cognition, arising
from the interaction of the vast number of neurons in the brain.
Approaching the study of neural systems from this perspective
entails studying neuronal behavior at the network or population
level—observing and understanding emergent behaviors in the
system rather than zeroing in on the behavior and connections
of each individual neuron on its own. While exhibiting some
computational power on their own, neurons are truly remarkable
in their computational capacity when taken collectively.

It is hypothesized that the cortex may optimize its capacity for
computation by self-organizing to a critical point (Beggs, 2008;
Chialvo, 2010; Plenz, 2012; Shew and Plenz, 2013; Cocchi et al.,
2017; Muñoz, 2018; Wilting and Priesemann, 2019a). Criticality
is a dynamical state poised between order and disorder, or, more
precisely, a transition between an absorbing phase in which
activity gradually dies out and an active phase in which activity
perpetuates indefinitely (Brochini et al., 2016). Critical systems
must necessarily contain a large number of interacting non-
linear components, though these conditions are not sufficient to
ensure criticality; in the space of possible system states, criticality
occupies a vanishingly small region, with chaotic and quiescent
systems at the two opposite extremes (Brochini et al., 2016;
Muñoz, 2018). A system operating in the critical state shows
complex spatiotemporal behavior, and there is no scale, in space
or time, that dominates the behavioral patterns of the system.
That is, taking a closer or wider view of the system will show
some variant of the same snapshot of the behavior. This mode
of behavior is manifested by spatial and temporal correlations
scaling as a power law over several orders of magnitude, giving
rise to the presence of self-similar fractal-like structures over
many scales. The brain exhibits complex spontaneous activity
that crosses many time scales, a feature associated with criticality,
and this activity is postulated to contribute to how the brain
responds to stimuli and processes information.

In this review, we highlight network features evidenced to
contribute to the emergence of critical dynamics in neural
systems and discuss the benefits of experimentally studying the
interplay between these features. Crucially, we also note here
that care must be taken when extrapolating from theoretical
findings on criticality to the more recent experimental research
on criticality in neural systems observed at different scales.
In particular, experimental explorations of criticality in neural
systems point to the importance of considering the structures
(Massobrio et al., 2015) and plastic mechanisms (Ma et al., 2019)
that support this dynamical regime. Thus, critical dynamics in
neuronal networks may be better understood by characterizing

their connectivity and how this connectivity changes over time
or in response to inputs and perturbations. Additionally, as
discussed in detail by Shew and Plenz (2013), there is also
much to be learned about the computational and functional
benefits that criticality confers; thus, complementing graph
theoretical and criticality metrics with an information theoretical
approach can further shed light on the functional benefits of this
dynamical regime.

Note that we aim here to focus on relevant considerations for
empirical assessments of criticality in biological neural systems,
particularly at the network level, and on how experimentalists
may build upon the existing theoretical foundations to address
the criticality hypothesis from a data-driven perspective. This
review thus aims to provide the reader with basic insights on
criticality and how it relates to neuroscience, rather than an
in-depth discussion of the physics of criticality. Furthermore,
we approach modeling studies with an eye on how they can
inform our understanding of experimental systems but do not
exhaustively review the vast field of model neural systems, as this
is a topic of review unto itself.

In the remainder of this section, we present an overview of
the theoretical benefits of criticality and experimental evidence
supporting its emergence in living neural systems. The next
section then focuses on the intersection between network
neuroscience and criticality and discusses the connectivity
features that can support critical dynamics. In the subsequent
section, we consider the plasticity mechanisms that allow these
networks to form, learn in response to inputs, and remain
stable against perturbation or failures in the network. Finally,
we conclude with a discussion of how approaching the study of
criticality with a diversity of perspectives may prove more fruitful
than any single directed approach.

Why Is Criticality Important?
The term self-organized criticality was coined as such to reflect
the similarity of this phenomenonwith the critical point observed
in phase transitions in statistical mechanics, wherein a parameter,
such as temperature, can be tuned to bring the system to a state
between multiple phases of matter (Bak et al., 1988). However,
a crucial point that distinguishes self-organized criticality from
the conventional critical point in statistical mechanics is that the
system tunes itself to criticality without the need for external
tuning via a control parameter. In a self-organized critical system,
the critical point is an attractor, meaning the system tends to
evolve toward that point from a wide range of starting points;
to again consider the parallel with thermodynamic criticality, if
a thermodynamic system were to show self-organized criticality,
intrinsic mechanisms would drive the system to return to the
critical point between the liquid, solid, and gaseous phases.
Obviously this is not the case, as matter in each of these
phases can exist stably, but there are many fascinating properties
conferred by criticality, as we will discuss in this section.

Many natural systems have been observed to show critical
or critical-like behavior (Paczuski et al., 1996; Chialvo, 2010),
including forest fires (Malamud et al., 1998; Buendía et al.,
2020; Palmieri and Jensen, 2020) and flocks of birds (Cavagna
et al., 2010), which has led researchers to explore the possibility
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BOX 1 | Cellular automata at the “edge of chaos.”

A binary cellular automaton (CA) is an n-dimensional array of binary cells whose states are updated synchronously in discrete time steps. The state of each cell at time

t + 1 depends on the states of the cells in its neighborhood at time t. Such CAs are among the simplest systems to show complex behavior. Langton (1990) used

the binary CA as a lens to assess the conditions under which a physical system may show the capacity to support computation. In a sweep of the possible rulesets

for a one-dimensional binary CA, he demonstrated that a small subset of rules produce behavior compatible with the necessary tenets of computation, namely, the

storage, transmission, and modification of information.

FIGURE 1 | Illustrative examples of the behavior observed in different classes of one-dimensional binary CAs. In these CAs, each row represents the CA at a given

time step, and the two states of the cells are represented by black and white. Complex behavior arises in the critical regime, which becomes vanishingly small as

the system increases in size. Langton (1990) characterized these CAs with the λ parameter, which represents the ratio of transitions to an arbitrary state selected as

the “quiescent state.” Adapted from Langton (1990).

Examples of different “classes” of CA (Wolfram, 1984) corresponding to different dynamical regimes are shown in Figure 1, with class IV representing a transitional

state analogous to criticality. He also demonstrated that these CAs occupy a small region, where mutual information is maximized at a point of intermediate entropy.

This maximal mutual information indicates that these CAs at the “edge of chaos” have struck a balance between the competing needs of information storage, which

requires low entropy, and information transmission, which requires high entropy, thereby allowing complex patterns of activity to propagate through the system over

time and space without rapidly dying out or overwhelming the system. Despite its simplicity, the CA demonstrates how some sets of rules balancing quiescence and

transmission can lead to complex patterns that allow for the transfer of information, an appealing property for neural systems.

of a similar phenomenon in the brain in a conjecture
known as the criticality hypothesis (Beggs and Plenz, 2003;
Beggs, 2008). This hypothesis states that the brain self-
organizes into the critical state in order to optimize its
computational capabilities.

The canonical sandpile model by Bak et al. (1987, 1988)
describes a system slowly driven by the addition of grains of
sand until an instability occurs and the sand is redistributed to
restabilize the system. Because of the dynamical minimal stability
of the system, the chain reactions set off by the external drive,
with sand traveling from site to site until the system restabilizes,
called “avalanches,” display the self-similar power-law scaling
mentioned above. This means that the disruption of a single
element in the system has a small but non-zero chance to change
the state of the whole system. Work on emergent properties
of dynamical systems has indicated that systems tuned to the
critical regime show optimal information processing capabilities
(Langton, 1990; Shew et al., 2009, 2011; Plenz, 2012; Shew and
Plenz, 2013).

