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Functional magnetic resonance imaging (fMRI) techniques have contributed significantly

to our understanding of brain function. Current methods are based on the analysis of

gradual and continuous changes in the brain blood oxygenated level dependent (BOLD)

signal. Departing from that approach, recent work has shown that equivalent results can

be obtained by inspecting only the relatively large amplitude BOLD signal peaks, suggesting

that relevant information can be condensed in discrete events.This idea is further explored

here to demonstrate how brain dynamics at resting state can be captured just by the timing

and location of such events, i.e., in terms of a spatiotemporal point process. The method

allows, for the first time, to define a theoretical framework in terms of an order and control

parameter derived from fMRI data, where the dynamical regime can be interpreted as one

corresponding to a system close to the critical point of a second order phase transition.

The analysis demonstrates that the resting brain spends most of the time near the critical

point of such transition and exhibits avalanches of activity ruled by the same dynamical and

statistical properties described previously for neuronal events at smaller scales. Given the

demonstrated functional relevance of the resting state brain dynamics, its representation

as a discrete process might facilitate large-scale analysis of brain function both in health

and disease.
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1. INTRODUCTION

Important efforts to understand brain function, both in health and

disease, are concentrated in the analysis of large-scale spatiotem-

poral patterns of brain activity available from fMRI techniques

(Greicius et al., 2003; Beckmann and Smith, 2004; Beckmann et al.,

2005; Raichle, 2006; Fox and Raichle, 2007; Smith et al., 2009),

allowing for instance the unraveling of the functional connectivity

between all possible brain regions, as is done under the Connec-

tome project (Sporns et al., 2005; Sporns, 2011)1. At the same time,

similar efforts are dedicated to place brain phenomenology in the

context of statistical physics theory (Chialvo, 2010; Rolls and Deco,

2010; Sporns, 2010; Steyn-Rose and Steyn-Rose, 2010). Novel tech-

niques of analysis are needed because of the increasing difficulty

in managing extremely large data sets, generated by advances in

imaging technology continuously improving temporal and spatial

resolution.

Recent work has shown that important features of brain func-

tional connectivity at rest can be computed from the relatively

large amplitude BOLD fluctuations (Tagliazucchi et al., 2010a,b)

after the signal crosses some amplitude threshold. Here we pursue

1http://www.humanconnectomeproject.org/

further the same general idea of data reduction. In particular we

are interested in a method often used to study the structure and

properties of attractors of dynamical systems, which consists in the

introduction of a Poincaré section. By definition, this approach

decreases the dimension of the phase space and consequently the

size of the data sets, facilitating in this way further numerical inves-

tigations. In general, there exist two possibilities: the first one is to

analyze the set of points which are the coordinates of the successive

intersections of the secant Poincaré plane by the phase space trajec-

tories. The second possibility is to study the series of time intervals

between the consecutive intersections. The resulting time intervals

constitute a so-called point process (Cox and Isham, 1980), a con-

struction useful in many areas of science, including neuroscience.

It has been shown that under certain conditions the most impor-

tant statistical features of the dynamical regime can be condensed

into a point process (Packard et al., 1980; Roux et al., 1980; Takens,

1980; Roux and Swinney, 1981; Grassberger and Procaccia, 1983;

Castro and Sauer, 1997).

The motivation to attempt a similar approach in fMRI data

is strengthened by the observation that, in response to neuronal

activation, the BOLD signal often repeats a stereotypical pat-

tern (Friston et al., 1995, 1998; Aguirre et al., 1998; Tagliazucchi

et al., 2010a,b). This feature suggests that it should be possible to
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compress the data sets using the temporal marks of a Poincaré

section of the BOLD signal. This is the hypothesis explored here,

which implies that, in principle, the entire brain resting state func-

tional connectivity can be reconstructed solely on the basis of the

time and location of the BOLD signal threshold crossings. Besides

its practical importance for fMRI signal processing, this approach

may provide further clues on the dynamical organization of the

resting state brain activity.

The paper is organized as follows: the results section starts

with the definition of the point process, as well as its connection

with deconvolution techniques. This is followed by the replication

of the fMRI brain resting state networks (RSN) maps using the

point process. As further validation, the method’s ability to eval-

uate functional connectivity changes is demonstrated for a motor

task and for a pathological condition. The spatiotemporal statistics

are then considered, revealing novel aspects of the brain dynam-

ics which are scale-invariant, consistent with that shown for other

systems at the critical state (Bak, 1996; Jensen, 1998; Chialvo, 2010;

Expert et al., 2011). The paper closes with a discussion on the new

questions raised by the current analysis. For readers’ convenience,

the methods are described at the end of the paper.

2. RESULTS

The fMRI dataset is reduced to a spatiotemporal point process by

normalizing each BOLD signal by its own SD, and subsequently

selecting the time points at which the signal crosses a given thresh-

old (1 SD in this case) from below, as it is shown in the example of

Figure 1. Notice that, despite the fact that in resting data there are

not explicit inputs, the average BOLD signal around the extracted

points (Figure 1B, termed rBeta function in Tagliazucchi et al.,

2010b) still resembles the hemodynamic response function (HRF)

evoked by an stimulus (Friston et al., 1995, 1998). The relation

between the point process and the underlying HRF is exposed

by the deconvolution of the BOLD signal with either the HRF

(with default parameters) or the rBeta function (Tagliazucchi et al.,

2010b) extracted from the time series in Figure 1. In both cases, as

shown in Figure 1C, the peaks of the de-convolved BOLD signal

coincide, on a great majority, with the timing of the point process

in Figure 1A. At this point a remark is needed concerning the

impulse-like signals in Figure 1C. They result from the decon-

volution of the BOLD signal with a function similar to the HRF,

and from a physiological viewpoint it can be conjectured that they

constitute short-lived events triggering the relatively slow (up to

20 s) BOLD response. Notice, however, that the bulk of the present

results is independent of the precise nature of these impulse-like

signals. They serve to illustrate that a different and already estab-

lished mathematical method (which is also amenable to a clear

physiological interpretation) leads to similar inter-event timings

than those derived from the Poincaré section. Therefore, these

results show that important information is compressed in the tim-

ing and spatial location of the extracted points. For the parameter

used here, from each voxel BOLD time series (240 samples) on

the average only 15 ± 3 points are threshold crossings (about one

point every 40 s) which corresponds to near 94% reduction of the

data (additional details, including the robustness to changes in

threshold, are discussed in the Materials and Methods Section).

2.1. RESTING STATE NETWORKS AND ACTIVATION MAPS CAN BE

DERIVED FROM A FEW POINTS

Despite the very large data reduction, we found that the informa-

tion content of the few remaining points is very high. As a proof

of principle, we first used the point process to calculate the spa-

tial location of six well known RSN maps. These maps describe

the major independent components of brain spontaneous activ-

ity, and as such they can be used as a relevant benchmark. We

used the point process to obtain the RSN maps and compare

them with maps computed from the full BOLD signal using a

well established method (probabilistic independent component

analysis – PICA; Beckmann et al., 2005). This is done by cal-

culating in six RSNs the rate of points co-occurrence (up to 2

FIGURE 1 | (A) Example of a point process (filled circles) extracted from

the normalized BOLD signal. Each point corresponds to a threshold

(dashed line at 1 SD) crossing from below. (B) Average BOLD signal

(from all voxels of one subject) triggered at each threshold crossing.

