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Abstract 

A physically based mean-field theory of criticality and phase separation in the restricted 

primitive model of an electrolyte (hard spheres of diameter a carrying charges + q) is developed 

on the basis of the Debye-Hiickel (DH) approach. Simple DH theory yields a critical point at 

T *  - kBTa/q 2 = 1/16, which is only about 15% above the best recent simulation estimates 

(Tc,si m = 0.052-0.056) but a critical density p* =- pea 3 = 1/64~z - 0.005 that is much too small 

(Pc.sam - 0.023 0.035). Allowing for hard-core exclusion effects reduces these values slightly. 

However, correction of the DH linearization of the Poisson-Boltzmann equation by including 

pairin9 of + and - charges improves p* significantly. Bjerrum's theory of the (required) 

association constant is revisited critically; Ebeling's reformulation is strongly endorsed but 

makes negligible numerical difference at criticality and below. The nature and size of the 

associated, dipolar ion pairs is examined quantitatively and their solvation free-energy in the 

residual fluid of free ions is calculated on the basis of DH theory. This contribution to the total 

free energy proves crucial and leads to a rather satisfactory description of the critical region. 

The temperature variation of the vapor pressure and of the density of neutral dipolar pairs 

correlates fairly well with Gillan's numerical cluster analysis. Possible improvements to allow 

for larger ion clusters and to better represent the denser ionic liquid below criticality are 

discussed. Finally, the replacement of the DH approximation for the ionic free energy by the 

mean spherical approximation is studied. Reasonable critical densities are generated but the 

MSA critical temperatures are all 40-50% too high; in addition, the predicted density of neutral 

clusters seems much too low near criticality and, along with the vapor pressure, appears to 

decrease too rapidly by an exponential factor below T c. 

1. Introduction and overview 

The  theory  of ionic systems has  a long h is tory  going back  to the n ineteenth  century.  

A m a j o r  advance  in unders tand ing ,  pa r t i cu la r ly  in regard  to solu t ions  of s t rong 

electrolytes ,  was achieved by D e b y e  and  Htickel  (DH) whose fundamen ta l  papers  
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were published over 70 years ago. Our main concern here will be with the equilibrium 

thermodynamic properties which, at low densities, rest primarily on the DH discovery 

of screening by counterions [1]. (For good modern accounts of the theory see 

Falkenhagen and Ebeling [2] and McQuarrie [3].) The so-called DH limiting laws, 

which are universally valid at low densities, being independent of the size and 

structure of the ions, etc., are widely appreciated: less well recognized, however, is that 

the.full DH theory [1-3] makes allowance for the finite sizes of the ions which are 

modelled, as we will do here, by hard spheres of uniform diameter a. 

Indeed, one of our present purposes is to demonstrate that the full DH theory has 

merits unsuspected until very recently E4 6], in that it predicts gas-liquid phase 

separation and an associated critical point. Indeed, when supplemented by Bjerrum's 

[7] important concept of ion-pairing [2, 8-12] introduced only three years after the 

DH theory, the critical parameters are found to agree surprisingly well [4 6, 10, 11] 

with the best recent Monte Carlo estimates for the restricted primitive model (RPM) in 

which, in a medium of dielectric constant D, half the hard spheres carry charges + q 

and a half charges - q  [5, 6, 13-17]. Nevertheless, as we show below, further specific 

physical ingredients must be incorporated in the theory in order to obtain a fully 

reasonable account of the phase separation and critical point at a first, mean-field 

type, level of approximation [5, 6]. 

A fresh impetus for the study of criticality in electrolytes has resulted from 

recent work by Pitzer and collaborators [18, 19]. They found that the critical 

behavior of a number of organic salts in appropriate solvents, most notably, tri- 

ethyl-n-hexylammonium triethyl-n-hexylboride (C2H 5 )3C6 H 13 N + (C2 H 5 )3 C6  H 13 B - 

in diphenyl ether, (C6H5)20 , appeared to be closely classical (or van der Waals-like) 

with a critical exponent [19] fl -~ 1/2, and, in subsequent experiments [20, 2l], 7 -~ 1 

and v --~ 1/2. This is in contradiction to the expected Ising-type values [6]/3 -~ 0.32, 

7' -~ 1.24, v ~- 0.63 which, however, do satisfactorily characterize other electrolytes 

such as tetrapentyl ammonium bromide, (CsHll)4N+Br -, in water [22] and 

nonaqueous solutions of other salts [23]. Overviews of the experimental situation 

have been presented [ 18, 24, 25]: two seemingly distinct classes of ionic solution exist 

which have been termed solvophobic and Coulombic, respectively. In the former, 

typically characterized by large solvent dielectric constants, the phase separation is 

mainly driven, as in ordinary nonelectrolyte solutions, by the "dislike" of the ionizable 

solute for the solvent. The principal interactions are of short range and standard Ising 

critical exponents are observed. By contrast, in Coulombic systems appropriate 

solvents of low dielectric constant allow strong electrostatic interactions to drive the 

phase separation. (In a chemical setting one always has in mind energy scales set by 

room temperature but must note that the product, DkBT is the relevant 

corresponding-states parameter for electrolytes [9, 12].) The dominating Coulombic 

forces evidently yield near-classical critical behavior. 

The theoretical issues raised by this observational dichotomy and previous 

arguments pertaining to it [26], have been reviewed recently [6, 27]. It is certainly 

conceivable that the special long-range attractive/repulsive nature of the Coulombic 
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interionic forces leads to a universality class of critical behavior which is truly 

n o n I s i n g  in nature [6]. Establishing that represents a prime theoretical challenge. On 

the other hand [6], it seems more likely at this juncture that the true asymptotic 

critical behavior when t =- ( T  - T c ) / T c  --~ 0 is always of Ising character but that 

a c r o s s o v e r  from nonasymptotic, close-to-classical behavior occurs on a scale 

t× - IT× - Tc ] /Tc  that, in the Coulombic systems, is too small to be experimentally 

accessible [5, 6]. This viewpoint is supported experimentally by the sodium-ammonia 

systems [28] which seem to be described by such a scenario with t× -~ 0.6 x 10 - 2 .  

More recent experiments in which the dielectric constant of the solvent is "tuned" [-23] 

also suggest values of t× -~ 10 -3 to 10 - 2 .  If, however, this is the correct conclusion, 

a good theoretical justification is needed a n d  a satisfactory theory must clearly yield 

an understanding of why t× can be as small as ~ 10 - 4  for systems like Pitzer's salt 

[19,21]. Examination of the data [23,28] also suggests that such Coulombic, 

classical-to-Ising crossovers may be significantly sharper  than those expected on the 

basis of previous renormalization group crossover calculations [29, 30]; if sustained, 

that feature also would demand explanation. 

In approaching these theoretical challenges the renormalization group (RG) 

approach naturally comes to mind because of its successes in resolving many different 

classes of criticality and multicriticality, particularly in magnetic systems [31]. 

However, in most cases such RG analyses have been founded on mean-field-based 

Landau-Ginzburg Wilson effective Hamiltonians which, it could normally be 

argued, incorporated all the most essential physical degrees of freedom and the 

couplings between them. The adequacy of such underlying mean-field theories can 

normally be gauged by their characterization of the phases arising and the principal 

transitions they undergo [-32], as well as by the resulting estimates of critical 

temperatures, etc., which are typically correct to within, say, 20 to 30%. The original 

van der Waals theory for criticality in ordinary molecular fluids with (comparatively) 

short-range interactions provides a prime example of such a mean-field theory: both 

reduced critical temperature and density are well represented. Of course, mean-field 

theories almost invariably predict classical critical exponents owing to their neglect or 

inadequate treatment of fluctuations: but that is what an RG treatment aims to 

correct (below the upper critical dimensionality). 

Our first aim, therefore [-5, 6], has been to uncover a simple mean-field-type 

treatment of, in particular, the restricted primitive model in the hope of shedding light 

on the essential physical mechanisms leading to phase separation and criticality in 

Coulombic systems. While the relative accuracy of our critical-point predictions will 

be of interest as an overall gauge of reliability, we stress that the transparent 

elucidation of the various physical effects and their comparative importance is 

a primary objective. It is, perhaps, appropriate to remark that, for the present 

purposes, the stress on the hypernetted chain (HNC) integral equation for electrolytes 

found in much of the literature, is inappropriate since it is now clear (although perhaps 

not as widely appreciated as it should be) that these and other integral equations (PY, 

YBG, etc.) give accounts of the correlation functions and derived thermodynamics in 
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the critical region that are quite pathological (unlike van der Waals or similar 

mean-field theories) [33]. The mathematical reasons for the unphysical behavior in 

the critical region are, at present, almost totally obscure [33]. Thus we personally 

cannot regard the current standard integral equation formulations as in any way 

physically transparant or truly informative. 