To provide a conceptual image of the complex behavior that
can arise from even very simple parts and lay a foundation for

how computation can emerge in such a system, we consider as
an illustrative example the binary cellular automaton (CA), a
system consisting of many stationary binary cells whose behavior
is influenced by the states of the cells in their immediate
neighborhood. Box 1 gives a brief definition of the CA and
summarizes the important findings obtained by Langton (1990)
in his work on how computation may emerge in physical systems
at the “edge of chaos.” It should be noted, however, that although
this regime was initially assumed to exhibit a continuous
second-order phase transition, as classically described for critical
dynamics, it has recently been found to show a discontinuous
first-order transition (Reia and Kinouchi, 2014, 2015). In a
vanishingly small region in the state of all possible CAs of the type

Langton (1990) considered, quite interesting behavior emerges:
complex patterns of activity are preserved over long distances
in space and time. In the regime between the two extremes of

quiescence and disorder (Kinouchi and Copelli, 2006), the system
optimizes its capacity to perform the functions of information
transmission, modification, and storage that are necessary to
support computation.
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Although the transition hypothesized to occur in neural
systems is distinct from the “edge-of-chaos” transition shown
in Box 1, the features captured in this simpler system can
help us understand why the dynamics at phase transitions may
be relevant for information processing in the brain. In the
transitional regime, patterns of activity are preserved over space
and time, which means that spatially disparate elements of the
system can communicate with each other and that informational
representations are propagated in time. Different inputs produce
distinguishable outputs, allowing systems near criticality to
respond to stimuli in a meaningful way. These concepts underlie
how information is encoded and transmitted in dynamical
systems at criticality and highlight how studying criticality in
experimental studies on neural computation can inform our
understanding of how the brain processes information.

What does this have to do with computation? In a general
sense, computation is a process, either natural or artificial,
by which information is communicated and manipulated to
produce some kind ofmeaningful behavior in a system (Denning,
2007). More concretely, computation is the act of solving a
“computational problem”: a set of related questions with given
information (input), each with its own distinct answer (output).
Criticality has been found to optimize characteristics related
to better performance at solving computational problems. For
example, recurrent network models showing critical dynamics
outperform their sub- and supercritical counterparts in terms of
their input-to-output mappings; that is, the outputs produced
from different inputs are more separable, or distinguishable, in
critical networks (Bertschinger and Natschläger, 2004). Critical
systems also show a maximal dynamic range (Kinouchi and
Copelli, 2006; Gautam et al., 2015), which is the span of
inputs distinguishable by the system. Additionally, the number
of metastable states is maximized in networks with a critical
branching ratio (Haldeman and Beggs, 2005), where a metastable
state is defined as a cluster of similar output patterns produced
by the same input. Information transfer and storage, represented,
respectively, by the information shared between a source node
and a destination node and that between a node’s past and future
states, is also optimized at criticality (Boedecker et al., 2012).

Although criticality is recognized to optimize many properties
associated with computation, as discussed above, it should also
be noted here that there are also some properties associated
with criticality that may run counter to computational function
in the sense described here (Wilting and Priesemann, 2019a).
For example, the maximal dynamic range of a system in the
critical state causes the specificity of the system to suffer; that is,
a system that can sensitively respond to a wide range of inputs
also shows more overlap between responses to similar inputs
(Gollo, 2017). Thus, recent research has shifted from a singular
focus on criticality to a broader realm of dynamical possibilities,
including heterogenous networks composed of both critical and
slightly subcritical subgroups (Gollo, 2017), the presence of a
“reverberating regime,” enabling the task-dependent switching
or combining of critical and slightly subcritical dynamics to
enjoy the benefits of both states (Wilting et al., 2018), and the
concept of self-organized quasi-criticality, which accounts for
non-conservative dynamics in systems that show critical-like

behavior over a finite range of scales (Bonachela and Muñoz,
2009; Bonachela et al., 2010; Buendía et al., 2020; Kinouchi et al.,
2020). These findings show promise for the advancement of a
more detailed and physically accurate view of how criticality
is realized in living neural systems; however, we refrain in this
review from venturing too far into the details of these topics and
direct the interested reader to the cited literature.

Experimental Evidence of Criticality in
Neural Systems
Beggs and Plenz (2003) were the first to experimentally
demonstrate that the spontaneous behavior of in vitro cortical
networks displays features consistent with critical dynamics
in their landmark study on neuronal avalanches in cortical
slices interfaced with microelectrode arrays (MEAs). At its
most general, a neuronal avalanche extends over the duration
of persistent activity propagating through the network and is
punctuated by silent periods preceding and following the active
period, as shown in Figure 2A. In the case of in vitro systems
(i.e., slices or dissociated cultures), “activity” may refer to either
the higher-frequency spikes or the lower-frequency local field
potentials (LFPs), as both modalities have been studied (e.g.,
Beggs and Plenz, 2003; Pasquale et al., 2008). Criticality has also
been studied at the macroscale using electroencephalography
(EEG) (e.g., Meisel et al., 2013; Lee et al., 2019).

Regardless of the scale or method of data collection, one main
hallmark of criticality is that neuronal avalanches show power-
law scaling in both space and time, with sub- and supercritical
behavior being characterized by exponential and bimodal
distributions, respectively. Beggs and Plenz (2004) demonstrated
that neuronal avalanches show diverse spatiotemporal patterns
that are stable over several hours, highlighting their capacity to
represent a wide range of information in a reproducible manner.
It should be noted that a simple power-law fitting alone is not
sufficient to identify criticality (Goldstein et al., 2004; Priesemann
and Shriki, 2018); in fact, this was far from the only approach
used by Beggs and Plenz (2003), who also evaluated the branching
ratio and the effect of using only a subset of all recording points.
In addition to the methods first used by Beggs and Plenz (2003),
a number of criticality measures have since been put forward.
Providing empirical evidence of criticality is challenging, and it
is suggested that a range of measures be applied (Priesemann and
Shriki, 2018); we present a selection of some such measures in
Box 2.

Avalanche behavior during development was first observed in
organotypic cortical cultures by Stewart and Plenz (2008), and
they found that avalanches persisted throughout development
over periods of up to 6 weeks in vitro, despite large changes in
activity levels, suggesting homeostatic regulation to maintain this
mode of activity. It has also been demonstrated that dissociated
cortical networks may self-organize into the critical state after
a period of maturation, though not all such networks reach
the critical state and reports on the time course of maturation
differ (Pasquale et al., 2008; Tetzlaff et al., 2010; Yada et al.,
2017). The reported results on dissociated networks suggest
that after a period of low activity, networks tend to pass
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BOX 2 | Experimental metrics of criticality.

To pursue further investigation of the criticality hypothesis, we must be armed with the appropriate tools for identifying a network’s dynamic state. Power laws are

notoriously challenging to handle in empirical data (Clauset et al., 2009) and can also arise in non-critical systems (Martinello et al., 2017; Touboul and Destexhe, 2017;

Priesemann and Shriki, 2018). Thus, additional measures are needed to accurately identify when a network is in the critical state, and each measure should also be

applied to appropriate null models for comparison. This box lists the main approaches currently used to identify criticality from empirical data, but it should be noted

that the development of such methods remains an active area of research. Some of the measures listed below have been implemented in a freely available MATLAB

toolbox called the Neural Complexity and Criticality Toolbox (Marshall et al., 2016), and detailed statistical analysis for fitting and analyzing power-law distributions

can be performed with an open Python package called powerlaw (Alstott et al., 2014).

FIGURE 2 | Definition of a neuronal avalanche and examples of empirical measures of criticality. (A) Definition of a neuronal avalanche. The top panel shows a raster

plot divided into time bins, and the avalanche in the plot spans six active frames preceded and followed by inactive frames. An alternate view of the activity in the six

frames is shown below, where each square represents an active electrode in an 8 × 8 grid. The bottom panel shows the definition of the avalanche shape, which is

obtained by taking the number of active electrodes in each frame. (B) Illustration of the branching ratio. Blue nodes are active, and gray are inactive. A branching

ratio of 1 allows activity to persist without overwhelming the system. (C) Shape collapse. In a critical system, all avalanches should show the same mean temporal

shape profile across different size scales. Adapted from Marshall et al. (2016).