(C) The peaks of the de-convolved BOLD signal, using either the

hemodynamic response function (HRF) or the rBeta function

(Tagliazucchi et al., 2010b) depicted in (D), coincide on a great majority

with the timing of the points shown in (A).
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FIGURE 2 | RSN maps constructed with the point process compare

very well with standard PICA of the raw continuous data. (A) PICA

spatial maps (left column) and rate of points conditional to activity at a

given seed (rightmost three columns, each one corresponds to a different

seed). (Slice z coordinates are −12, 0, 0, 36, 20, 26 for RSN 1–6; for seed

coordinates seeTable 1). Scales for PICA (ZPICA) and conditional rate (ZCR)

calculations are depicted in the inset. (B) Conditional rate maps

constructed using 3, 6, and 12 events of the point process at the ANGL

seed (averaged for ten subjects. Slice coordinates are x = −4, y = −60,

z = 18). (C) Correlation between RSN5 (the default-mode network, DMN)

PICA-derived map and the point process-derived conditional rate maps, as

a function of the number of points used. Arrows denote the examples of

(B). Z scores (number of points as degrees of freedom) with the line of

95% confidence are plotted in the inset. (D) The point process is able to

track the statistical differences between the functional connectivity maps

of a group of chronic back pain patients and healthy controls already

reported in (Tagliazucchi et al., 2010a). The conditional rate of points (top)

reproduces well the standard seed correlation approach (bottom) derived

from the same data. (E) The functional connectivity maps during a finger

tapping task constructed from the conditional rate of points (top) compare

well with the seed correlation maps derived from the same data

(Tagliazucchi et al., 2010b).

time units later in this case) between representative sites (“seeds”)

and all other brain voxels and presented as maps in Figure 2A–C

(see Materials and Methods for a detailed explanation of the

computation). The seeds locations were selected according with

previous work (see coordinates in Table 1 of Materials and Meth-

ods Section). The similarities between our conditional rate maps
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Table 1 | MNI coordinates for the seeds used in Figure 2.

RSN Seed 1 Seed 2 Seed 3

RSN1 (2, −82, 20)

RSN2 (30, −86, 16) (−30, −86, 16)

RSN3 (2, 6, 48) (−54, 2, −8) (58, 2, −4)

RSN4 (−2, −14, 48) (−38, −14, 52) (50, −14, 52)

RSN5 (2, 54, −8) (50, −66, 28) (−38, −70, 28)

RSN6 (34, 46, 20) (−34, 42, 20) (10, −42, 48)

and the respective PICA maps (rightmost three columns and left

column of Figure 2A respectively) is already obvious to the naked

eye and confirmed by the correlation plotted in Figure 2C. The

calculation shows that despite using less than 6% of the raw fMRI

information, about 5 points (on average) are enough to obtain

RSN maps that are highly correlated (95% confidence) with those

obtained using PICA of the full BOLD signals. Similar good per-

formance can be demonstrated in tracking physio-pathological

changes of brain activation. This is presented in Figure 2D which

shows the statistical differences in functional connectivity between

a group of chronic back pain (CBP) patients and healthy controls

already reported in Tagliazucchi et al., 2010a; comparison with

seed correlation based in the DMN, increased correlation with

bilateral insula in CBP). Finally, the data analysis from a finger

tapping task (Tagliazucchi et al., 2010b) demonstrates also the

merits of the current approach when compared with a seed corre-

lation based in primary motor cortex contralateral to the tapping

hand (Figure 2E).

2.2. A PHASE TRANSITION IN THE DYNAMICS OF THE ACTIVE

CLUSTERS

The results in the previous section show that the point process

can efficiently compress the information needed to reproduce the

underlying brain activity in a way comparable with conventional

methods such as seed correlation and independent component

analysis. Importantly,while the former methods represent averages

over the entire data sets, the point process, by construction, com-

presses, and preserves the temporal information. This potential

advantage, unique of the current approach, may provide addi-

tional clues on brain dynamics. This is explored here by compiling

the statistics and dynamics of clusters of points both in space and

time. Clusters are groups of contiguous voxels with signal above

the threshold at a given time, identified by a scanning algorithm

in each fMRI volume (see Materials and Methods for details).

Figure 3A shows examples of clusters (in this case non-consecutive

in time) depicted with different colors. Typically (Figure 3B top)

the number of clusters at any given time varies only an order of

magnitude around the mean (∼50). In contrast, the size of the

largest active cluster fluctuates widely, spanning more than four

orders of magnitude.

The analysis reveals four novel dynamical aspects of the cluster

variability which hardly could have been uncovered with previous

methods. (1) At any given time, the number of clusters and the total

activity (i.e., the number of active voxels) follows a non-linear rela-

tion resembling that of percolation (Stauffer and Aharony, 1992).

FIGURE 3 |The level of brain activity continuously fluctuates above

and below a phase transition. (A) Examples of co-activated clusters of

neighbor voxels (clusters are 3D structures, thus seemingly disconnected

clusters may have the same color in a 2D slice). (B) Example of the

temporal evolution of the number of clusters and its maximum size (in units

of voxels) in one individual. (C) Instantaneous relation between the number

of clusters vs. the number of active sites (i.e., voxels above the threshold)

showing a positive/negative correlation depending whether activity is

below/above a critical value [∼2500 voxels, indicated by the dashed line

here and in (B)]. (D) The cluster size distribution follows a power law

spanning four orders of magnitude. Individual statistics for each of the ten

subjects are plotted with lines and the average with symbols. (E) The order

parameter, defined here as the (normalized) size of the largest cluster is

plotted as a function of the number of active sites (isolated data points

denoted by dots, averages plotted with circles joined by lines). The

calculation of the residence time density distribution (R. time, filled circles)

indicates that the brain spends relatively more time near the transition point

(which corresponds to about 0.4 of the largest giant cluster observed).

Notice that the peak of the R. Time in this panel coincides with the peak of

the number of clusters in (C). Note also that the variance of the order

parameter (squares) increases as expected for a phase transition. (F) The

computation of the cluster size distribution calculated for three ranges of

activity (low: 0–800; middle: 800–5000; and high >5000) reveals the same

scale invariance plotted in (D) for relatively small clusters, but shows

changes in the cut-off for large clusters.