The balance of this article is organized as follows: Section 2 first sets out in 

systematic fashion a variational formulation of multicomponent thermodynamics for 

chemically reacting fluids that is suitable for deriving quite general [34] 

mean-field-type approximations. This is needed because, in addition to the two species 

of positive and negative ions, the theories to be developed invoke distinct bound 

species, in particular, neutral dipolar pairs in chemical equilibrium with the 

dissociated or free ions. Beyond the ideal gas terms for each species, various simple 

approximate representations of the multicomponent hard-core ion ion, and 

ion cluster interactions are briefly discussed [35, 36]. 

The restricted primitive model for ionic fluids is taken up in Section 3 and current 

estimates of its critical parameters are summarized [14 17,37]. The full 

Debye-Hi, ickel theory, which is "linearized" and allows for the hard-core ion ion 

exclusion [1-3,38], is recapitulated concisely for subsequent reference and 

development. Section 4 demonstrates the existence of a critical point and the 

associated coexisting fluid phases [4, 5]: see Fig. 1, below. The properties of the phase 

boundaries and the critical behavior, which is fully classical, are elucidated in detail 

[5]. The effects of supplementing the pure DH theory with hard-core terms in the total 

free energy are looked at in Section 4.3. 

Bjerrum's proposal [7] of allowing for ideal neutral dipole ion pairs is studied in 

Section 5 accepting, in the first instance, his original ansatz for the association 

constant, K(T), which plays a vital role. The critical temperature and inverse Debye 

length ~,'c are unchanged from pure DH theory but the critical density becomes more 

realistic [4, 5]; however, the coexistence curve assumes an unphysical "'banana" shape 

[5, 45]: see Fig. 2, below. Inclusion of hard-core terms (Section 5.3) makes matters 

worse! The "physical origin" of ionic phase separation is discussed in Section 5.4 

[49 51]. 

The appropriate assignment of the association constant K(T ) is critically reviewed 

in Section 6 and Ebeling's theory [2, 8, 11, 46, 47, 53--60] is endorsed [5]; in the 

critical region and below, however, Ebeling's expression for K (T) differs in magnitude 

negligibly from Bjerrum's ansatz [5]. The specific nature of dipolar ionic clusters at 

low temperatures is considered in some detail in Section 6: see Fig. 4 below [61]. On 

this basis the solvation free energy of a dipolar pair in the sea of free ions is analyzed in 

Section 7 using the DH theory [5, 48, 62]. This dipole-ionic (DI) contribution to the 

total ionic free energy, ignored by Bjerrum and subsequent workers, proves crucial to 

the proper incorporation of dipolar clusters in the theory [5]. Indeed, as shown in 

Section 8, the resulting DHBjDI and DHBjDIHC theories, (the latter with hard-core 

terms included) give an account of the critical region in the RPM that, judging by 

Monte Carlo studies [5, 6, 13 17], is encouragingly good: see Figs. 6 and 7, below. It 
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does appear that all the dominant physical effects are sensibly represented in the 

theory. Beyond the thermodynamic properties, the densities of bound ionic clusters in 

the near-critical vapor, which is discussed in Section 8.3, also seem to correlate well 

with Gillan's explicit cluster calculations (for somewhat lower temperatures) 

[9, 17 (c), 44]. 

An analysis of the low-temperature coexistence curves within DHBjDI theory is 

given in Appendix A. Physically, however, association into larger neutral and charged 

clusters becomes important at lower temperatures in the vapor [12, 44]. How this may 

be incorporated into the theory is discussed briefly in Section 8.4, while Appendix 

B addresses tentatively the estimation of the association constants for higher-order 

clusters. When T drops below Tc the liquid density at coexistence increases very 

rapidly: the task of providing a physically accurate account of this feature of the phase 

behavior is beyond the main scope of the present work; nevertheless a few remarks are 

made in Section 8.5. 

For d = 3 dimensions it is well known that the mean spherical approximation 

(MSA) can be solved exactly for the RPM [63, 64]. This has attracted the attention of 

many workers who, the literature suggests, have preferred it to DH theory. For 

completeness, therefore, we present in Section 9 (following, in fact, earlier work by 

Ebeling and Grigo [11, 42]) an account of results for criticality, coexistence, etc., that 

follow by using the MSA expression for the ionic free energy in place of DH theory 

[72, 73]. For reasons that are not obvious but which we attribute to its more formal 

and less physical theoretical basis, the MSA seems to provide a significantly poorer 

description of the critical region and of the vapor and cluster formation. (As regards 

the HNC and other integral equations, recall our remarks above [33].) 

Finally, we reemphasize that although the DH-based (and MSA-based) theories 

automatically provide classical critical exponents and, indeed, full Landau or van der 

Waals critical behavior, this result, of itself, has no bearin 9 at all on the observations of 

Pitzer and subsequent experimentalists [6,18-25,28] revealing classical or 

close-to-classical exponents in real electrolyte solutions. To attack that issue 

theoretically it is essential, as mentioned, to address the statistical mechanics of the 

density fluctuations and the related correlation functions [6, 27]. In particular, if one 

knew the density density correlation length, ~(T,p), one could, in a first approach, 

employ the Ginzburg criterion [5,65] to gauge closeness to classical behavior. 

A tentative estimate made by the present authors [5], seems to indicate, however, that 

little if any insight can be gained by that route. But we leave further investigation of 

the density fluctuations and that battle plan for subsequent work [66, 67]. 

2. Multicomponent thermodynamics: variational formulation 

The thermodynamics of multicomponent fluid systems is a long-established 

discipline and allowance for chemical equilibria between various species presents no 

difficulties in principle. However, we have not found at hand a general exposition 
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convenient for developing mean-field type approximations (and we have come across 

seeming confusion in the literature concerning van der Waals loops, "wiggles", etc. in 

various plots). Accordingly, it seems useful to state the fundamentals systematically in 

the form in which we will use them; this also provides a basis for explaining our 

notation and general approach. 

To this end, consider a system of distinct chemical species, A, B . . . . .  J . . . .  which 

might be atoms, molecules, ions, ion pairs, clusters, etc.) with chemical potentials lla, 

lib, ... ,]d), ... and number densities Pa ~ N A / V ,  Pb =- NR/V ,  ... ,Dj ~ N j / V ,  with 

V the total volume and N j  the number of entities of species J. The pressure 

p(T;/ ta ,  ~b . . . .  ) is an appropriate thermodynamic potential from which all properties 

follow, as usual, via 

p i = \a~s/r , .  ~ ~ = ~ - ~  ,,, 

where S is the total entropy. The phase space ( Y ; / Z a , / t b ,  . . .  ) is divided up into 

single-phase regions by phase-boundary "surfaces" (submanifolds of codimension 

unity) on which distinct phases can coexist. Equilibrium under a chemical reaction, 

say, 

VAA + vBB + . . . .  vxX + vvY + "'" , (2.2) 

with stoichiometric coefficients VA, etc., is ensured by imposing 

Va/~a + VBVb + . . . .  VX/~x + VV~y + "'" • (2.3) 

This amounts to selecting a "plane" (linear subspace of codimension unity) within the 

full phase space. 

Now approximate, microscopic, or semimicroscopic descriptions of physical 

systems are most naturally formulated in terms of local densities (or suitable local 

"order parameters"). The corresponding thermodynamic potential is then the total 

Helmholtz free energy, F ( T ;  NA, NB . . . .  ; V ) ,  with differential relation 

d F  = - S d T  - p d V  + ~ i~jdNs . (2.4) 
J 

In the thermodynamic limit it is convenient to define the reduced Helmholtz 

free-energy density 

f ( T ; pa, Pb . . . .  ) =- f /ka T = - F / V  kB T . (2.5) 

Then, via the second law, we find that the pressure is given by the variational 

expression 

f i ( T ;  , t /a,  ~ b  . . . .  ) = m a x ( f ( T ; p a , P b  {PJ} . . . .  )~-~.jfijDj), . (2.6) 

where, for convenience and brevity, we use 

fi = tip, fij =- fll~j, fl = 1 / k , T .  (2.7) 
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Now note that multiple (extremal) solutions { P j } j = I , 2  . . . . .  of the maximization 

problem for fixed T and {pj} correspond to the existence of two (or more) potentially 

coexisting phases. Given f ( T ;  Pa, Pb, ... ), such solutions may be found (in principle 

and, in practice, numerically) by plotting p versus the chemical potentials pj 

parametrically using the relation 

fij(T; p,, Pb, -.. ) = -- (~fl~P;),,k, (2.8) 

which follow directly from (2.6) as well as from (2.4). The equality of pressure, 

temperature, and chemical potentials for different densities corresponds to 

intersections of different branches of the p ( T ; ~  . . . . .  ) surface and yields the phase 

boundaries. (There is, of course, no necessity for any "equal areas" or Maxwell 

construction and, indeed, the associated van der Waals loops need not and, in some 

interesting cases [34], will not exist.) 