• Power-law scaling of neuronal avalanches: One hallmark of criticality in neuronal networks is the power-law scaling of the size S and duration T of neuronal

avalanches. That is, P(S) ∝ S−α and P(T ) ∝ T−β , where P(·) is the probability distribution function. The size is generally defined as the number of activated

electrodes or neurons, and the duration is the number of active time bins. When the time bin width is selected to correspond to the average inter-spike interval,

the power law exponents of the size and duration have been shown to be approximately α = 1.5 and β = 2.0. However, the power-law scaling should persist

(Continued)
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BOX 2 | Continued

across a range of temporal resolutions close to the order of magnitude of the average inter-spike interval, with the exponent α changing systematically with the

selected time bin size (Beggs and Plenz, 2003; Pasquale et al., 2008). Power-law scaling should also remain when a more coarse-grained spatial resolution

is considered, by using only a subset of all recording points. As stated above, there is an open Python package called powerlaw that can be used for detailed

statistical analysis of power-law distributions (Alstott et al., 2014). As an additional power-law related metric, the κ parameter (Shew et al., 2009) gives a quantitative

measure of the difference between the experimental and fitted cumulative probability distributions when using power-law fitting.

• Branching ratio: The branching ratio σ is the ratio of the number of descendants to the number of ancestors, where activity on an ancestor electrode or neuron

immediately precedes activity on a descendant electrode or neuron (Beggs and Plenz, 2003). A system in the critical state has a branching ratio of approximately 1,

allowing activity to flow through the network without dying out (σ < 1) or overwhelming the entire network (σ > 1), as shown in Figure 2B. A modified version of

the branching ratio that is specific to LFP data has also been introduced, where the ratio is instead taken between the baseline-to-baseline areas of the negative

LFP deflections (nLFPs) in successive time bins, rather than the number of nLFPs (Plenz, 2012). The nLFP area is correlated with the number of neurons firing

and thus provides a better measure of group activity during an avalanche than the nLFP count.

• Shape collapse: When a system is in the critical state, avalanches should show the same mean temporal profile across scales. The temporal profile of an avalanche

represents the number of active sites as a function of time, and for a system in the critical state, the temporal profiles of all avalanches collapse onto the same

profile shape when spatiotemporally scaled with a scaling exponent γ close to 2 (Figure 2C), as described by 〈S〉(T ) ∝ T−γ , where 〈S〉(T ) is the average size of

all avalanches of a given duration T. Details can be found in Sethna et al. (2001) and Friedman et al. (2012), and an experimental demonstration of shape collapse

in non-human primates can be found in Miller et al. (2019). The deviation from criticality coefficient (DCC) by Ma et al. (2019) is related to the concept of shape

collapse and is computed from the difference between the scaling exponent γ calculated from empirical data using linear regression and the expected value

calculated from the power-law exponent α of the size distribution.

• Spatial subsampling: Because of the nature of observing neuronal systems, only a subset of the system components can be sampled. This spatial subsampling

can sometimes lead to erroneous conclusions about the nature of the system’s underlying dynamics. Methods involving the scaling of spatial subsampling (Levina

and Priesemann, 2017) and a subsampling-invariant estimator (Wilting and Priesemann, 2018) have been developed to allow for the evaluation of dynamic states

of subsampled systems.

• Other measures: Some researchers have developed other quantitative measures to describe the dynamical state of the system. One notable example is the use

of statistical scaling laws related to a phenomenon called “critical slowing down,” which refers to the tendency for systems to require more time to recover from

a perturbation the closer they are to criticality (Meisel et al., 2015a). Additionally, detrended fluctuation analysis (DFA) offers a framework to understand scale-free

oscillations in a range of systems (Hardstone et al., 2012).

through periods of first subcritical then supercritical behavior
before settling into the critical state, though not all networks
reach this state. This behavior has been hypothesized to stem
from an initial overproduction of connections followed by a
period of pruning excess connections (Pasquale et al., 2008;
Yada et al., 2017). Additionally, experiments in which chemical
perturbation is applied to increase excitation or inhibition in the
network indicate that networks at criticality exhibit a balanced
excitation-to-inhibition (E/I) ratio (Shew et al., 2009, 2011;
Heiney et al., 2019). Together, these experimental findings point
to the importance of a balance in both network structure and
network dynamics to achieve criticality.

Shew et al. (2009, 2011) have explicitly linked the dynamic
state of a cortical network with its information processing
capacity by demonstrating that networks at criticality show
maximal dynamic range, information transmission, and
information capacity in comparison with their counterparts in
the sub- and supercritical states. These properties harken back
to the original requirements posed by Langton (1990) for a
system to be capable of computation and further emphasize the
role of the dynamical state in governing the functional behavior
of a neuronal network. These studies highlight the functional
benefits conferred by the critical state and give credence to the
criticality hypothesis (Shew and Plenz, 2013). But how does a
system organize itself to become capable of supporting critical
dynamics? In the following sections we explore the relationship
between the structure of a network and its dynamical behavior
and consider the plasticity mechanisms that form and maintain
target structures.

CRITICALITY AND NETWORKS

Biological neural networks are interconnected networks of
individual information processing units (neurons). When
considering how information is processed within the network,
it is vital to understand the interactions of the individual units,
the organization of the brain network, and the integration of
activity of widely distributed neurons (Bressler andMenon, 2010;
van den Heuvel and Sporns, 2013). Underlying the aggregate
activity of groups of neurons are the structural and functional
connectivity of the network, which determine where signals pass
and which neurons act in consort (Sporns, 2002; Womelsdorf
et al., 2007). This in turn influences the information processing
capabilities of neural networks, and network structure therefore
contributes to determining the emergence of critical properties
in neural networks. The question is then how the organization
of biological neural networks can support critical dynamics
to optimize computational efficiency. This section examines
a selection of experimental and simulation-based studies that
address this question.

Network Neuroscience
The application of modern network science to the brain and
networks of neurons has flourished over the past two decades.
The complex network of the brain has information processing
as its primary goal and attempts to maximize this capacity while
under multiple constraining influences, such as availability of
space, energy, and nutrients, and thus must strike a balance
between computational capacity and wiring cost (Laughlin and
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Sejnowski, 2003; Cuntz et al., 2010). These two factors are
often in a tradeoff relationship; for example, direct connections
facilitate the most effective signal transmission, but the long-
range connections this requires are very costly to grow and
maintain (Buzsáki et al., 2004). Additionally, the network must
meet the changing demands of the organism while remaining
resilient to damage to or failure of parts of the network, such as
the loss of neurons or the connections between them (Pan and
Sinha, 2007). Some of the basic network science principles that
are commonly applied in neuroscience studies are highlighted in
Box 3.

Multiple lines of evidence now show that brain networks
have a small-world organization, with high local clustering
and low average path length, which facilitates segregated
local specialization and global integration. Low-cost, short-
range connections dominate, while a smaller number of long-
range connections allow for few intermediaries between distant
components (Bullmore and Sporns, 2012). Brain networks also
show evidence of link clustering, where strong connections
preferentially form between nodes with similar neighborhoods
(Pajevic and Plenz, 2012). Some evidence also indicates brain
networks are scale-free, with a heavy-tail degree distribution
that follows a power law (Eguíluz et al., 2005). Components
with high degrees furthermore tend to connect to other high-
degree components in a “rich club,” which are hub regions
of high connectivity that facilitate integration across distinct
areas and wide propagation of signals and information (Sporns,
2013). The central nervous system (CNS) is also divided into
specialized areas at multiple levels, from brain lobes to smaller
but separate modules within these lobes, which can again
be subdivided into further modules. This is characteristic of
hierarchical modularity, which facilitates flexibility in adaptation
because it can incorporate changes within a single module
without affecting other, nearby modules. This makes the system
at the same time robust and flexible (Meunier et al., 2010). The
combination of these network architectures—small-world, scale-
free, and modular—creates an efficient network well-suited for
computation, as will be discussed in the following section.