At a critical level of global activity (∼2500 voxels, dashed horizon-

tal line in Figure 3B, vertical in Figure 3C) the number of clusters

reaches a maximum (∼100–150), together with its variability. (2)
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The correlation between the number of active sites (an index of

total activity) and the number of clusters reverses above a criti-

cal level of activity, a feature already described in other complex

systems in which some increasing density competes with limited

capacity (Stauffer and Aharony, 1992; Bak, 1996). (3) The rate at

which the very large clusters (i.e., those above the dashed line in

3B) occurs (∼ one every 30–50 s) corresponds to the low frequency

range at which RSN are typically detected using PICA (Beckmann

and Smith, 2004; Beckmann et al., 2005). (4) The distribution of

cluster sizes (Figure 3D) reveals a scale-free distribution (whose

cut-off depends on the activity level, see Figure 3F).

These four features remind of other complex systems under-

going an order-disorder phase transition (Bak, 1996; Jensen, 1998;

Tsang and Tsang, 1999; Chialvo, 2010; Tagliazucchi and Chialvo,

2011) thus suggesting further exploration. Following standard

techniques in statistical physics, two parameters were defined and

computed from the same data plotted in Figure 3C. To repre-

sent the degree of order (i.e., the order parameter), the size of the

largest cluster (normalized by the number of active sites) in the

entire brain was computed and plotted as a function of the num-

ber of active points (i.e., the control parameter). This was done for

all time steps and plotted in Figure 3E (small circles). We avoided

the use of the branching ratio (Beggs and Plenz, 2003) as a control

parameter because its estimation from the data is less than straight-

forward. It cannot be computed for each fMRI volume as required

here and only converges to a stable quantity for relatively long time

series. In addition, it requires the ad hoc definition of the number

of bins and a suitable bin-width for its computation (Beggs and

Plenz, 2003), therefore making its use cumbersome for the spa-

tiotemporal resolution of the present study. On the other hand,

the parameter used here (i.e., global level of activity) is computed

in a straightforward manner, converges relatively fast, requires no

fine tuning of parameters and has clear analogies to control para-

meters of well studied models of order-disorder transitions (the

clearest example being percolation; Stauffer and Aharony, 1992).

Several key features are worth to mention, all highly suggestive

of a phase transition: First, there is sharp increase in the average

order parameter (empty circles), accompanied by an increase of its

variability (empty squares). Second, the transition coincides with

the peak in the function discussed in Figure 3C, which accounts

for the number (not the size) of the clusters. Finally, a calculation

of the relative frequency of the number of active sites was per-

formed (i.e., residence times, filled circles) showing that the brain

spends, on the average, more time near the transition than in the

highly ordered or the highly disordered states. This is a remarkable

support for earlier conjectures suggesting that the brain at large-

scale works at criticality (Bak, 1996; Chialvo, 2010; Expert et al.,

2011; Tagliazucchi and Chialvo, 2011).

2.3. ACTIVITY SPREAD IS SCALE-FREE

The identification of a phase transition in the resting brain sug-

gested additional work to characterize its properties, including

a quantification of the dynamical properties of cluster spatial

evolution. As shown in the example of Figure 4A an activated

cluster can appear, grow to achieve a maximum size and then

disappear (or translate or divide into sub-clusters). The present

approach allows the study of two properties of the process. For

FIGURE 4 | Clusters spread throughout the brain as scale-free

avalanches. (A) Two examples of avalanches, one triggered from the visual

cortex (top) and another from insular cortex (bottom). Note that only a

partial 2D slice is depicted here since avalanches evolve in 3D. (B) Average

cluster fractal dimension D ∼ 2.15 ± 0.02 estimated by the slope of the

counts vs. length plot. Inset: derivatives between points in the main plot for

each subject. (C) Avalanche size and lifetime distribution function computed

from about 8000 avalanches in each of 10 subjects (individual subjects with

smaller symbols). While avalanche size follows a power law, their lifetimes

density decreases faster as found previously for neuronal avalanches

(Beggs and Plenz, 2003). The average cluster fractal dimension is plotted as

a function of the number of active sites in (D) and of the number of clusters

in (E).

each cluster we first measured a static space filling property, the

average fractal dimension D. This is shown in Figure 4B which

illustrates that D ∼ 2.15 ± 0.02. While the fractal dimension D

departs from this value for the highly ordered and disordered

regimes (Figures 4D,E), the residence time distribution computed

in Figure 3E indicates that most of the time the level of activ-

ity is around the critical value, thus on average D ∼ 2. Second,

we looked at the dynamics of the cluster propagation, which was

found to happen in bursts. The statistics in Figure 4C shows that

avalanches could last up to 30 s. with sizes up to 103 and have

no preferred scale, a behavior very similar to that of neuronal

avalanches described previously in smaller scales (Beggs and Plenz,

2003; Petermann et al., 2009; Chialvo, 2010).

3. DISCUSSION

As far as we know, this is the first attempt to describe large-scale

brain fMRI dynamics as a point process and the first to uncover a
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phase transition in the dynamics of the active clusters, with scale-

free avalanching events in the whole human cortex. Regarding the

point process analysis, the only previous report we are aware of

(Vedel Jensen and Thorarinsdottir, 2007) dealt with the reverse

situation: how to model the continuous fMRI signal starting from

a spatiotemporal point process.

3.1. WHY FEW POINTS SUFFICE?

At first sight, the continuous nature of the fMRI BOLD signal,

imposed by the nature of the neurovascular coupling itself (Fris-

ton et al., 1995, 1998), might have hindered the introduction of

point process methods for its analysis. The situation is analo-

gous to that of continuous rhythmic activity arising in scalp EEG

due to predominant frequencies in the spiking activity and sub-

threshold oscillations which underlie the generation of discrete

action potentials (Traub et al., 1989; Steriade et al., 1993; Con-

treras and Steriade, 1995). We have shown that the application

of HRF deconvolution gives a way to invert the process and find

the train of impulse-like signals (of whatever origin) which closely

resembles the point process. The fact that the majority of the points

coincide with the peaks of the BOLD HRF-de-convoluted signal

(i.e., Figure 1C) reinforces the view that upward going BOLD sig-

nals are non-linear events where the crossing times preserve the

most relevant information. This is in line with recent findings of

all-or-none“coherence potentials”macroscopically propagating in

the monkey cortex, as observed in local field potential recordings

(Thiagarajan et al., 2010). Therefore it seems reasonable the con-

jecture that, at this level of coarse graining, we are dealing with

all-or-none intermittent avalanching events which involve short

and long range cortical co-activations.

Another remark needs to be made concerning the HRF: while

it is true that extensive work established the fundamental details

of the brain’s BOLD HRF responding to a well defined (single or

repetitive) stimulus, less is known about the BOLD response under

the non-stationary conditions of resting state, in other words, the

nature of the resting state HRF remains unknown. A theoretical

formalism for the neuro-BOLD coupling at rest, as far as we know,

has not been attempted but probably deserves to be considered in

the future. Such studies should clarify up to what extent the HRF

function obtained from stimuli spaced by relatively long intervals

can predict the temporal evolution of the BOLD signal measured

during resting state.