Our aim now is to construct f ( T ;  Pa, ".. ) approximately as a sum of terms each 

embodying contributions from specific degrees of freedom and appropriate physical 

mechanisms. First, for each species, J, there will be an ideal-gas term 

--ld Y f j  ( ; p j )  = pj -- pj ln[pjA~Jd/~j(T)] (2.9) 

where (j(T) represents the internal configurational partition function, for the species 

J [5]. In order to specify precisely the kinetic energy contributions embodied in the 

overall or mean thermal de Broglie wavelength 

Aj(T ) = h/x/(2nrhjka T ),  (2.10) 

we assume classical statistical mechanics in d spatial dimensions: for essentially all 

chemical applications near and above room temperature this will be fully adequate. 

Furthermore, in the absence of chemical reactions the assumption has essentially no 

operational significance for us. It does, however, have some effect in the discussion of 

association constants for chemical reactions as we comment below. Accepting 

classical mechanics and performing the momentum integrals separately for each of the 

kj particles of masses mjl associated with a single J entity, shows that the average mass 

n~j in (2.10) is just the geometric mean, (m jl m j2 ... m~kj) 1/kj [5]. 

Next we wish to represent the short-range repulsive or "hard core" interactions 

between the various species. Near close-packing constructing an accurate expression 

for f n c  obviously poses a profound problem. However, we will be concerned mainly 

with low densities, say P/Pmax ~ 0.4, SO that a variety of reasonable approximations are 

available. The simplest is the familiar free-volume approximation 

which derives (see below) from 
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The free-volume form is generally valid near close packing [35] and with Bj = v j the 

"volume" occupied by a particle of species J it is exact for d = 1. More generally one 

may (a) set Bj = 1/pj . . . .  or (b) choose the Bj to obtain the correct, high-T diagonal 

second virial coefficients noting that (2.11) predicts B~ 2) = Bi, B~ f) = Bi + Bj for the 

general second virial coefficients. For reference below recall that for spheres of 

diameter a the values 

Bj/a 3 = l /x /2  _~ 0.7071, 4 / 3 x ~  ~ 0.7698, l, 2 _~ 2.0944, (2.13) 

correspond, respectively, to fcc, bcc, and sc packings, and to the exact (d = 3) second 

virial coefficient. 

For  our present purposes these alternatives will suffice to indicate the role of 

hard-core repulsions since the densities of most interest will be quite low (P/Pm~x <~ O. l). 

We remark, nevertheless, that the form 

.fnc= ~ B ~ Z , p i p , [ l n ( l _ ~ b k P k ] / ~ b k p k ]  (2.14) 
(i. jl L \ - -  - - k  / /  k d 

incorporates the correct second virial coefficients and if one takes, say, bj = 1/p i . . . . .  

approximates those of higher order in free-volume fashion. Beyond that, for a few 

species representable by hard spheres, one has analytic forms [35] tested by 

simulation, like the well known Percus-Yevick equation of state for hard spheres 

[11], from which the approximate expressions for f n c  follow by integration via 

1 

0 

Finally, one might use exact virial coefficients, as far as known, and extend the series 

for/~ by Pad~ or partial differential approximants [36]. 

In the absence of crystallization or other high density phase transitions built into 

the chosen Hc f , no phase changes or criticality follow from f ~ f ~ d  +fHc.  Attractive 

forces between neutral atoms or molecules are most simply introduced, following van 

der Waals, by including second virial terms of the form 

f 2 v =  ~ Ajkp~pk/T, (2.16) 
{j,k) 

with fixed, positive Ark. In the Kac-Baker  limit of infinitely weak, infinitely 

long-ranged attractive potentials this represents an exact expression and the 

combination f ld  + f n c  + f 2 v  yields the standard van der Waals theory and its 

many-component extensions. As remarked in the introduction, such approximate 

theories have been remarkably successful at the qualitative and semiquantitative 

levels. 

To proceed further for electrolytes we evidently need an expression for f l o .  the 

excess free energy arising from the ionic interactions. For  this we turn to DH theory. 
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3. Debye-Hiickel theory for the RPM 

For convenience let us restate briefly the definition of the restricted primitive model 

as employed by Debye and Hiickel. A total of N hard spherical ions, each of diameter 

a, specify the overa l l  d e n s i t y  and r e d u c e d  d e n s i t y  

p = N / V ,  p* - p a  d , (3.1) 

where, henceforth, we consider only dimensionality d = 3. (For general d see Ref. 

[34].) Each ion i carries a charge ql taking only the values of +q  in the restricted 

model; overall electroneutrality is always assumed. We will use 

P l = P +  + P -  (3.2) 

1 
to denote the density of f r e e  ions (with, of course, p+ = p_ = ~Pl). In pure DH 

theory there is no allowance for ion pairing, etc., so one has P l = P, although more 

generally Pl < P. The potential of interaction between two ions at separation r is 

( P i j ( r ) =  + oo ,  r < a ,  

= q i q j / D r ,  r >i a .  (3.3) 

which sets the energy scale and thence the reduced temperature 

T * = kBT/lq)~j(a)[  = k B T D a / q  2 • (3.4) 

Classically, as explained, the masses, m j ,  of the ions play no role. 

From a rigorous viewpoint it is by no means certain that the RPM actually has 

a gas-liquid transition. However, the analogy with real molten salts like KC1 and 

NaC1 [9, 12, 18], and the improving quality of the simulations [5, 6, 13 16] makes 

a transition highly plausible (for d >~ 3). Indeed, the current numerical evidence 

suggests [17] that the critical point lies in the range 

T *  = 0.052 0.056, p* = 0.023-0.035. (3.5) 

The critical osmotic coefficient is appreciably less studied but probably lies in the 

range 

Z c  - pc /pc k B  T = 0.08-0.10, (3.6) 

or l ower  [4(b), 12, 37]. 

The DH theory [1-3],  which we will recapitulate briefly for reference, employs the 

subsequently widely applied mean-field idea of examining one statistical element, in 

this case the ith ion J l ,  interacting with its neighbors in an averaged manner. It 

appears to differ, however, from other mean-field theories, particularly those 

developed for lattice systems, that enjoy a rather direct variational characterization 

(so that they provide rigorous upper bounds for the true free-energy) or which, as in 

the Bethe lattice or Kac-Baker  infinite-range limits, can be shown to be exact for 

particular models or limiting circumstances. Such formulations of DH theory, and/or 

its extensions would be valuable. In default of such results we proceed traditionally. If 
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@i({qj}; T, { Pk }) is the mean electrostatic potential at ion .-¢i due to the population of 

other ions (in a canonical ensemble specified by T and the species densities { pk }) the 

ionic contribution to the total free energy is given exactly by the DH charging process 

as [2, 3] 

1 

F (T,{pk})= qi di tOl({2qj};  T , {pk} ) .  (3.7) 

o 

Note that the self-energy of the ions is not included. 

The theory then aims to obtain an approximation for O~ by considering the 

electrostatic potential ~b(r) in the neighborhood of J ; .  By the hard-core conditions 

other ions are excluded from the sphere Iv] < a centered o n  -~ffi. Thus ~b(r) satisfies 

Laplace's equation with spherically symmetric average solution 

~(r) = qi/Dr + ~9i, for r < a .  (3.8) 

Outside the exclusion sphere, which is an essential feature of DH theory, the pair 

correlation functions g + + ( r ) =  9 _(r) and 9+ (r) specify the mean charge 

distributions. In DH theory these are approximated by Boltzmann factors leading to 

the expression 

pq(r) = ~ Pkqk exp [ -- flqkdptr)] . (3.9) 
k 

for the mean charge density. Substitution in Poisson's equation, V2~b = - 4rcpq/D, 

yields the Poisson-Boltzmann (PB) equation. As a second approximation, 

linearization yields, with the aid of electroneutrality, 

V2~b = /£2(~ , (3.10) 

with inverse squared Debye length given generally by 

K2(T,{pk}) 4rc~ 2 = pkqk /DkBT ,  (3.11) 
k 

so that for present purposes we have 

K2a 2 = 4~flq2pl/D = 4~zp* / T  * (3.12) 

Apart from the consequent technical simplifications, linearizing the PB equation is 

significant since it ensures the satisfaction of important electrostatic self-consistency 

conditions [3, 38]. At low temperatures, however, the approximation entailed, 

namely, sinh(flq~0) ~ flq~o, is serious for nearby, oppositely charged ions, i.e., when 

exp(flq2/Da) = e l/T* is large. 