Neural Network Topology Facilitates
Criticality
Modeling work has provided evidence that the network features
outlined above contribute to the emergence of critical dynamics
as a means to support computation in networks of neurons.
This provides some motivation to translate these findings into
the experimental realm, but little work has been done thus
far in this regard, despite the expanding experimental work
on criticality, as already detailed above, and the large body
of work on network neuroscience (Bassett and Sporns, 2017).
However, one noteworthy methodological study has identified
small-world organization in the effective (causal) connectivity
of a cortical slice culture (Pajevic and Plenz, 2009). With
further applications of such measures of connectivity to assess
avalanche propagation in vitro, it will be possible to evaluate
if network features found to be beneficial in modeling studies,
such as small-worldness, can be experimentally confirmed. In

this section, we will examine criticality and complex network
features, but it should also be noted that criticality can also be
demonstrated in random (Kinouchi and Copelli, 2006; Costa
et al., 2015; Campos et al., 2017) and complete (Levina et al., 2007;
Bonachela et al., 2010; Brochini et al., 2016; Costa et al., 2017;
Kinouchi et al., 2019; Girardi-Schappo et al., 2020) networks. In
a study specifically examining the impact of network structure
on network dynamics in silico, Massobrio et al. (2015) showed
that random network topology can only support power-law
avalanche scaling under a narrow range of synaptic constraints
and firing rates. Furthermore, of the topologies they investigated,
only scale-free networks with a high average node degree and
small-world features were able to display behavior consistent with
experimental criticality.

Simulation studies on complex networks have found that
features of criticality can emerge with biologically plausible
regulatory mechanisms. Shin and Kim (2006) found that,
for a network initialized as complete, i.e., fully connected,
and allowed to change its connections over time by spike-
timing-dependent plasticity (STDP), the network reorganizes
into a scale-free network with small-world properties that
shows evidence of self-organized criticality. Other studies
have also found that concurrently scale-free and small-
world networks recapture critical dynamics with exponents
comparable to those found experimentally (Lin and Chen, 2005;
Pellegrini et al., 2007; de Arcangelis and Herrmann, 2012).
Complementary to this, Rubinov et al. (2011) demonstrated
that a hierarchically modular structure with a preponderance
of within-module connections, which have a relatively low
wiring cost, produced a much broader critical regime than
was observed in corresponding non-hierarchical networks. It
has also been shown that in the Bak–Tang–Wiesenfield (BTW)
model, also referred to as the “sandpile” model, self-organized
criticality emerges as a result of the formation of modular
clusters with biologically relevant dimensions, lending further
evidence to the importance of modular network structures
(Hoffmann, 2018).

When focusing on the activity of ensembles of neurons, it is
common to consider bursting activity that encompasses multiple
units and how these units coordinate their activity. In dissociated
cortical neurons, networks that spontaneously develop critical
dynamics display a level of synchrony higher than what is seen
in uncoordinated subcritical activity but lower than that seen
in highly regular supercritical activity (Pasquale et al., 2008;
Valverde et al., 2015; Cocchi et al., 2017). This is also consistently
reported in modeling studies and can be related to the branching
ratio, or how many downstream neuronal responses are elicited
by a single active neuron (Box 2). When the branching ratio
is balanced near 1, the network is in a state of intermediate
synchrony and tends to display critical avalanche dynamics in
a way that maximizes the number of adaptive responses the
network can produce to stimulus (Haldeman and Beggs, 2005;
Shew and Plenz, 2013). However, despite bursting activity often
being considered highly coordinated, critical networks in vitro
have been observed to show more burst-dominated activity than
their supercritical counterparts, with critical networks showing
a higher proportion of spikes contained in bursts and an

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 611183

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Heiney et al. Criticality, Connectivity, and Neural Disorder

BOX 3 | Benefits of network topology.

Network neuroscience encompasses an approach to studying brain function that considers the ways in which neurons communicate, anatomically and functionally,

across multiple scales (Bassett and Sporns, 2017). It is informed by complex systems theory, which states that the emergent behavior of a system cannot necessarily

be understood simply by the properties of its individual components. It further applies mathematical techniques such as graph theory and algebraic topology to

describe networks (graphs) in terms of their individual units (nodes) and their connections (edges). A node in this context can be a brain area, a single neuron, a

recording electrode, a voxel, pixel, or any unit which describes the activity of a discrete part of a neural network. Edges can be physical connections obtained from

connectivity mapping or functional connectivity based on correlation or other measures (Bullmore and Sporns, 2009). This approach has yielded great insight into

how the brain is organized and how communication within brain networks occurs (Newman, 2003). While numerous methods exist for extracting the structural,

functional, effective, weighted, or binary networks from living neural systems (for a review see Bullmore and Sporns, 2009; Bastos and Schoffelen, 2016; Hallquist

and Hillary, 2018), there are several features among these considered to play an important role in neuronal organization and function.

FIGURE 3 | Network characteristics associated with healthy brain networks. In normal conditions, brain networks show hallmarks of multiple network models. This

includes an intermediate state between order and randomness in small-world organization, the power-law degree distribution of a scale-free network, and modular

clusters organized in a hierarchical fashion. The integration of these different network types may be an evolutionary adaptation driven by the multi-constraint

optimization of brain wiring. Deviations from the hallmarks of these network structures may be associated with abnormal brain function and disease.

Small-World Network: A small-world network is typically defined by how closely it approaches the small world ideal of high clustering and low characteristic path

length (Watts and Strogatz, 1998). One way to produce a small-world network is to begin with a regular (or lattice) network, where each node is connected only

with its nearest neighbors, and, with probability p, rewire each connection in the network to a randomly chosen node elsewhere in the network. When p = 1,

every connection is rewired, and the result is a random network. However, at intermediate rewiring probabilities, the characteristic path length drops off drastically,

showing that only a few long-range connections are necessary to facilitate the integration of the network. Additionally, the clustering of nodes remains high,

retaining the local specialization of the original regular network. These properties make small-world networks highly advantageous for computation while reducing

wiring cost (Chklovskii et al., 2002), essentially reducing the number of connections without sacrificing the capacity for network-wide communication (Bassett and

Bullmore, 2017).

Scale-Free Network: In a scale-free network, the probability distribution of the node degree, which is the number of edges connected to each node in the network,

follows a power law, meaning most nodes have a small number of edges and few nodes have many (Barabási and Albert, 1999; Eguíluz et al., 2005). These

high-degree nodes are often called hubs, and they serve an important role in integration across the network (Sporns et al., 2004). Hubs make a scale-free network

more robust to random deletion of nodes but susceptible to targeted damage of the hub nodes (Albert et al., 2000). Especially vulnerable (but not exclusive to

scale-free networks) is the rich club (Zhou and Mondragón, 2004), a group of hubs with a high degree of interconnectivity between each other. While there is

growing evidence for the presence of rich-club topology in the brain (Griffa and Van den Heuvel, 2018; Kim and Min, 2020) the presence of scale-free topology

(Bonifazi et al., 2009) is still somewhat controversial, but it provides important insight in modeling studies of dynamics on network topology (Broido and Clauset,

2019).

Hierarchical Modularity: A modular network is characterized by the presence of clusters of nodes that are densely connected with each other and share few edges

with nodes outside the cluster. In a hierarchically modular network, these clusters can be subdivided into other clusters according to the same principle, often over

multiple scales (Figure 3). Modules are interconnected by connector nodes, which may or may not be hub nodes, allowing dissemination of signals and integration

of information across the system. Modular networks may be more robust to dynamic change within the network. The intricacies of hierarchical modularity and its

relation to other network topologies such as the rich club (McAuley et al., 2007) are extensive and, as such, beyond our scope here (for a review, see Meunier

et al., 2010).