3.2. SCALE-INVARIANT BRAIN DYNAMICS IS MADE UP OF

AVALANCHES

The reduction of the fMRI BOLD signal to discrete events not

only allows for the identification of well-described resting state

networks as shown in Figure 2, but also reveals that large-scale

brain activity organizes in avalanches of activity with power law

size distributions. The point process approach allowed for the first

time to identify explicitly the order and control parameters and to

define the state of the resting brain as a fluctuation around a phase

transition. The analysis shows not only that activity spreads as

scale-free avalanches resembling those seen in smaller scales (Beggs

and Plenz, 2003) but – and importantly – that the brain spends

most of the time at a level of activity which corresponds to the

critical point. These new findings add to the previous observations

that the correlation function of fMRI BOLD signals exhibits frac-

tal properties (Expert et al., 2011) and that the correlation length

of the activity measured with fMRI diverges as predicted by the

theory of phase transitions (Fraiman and Chialvo, 2010), sup-

porting the hypothesis that brain dynamics operates at a critical

point of a second order phase transition (Bak, 1996; Chialvo, 2010;

Tagliazucchi and Chialvo, 2011).

In connection with previous experiments, one must emphasize

that for a non-equilibrium system in a critical state avalanches are

observed at a wide range of temporal and spatial scales. Observa-

tions at smaller scales (Beggs and Plenz, 2003) show a clear cut-off

of the avalanche distribution at the size of the electrode array used

for the recordings (signaling that the experimental technique is

unable to sample larger events) as well as a distortion of the distri-

bution caused by sub-sampling effects (Priesemann et al., 2009).

Due to very good spatial resolution and whole brain coverage

fMRI allows to overcome these issues in the macroscopic domain

(≈1 mm). The observation of identically distributed avalanches at

this level is direct evidence that the brain spatiotemporal dynam-

ics is scale-free, as expected for a critical system. The present work

also suggests the study of intermediate scales accessible by means

of other experimental techniques to give further support for or

against this hypothesis.

The observation that large-scale brain dynamics can be traced

as discrete scale-free avalanches of activity raises the question of

the physiologically relevance encoded in the timing of these large-

scale events, already suggested by observations at smaller scales and

computational models (Kinouchi and Copelli, 2006; Shew et al.,

2009, 2011; de Arcangelis and Herrmann, 2010). For instance,

although relatively rare, avalanches in the tail of the power law

distribution emerge from a local origin and propagate as far as

the length of the entire cortex, suggesting a role in the binding

processes of far apart cortical regions. It would be interesting to

investigate whether total or partial disruption of these large events,

as well as alterations in the balance between activation and segrega-

tion into clusters are correlated with pathological conditions and

with the level of awareness of the subject. Additionally, the non-

linear relation between activated cortical tissue and number of

clusters exhibits an optimal point, in which the level of brain activ-

ity is segregated into the maximum number of spatially isolated

activations. We can hypothesize that this result is relevant to the

solution of the integration/segregation dilemma long advocated

by Tononi et al., 1994; Sporns, 2010) as the fundamental conun-

drum that the healthy cortex needs to be executing at any given

time. If our hypothesis is true, we can predict, together with inte-

gration/segregation theories of consciousness (Tononi et al., 1994;

Tononi, 2004), that a displacement of the optimal point should be

observed for brain states of diminished conscious content such as

deep sleep, anesthesia, or coma (Lee et al., 2009).

3.3. SYNCHRONY DOES NOT ALWAYS IMPLIES ORDER

A special place in the discussion should be dedicated to analyze

the similarities and differences between the definition of the order

parameter and phase transition used here and the concept of syn-

chrony widely used in previous studies. To place this point in

context, it is appropriate to recall the earlier studies a decade ago,

by Varela and colleagues (Rodriguez et al., 1999) investigating the
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brain electrical activity of subjects viewing ambiguous visual stim-

uli (perceived either as faces or as meaningless shapes). They were

able to show for the first time that “only face perception induces

a long-distance pattern of synchronization, corresponding to the

moment of perception itself and to the ensuing motor response. A

period of strong desynchronization marks the transition between

the moment of perception and the motor response” (Rodriguez

et al., 1999). These results lead to the authors to suggest that “this

desynchronization reflects a process of active uncoupling of the

underlying neural ensembles that is necessary to proceed from

one cognitive state to another” (Rodriguez et al., 1999). A number

of papers followed Varela et al. idea (Rodriguez et al., 1999) that

synchrony is physiologically relevant. At the fMRI level the tim-

ing and length of these epochs of synchrony were used recently

to infer the presence of criticality (Kitzbichler et al., 2009). The

present results indicate that while order (as defined here) implies

always synchrony, the reverse is not always true, since space is not

manifest in the definition of synchrony and then one can have a

very synchronic but (spatially) disordered pattern of brain activity.

Since our results indicate that the brain at rest spends most of its

time in a mix of order and disorder, it would be very interesting

in future studies to relate Varela’s synchrony-asynchrony concept

with the current ideas of proximity to a order-disorder transition.

3.4. AD HOC NOISE VS. NON-EQUILIBRIUM DYNAMICS

Attempts to construct biologically realistic equilibrium models

of brain networks require as a main ingredient the introduction

of (sometimes finely tuned) noise (Deco et al., 2009; Rolls and

Deco, 2010). In this type of models, without the external noise

the dynamics are stuck in a stable equilibrium state, thus noise

must be introduced ad hoc to allow sufficient variability in the

dynamical behavior of the system. One should be very careful,

however, not to over-emphasize the biological relevance of a con-

struct needed to overcome the shortcomings of a restricted class

of models. Statistical physics results tell us that dynamical fluc-

tuations around stationary states are small except near critical

points (Prigogine, 1962).On the contrary, a non-equilibrium sys-

tem undergoing criticality does not need the introduction of noise:

variability is self-generated by the collective dynamics which spon-

taneously fluctuate near the critical point (for further discussion,

see (Tagliazucchi and Chialvo, 2011)). Coincidently, the present

results show that the spatiotemporal organization of the resting

brain dynamics achieves maximum variability (i.e., Figures 3C,E)

at a particular level of activation, and the analysis of the order

and control parameters reveals that the origin of such variability

can, in fact, be traced to a phase transition. Furthermore, the level

of activity spends the largest amount of time around such transi-

tion. Then, these results point out that a different class of models

is needed: one that emphasizes non-equilibrium self-generated

variability over ad hoc introduced noise of uncertain origin.

3.5. RELATION WITH OTHER SCALES

The present results gathered in a large-scale domain can be also

analyzed at the light of earlier observations of transient states

at faster time scales, in which the scalp EEG is reduced to a

certain number of stereotypical topographical maps (i.e., EEG

microstates) (Koenig et al., 2002) and non-stationarities which

define discrete segments of electrical activity are observed (Kaplan

et al., 2005). Both descriptions of electrical scalp activity have

also been shown to exhibit properties consistent with critical

dynamics (Allegrini et al., 2010; Van De Ville et al., 2010). Fur-

ther multimodal imaging studies could link these observations

together in the context of discrete avalanches of neural activity

propagating through the cortex and determine their functional

relevance for health and disease (Greicius et al., 2004). Also,

future work on the analysis of large-scale spontaneous fMRI sig-

nals as a train of activations should take advantage of the fact

that the temporal information is not completely discarded (as

in a straightforward correlation analysis) but kept in the tim-

ing of the events. The point process extracted from the BOLD

signal can thus provide valuable information on the transient

co-activations (or co-participation in an avalanche) of different

brain regions. This measure can then be of value if correlated

with the aforementioned EEG measures of instantaneous syn-

chronization, as well with spontaneous index of perception or

task performance.