A different approach to deriving the PB equation is by reformulating the ionic fluid 

problem in terms of a field theory. A corresponding mean field theory is then 

generated by the saddle-point approximation to the full field theory. Indeed, it is well 

known that a Coulomb gas without a hard core is equivalent to a sine-Gordon field 
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theory [39]. The PB equation for the potential of mean force, ~b(r), is precisely 

equivalent to the sine-Gordon saddle point with the field analytically continued to 

pure imaginary values. However, this formal approach obscures significant physical 

insights accessible from DH theory. In particular, it is unclear how to incorporate the 

hard cores of the RPM in an effective fashion in contrast to the naturalness of DH 

theory. 

In solving the DH equation one must require that both ~b(r) and the electric field 

-V~b be continuous across the exclusion sphere Irl = a and that ~b(r) vanishes as 

r ~ oo [2, 3]. In the exterior region, r > a, one obtains the well-known screened 

potential 

~b(r) = qOOca) e ~r/Dr, ~(x) = e~/(1 + x); (3.13) 

for r < a the form (3.8) results with 

~i (q;  T ,  p l )  : --  q•/D(1 + tea). (3.14) 

Implementation of the DH charging process embodied in (3.7) finally yields the DH 

approximation for fIon, namely [1 3], 

= 1 (Ka)2]/41ra3 fDn [ln(1 + tea) -- ~ca + 

= (~:3/127r) [1 -~3 ~ca + 3 (~ca)2 + ... ] .  (3.15) 

The original DH theory [1] amounts to the assertion f ~ f l d  + f o u .  This is now 

known [2, 3] to be correct to leading order in xa as p ~ 0, the so-called DH limiting 

laws resulting from retaining only (x3/12~) in (3.15). Errors must arise at next order, 

(tea) 4 ~ /9  2, if only because the loss of phase volume due to the hard-core repulsions is 

not accounted for; but, as indicated, accuracy must also be lost when (Ka)3e Ur* is 

large. Awareness of these limitations [2, 3, 9, 12], is probably what held earlier 

workers back from studying the implications of DH theory for phase coexistence, to 

which we now turn. It must be noted, nevertheless, that experience shows that 

physically well founded mean-field theories for three-dimensional systems typically 

exhibit a qualitative and even semiquantitative, validity going significantly beyond 

their formal level of accuracy. 

4. RPM coexistence within Debye-Hiickel theory 

4.1. Preliminaries 

1 
To analyze the DH result (3.15) recall first that we have p + = p = ~Pl and so, 

correspondingly, 

/2+ =/2 =/21, 15 = max [ f ( T ; p l )  + f t , p l ]  • (4.1) 
P I 



E Levin, M.E. Fisker/Physica A 225 t1996) 164220 175 

Then, combining the ideal-gas terms for cations and anions, the pure DH 

approximat ion  is 

--DH 
f ( T ,  px) = 2 f ' d ( T , ½ P l )  + f (T, p l ) ,  (4.2) 

where, at this stage, we also have Pt = P, and Ill = It. It is convenient  here and below 

to put 

x = ~ca with p~' = x 2 T * / 4 ~ .  (4.3) 

Then, with A +  = A _  = A I ( T )  and ~ + = ~_ = 1, the chemical potential is given by 

the well known results [2, 3] 

In ), + -= fil - fi~d = _ x / 2 T * ( I  + x),  (4.4) 

fi]d = In (xZT *) + ln(A 3 /8zca3) , (4.5) 

while the relation for the pressure can be written 

p* = 47ra3p = x 2 T  * + ln(1 + x) - x + ½x2/(1 + x).  (4.6) 

4.2. Criticality and coexistence 

To discuss the possibility of criticality, consider the isothermal compressibility Kr: 

one finds 

1 ~fi x 
= 1 (4.7) 

p k B T K . r -  Pl ~Pl 4T*(1  + x) 2" 

Equat ing 1/KT, to zero specifies the spinodals: Ps + (T).  One easily sees that there are 

two real roots, x~+ (T ) ,~xc ,  whenever T < To, where 

x~ = t%a = 1, T*  = 1/16. (4.8) 

This locates the critical point  and yields 

p* = 1/647z = 0.0049736, 

Zc - p~/pckBT~ = 16 In 2 - 11 = 0.090355 . (4.9) 

The two sides of the coexistence curve, p / ( T )  and pv(T), are bounded  above and 

below by the spinodals following from (4.7). The spinodal curve is evidently parabolic 

th rough  the critical point  and may be expanded in powers of  the critical point  

deviations 

t = (T  -- Tc)/T~, m = (p -- pc)/p~, (4.10) 

in the form 

m~ + ( T )  = rhs(T) +_ Bs]t]l/2[1 + O ( t ) ] ,  (4.11) 
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with critical ampl i tude  Bs = 4 and d iameter  n~s(T) = - 7t + O ( t 2 ) .  At low tempera-  

tures, on the liquid and  vapo r  sides, one finds 

Ps+/P¢ .~ 1/T*, G + a  -~ 1 / 4 T * .  (4.12) 

ps_/p¢~l~(T/Tc)  3, K~ a ~ 4 T * ,  (4.13) 

The  coexistence curve can be expanded  similarly as 

m+_ (T) = rfi(T) + Blt]l/2[1 + O ( t ) ] ,  (4.14) 

with B = 4x/3,  and  is also parabol ic  so fl = ½, i.e., the critical exponent  is classical. 

The  coexistence diameter ,  rh(T) = - (99/5)t + O(t2), is marked ly  steeper than  ~fis(T): 
5 

l inear ex t rapola t ion  to the axes yields intercepts td=~4 at  p = 0  and 

p~ = 13/40rt = 0.10345 at T = 0. A plot  of  the coexistence curve, which exhibits its 

striking asymmet ry ,  is presented in Fig. la. At low T the two branches  of the 

coexistence curve are described by 

pe 4 
- T *  {1 - 8T*[ ln(1 /2r*) - -½]  + ... } ,  (4.15) 

PC 

Pv 4e 

p~ T *  
- - - - - e  -~/2T* [1 - 8 T *  l n ( 1 / 2 T * )  + . . . ] ,  (4.16) 

0 

--4 

0.06 

T *  

0.05 

0.04 

0.03 

0.05 0.1 0 0.01 0.02 0.03 

(a) ° ° 6 ° °  , ~ ( a )  -- 

"N,(.b) ~ ~ ,  . <c) \ X- 

0.05 0.1 0.15 0.2 0.25 
p* 

Fig. 1. Plots of the coexistence curve, with T * =  kBTDa/q 2 and p * =  pa 3, for the restricted primitive 

model (RPM) according to Debye Htickel (DH) theory for (a) the pure theory, and (b) as supplemented 
with hard-core repulsive contributions with B~ = a 3, corresponding to the free volume approximation with 

simple-cubic packing limit, and (c) with B1 = 237ca3, representing the exact second virial coefficient. The 

inset is on a larger scale. For case (b )we  may also quote xc = 0.929065, T* =0.0619082, and 

Zc = 0.0932135. 
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which also differ significantly f rom the spinodals. The  vapo r  pressure curve, 

~ ( T )  = flp~a 3, at low T is similarly given by 

1 
l n / ~ ( T ) -  2 T *  ln (16r tT*)  + 1 + 4 T * l n ( 2 T * ) +  . . . ,  (4.17) 

where here there are neglected terms of order  e -x /4r* /T  ,2 a l though the leading 

corrections,  as in (4.15) and (4.16), are of order  (T * In T ,)2. 

Of  course, one expects that  all the critical behavior ,  not  merely the coexistence 

curve, is classical. This is most  readily seen, and explicit results derived, by 

construct ing a Landau- type  expansion.  Thus,  using (4.6) and (4.8) (4.10) we find 

p*o(T,t~) -- p t ( T , # )  = min o~(m; T, fl), (4.18) 
m 

where the "backg round"  pto(T,l~) is linear in l~ and analytic in T. If we define the 

orderin9 field by 

h = c l [ f i -  f i * ( T ) ] ,  (4.19) 

where, with r = x/-T~/T = (1 + t) -1/2, we have 

fi~(T) = - 4~3/(1 + r) + In (A3/27 ga3), (4.20) 

then we can write the expans ion  generally as 

1 2 1 4- 
~ ( m ; T ,  12)=~c2t2m +~u4m [ l  + 1 8 t +  . . . ]  + ... 