It is important to consider that the network models described above are not mutually exclusive. Rather, it appears that the brain displays hallmarks of all these

network types (Bullmore and Sporns, 2009) and that deviations from their properties can be involved in disease (Stam, 2014), as illustrated in Figure 3.
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intermediate level of synchrony within those bursts (Pasquale
et al., 2008).

A biological constraint for the branching parameter is the
level of inhibition present as mediated by inhibitory interneurons
(Girardi-Schappo et al., 2020). In the human cortex, 15–30% of
neurons provide local inhibition, and this E/I ratio is frequently
replicated in in silico models by tuning the number of inhibitory
nodes and their connectivity within the network (Rudy et al.,
2011; Tremblay et al., 2016). In both models and biological
networks, inhibitory nodes typically constrain their connectivity
within modules or clusters. In examinations of this inhibitory
connectivity, it has been found that local inhibitors are necessary
for critical dynamics in systems combining modularity and
plasticity (Rubinov et al., 2011). Furthermore, Massobrio et al.
(2015) tested a wide range of E/I ratios on scale-free networks
and were only able to achieve critical dynamics in networks
with inhibitory nodes comprising 20–30% of all nodes. They also
observed the effect of the E/I ratio of the hub nodes specifically
and found that the same ratio of approximately 30% inhibition
in the hubs was able to support critical dynamics across a wide
range of mean degrees, whereas none of the fully excitatory hub
networks displayed critical behavior. In models and in the brain,
this balance of excitation and inhibition acts as a countermeasure
against runaway excitation and stabilizes the network dynamics
(Fingelkurts et al., 2004; Shin and Kim, 2006; Meisel and Gross,
2009; Naudé et al., 2013; Salkoff et al., 2015). Furthermore,
through the careful tuning of the E/I balance, multiple dynamic
states can also be achieved in the samemodel (Li and Shew, 2020).

The Brain May Operate in a Critical Region,
Not at a Critical Point
While the criticality hypothesis of the brain is attractive because
it provides a model for brain activity that optimizes information
processing and storage, aspects of the model are difficult to
reconcile with knowledge of the brain’s activity. For instance,
the brain’s activity and dynamics are not constant but fluctuate
widely depending on multiple factors. That this widely variable
and adaptable dynamic system can be tuned to a specific critical
point can therefore seem counterintuitive. However, a finite
system at criticality does not have to be tuned to a specific point
but rather exhibits critical behavior over a particular region.
The phase transition can be continuous, such that there exists a
range of states within the system that support critical dynamics
(Hesse and Gross, 2014). This extended model of criticality
appears muchmore compatible with our knowledge of the brain’s
dynamics than the notion of a strict critical point. One such form
of critical range is referred to as the Griffith’s phase and appears
to be facilitated by hierarchical, modular network architectures,
which are consistent with the previously investigated small-
world architecture of the brain (Gallos et al., 2012; Moretti and
Muñoz, 2013; Ódor et al., 2015; Girardi-Schappo et al., 2016).
A wide critical range would appear to be advantageous for
the network, making the critical dynamics more robust against
failure or perturbation than in the case where criticality can only
be achieved in a narrow range or single point (Li and Small,
2012;Wang and Zhou, 2012). This range appears to be dependent

on the level of structural heterogeneity or disorder within the
network, including variance in the node in-degree distribution
(Muñoz et al., 2010; Wu et al., 2019).

Additionally, as mentioned in the section on the importance
of criticality, recent evidence suggests that a strict adherence
to criticality may not be the sole aim of network organization
(Wilting and Priesemann, 2019a). On the basis of these findings,
it has been hypothesized that some brain networks may self-
organize to points in a slightly subcritical range, where they could
then flexibly tune their dynamics in accordance with the demands
of a given task (Wilting and Priesemann, 2018; Wilting et al.,
2018). Following this hypothesis, certain tasks may benefit from
a reduced dynamic range in the network to subsequently reduce
interference from non-task-specific inputs. Networks may also
show heterogeneous local dynamical states, with a mixture of
critical and subcritical regions balancing the competing demands
for specificity and sensitivity (Gollo, 2017).

Although we have highlighted in this review how the
underlying network structure may influence the emergence of
critical dynamics here, it is not evident that these topological
features are in and of themselves necessary for a network to
be considered critical. As mentioned, simulation studies have
found that power-law avalanche scaling can be obtained in
regular, random, and small-world networks (de Arcangelis and
Herrmann, 2012; Michiels Van Kessenich et al., 2016), and
regardless of the edge directedness or the presence of inhibitory
edges (Ódor and Kelling, 2019). Furthermore, it is possible to
achieve power-law avalanche scaling in networks with only weak
pairwise correlations and not the more complex patterns of
functional connectivity seen in biological networks (Thivierge,
2014). The relationship between critical dynamics in the brain
and its underlying network structure may therefore reflect a
balance between computational capacity, the metabolic cost of
the network activity (Thivierge, 2014), wiring cost in network
development (Laughlin and Sejnowski, 2003; Cuntz et al.,
2010), and the resilience of the network against perturbations
(Goodarzinick et al., 2018). Though certain complex network
topologies may better accommodate and broaden the range of
critical dynamics (Li and Small, 2012; Moretti andMuñoz, 2013),
they are only one component of a neural system.

PLASTICITY IS NECESSARY TO ACHIEVE
AND MAINTAIN CRITICALITY

How efficient network structures are formed in different
dynamical systems varies widely from system to system, and
numerous models have been developed to describe the growth
of efficient networks. The first general model for scale-free
network formation was proposed by de Solla Price (1965)
and popularized by Barabási and Albert (1999). Through
the addition of nodes as the network evolves, each new
node is preferentially attached to an existing node with high
connectivity, resulting in a “rich-get-richer” hub formation
and power-law-distributed connectivity. However, such models
cannot represent neural growth, as they forego an important
consideration of neural network formation: self-organization
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FIGURE 4 | Schematic overview of the interplay between Hebbian and

homeostatic plasticity. Hebbian plasticity serves to strengthen and form

connections between neurons that fire together, whereas homeostatic

plasticity maintains a balance in connections and activity levels. The lowermost

case demonstrates how an absence of homeostatic plasticity would allow

runaway Hebbian plasticity to overwhelm the network with activity.

into an efficient topology depends not only on the connectivity
but also on synaptic strength, E/I ratio, and, vitally, the
plasticity that defines all of these network parameters. In
this section, we will first focus on the role of plasticity
in activity-dependent network formation and then consider
how networks maintain the critical state through homeostatic
plasticity (Stepp et al., 2015). The interplay between activity-
dependent and homeostatic plasticity is schematically illustrated
in Figure 4.

Establishing Critical Dynamics in Neuronal
Networks
Whereas network models may be constructed in a variety
of ways to display critical dynamics and scale-free structures,
actual neuronal networks form and maintain connections under
numerous constraints. It is generally acknowledged that during
development, neurons overshoot the number of necessary
connections and then go through a phase of pruning before
reaching a relatively stable state of connectivity (Low and
Cheng, 2006). There is also evidence that cortical networks
in vitro go through this same sequence of overshoot and
pruning as they mature, and after this stage they may exhibit
critical dynamics, though not all networks do (Stewart and
Plenz, 2006; Pasquale et al., 2008; Yada et al., 2017). Van
Ooyen et al. (1995) and Okujeni and Egert (2019) showed
that a simple axon growth model assuming activity-dependent
radial growth could form a network similar to those found
in vitro by utilizing activity spontaneously arising in the
network. Even with only a simple activity-dependent growth
rule applied to systems with random initial placement, these

systems have been shown to grow into a state supporting
avalanches with power-law scaling in the behavior of the final
networks (Abbott and Rohrkemper, 2007; Kossio et al., 2018).
Correspondingly, the trajectory of the dynamic state in vitro
appears to move from a subcritical to a supercritical state
before ultimately reaching criticality. As the supercritical state
in this case produces network-wide synchrony, it is probable
that plasticity mechanisms reduce the global excitation level as a
result of this synchrony and drive the network toward criticality.
To mimic some of this development, numerous models have
attempted to generate critical networks using plasticity rules
applied to random, small-world, and scale-free topologies (de
Arcangelis et al., 2006; Rubinov et al., 2011; de Arcangelis and
Herrmann, 2012; Teixeira and Shanahan, 2014; Michiels van
Kessenich et al., 2018, 2019). These models typically apply local
Hebbian mechanisms, such as STDP, to rewire the network
into a weight distribution or topology capable of achieving
critical dynamics, thus recapitulating certain facets of biological
network development.