3.6. LIMITATIONS OF THE APPROACH

The most obvious limitations of the point process approach stem

from the spatiotemporal resolution of the fMRI recordings (i.e.,

TR and voxels dimensions) as well as the time constant of the

BOLD HRF. Because of these limitations it is in principle impos-

sible to distinguish two points in the process which are spaced by

less than a characteristic time, as well as to detect very small clus-

ters or avalanches whose size is smaller than the voxel dimensions.

Therefore, it is impossible to guarantee that all points and clus-

ters are included in the statistical analysis. However, since those

which may be left out have (by definition) the smallest contribu-

tions, results are unlikely to be affected by this limitation. Another

possible drawback of the method is that, while it yields more infor-

mation than other methods such as linear correlation, there is a

free parameter (threshold) to select. Nevertheless, in the Materi-

als and Methods section we show that results are robust against

different threshold choices.

3.7. SUMMING UP

Overall, the results show that the location and timing of the largest

BOLD fluctuations define a spatial point process containing sub-

stantial information of the underlying brain dynamics. Despite

the very large data reduction (>94%), the approach was vali-

dated by the favorable comparison of the conditional rate maps

of avalanching activity with those constructed with the full fMRI

BOLD signals using PICA as well by comparison with two distinct

pathophysiological conditions (resting state in CBP patients and a

finger tapping task). In addition to uncover new dynamical prop-

erties for the activated clusters, the method exposed scale-invariant

features conjectured in the past (Chialvo, 2010) which are identical

to those seen at smaller scales (Beggs and Plenz, 2003; Petermann

et al., 2009; Chialvo, 2010). For the first time, the order and control

parameters have been derived from human fMRI data allowing

the identification of a phase transition and the demonstration

that the resting brain spends most of the time near criticality.

Beyond its potential value for fMRI signal processing, the ability

of the present approach to capture relevant spatiotemporal brain
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dynamics underscoring non-linear aspects of the BOLD signal

deserves further exploration.

4. MATERIALS AND METHODS

4.1. fMRI DATA ACQUISITION AND PREPROCESSING

Data was obtained, after informed consent, from ten right-handed

healthy volunteers (9 female, 1 male; mean age = 49, SD = 12),

during 10 min, requested to keep their eyes closed and to avoid

falling asleep. The study was approved by the Clinical Research

Ethics Committee of the University of the Balearic Islands (Palma

de Mallorca, Spain). fMRI data acquisition was performed with

a GE Medical Systems Signa HDx 3 T scanner using echo-planar

sequences, 240 volumes were acquired with a TR of 2500 ms, TE of

35 ms, and 90˚ flip angle. Thirty-six slices of 64 × 64 dimensions

were obtained with a field of view of 200 mm and slice thickness

of 3 mm. Structural images consisted of a T1-weighted scans of

176 × 512 × 512 voxels, with a TR of 7176 ms, TE of 3150 ms, flip

angle of 12˚, FOV 240 mm and slice thickness of 1 mm. Preprocess-

ing of BOLD signal was performed using FMRIB Expert Analysis

Tool (Jezzard et al., 2001)2, including motion correction using

MCFLIRT, slice-timing correction using Fourier-space time series

phase-shifting, non-brain removal using BET and spatial smooth-

ing using a Gaussian kernel of full-width-half-maximum 5 mm.

Brain images were normalized to standard space with FLIRT using

the MNI 152 template and resampled to 4 mm × 4 mm × 4 mm

resolution. Resting functional data was filtered with a zero lag

finite impulse response band pass filter (0.01–0.1 Hz; Cordes et al.,

2000, 2001). fMRI data used for the Figures 2D,E, as well as the

preprocessing steps, were the same than in (Tagliazucchi et al.,

2010a) and (Tagliazucchi et al., 2010b). Melodic was used for the

PICA calculation of RSN (Beckmann and Smith, 2004) in Figure 2

as well as for denoising motion artifacts.

4.2. DEFINITION OF THE POINT PROCESS

The point process is defined by the sequences of time points at

which the BOLD signal crosses a given threshold from below.

Formally, the problem is defined in an autonomous system as

�̇x = f (�x), (1)

where the dot denotes time derivative and �x ∈ Rd . Let y = h(�x)

be a scalar observable function (such as the BOLD signal, for

instance) and consider the plot of y versus t. The times at which

y(t ) upward (or downward) crosses some predetermined thresh-

old y = yc determine a sequences of time points {tk}k=1,N which

defines the so-called point process (see Figure 5).

The Poincaré section of any given dynamical system reduces

a d-dimensional continuous time description into an associated

(d-1)-dimensional discrete map by finding the intersections of

trajectories in phase space with a surface S transverse to the flow.

If �xk ∈ S denotes the kth intersection of the trajectories with S, a

Poincaré map is defined as

�xk+1 = P(�xk). (2)

2http://www.fmrib.ox.ac.uk/fsl

FIGURE 5 | Example of a Poincaré section defined by successive

intersections of the trajectories in phase space with the plane denoted

as y = yc. The trajectory in phase space intersects the Poincaré section in

space coordinates �x
c

k
(tk ), which then can be used as a map of the

underlying dynamical process. Alternatively, a map can be defined by the

sequence of crossing times {tk}k=1,N if the conditions mentioned in the text

are fulfilled.

A sequence of crossing times may be taken as a Poincaré section

as representative as the typical phase space coordinates, when cer-

tain conditions are satisfied: Let �γ(�x0, t ) a solution of Eq.(1) in

an open interval I = |t 0, T | and let |�̇γ(�x0, t )| �= 0 for all t ∈ I. In

terms of the underlying dynamical system, this means that the

dynamics is not in a fixed-point or equilibrium of the system

(as one can assume for the BOLD signal and neural dynam-

ics in general). Under this condition, the arc-length, defined as

s(�x0, t ) =
∫ t

t0
|�̇γ(�x0, t ′)|dt ′, is a suitable observable in the sense of

embedding theory (Hegger and Kantz, 1997) and it is possible to

reconstruct the attractor of the system by measuring line segments

s̃(ti+1, ti) = s(�x0, ti+1) − s(�x0, ti).

The derivative of s with respect to t, ds
dt

= |�̇γ(�x0, t )| = |�f (�x)|,,
allows us to rewrite equation 1 as a set of differential equations in

s : d�x/ds = �f /|�f | and this gives the possibility to use the time t as

an usual variable, which is no longer the independent parameter

but an usual coordinate as the variable �x . Thus, the embedding

theorems also apply to time or properly defined time sequences

and it is possible to reconstruct the attractor (i.e., the full prop-

erties of the underlying dynamical system) from this sequence of

times (i.e., the point process), as discussed in Hegger and Kantz

(1997).