1 
- hm - - 3 c 3 t 3  m3 --  u5mS[1 + O(t ) ]  + ... , (4.21) 

with explicit coefficients 

t 5 t 2  t2 1 -- 4z3/(1 + "c) 2 = t 1 6  ~ "~ O (  t 3 ) '  (4.22t 

t3 = ~-[1 - 2r3(1 + 32)/(1 + r) 3] = t + O(t2) ,  (4.23) 

1 9 1 1 
C1 = C2  - -  1 6 '  C3  - -  2 5 6 '  U 4  - -  7 6 8 ,  U5 - 512 • (4.24) 

In the s tandard  way one now checks the exponents  3' = 7' = 1, 6 = 3, and ~ = ~' = 0 

(discontinuous),  cross-checks (4.11) and (4.14), and derives critical ampl i tudes  and  

leading correct ions for the compressibil i ty,  the critical isotherm, the cons tan t -vo lume 

specific heat, etc. 

It is evident that  this s t rategy and the resulting classical behav ior  will invar iably 

follow from the general app roach  [403 unless, by some special accident, by 

construct ion,  or by some unusual  mechan i sm [34], one of the part ial  free-energy 

densities, say f x ,  has singularities at the critical point  a l ready built in or  generates 

them by some coupl ing mechan ism going beyond  the basic formula t ion  [41]. 
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4.3. Hard-core contributions 

The low-T result (4.16) for the coexistence curve is obviously in error once it 

predicts p * ( T ) > l ,  i.e., when T/Tc<l/rc. The cause, clearly, is the failure to take 

account of the mutual excluded volume of the ionic hard cores. However, this is easy 

to rectify and it proves significant to do so [11, 42]. The simplest option is to add 

a second virial term, fHc2v n~2~ 2 = t h l P l ,  to (4.2). This can be handled analytically 

without difficulty. With/~ = ,,~z),2 3 tJx i/srta , which should be unity for hard spheres, the 

critical point is determined by 

T * =  1 gx¢(1 + 3x¢)/(1 + x¢) 3 (4.25) 

24(1 - xc) (1 + xc) 3 =/~x3(1 + 3x~) 2 , (4.26) 

with solution 

xc = ~cCa = 0.932491, T*  = 0.0613334. (4.27) 

The critical temperature is thus reduced by 1.86v% while the critical density falls 

8.491% to p* = 0.0045513. The analysis of(4.18) remains valid with, to first order in/~, 

the addition of/~/768 to fi~ in (4.20) and/~/48 to t 2 in (4.22). 

The plots of the coexistence curves in Figs. lb and c are constructed using the 
2 3 free-volume forms (2.12), (2.13), with j = 1, and (b) BI = a 3, and (c) BI = 5rca . To 

three-figure accuracy the critical point for (c) is given by (4.27); in other words, not 

surprisingly since p* is so small, the higher virial coefficients have no significant effect 

near criticality. For  (b), to equal or better accuracy, one may thus use (4.26) with 

/~ = 3/2m 

At low T, of course, the free-volume form respects the maximum density and one 

finds, in place of (4.17), 

I n / ~ ( T ) -  2T*  + 2 ~  + 8~-p* In \ T* / -- in 8rt + o(1) 

(4.28) 

where PM = 1/B1 corresponds to the maximum density [see (2.12)] while the leading 

neglected terms are of order T'1/2. The vapor side of the coexistence curve is then 

given by 

p*(T)  = / ~ ( r )  [1 + O ( ~ / 2 / r  ,3/2)],  (4.29) 

which merely confirms that the low density vapor is, in leading order, ideal. The liquid 

side approaches PM according to 

p*(T)  = p*[1 - 4 x / ~ p * T *  -- 2T*  l n (4np* /e r* )  + 8 n p * r *  + o (T* ) ]  . 

(4.30) 

Although no longer unphysical, this result for p~(T) is, of course, not adequate for the 

RPM since one must anticipate at least one crystalline phase near close packing 

which, as stressed, is certainly not included in the free volume expressions for fnc .  
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Nevertheless, at lower densities (and, hence, intermediate values of T/Tc)  the 

predicted coexistence curve should be more reliable when higher order hard-core 

virial coefficients are included, even if only approximately. 

4.4. Assessment 

If we accept the Monte Carlo based critical point estimates (3.5) and (3.6) [17], we 

see from (4.8) and (4.27) that T*  in pure DH theory is probably only 12 20% too 

high, quite comparable to van der Waals theory. The D H H C  theory (DH with 

hard-core terms) reduces the discrepancy by about 2%. Furthermore, the critical 

osmotic coefficient Zc is, within the _+ 11% uncertainties, in full agreement with the 

MC estimate. However, the DH prediction for the critical density p* is too small by 

a factor of from 4.6 to 7.0; and inclusion of hard-core terms increases this discrepancy 

to 5.1 to 7.7. This major failure is obviously associated with the anticipated 

inadequacy of the DH linearization of (3.10) near criticality given that l / T *  > 16 so 

that e ~/r~* ~ 10T! One might wish, thus, to discard the DH theory of criticality entirely; 

but in light of the reasonable estimate of T*  and the realistically asymmetric 

character of the coexistence curve, that is much too pessimistic. Rather, following 

Bjerrum [7], it is reasonable to suppose that the main error incurred by linearization 

is, physically, due to neglect of closely associated, oppositely charged, and hence 

neutral, ion pairs and their effects. Accordingly we now consider Bjerrum's theory in 

some detail [2, 8, 9, 11, 12]. 

5. Ideal Bjerrum dipoles 

5.1. Basic principles 

In 1926 Bjerrum proposed [7] to extend DH theory by regarding an electrolyte, 

specifically the RPM, as composed of"free"  + and - ions together with neutral 

( +, - )  associated ion pairs or dipoles that exist in equilibrium with the free ions. The 

specific recognition of + and - ions at small separations as constituting a distinct 

chemical species was expected, when appropriately treated, to correct for the 

correspondingly large Boltzmann factors at low T that are seriously underestimated 

by the linearization of the PB equation in the DH theory. To develop the concept, let 

ll2 and P2 denote the chemical potential and densities of the Bjerrum ion pairs and 

write, with no approximation at this stage, 

~2 71d~T 1 , TIdIT f E ~ ( T , p  1 fi2 , /~(T;/~) = m a x l  J l t  ,~P1~+ J2~  , P 2 ) +  , P 2 ) + f i l P l  + P2] 
Pl, t )2 

~5.1t 

where the excess free energy, rex, includes all hard-core and Coulombic effects. In the 

ideal-gas terms we may take ~+ = ~ = 1 and A+ = A_ = A 1 as before, and then 
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have A 2 = A1. Chemical equilibrium is ensured by 

] ' /2 = ]2 + "1-" f l _  = 2#1, (5.2) 

which leads, after some algebra, to the law of mass action in the form 

1 2 P2 = ~ p x K ( T )  exp(2/i Ex - / ~ x ) ,  (5.3) 

1 
(recalling that p+ = p _  =gp~)  where the association constant is given by 

K ( T )  = A3+ A3_ (2/A2~6 + ( _ = ( 2 ( T ) ,  while the excess chemical potentials follow from 

fiEX(T, p l , p 2  ) = -- ~fEX/Opi (i = 1,2), (5.4) 

and vanish with p~ and P2. 