Simple plasticity mechanisms based on correlated firing,
such as STDP, can shift the topology of networks by
changing the connection weights, resulting in directed and
more complex networks. In observations of activity-dependent
neural development in computational models, a number of
researchers have observed the same general trend: that these
mechanisms tend to drive the dynamics toward criticality,
with the resulting topologies showing scale-free organization
(Bornholdt and Röhl, 2003; Meisel and Gross, 2009). The end
result is robust against different initial topologies and changes
to the underlying parameters, such as average connectivity.
Even when initializing a network from a random topology,
STDP is sufficient in some models to drive the network
toward critical dynamics (Teixeira and Shanahan, 2014; Li
et al., 2017; Khoshkhou and Montakhab, 2019). Li et al.
(2017) have also investigated the computational benefit of
these STDP-trained networks, which showed improved input-
to-output transformation performance at criticality (see also
Bertschinger and Natschläger, 2004; Siri et al., 2007, 2008 for
the computational benefits of criticality and Hebbian plasticity
in recurrent neural networks).

Recent studies have furthered this modeling approach with
the addition of more neurobiologically relevant features, such
as axonal delay and hierarchical modularity. The inclusion
of a time or axonal delay between pre- and post-target
activation can shift both the directionality and distribution of
synaptic strengths from a bimodal to a unimodal distribution
without a loss of critical dynamics (Khoshkhou and Montakhab,
2019). Note that the potential of Hebbian mechanisms to
produce critical dynamics is still model-dependent and can
also drive the network to supercritical states. Again, the
complexity of the network topology plays a vital role in
conjunction with these mechanisms, as modular and hierarchical
topologies both can counteract this supercritical organization
and broaden the critical regime once it arises (Rubinov
et al., 2011). Though neural development is an immensely
complicated and complex process, Hebbian mechanisms appear
to be one of many aspects that play a vital role in the
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self-organization of neural networks toward criticality and
supporting topologies.

Homeostatic Maintenance of the Critical
State
Although learning and developmental mechanisms, such as
STDP, drive networks toward certain configurations, the network
patterns formed in this way are not simply static structures
but also undergo plastic changes to maintain homeostasis and
in response to external stimuli. A number of researchers have
investigated how different forms of plasticity influence the
dynamical state of neuronal networks (Rubinov et al., 2011; Stepp
et al., 2015; Zierenberg et al., 2018; Ma et al., 2019).

A network’s resilience to damage necessitates a level of
adaptability to restore dynamics following a perturbation
beyond that offered by topologies that are robust against
component failure (see Box 3). This adaptability is hypothesized
to stem from homeostatic plasticity, which provides feedback
to restore the overall excitability in local connections and
the network. Whereas Hebbian plasticity is evidenced to give
rise to critical dynamics, homeostatic plasticity is evidenced
to maintain the network activity within this dynamic regime
despite varying input levels and intrinsic activity (Levina et al.,
2007; Naudé et al., 2013; Ma et al., 2019). This adaptive
excitability can be exemplified through the branching ratio.
A steadily increasing input level would produce branching
parameters exceeding 1, given the increasing level of extrinsic
excitation on the system. Yet by homeostatic scaling of the
excitability in the network and the input connections, the
branching parameter can be maintained, avoiding supercritical
dynamics. The inverse also holds true in the absence of inputs.
Homeostatic plasticity acts toward an intrinsic set point for
the network’s excitability and adjusts synaptic response to
maintain input specificity (Turrigiano, 2017). In the absence
of homeostatic plasticity mechanisms, such as synaptic scaling,
Hebbian mechanisms create feedback loops of excitatory
response that remove any specificity to synaptic input (Wu et al.,
2020).

Michiels van Kessenich et al. (2018, 2019) have included
global homeostatic plasticity mechanisms in their network
models to observe if the networks are able to exhibit avalanches
with power-law scaling and evaluate the performance of the
network on classification tasks. By feeding error back into the
network based on the desired outputs at certain readout sites,
they were able to train the network to recognize different
input patterns, including classifying handwritten digits. The
response of the network to inputs after this training period
showed a clear spatial organization, with distinct regions
responding to different inputs. Although the network studied
here is a simplified computational model, the results indicate
that plasticity mechanisms are able to drive networks toward
criticality and play a role in their capacity for learning and
computation. Also, as shown by Girardi-Schappo et al. (2020),
the use of multiple homeostatic mechanisms can generate
highly diverse firing patterns and promote the self-organization
of a network toward a critical point. Additionally, as with

Hebbian plasticity and criticality, the application of homeostatic
mechanisms can enhance the computational capabilities of the
network by tuning it toward criticality, and increasing both
the number of input patterns that can be distinguished by the
network and the separability of these patterns (Naudé et al.,
2013).

The role of homeostatic mechanisms in maintaining critical
dynamics is exemplified experimentally in a study by Shew
et al. (2015). There is growing evidence that homeostatic
mechanisms such as synaptic depression aid in allowing the
visual cortex to adapt to changes in sensory input and recover
critical dynamics. Using ex vivo preparations of the visual
cortex, Shew et al. (2015) demonstrated adaptation of the cortex
to stimuli; upon first exposure to a stimulus, the network
transiently showed non-critical dynamics, followed by a return
to criticality via homeostatic plasticity. In a critically tuned
model of their network, an external input similarly drove the
network out of a critical state, and critical dynamics were then
restored through the implementation of a synaptic scaling rule,
indicating a likely mechanism for the homeostatic adaptation.
While this provides evidence for short-term tuning toward
criticality, there is also recent evidence of long-term homeostatic
adaptation. Thus far, studies including homeostatic mechanisms
in criticality experiments and models have largely been focused
on such synaptic mechanisms or the E/I balance, with only
scant focus on intrinsic plasticity (Naudé et al., 2013; Li X.
et al., 2018; Zhang et al., 2019; Girardi-Schappo et al., 2020) or
metaplasticity (Kinouchi et al., 2020, in preprint; Peng and Beggs,
2013).

The effect of E/I imbalance has been well-described
in previous studies, as mentioned previously; however,
manipulation of the intrinsic mechanisms underlying the
E/I balance have largely been unexplored (Plenz, 2012). Ma
et al. (2019) attempted to bridge this experimental gap by
examining a well-established model of homeostatic plasticity in
the context of criticality. By systematically exploring the space
of possible E/I configurations, Ma et al. (2019) demonstrated
that the balance achieved by critical networks may be struck
with a number of configurations—specifically, they varied the
E/I ratio, the number of excitatory neurons receiving input from
each inhibitory neuron, and the ratio of inhibitory neurons
receiving input. This shows that different possibilities exist
for how networks may be configured to achieve criticality,
though only a small fraction of the potential combinations
yielded critical activity. Furthermore, when a combination
of E/I parameters adjacent to one of the critical regimes was
selected and further explored by allowing the network to
evolve under synaptic scaling and STDP, it was unable to
achieve critical dynamics regardless of the plasticity parameters,
demonstrating the importance of local inhibitory dynamics in
achieving criticality.