4.3. DECONVOLUTION PROCESS

The fMRI BOLD signal was de-convoluted using the

deconvlucy.m function from Matlab3. For the Hemodynamic

Response Function (HRF) standard parameters were those pro-

vided in the SPM8 package4. The deconvolution function follows

the Lucy-Richardson algorithm (Richardson, 1972; Lucy, 1974)

which converges to the maximum likelihood estimate of the

de-convoluted process assuming a Poissonian source of noise.

The results of the deconvolution, as in the example presented

in Figure 1C, are impulse-like signals, whose underlying neural

3http://www.mathworks.com
4http://www.fil.ion.ucl.ac.uk/spm/
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mechanisms are beyond the scope of the present work. Note that

the deconvolution of all voxel’s time series is in principle pos-

sible, however its numerical implementation is several orders of

magnitude less efficient than the simple thresholding used here.

4.4. CONDITIONAL RATE MAPS

To construct the conditional rates reported in Figure 2 the point

process is defined at a seed location and at the targets through-

out the entire brain. Figure 6 illustrates the basic procedure. The

BOLD signal is extracted from a seed region (top trace) and

the points (arrows and vertical dashed lines) are defined by the

crossings at 1 SD (horizontal dashed lines). Every time the sig-

nal at a target region crosses the threshold (asterisks) up to 2

time steps later than in the seed, the rate at the target is increased

in one unit. This rate is normalized by the number of points in

the seed. The top panel shows the location of the seed and of

the two example targets, as well as the resulting average condi-

tional rates maps (left) and DMN obtained from PICA (right).

Medium panels show the BOLD signal at the seed and at the

two example target regions. A similar procedure was used in

(Tagliazucchi et al., 2010b) where the resting BOLD event trig-

gered averages (rBeta) were calculated at similar seed and target

regions. Table 1 contains the seed coordinates used to reproduce

the RSNs.

4.5. CLUSTERS AND AVALANCHES

Spatial clusters of activated voxels were identified using an algo-

rithm implemented in MATLAB, based on the detection of

connected components in a co-activated first neighbors graph.

Clusters’ fractal dimension was calculated using a standard box-

counting algorithm. Avalanches were defined (similar as in sand-

pile models, and others (Bak, 1996; Jensen, 1998)) as starting with

the isolated activation (i.e., not by any of its neighbors) of a previ-

ously inactive voxel (or group of voxels), continuing while at least

one contiguous voxel is active in the next time step and otherwise

ends. The avalanche tracking algorithm implemented in this work

FIGURE 6 | Illustration of the basic procedure to calculate the conditional

rate maps presented in Figure 2. The r values on the right side of the traces

correspond to the conditional rates between the 14 events at the seed and

those at the two targets (1/2 and 1/7 in this example).
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uses as a criteria for avalanche membership the non-empty inter-

section with a previously identified cluster of the avalanche at a

previous time. This is able to resolve shrinking and expanding of

clusters, translation, and division, whenever there is spatial overlap

at subsequent times.

4.6. CLUSTER DETECTION ALGORITHM

To detect contiguous clusters of activated voxels (defined as those

crossing the threshold), for each time step, the problem was

reduced to the detection of connected components in a suitably

defined graph or network. More precisely, for each volume, a graph

was constructed having each voxel as a node, and two nodes con-

nected with a link if they were both activated (BOLD signal above

1 SD) and also first neighbors in the spatial sense. The connected

components of this graph correspond to clusters of contiguous

activated voxels isolated from other similarly defined clusters.

4.7. AVALANCHE DETECTION ALGORITHM

In simple terms an avalanche starts with the activation of a pre-

viously inactive voxel, follows while in the next time step at least

one contiguous voxels is active and otherwise ends. The avalanche

detection algorithm is based on the connected cluster decomposi-

tion. Clusters are followed during different volumes, belonging

to the same avalanche if they have spatial intersection during

consecutive times. Formally, the algorithm is as follows: Let C t
i

be the i-th cluster at time t. We consider a cluster i0 starting

an avalanche at time t 0 if for all j, C
t0−1
j ∩ C

t0
i0

= ∅(i.e., no

clusters were present in that region of the brain at the previ-

ous time step). An id is assigned to this avalanche and the same

id is assigned to all clusters intersecting this cluster at the fol-

lowing time, this is all clusters i such that C
t0
i0

∩ C
t0+1
i �= ∅.

The same procedure is applied recursively to all clusters satisfy-

ing the former condition until no more intersections are found.

When this happens, all clusters labeled with this id constitute the

avalanche.

ROBUSTNESS AGAINST THRESHOLD CHANGES

In this work, the only free parameter used in the definition of the

point process is the threshold. In this sense, it is important to know

how the main spatiotemporal statistical properties of the point

process dynamics, namely cluster size distributions, avalanche size

and duration distributions depend on threshold values. Figure 7

FIGURE 7 |The results are robust to changes in the threshold over a

reasonable range. (A) Shows the dependence of the number of points and

the average inter-event time (expressed in units of samples or scanning

volumes) for a range of threshold values (in units of SD). (B) Illustrates the

dependence of the correlations plotted in Figure 2C (correlations with PICA

DMN) with respect to the threshold values. (C) Shows the distribution of

cluster sizes and (D) the avalanche sizes and avalanche durations (inset) for

three different thresholds values (0, 1, and 2 SD).
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shows that these results are robust against changes in threshold

over a wide range of choices.

ACKNOWLEDGMENTS

Work supported by NIH (USA), CONICET (Argentina) PIP

0802/10 and the MCyT (Spain). Enzo Tagliazucchi was partially

funded by an Estímulo Fellowship (Universidad de Buenos

Aires, Argentina), by the Bundesministerium fur Bildung und

Forschung (grant 01 EV 0703) and LOEWE Neuronale Koordi-

nation Forschungsschwerpunkt Frankfurt (NeFF). The authors

thank Dr. P. Montoya (University of Isles Baleares, Mallorca, Spain)

for discussions and help in data acquisition.

REFERENCES

Aguirre, G. K., Zarahn, E., and

D’Esposito, M. (1998). The variabil-

ity of human BOLD hemodynamic

responses. Neuroimage 8, 360–369.

Allegrini, P., Paradisi, P., Menicucci,

D., and Gemignani, A. (2010).

Fractal complexity in spontaneous

EEG metastable-state transitions:

new vistas on integrated neural

dynamics. Front. Physiol. 1:128,

1–9.

Bak, P. (1996). How Nature Works: The

Science of Self-Organized Criticality.

New York: Copernicus Books.

Beckmann, C. F., DeLuca, M., Devlin, J.

T., and Smith, S. M. (2005). Inves-

tigations into resting-state connec-

tivity using independent component

analysis. Philos. Trans. R. Soc. Lond.

B Biol. Sci. 360, 1001–1013.

Beckmann, C. F., and Smith, S. M.