Now the definition of a pair of oppositely charged nearby ions as "associated" has 

an inescapable element of arbitrariness that, in turn, bears on the value of the 

association constant which will be addressed in detail below. For  the moment, 

however, note that in light of the definition of ( 2 ( T )  as a configurational partition 

function it is natural to take [7] 

R 

K ( T ; R )  = 4rt .f e a/rr* r 2 d r ,  (5.5) 

a 

since one has - flop + _ (r) = a / rT  *. The lower limit of integration corresponds just to 

the hard-core constraint. Ideally one might wish to let R--. oo; but, even for 

short-range interaction potentials, K ( T )  would then diverge. Bjerrum observed [7], 

however, that despite the scale-free nature of the Coulomb potential, a natural scale is 

set by the minimum of the integrand in (5.5), which, of course, represents the radial 

Boltzmann distribution. Certainly, once the integrand starts increasing beyond 
1 

rml, = ~ a / T *  it seems unreasonable to regard a pair of ions as associated! Bjerrum 

chose rmi, as his cutoff taking, in traditional notation, 

R B j = 2 b a  for b=- 1 / T * > 1 2 ,  

= a  for b < 2 .  (5.6) 

To evaluate K ( T )  generally it is useful to put 

K ( T ;  R = cba) =- 4~a3Qo(b; c) eb/b , (5.7) 

since one finds that the numerical factor, given by [2] 

Qo(b;c) = 1 4_-b gb c [ E i ( b ) -  Ei(1/c) + (c + c 2 + 2c3)e 1/c] - ~b(b 2 + b + 2), 

(5.8) 

for b ~> 2, is slowly varying and of order unity for all T. Here Ei(z) is the standard 

exponential integral [43]. Explicitly, for all fixed c one has the low-T asymptotic 

expansion 

Qo(b;c) = 1 + 4 T *  + 4.5T .2 + 4.5-6T .3 + ... , (5.9) 
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1 
This is divergent but for the Bjerrum choice c = 7  it gives reasonable results up to 

T* _~ 0.1 when truncated at the smallest term. More Concretely, the lower bound 

QBj(b ) >~ QB)(b) =- b[1 - e -Ib 4)(b-2)/b] (b -- 4), (5.10) 

matches (5.8) when T ~ 0 and, when positive, mimics the overall behavior of QBj 
i 2) .  moderately well: note, in particular, that QaJ(b) vanishes for T * >  5 (b < 

A convenient approximation, reproducing (5.9) is 

. ( 4 20 360 3360 ~ )  
QBJ~-Q"2(b) 1 + ~--/+ ~ + ~ -  + ~ g -  + q6 , 15.11) 

with q6 = 14785.06: the accuracy is better than 1 in 104 for 14.3 ~< b ~< 40. Finally, 

numerical values for b = 10, 16, and 20 are Q~ = 2.095936, 1.390497, 1.27468o, 

respectively. 

Although, as we will discuss, Bjerrum's choice is not optimal, the behavior of K ( T  ) 

for T* <0.1, which region is our main concern, will not differ appreciably for other 

reasonable assignments: in particular the factor Q, defined generally as in (5.7), will 

remain of order unity. Accordingly we tentatively accept Bjerrum's expression and 

explore the consequences of the theory. 

5.2. Bjerrum plus Debye-Hfickel theory: criticali~ 

Bjerrum, having in mind primarily low densities, proposed to treat his dipolar pairs 

as ideal particles, supposing, since they were neutral, that they had no significant 

Coulombic interactions. Then he adopted DH theory: the pairs being neutral, should 

not enter into the DH expression (3.12) for •(T, p 1), which remains valid as, then, does 

the DH derivation of the ionic free energy. At this DHBj level of approximation we 

thus have 

f ( T ; f l )  = 2 f Id (½Pl  ) + f t m ( p , ) +  f~d(p2)  ' t5.121 

where, of course, ~2(T) --= K(T) .  

However, Bjerrum regarded the ion pairs as more or less literally having a physical 

diameter up to RBJ(= 12ba ) and so argued that distinct, free ions should not be allowed 

to approach closer than R aj (before changing their nominal identity). Accordingly, in 

DH theory he replaced the hard-core diameter a by RBJ(T ) = ½a/T * for T * < 12. We 

will argue in detail below that at the low temperatures of interest for phase separation 

and criticality, this view of associated pairs is not reasonable. In accord with the 

conclusions of others [2, 5, 8, 11, 12], therefore, we will, at least for the present, retain 

the original DH interpretation of a. It should be noted, however, as discovered by 

Friedman and Larsen [9], that if one does adopt Bjerrum's re-identification of a, then 

the theory represented by (5.12) predicts no phase separation at any T (even though, as 

Bjerrum himself showed in relation to experiments, it still represents a distinct 

improvement on pure DH theory at low densities when T* <3.) 
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Fig. 2. Coexistence curves for the RPM according to (a) DH theory with ideal Bjerrum pairs and (b) as 

supplemented with free-volume hard-core terms with B1 = a 3 and B2 = 2a 3. When B1 and B2 are 

sufficiently large, the predicted coexistence curve closes off at a lower critical point. 

With the previous interpretation of fDn, namely, (3.15) in (5.12) one finds that the 

resulting DHBj theory predicts phase separation with the coexistence curve plotted in 

1 * = 1/64n are unchanged Fig. 2a. The critical parameters xc = Kca = 1, T*  = ig and Plc 

from DH theory [See (4.8) and (4.9)] but one finds the (overall) critical density 

p* = p*¢ + 2p*c = (1 + Q~eS/29)p* c = 0.0452384, (5.13) 

where (4.4), (5.3), (5.6)-(5.8), and the Bjerrum value Qc = QBJ(16) have been invoked 

and, similarly, the osmotic coefficient 

1 6 1 n 2 -  11 + Qce8/21° 
Zc = 1 + Q~eS/29 = 0.454963. (5.14) 

Note that p* in (5.13) denotes, as always, the overall or total density of ions (or hard 

spheres). 

The inclusion of Bjerrum pairs has evidently increased the overall critical density by 

a factor of about 9.0 relative to pure DH theory, which is in the desired direction. 

Indeed, the prediction (5.13) is now only 50-70% high compared to the central Monte 

Carlo estimates (3.5) while DH theory was low by factors of 5 to 7! Thus both Tc and 

Pc are now reasonably well approximated. The mechanism for this improvement is 

that the formation of the neutral pairs reduces, for a given overall density p, the 

density of free ions, p 1, which is all that drives the phase separation (within this DHBj 

theory). In fact, the ratio of Bjerrum pairs to free ions at criticality is given by 

Pz~/Plc = Q~eS/21°= 4.047 . . . .  At first sight this may appear high but Gillan's 

detailed studies [ 17(c)] of clusters in the low density vapor shows that a critical ratio 
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of this magnitude is to be expected [44]. This point was also made by Friedman and 

Larsen [9]. 

Although the critical temperature and densities predicted by the DHBj theory may 

be reasonable, the banana-like shape of the coexistence curve shown in Fig. 2a is 

certainly not plausible [10, 45]! Note that the crown of the coexistence curve is still 
1 

parabolic so that /3 = 5  and all the other critical exponents remain classical [41]. 

Indeed, the Landau expansion description (4.18) (4.21) remains valid but now with 

coefficients 

C 1 ~ 0.568, C2 ~-- 5.17077, C3 ~-- 80.7910, U4 -- 8.91227, (5.15) 

while one again has [-40] Cz/xfu4 = x/3.  

Another notable feature, going beyond the identity of T~H and T~ HBj is that, 

despite the banana shape of the DHBj coexistence curve, the actual gap, p~q * - -  P v a p ,  i s  

the same at given T*  as in the DH theory! On reflection these features are not so 

surprising since in (5.12) no terms couple Pl and P2 so that from (5.1) we conclude, 

with an obvious notation, 

pDHBJ(T;/~) = pDH(T,/a) + pl2a(T;l~). (5.16) 

In words, then, the DHBj theory simply superimposes the pressure of an ideal gas of 

Bjerrum pairs on the DH pressure function which, alone, carries all the phase 

transition information! Only the free ions drive the transition. These observations also 

explain why the critical osmotic coefficient in (5.14) is so high: as discussed, the critical 

vapor is about 90% ion pairs which are treated as ideal so that P2 = kaTp2; since 
1 

P = Pl + 2p2 and Plc and p~H are small one has Zc - p2/2p2kBT - ~. 

5.3. DHBj theory at low temperatures' 

It is evident from (5.16) that the peculiar banana shape of the coexistence curve is 

due to a drastic increase in pza(T), the density of Bjerrum pairs on the phase 

boundary, as T falls. Note that, within this DHBj theory p2(T,  p) is continuous across 

the phase boundary, clearly an artificial consequence of treating the Bjerrum pairs as 

ideal. But what causes pz,~(T ) to increase? Might it be due to neglect of the hard-core 

repulsions? 