Crucially, when synaptic scaling was removed from the model
by Ma et al. (2019), the model was no longer able to recover
critical dynamics after a reduction in input. With synaptic scaling
removed from the excitatory population, reduction in input
resulted in runaway activity and increased synaptic strength
due to uncompensated STDP; removing synaptic scaling from
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FIGURE 5 | Schematic overview of in vivo experiment from Ma et al. (2019).

The overall firing rate of the network showed a delayed response to the

perturbation of removing excitatory sensory input by monocular deprivation. In

contrast, the DCC and other criticality-related measures showed an immediate

response and a more rapid return to baseline.

inhibitory neurons also shifted the network out of the critical
regime, though less dramatically, and was accompanied by a
reduction in synaptic strength. In contrast, removal of STDP
left the network unaffected by the reduction in input, indicating
the necessity of this type of plasticity for the network to give a
meaningful response to inputs.

BRAIN DISORDERS AND DISRUPTIONS
TO CRITICALITY

Up to this point we have examined criticality’s relationship
to the network topology that supports it and the plastic
mechanisms that organize and maintain it. Because of the
intricate interplay of these underlying mechanisms, disruptions
to either topology or plasticity can manifest as deviations in
the dynamic state of the network, and as such, criticality
analysis may aid in the identification of such disruptions and
provide a better understanding of the mechanisms at play.
In this section, we will detail studies that apply criticality
analysis to the identification and prediction of diseases and
disorders in the nervous system and propose suggestions
for how to expand this work moving forward. Here we
use the term “perturbation” in a medical sense to refer to
disruptive and negative impacts to a network’s baseline state,
such as the severing of axons in vitro or epileptic states
in vivo.

Criticality on Disrupted Foundations
The study by Ma et al. (2019) discussed above in the context
of plasticity also provides substantial experimental insight into
the effect of perturbations on the dynamic state of neuronal
networks. By inducing monocular deprivation in rodents with
chronic recording of the visual cortex, they were able to examine
the effect of the perturbation on cortical activity. Despite the

near complete removal of input to the cortex, the network’s
firing rate, or activity level, was initially maintained, providing no
evidence of the sensory deprivation that had occurred. However,
the neuronal avalanche behavior in the network revealed a
deviation from criticality immediately following perturbation,
despite the fact that the firing rate was maintained. Moreover,
this deviation was sustained until homeostatic mechanisms
restored it by upscaling inhibitory activity and subsequently
reducing network firing (see Figure 5). The deviation from
criticality and branching ratio measures (see Box 2) applied by
Ma et al. (2019) exemplify the capacity for criticality analysis to
identify perturbations. Additionally, this study emphasizes how
multiple mechanistic underpinnings lend themselves to critical
dynamics and the potential disparity between network dynamics
and global activity levels. The effect of these mechanisms
can be further emphasized through their disruptions during a
critical state.

Modeling studies on disrupted network topology and
impaired plasticity lend some insight into deviations from
criticality following perturbation. Within scale-free and small-
world networks, there exists a significant robustness against
structural defects, as most nodes only connect to neighbors
within a cluster or module. As a result, a large number
of these low-degree nodes can be lesioned before critical
dynamics are disrupted (Goodarzinick et al., 2018). Conversely,
any removal of high-degree nodes or long-range connections
can rapidly fragment the network structure and subsequently
abolish any critical dynamics occurring (Callaway et al., 2000;
Mizutaka and Yakubo, 2013; Valverde et al., 2015). The
network-wide synchrony that occurs with efficient network
topologies and at criticality may also enable the spread of
disruptive states such as epilepsy. This synchrony is also
dependent on a functioning and adaptive E/I balance, as
discussed below.

In investigations of criticality in biological neural networks,
it has been found that the simple addition of the GABA
inhibitor bicuculline can shift the dynamics of a network
from critical to supercritical by increasing synchrony within
the network (Beggs and Plenz, 2003; Pasquale et al., 2008).
Other studies have also shown that altering the balance of
excitation and inhibition in biological networks can drive
them into a different dynamic state. In self-organized critical
networks, pharmacologically enhancing excitation can change
the dynamics of the network from critical to supercritical, while
reducing excitation promotes subcritical dynamics (Shew et al.,
2009, 2011). Furthermore, it has been demonstrated that direct
inhibitory action by addition of GABA to a network with
supercritical dynamics can drive it into a critical state (Heiney
et al., 2019). This points to GABAergic inhibition as important
in disrupting highly synchronized activity where activity very
frequently propagates throughout the entire network, driving
it into a supercritical state. Multiple simulation studies have
also shown that emergence of critical dynamics is dependent
on a certain proportion of inhibition in the network, which
conform to physiological levels of inhibitory neurons in the brain
(de Arcangelis et al., 2006; Massobrio et al., 2015).
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The Promise of Criticality Analysis in the
Clinical Realm
Despite the rising interest in biological criticality in the last
two decades, there has been a dearth of experimental and
clinical studies connecting criticality to perturbations. Because
criticality represents an optimal state for computation, one
could expect departure from the critical state would entail
a disruption unto itself (Shew et al., 2011); however, in
practice, disruptions to network dynamics are likely more
complicated than a transition away from criticality, as such
transitions may be part of healthy activity (Stewart and
Plenz, 2006; Pearlmutter and Houghton, 2009; Allegrini
et al., 2015; Wilting and Priesemann, 2019b), though see
also (Carvalho et al., 2020, in preprint) for a counterpoint
to this. Given recent hypotheses concerning network
computation in the slightly subcritical regime, quantifying
the impact of perturbations on network dynamics necessitates
rigorous analytical tools (see Box 2) (Priesemann et al.,
2014; Wilting et al., 2018; Wilting and Priesemann, 2019a).
The potential presence of heterogeneous local dynamics
or global reverberating dynamics in the subcritical regime
demands a combined and comparative approach for any
medical application.

The existing literature detailing disorders as disrupted
criticality largely pertain to the macroscale (see Zimmern, 2020
for a comprehensive review), as examined through (i)EEG
(Thatcher et al., 2009), ECoG (Chaudhuri et al., 2018), and fMRI
(Tagliazucchi et al., 2012). Even with the growing number of
researchers examining the dynamics ofmesoscale networks, there
is still a lack of research turning these in vitro and in vivomethods
toward the dynamics of perturbed networks. Given the growing
sophistication of molecular and electrophysiological tools, the
potential for experimental manipulation of network topology
and homeostatic mechanisms is immense. In the absence of
many mesoscale investigations into criticality perturbations
(Stewart and Plenz, 2006; Gireesh and Plenz, 2008; Fekete
et al., 2018), this section will focus on macroscale network
dynamics and investigations into clinical disorders through the
lens of criticality.

The majority of today’s macroscale studies on disorders
and criticality pertain to epilepsy disorder, which provides an
example of how criticality analysis can benefit the clinical field
(Worrell et al., 2002; Li et al., 2005; Meisel et al., 2015b,
2016; Arviv et al., 2016; Meisel and Loddenkemper, 2019; Rings
et al., 2019). Given the absence of literature on other disorders
in this context and the substantial literature that exists on
network topology (Terry et al., 2012; Lopes et al., 2020) and
E/I balance (Wei et al., 2017; Du et al., 2019) as they relate
to epilepsy, we have chosen to examine this disorder here.
An epileptic state, or seizure, is characterized by a departure
from healthy dynamics to a hyper-synchronized or chaotic
state. This epileptic state can be either focal and confined to
cortical regions or circuits, or generalized and encompass the
entire brain (Terry et al., 2012; Englot et al., 2016). Currently,
diagnosing the presence of epilepsy is often based on the
presence of overt structural deficits through MRI and CT, or

through markers of infection and electrolyte testing (Stafstrom
and Carmant, 2015). When the epilepsy is rooted in less overt
factors, diagnosis becomes an issue of determining disruptive
dynamics which has thus far proved to be a substantial problem
(Stafstrom and Carmant, 2015; Meisel and Loddenkemper,
2019). To this end, the application of criticality analysis to
epilepsy has been the focus of much recent research which
we will discuss here (Meisel et al., 2015b, 2016; Arviv et al.,
2016; Meisel, 2016; Beenhakker, 2019; Du et al., 2019; Meisel
and Loddenkemper, 2019; Witton et al., 2019; Maturana et al.,
2020).