(2004). Probabilistic independent

component analysis for functional

magnetic resonance imaging. IEEE

Trans. Med. Imaging 23, 137–152.

Beggs, J. M., and Plenz, D. (2003). Neu-

ronal avalanches in neocortical cir-

cuits. J. Neurosci. 23, 11167–11177.

Castro, R., and Sauer, T. (1997). Correla-

tion dimension of attractors through

interspike intervals. Phys. Rev. E 55,

287–290.

Chialvo, D. R. (2010). Emergent com-

plex neural dynamics. Nat. Phys. 6,

744–750.

Contreras, D., and Steriade, M. (1995).

Cellular basis of EEG slow rhythms:

a study of dynamic corticothala-

mic relationships. J. Neurosci. 15,

604–622.

Cordes, D., Haughton, V. M., Arfanakis,

K., Carew, J. D., Turski, P. A., Moritz,

C. H., Quigley, M. A., and Meyerand,

M. E. (2001). Frequencies con-

tributing to functional connectivity

in the cerebral cortex in “resting-

state” data. Am. J. Neuroradiol. 22,

1326–1333.

Cordes, D., Haughton, V. M., Arfanakis,

K., Wendt, G. J., Turski, P. A.,

Moritz, C. H., Quigley, M. A., and

Meyerand, M. E. (2000). Mapping

functional related regions of brain

with functional connectivity MR

imaging. Am. J. Neuroradiol. 21,

1636–1644.

Cox, D. R., and Isham, V. (1980). Point

Processes. London: Chapman and

Hill.

de Arcangelis, L., and Herrmann, H.

J. (2010). Learning as a phenom-

enon occurring in a critical state.

Proc. Natl. Acad. Sci. U.S.A. 107,

3977–3981.

Deco, G., Jirsa, V., McIntosh, A. R.,

Sporns, O., and Kotter, R. (2009).

Key role of coupling, delay, and

noise in resting brain fluctuations.

Proc. Natl. Acad. Sci. U.S.A. 106,

10302–10307.

Expert, P., Lambiotte, R., Chialvo, D. R.,

Christensen, K., Jensen, H. J., Sharp,

D. J., and Turkheimer, F. (2011). Self-

similar correlation function in brain

resting state fMRI. J. R. Soc. Interface

8, 472–479.

Fox, M. D., and Raichle, M. E. (2007).

Spontaneous fluctuations in brain

activity observed with functional

magnetic resonance imaging. Nat.

Rev. Neurosci. 8, 700–711.

Fraiman, D., and Chialvo, D. R. (2010).

Optimal information-sharing in

brain resting state networks. arXiv:

1011.1192.

Friston, K. J., Fletcher, P., Josephs,

O., Holmes, A., Rugg, M. D.,

and Turnera, R. (1998). Event-

related fMRI: characterizing dif-

ferential responses. Neuroimage 7,

30–40.

Friston, K. J., Frith, C. D., Turner, R.,

and Frackowiak, R. S. J. (1995).

Characterizing evoked hemody-

namics with fMRI. Neuroimage 2,

157–165.

Grassberger, P., and Procaccia, I. (1983).

Measuring the strangeness of strange

attractors. Physica 9D, 189–208.

Greicius, M. D., Krasnow, B., Reiss, A.

L., and Menon,V. (2003). Functional

connectivity in the resting brain:

a network analysis of the default

mode hypothesis. Proc. Natl. Acad.

Sci. U.S.A. 100, 253–258.

Greicius, M. D., Srivastava, G., Reiss, A.

L., and Menon, V. (2004). Default-

mode network activity distinguishes

Alzheimer’s disease from healthy

aging: Evidence from functional

MRI. Proc. Natl. Acad. Sci. U.S.A.

101, 4637–4642.

Hegger, R., and Kantz, H. (1997).

Embedding of sequences of time

intervals. Europhys. Lett. 38,

267–272.

Jensen, H. J. (1998). Self-Organized

Criticality. Cambridge: Cambridge

University Press.

Jezzard, P., Mathews, P., and Smith,

S. M. (2001). Functional MRI: An

Introduction to Methods. New York:

Oxford University Press.

Kaplan, A. Y., Fingelkurts, A. A., Fin-

gelkurts, A. A., Borisov, S. V., and

Darkhovsky, B. S. (2005). Non-

stationary nature of the brain

activity as revealed by EEG/MEG:

methodological, practical and con-

ceptual challenges. Signal Process. 85,

2190–2212.

Kinouchi, O., and Copelli, M. (2006).

Optimal dynamical range of

excitable networks at criticality. Nat.

Phys. 2, 348–351.

Kitzbichler, M. G., Smith, M. L., Chris-

tensen, S. R., Bullmore, E. (2009).

Broadband criticality of human

brain network synchronization.

PLoS Comput. Biol. 5, e1000314.

doi:10.1371/journal.pcbi.1000314

Koenig, T., Prichep, L., Lehmann, D.,

Valdes Sosa, P., Braeker, E., Klein-

logel, H., Isenhart, R., and John,

E. R. (2002). Millisecond by mil-

lisecond, year by year: norma-

tive EEG microstates and devel-

opmental stages. Neuroimage 16,

41–48.

Lee, U., Mashour, G. A., Kim, S., Noh, G.

J., and Choie, B. M. (2009). Propo-

fol induction reduces the capac-

ity for neural information integra-

tion: implications for the mech-

anism of consciousness and gen-

eral anesthesia. Conscious. Cogn.18,

56–64.

Lucy, L. B. (1974). An iterative

technique for the rectification of

observed distributions. Astron. J. 79,

745–754.

Packard, N., Crutchfield, J., Farmer, J.

D., and Shaw, R. (1980). Geometry

from a time series. Phys. Rev. Lett.

45, 712–716.

Petermann, T., Thiagarajan, T. C.,

Lebedev, M. A., Nicolelis, M. A.

L., Chialvo, D. R., and Plenz,

D. (2009). Spontaneous cortical

activity in awake monkeys com-

posed of neuronal avalanches.

Proc. Natl. Acad. Sci. U.S.A. 106,

15921–15926.

Priesemann, V., Munk, M. H.,

and Wibral, M. (2009). Sub-

sampling effects in neuronal

avalanche distributions recorded

in vivo. BMC Neurosci. 10, 40.

doi:10.1186/1471-2202-10-40

Prigogine, I. (1962). Non-Equilibrium

Statistical Mechanics. New York:

Interscience Publishers.

Raichle, M. E. (2006). The brains dark

energy. Science 314, 1249–1250.

Richardson, W. H. (1972). Bayesian-

based iterative method of image

restoration. J. Opt. Soc. Am. 62,

55–59.

Rodriguez, E., George, N., Lachaux,

J. P., Martinerie, J., Renault, B.,

and Varela, F. J. (1999).Perception’s

shadow: long-distance synchroniza-

tion of human brain activity. Nature

397, 430–433.

Rolls, E. T, and Deco, G. (2010). The

Noisy Brain. London: Oxford Uni-

versity Press.