The latter question is soon disposed of by adding to (5.12) an expression for .T He, 

the hard-core free energy, which, incidentally, will couple Pl and P2 so that (5.16) is no 

longer valid. The simplest choice is the free-volume form (2.11) with, for sc packing, 

B1 = a 3 and, since an ion pair takes twice the volume of a single ion, B 2 = 2a 3. The 

resulting DHBjHC coexistence curve is shown in Fig. 2b. Evidently the situation is 

now worse! Not only does Pc increase slightly but the coexistence curve narrows 

strongly and the banana effect grows. Indeed, for large enough values of B1 and B2 the 

coexistence region vanishes entirely. 
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To answer the crucial first question, then, let us neglect the hard-core interactions 

and use (5.16): this implies the ideal-gas relation 

In p* =/ i2  + in [K(T) /47ta  3] - In (A6/4rca6), (5.17) 

where we have f i 2  = 2fil by (5.2). The chemical potential ill(T, Pl), follows from DH 

theory via (4.4) and (4.5), as 

x 
kil - + ln(xZT *) + ln(A3/87ta3). (5.18) 

2T*(1 + x) 

To evaluate this on the phase boundary at low T we may use (4.15) for the coexisting 

liquid density pe = Pl.liq to conclude xE ,,~ l I T  * ~ oo and hence 

f i l , (T)  = - 1/2T* + In ( l / T * )  + O(1). (5.19) 

Finally, on using (5.7) for K ( T )  in (5.17), one discovers that the leading terms in 1/T  * 

exactly cancel to leave 

In p* = In ( 1 / T * )  + In [Q(b)eZ/128rt] + 8 T  * ln(2x/-eT *) + ... , (5.20) 

where the explicit correction terms follow from a closer analysis. If the association 

constant factor Q(b) remains bounded when b --, oo, as it does for the Bjerrum K ( T )  

assignment, this shows that p* ,,~ l I T  * --* oo when T --, 0, in accord with the banana 

observation. If, however, a better analysis of K ( T )  led, for example, to Q(b) ~ b - "  

with a > 1 or to Q(b) ~ e -~b with z > 0, the banana effect would not appear. (In fact 
1 

Fuoss [46] has argued for taking Q(b) = 3b, so a = - 1; but this is not justifiable 

[47]: see also below.) 

Thus, to understand the DHBj theory more fully and to repair it, we must examine 

the basis of ion association more carefully. In addition, it is clear that the Bjerrum 

assumption of electrical ideality for the ion pairs is dubious at low T since even 

a tightly bound pair of ions has a long-range dipolar electric field and so should 

attract a screening cloud of counterions [5, 48]. 

5.4. The origin o f  electrolyte phase  separation 

Before taking up these two issues let us briefly address, in the light of the DH and 

Bjerrum theories, the question: "What drives phase separation in electrolytes?" The 

issue is obviously not sharply defined but it can be usefully broached at the level that 

ascribes ordinary gas liquid separation to the short-range attractive forces between 

molecules which energetically favor a condensed, closely packed state over 

a dispersed, low-density vapor. At sufficiently low temperatures a positive interfacial 

tension between regions of low and high density states then stabilizes phase separation 

for spatial dimensionalities d/> 2. As T rises, thermal fluctuations reduce the disparity 

between dense and dilute phases. Since liquid and gas differ in no essential aspect of 

symmetry or order this eventually leads to a critical point, rather than a critical or 

melting line. 
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Solvophobic phase separation, as seen in typical binary molecular fluids 

[18,24,25,49, 50] may be understood in full analogy: solute molecules, A, 

energetically prefer solute near-neighbors over solvent neighbors, B, because, in total, 

the mean AA and BB short-range attractive forces exceed the unlike, AB attractions, 
1 

i.e., loosely, e = ~PAB -- ~(q~AA + ~%B) is positive, and sets the scale of To. If the binary 

fluid is an electrolyte the short-range forces may still provide the driving force and 

largely determine To; and if the solvent is of high dielectric constant this is to be 

expected. In the Coulombic electrolytes, however [18,24,25,49, 50], the ionic 

interactions dominate and e is too small to specify T~. Rather, through the law of 

corresponding states, the RPM should provide a satisfactory description [9, 12, 22]. 

Now we have seen that significant ion pairing occurs in the vicinity of and below the 

RPM critical point. Long ago Friedman [51] proposed that the presence of many 

dipolar ion pairs might provide the driving mechanism for Coulombic phase 

separation. Specifically, he argued that the relatively large dipole moments could lead 

to a drastically increasing dielectric constant, D(p2), at higher concentrations. This, in 

turn, would stabilize the solute dipoles (relative to their dilute state in the pure 

solvent). A rapid enough increase of D would lead to phase instability and separation 

into a dilute and a concentrated dipole phase. 

How plausible is this scenario in which the free ions play no (significant) role? Surely it 

must be doubted since we now know that the free ions alone will, within DH theory, drive 

phase separation with a quite reasonable estimate of To. Furthermore, following Bjerrum, 

the introduction of ideal, electrically inactive dipoles preserves the DH transition and 

improves the estimate of the critical density. The operative mechanism in DH theory is 

clearly the effective net ion-ion attraction provided by the Debye screening and seen 

already in the limiting-law pressure: although for randomly distributed ions the overall 

Coulombic ( + ,  - )  attractions are precisely cancelled by the ( + ,  +) and ( - , - }  

repulsions, the statistical screening correlations reduce the free energy of each ion in the 

field of its neighbors and so favor a denser phase at low T [52]. The mean separation of 

the free ions at DH (and DHBj) criticality is 12 or more ionic diameters, which does not 

support a dipole dominated picture. For these reasons it is hard to believe that the 

dipole-dielectric-constant interaction plays a major role as Friedman suggests [51]. 

Nevertheless, Friedman's arguments correctly identify a potentially serious gap in 

the Bjerrum theory, namely, the neglect of the Coulombically active dipolar nature of 

the ion pairs. In fact we find [5, 6], as explained below, that the interactions of 

a dipolar ion pair with the screening ionic fluid of free ions is a truly significant effect. 

6. Ionic association 

6.1. Physical and configurational clusters 

The statistical mechanical theory of molecular and ionic association has been of 

long standing concern to physical chemists [2, 7-9, 11, 12, 17(c), 18]. Nevertheless, 



186 E Levin, M.E. Fisher/Physica A 225 (1996) 164~20 

there is no overall consensus on a "best" treatment; but that is not so surprising 

because there are various reasonable, valid definitions of association into dimers, 

trimers, etc. However, for our present purposes, namely the elucidation of 

thermodynamic equilibrium, there is an approach which we judge should be clearly 

preferred and which leads to an expression for the ionic association constant in the 

RPM first advocated by Ebeling [2, 8, 11] and later endorsed by Yokoyama and 

Yamatera [53]. To explain this, let us briefly recall some central issues. 

First, in a chemical reaction the amount of some product species, say PQ, is often 

gauged spectroscopically: it is then necessary for theory to determine those 

configurational and dynamical states of P and Q entities that exhibit the identifying 

spectral lines to the requisite precision. In other words, one must delineate those 

regions of phase space that will, by the relevant observations, be judged as having 

P and Q bound or associated in a cluster. Note, in particular, that a dynamic P Q 

collision at high relative kinetic energy would not, normally, be counted as an 

associated state even though P and Q particles may approach very closely. Thus Hill 

[54] has presented a classical statistical mechanical discussion of"physical clusters" of 

monatomic particles in an imperfect gas in which the criterion of "bound" is that the 

relative kinetic energy does not exceed the (negative) minimum of the pair interaction 

potential q~(r). 

It is clear, however, that if the aim is to understand equilibrium thermodynamic 

properties (as against, say, the ionic conductivity which is an intrinsically dynamic 

phenomenon, particularly outside the low-density, kinetic-theory regime) then any 

condition linking kinetic and configurational degrees of freedom is unhelpful since, in 

computing the partition function, it effectively precludes one performing all the 

(classical) momentum-space integrals once and for all at the start. Such considerations 

lead naturally to clusterin9 distance conventions in which only the position 

coordinates play a role: specifically, if two particles P and Q have centers closer than 

a distance R cl then they belong to the same cluster and are "associated" [44]. Such 

a viewpoint, particularly in one-dimensional models [-55], can be very fruitful. 

A clustering-distance criterion seems to have been understood by Bjerrum and 

must, surely, also [47] have been in Onsager's mind in making his famous dictum [56] 

that: "The distinction between free ions and associated pairs depends on an arbitrary 

convention. Bjerrum's choice is good but we could vary it within reason. In a complete 

theory this would not matter; what we remove from one page of the ledger would be 

entered elsewhere with the same effect" [47, 57]. But lacking a complete theory, 

balancing the ledger may be a tricky task! The main practical difficulty arises because 

the clustering-distance convention implies that the original monomers must now be 

treated as having enhanced hard cores, potentially of very large size. This 

enhancement represents a strong perturbation (except at very low densities) whereas 

the actual interactions just "inside" these enhanced hard cores may actually be rather 

small. In light of this we cannot accept Onsager's positive verdict on Bjerrum's choice. 