Current literature links epileptogenesis to disruptions in
network connectivity or neuronal excitability stemming from
genetic pathologies, such as ion channel mutations, or acquired
conditions, such as stroke (Terry et al., 2012; Wei et al.,
2017). Predicting if and how these disruptions will lead to
epileptogenesis has resulted in the development of measures
of network excitability and synchrony and most recently the
application of criticality analysis (Meisel, 2016). Diagnostically,
criticality analysis has been applied as a biomarker in focal
epilepsy patients, where critical slowing down, which is the
stretching of activity patterns near a critical state, has been found
to precede seizure onset (Maturana et al., 2020). Similarly, the
presence of a Hopf bifurcation has been indicated as a diagnostic
predictor based on modeled ECoG, neural field, and neural
mass dynamics (Meisel and Kuehn, 2012; Buchin et al., 2018;
Deeba et al., 2018); for a review on this topic, see Meisel and
Loddenkemper (2019). In terms of treatment, the branching
ratio computed from recordings of resting dynamics provides a
quantitative measure to characterize the effect of anti-epileptic
drugs (AEDs), as an alternative to the typically used absence
of seizure or response to transcranial stimulation (Meisel et al.,
2015b, 2016). A further study by Meisel (2020) also applied
this to show an inverse correlation between network synchrony
and AED dosage levels, indicating a shift toward a subcritical
and away from a supercritical seizure state. However, we should
note here that these promising results in the field also highlight
some of the intricacies around criticality analysis. For example,
when investigating critical slowing down and using a similar
iEEG dataset as Maturana et al. (2020), Wilkat et al. (2019)
conversely found no evidence of critical slowing down as an
epileptic biomarker.

While these studies focus largely on neuronal excitability in
isolation, the use of such analysis should also be integrated
with the substantial work underway on epilepsy networks (Terry
et al., 2012). Already, mapping of functional and structural
connectivity in epileptic networks can identify the ictal, or
seizure, onset zone and examine the spread from local to global
seizure by means of effective connectivity (Yaffe et al., 2015).
Indeed, models of seizure propagation and clinically recorded
networks show rapid spread of disruptions through small-
world networks as a result of their long-range connectivity
and hub structure (Netoff et al., 2004; Ponten et al., 2007).
With the reliance of seizure spread on network topology,
epileptogenesis can occur as a result of disruptions to functional
and structural connectivity (Avanzini and Franceschetti, 2009;
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Terry et al., 2012; Fornito et al., 2015). Functional connectivity
mapping in stroke patients often reveals hyperconnectivity,
where functional network components paradoxically show an
increase in connectivity post-stroke (Hillary and Grafman,
2017). Up to 10% of stroke patients suffer seizures either
early or late in their recovery and currently there exists no
reliable prognostic tool for determining if these will develop
into epilepsy (Myint et al., 2006). Unfortunately, application of
AEDs as a preventative measure has thus far proven ineffective,
indicating that epileptogenesis is partially independent of
neuronal excitability or subject to interference from complex
homeostatic mechanisms (Gilad et al., 2011). These forms of
acquired epilepsy highlight the heterogeneity of the disorder and
the necessity of a combined network and dynamics analysis.
The application of criticality analysis to epilepsy disorders can
potentially act as both a trial and guideline for other neurological
disorders, such as psychiatric (van Bokhoven et al., 2018),
developmental (Tinker and Velazquez, 2014; Gao and Penzes,
2015; Li L. et al., 2018), and degenerative disorders (Jiang et al.,
2018; Ren et al., 2018; Marcuzzo et al., 2019).

Still, caution must be taken when comparing these studies of
macroscale dynamics to their underlying meso and microscale
mechanisms (Meisel and Kuehn, 2012). Network scale is a
crucial feature of these mechanisms, and node and edge
descriptors at different scales substantially alter the relevant
activity dynamics. Additionally, the highly divergent methods
for avalanche detection between different assessment modalities
[macroscale: fMRI, (i)EEG, MEG, ECoG; mesoscale: spikes and
LFPs from tetrodes and MEAs] risk erroneous conflation of
results between different scales. Each method of avalanche
detection and definition requires a thorough investigation into
its relevance and robustness to multiple tests. In the final section
of this paper we will highlight steps to improve the accuracy and
standardization of criticality analysis, as well as the relationship
between structural and critical dynamics.

CONCLUSION

Network neuroscience has seen explosive growth in the clinical
field within the past two decades, providing insight into
pathophysiology and disease propagation. However, such rapid
growth comes along with the challenge of standardizing the
measures applied (Hallquist and Hillary, 2018). The current lack
of standardized graph theory measures has created a widely
dissimilar range of network definitions and graph metrics to
the point where it precludes meta-analysis. Advancements in
the empirical study of criticality in neural systems are also
beginning to see rapid growth, and it can be a struggle
to keep up with which measures are best to apply. The
consolidation and standardization of metrics used in the study
of critical dynamics and connectivity in neural networks thus
remains a considerable challenge, yet the sooner this challenge
is approached, the more it can be mitigated. Therefore, we
have highlighted certain measures that have proven useful in
the study of criticality in the context of neuroscience (see
Box 2). Given the complex and multifaceted nature of criticality,

we fully expect later studies will further expand upon and
improve measures. However, applying and comparing the same
measures across experiments will lessen the future burden
of comparison.

Criticality holds the promise of bridging several scales of
neural activity by its nature as a scale-free property. Yet as we
have examined, the step from statistical models of criticality to
experimental analysis is a difficult one, where constraints and
complicating factors arising from experimental methods and
the underlying biological mechanisms make themselves known.
As we have discussed, the different recording modalities across
scales apply disparate approaches to analyzing criticality, making
any comparison fraught with analytical pitfalls, and this issue
may be further exacerbated by more indirect measures such as
fMRI with its different timescales. While there are some groups
(Gireesh and Plenz, 2008; Miller et al., 2019) making substantial
progress on these experimental issues, as more and more groups
turn toward applying criticality-based measures in the clinic and
laboratory they need to be cognizant of the intricacies inherent
in these topics. Similarly, intuitions from theoretical work, the
idea that epileptic systems are supercritical and thus should have
branching ratios exceeding 1, can be counter to experimental
findings (Hobbs et al., 2010; Plenz, 2012), necessitating a closer
look at analytical techniques and theoretical understandings.

Throughout this review, we have attempted to highlight the
multifaceted nature of criticality and the potential its analysis
holds as a metric of network health. Criticality is closely tied
to the efficiency of its underlying network structure, as this
structure supports the propagation of dynamical activity through
the system. The emergence of these efficient topologies in turn
results from the dynamics of the structure itself: the changes
in connectivity mediated by the local and global plasticity. This
intertwining of criticality and structural dynamics is an essential
feature of the critical state, and examining in isolation any
single feature contributing to the behavior of a network may
forgo the complex interplay that gives rise to critical dynamics.
Neural networks organize into small-world and hierarchical
modular topologies in part to support critical dynamics, and both
structure and dynamics likely develop due to the computational
benefits they afford. Furthermore, there is evidence that networks
in the critical state display characteristics indicative of their
optimal computational capacity, yet few studies have explicitly
focused on highlighting these benefits conferred by criticality. A
focus on this aspect of criticality would also aid in understanding
what goes wrong—or what computational functions may be
affected—when a network is damaged or diseased. In the
future, we hope more studies take into consideration the
interplay between structure and critical dynamics, as well as the
functional benefits this confers, as criticality analysis and network
neuroscience can provide significant insight into complexity,
computation, and medicine.
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