Roux, J. C., Rossi, J., Bachelart, S., and

Vidal, C. (1980). Representation of

a strange attractor from an exper-

imental study of turbulence. Phys.

Lett. A 77, 391–393.

Roux, J. C., and Swinney, H. (1981).

“Topology of chaos in a chemical

reaction,” in Nonlinear Phenomena

in Chemical Dynamics, eds C. Vidal

and A. Pacault (Berlin: Springer-

Verlag), 38–43.

Shew, W. L., Yang, H., Petermann,

T., Roy, R., and Plenz, D. (2009).

Neuronal avalanches imply maxi-

mum dynamic range in cortical net-

works at criticality. J. Neurosci. 24,

15595–15600.

Shew, W. L., Yang, H., Yu, S., Roy, R., and

Plenz, D. (2011). Information capac-

ity and transmission are maximized

in balanced cortical networks with

neuronal avalanches. J. Neurosci. 31,

55–63.

Smith, S. M., Fox, P. T., Miller, K. L.,

Glahn, D. C., Fox, P. M., Mackay,

C. E., Filippini, N., Watkins, K. E.,

Toro, R., Laird, A. R., and Beckmann,

C. F. (2009). Correspondence of the

brain’s functional architecture dur-

ing activation and rest. Proc. Natl.

Acad. Sci. U.S.A. 106, 13040–13405.

Sporns, O. (2010). Networks of the Brain.

London: MIT Press.

Sporns, O. (2011). The human connec-

tome: a complex network. Ann. N. Y.

Acad. Sci. 1224, 101–125.

Sporns, O., Tononi, G., and Kotter,

R. (2005). The human connec-

tome: a structural description of

the human brain. PLoS Comput.

Biol. 1, 245–251. doi:10.1371/jour-

nal.pcbi.0010042

www.frontiersin.org February 2012 | Volume 3 | Article 15 | 11

http://dx.doi.org/10.1371/journal.pcbi.1000314
http://dx.doi.org/10.1186/1471-2202-10-40
http://dx.doi.org/10.1371/journal.pcbi.0010042
http://www.frontiersin.org
http://www.frontiersin.org/Fractal_Physiology/archive


Tagliazucchi et al. Criticality in large-scale brain dynamics

Stauffer, D., and Aharony, A. (1992).

Introduction to Percolation Theory.

London: Taylor & Francis.

Steriade, M., McCormick, D. A., and

Sejnowski, T. J. (1993). Thalamo-

cortical oscillations in the sleep-

ing and aroused brain. Science 262,

679–685.

Steyn-Rose, S. A., and Steyn-Rose, M.

(eds). (2010). Modeling Phase Tran-

sitions in the Brain. New York, NY:

Springer.

Tagliazucchi, E., Balenzuela, P., Fraiman,

D., and Chialvo, D. R. (2010a). Brain

resting state is disrupted in chronic

back pain patients. Neurosci. Lett.

485, 26–31.

Tagliazucchi, E., Balenzuela, P., Fraiman,

D., Montoya, P., and Chialvo, D. R.

(2010b). Spontaneous BOLD event

triggered averages for estimating

functional connectivity at resting

state. Neurosci. Lett. 488, 158–163.

Tagliazucchi, E., and Chialvo,

D. R. (2011). The collective

brain is critical. arxiv: 1103.

2070v1.

Takens, F. (1980). “Dynamical systems

and turbulence, Warwick,” in Lec-

ture Notes in Math Vol. 898, eds D.

A. Rand and L.-S. Young (Berlin:

Springer-Verlag), 366–381.

Thiagarajan, T. C., Lebedev, M. A.,

Nicolelis, M. A., and Plenz, D.

(2010). Coherence potentials: loss-

less, all-or-none network events in

the cortex. PLoS Biol. 8, e1000278.

doi:10.1371/journal.pbio.1000278

Tononi, G. (2004). An informa-

tion integration theory of con-

sciousness. BMC Neurosci. 5, 42.

doi:10.1186/1471-2202-5-42

Tononi, G., Sporns, O., and Edelman,

G. M. (1994). A measure for brain

complexity: relating functional seg-

regation and integration in the ner-

vous system. Proc. Natl. Acad. Sci.

U.S.A. 5033–5037.

Traub, R. D., Miles, R., and Wong, R.

K. (1989). Model of the origin of

rhythmic population oscillations in

the hippocampal slice. Science 243,

1319–1325.

Tsang, I. R., and Tsang, I. J. (1999). Clus-

ter size diversity, percolation and

complex systems. Phys. Rev. E. 60,

2684–2698.

Van De Ville, D., Britz, J., and Michel,

C. M. (2010). EEG microstate

sequences in healthy humans at

rest reveal scale-free dynamics.

Proc. Natl. Acad. Sci. U.S.A. 107,

18179–18184.

Vedel Jensen, E. B., and Thorarinsdot-

tir, T. L. (2007). A spatio-temporal

model for functional magnetic res-

onance imaging data with a view to

resting state networks. Scand. J. Stat.

34, 587–614.

Conflict of Interest Statement: The

authors declare that the research was

conducted in the absence of any

commercial or financial relationships

that could be construed as a potential

conflict of interest.

Received: 12 December 2011; paper pend-

ing published: 04 January 2012; accepted:

23 January 2012; published online: 08

February 2012.

Citation: Tagliazucchi E, Balenzuela, P,

Fraiman D and Chialvo DR (2012)

Criticality in large-scale brain fMRI

dynamics unveiled by a novel point

process analysis. Front. Physio. 3:15. doi:

10.3389/fphys.2012.00015

This article was submitted to Frontiers in

Fractal Physiology, a specialty of Frontiers

in Physiology.

Copyright © 2012 Tagliazucchi, Balen-

zuela,, Fraiman and Chialvo. This is an

open-access article distributed under the

terms of the Creative Commons Attribu-

tion Non Commercial License, which per-

mits non-commercial use, distribution,

and reproduction in other forums, pro-

vided the original authors and source are

credited.

Frontiers in Physiology | Fractal Physiology February 2012 | Volume 3 | Article 15 | 12

http://dx.doi.org/10.1371/journal.pbio.1000278
http://dx.doi.org/10.1186/1471-2202-5-42
http://dx.doi.org/10.3389/fphys.2012.00015
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Fractal_Physiology
http://www.frontiersin.org/Fractal_Physiology/archive

	Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis
	Introduction
	Results
	Resting state networks and activation maps can be derived from a few points
	A phase transition in the dynamics of the active clusters
	Activity spread is scale-free

	Discussion
	Why few points suffice?
	Scale-invariant brain dynamics is made up of avalanches
	Synchrony does not always implies order
	Ad hoc noise vs. non-equilibrium dynamics
	Relation with other scales
	Limitations of the approach
	Summing up

	Materials and Methods
	fMRI data acquisition and preprocessing
	Definition of the Point Process
	Deconvolution process
	Conditional rate maps
	Clusters and avalanches
	Cluster detection algorithm
	Avalanche detection algorithm
	Robustness against threshold changes

	Acknowledgments
	References