In particular, when T falls RBJ(T) increases without bound while physical intuition, 

which we will shortly reinforce, tells one that a typical ionic pair will shrink in size, 
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becoming ever more tightly bound as T ~ 0 ! It is also instructive to compare 

R Bj = a/2T* with the screening length ~D = 1/h" = (OkBT/4rtqapt)~/2: if 

p* ~> T * 3 / r r ( 1 -  2T*)  z one has CD less than R B j -  a which seems unphysical; 

furthermore, at the pure DH critical temperature this occurs when pa exceeds 1 DH ~ P l c  , 

a remarkably low density. Finally, the Bjerrum choice leads to a sharp disappearance 
1 

of associated pairs at T*~ = 5 (where R Bj - a vanishes). That almost inevitably leads 

to an artificial nonanalyticity in predicted thermodynamic properties at TBj. 

6.2. The association constant 

A more enlightening perspective emerges if, instead of focussing on a microscopic 

definition of association, one asks how to compute the association constant, K ( T  ). To 

answer this, consider a general imperfect gas mixture of two species, p and q, with pair 

potentials (Dpp(r), qlpq(r) and (Dqq(r), which we choose to regard, in a "chemical" picture 

[2,42, 55(a)], as a mixture of three species, monomers p and q, and dimers, or 

associated PQ pairs, s, in equilibrium with species p and q. Then let us introduce the 

decomposition 

~Opq(r) = ~Op*q(r) + ~Os(r), (6.1) 

where ~0~q represents the residual pq pair potential that will still operate in the 

presence of the associated pairs s: it might be envisaged as the repulsive part of q0pq. 

Then ~Os(r), which is naturally regarded as "attractive", constitutes an internal 

potential for an s "molecule" but will not otherwise play a direct role. Of course this 

split is arbitrary at this point. 

Now the obvious but crucial point is that one would like both descriptions to agree 

thermodynamically giving, in particular, the same equation of state. This desideratum 

can be investigated by constructing the Mayer activity expansions within the two 

pictures (following, say, Hill [54]). To ensure a well defined pressure, p(T,/%, tq), the 

expansions should converge, at least at low densities. To that end, we assume first that 

the potentials q~pp, q~pq, and q)qq are sufficiently short-ranged (so excluding ionic 

couplings). Then one easily sees that the expansions can be matched provided (i) the 

association constant is given by 

K( T ) = f ( e  -t~p.~') - e -t~;qlrl) ddr, (6.21 

and (ii) that appropriate further potentials (0p . . . . .  and/or higher order association 

constants are introduced. The former condition ensures consistency at the (original) 

second virial coefficient level, since Ps ~ pppq/K, while the latter enters only at third 

and higher levels and so may reasonably be neglected at a first approximation. 

To illustrate some consequences suppose, for simplicity, that q0pq(r) contains a hard 

core of diameter a but vanishes for r > Ro. If one then adopts a clustering distance 

convention one must, as indicated, set q ) ;q( r )=  ~Z; for r < R c~, and (p*pq = 0 for 
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r > R cl. Of course, it is natural to take R cl/> Ro. Then for d = 3 (6.2) yields the 

Bjerrum-type expression 

R Cl 

K ( T )  = 4~z f e-/~%q(r)r 2 dr.  

a 

(6.3) 

But, as stressed, that entails strong "unnatural" residual pq interactions that will lead 

to inaccuracies at high T and moderate densities. It is more natural and should 

provide a better leading approximation, especially at higher densities, to retain in 

q)~q(r) just the original hard-core part. Then (for d = 3) one finds instead 

~3 

K ( T )  = 4~ f (e -~op.(r)- 1)r z dr ,  

a 

(6.4) 

where, for the short-range forces assumed, no upper limit is now needed. 

Unsurprisingly these two results agree asymptotically at low T whenever ~Opq actually 

has an attractive well. Rather generally, indeed, one may expect a relative insensitivity 

to details at low T when the association is strong and K ( T )  is large. 

Now, to improve DH theory for ionic systems one would like to follow a similar 

course by choosing the residual potential ~Ovtq(r)- ~o~+_(r) to be the original 

hard-core repulsions plus those parts of the attractive Coulombic potential that are 

satisfactorily treated via the linearization of the PB equation [11, 12, 53]. Clearly, 

however, the analysis just given fails because the Mayer-type integrals diverge at large 

distances when the Coulombic potential is used: And, of course, in the density 

expansions a p3/2 term now enters before the quadratic or "second virial" term which 

might be matched by choice of K ( T ) .  

Nevertheless, as shown explicitly be Ebeling [-2,8,11] (and reinforced by 

Yokoyama and Yamatera [-53]) one can choose and, we believe, optimally should 

choose a form of K ( T )  for the RPM such that (a) the exact density expansion of the 

equation of state is reproduced up to corrections of order p5/2 while (b) the hard-core 

repulsions are treated separately (following section 2 as we have done) and (c) the 

"direct" ionic interactions are treated by DH theory [58] with x =tca where a is still 

the original ionic hard-core diameter. Fortunately, following Mayer's pioneering 

work and the studies of Friedman [2, 59], the necessary exact analytical results for 

d = 3 have been known for over 30 years. Thence Ebeling found [-2] 

KEb(T) = 87za3 Z b2"+4/( 2n + 4)!(2n + 1), (6.5) 
n = 0  

= 4rca 3 f (e b/y + e -b/y -- 2 -- b2/y2)y z d y ,  (6.6) 
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which m a y  be c o m p a r e d  with (5.5), and  which, fol lowing (5.7) and  (5.8), implies  

QEb(b) = 1-k)4e-b6 ~ [Ei(b) --  Ei( - b) + 6 b -  1 + 4b 3] _ ~b(b 2 + b + 2) 

-- ~ b e -  Zb(b2 - b + 2). (6.7) 

(Fo r  a direct  but  more  heuris t ic  de r iva t ion  see Y o k o y a m a  and  Y a m a t e r a  [53], who 

also t abu la te  the sum in (6.5).) 

Note ,  first, that  K Eb is an analy t ic  funct ion for all T > 0 unlike K Bj. F u r t h e r m o r e  

[53], KEb(T; a) decreases  mono ton i ca l l y  with increas ing ionic d iamete r  a at fixed T. in 

con t ras t  to Fuoss '  express ion [46, 60], K vu = ~ a 3 e  ~, which has an unphysica l  

m i n i m u m  in a when q2 /kBTDa  - b = 3. It follows from (6.7) that  QEb(b) ~ 1 as T ~ 0, 

which again  inval ida tes  Fuoss '  fo rmula  [46 ,47 ,60] .  Fu r the rmore ,  QEb(T) has 

precisely the same low T a sympto t i c  expans ion ,  (5.9), as Q~J. Thus,  despi te  its 

shor tcomings ,  Bjer rum's  result  [(5.5) with R = R aj] becomes  increasingly rel iable 

when T ~ 0 .  Indeed,  the d i sc repancy  f i -  (KBJ/K Eb) - 1  is less than  0.4% for 

T *  ~< 0.067 and  

1045 ~< 20, 10, 4, 1, 0.2, 

for T *  1 1 16' 0.059, 0.055, - -  0.046. (6.8) 
- -  2 0 '  

This justifies the use of K B J ( T )  for numer ica l  purposes  in the d o m a i n  of phase  

sepa ra t ion  T *  < 1 ~ :  see also Ftg. 3 which is discussed further  below. It also shows that  

the unphys ica l  b a n a n a  effects in Fig. 2 cannot  be a t t r ibu ted  to a p o o r  choice of 

assoc ia t ion  constant .  

1. 5 

l .F.8 

I- o~ / . / ~  _ - - J _ "  . . . .  11 
" _ - -  L2 .  . . . . . . . . .  1 3  

1.0  . . . .  - . . . . . . . .  1 

0 .5  

0 0  0 .5  1 R/RBJ 1.5 2 

Fig. 3. Plots of the general association constant, K(T; R) = 4nj" o exp(ab/r)r 2 dr normalized by the K ~J( T 
versus R/R Bj (R Bj = ½ba) for various values of b = I/T *. The choice R = R Bj locates a point of inflection of 
K(T; R) and, hence, of maximal insensitivity to R. The intersections with the R/R Bj axis correspond to the 
limits R ~ a +. Note that for b > 13 an almost level plateau is reached rapidly for small R a. 
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It is worth commenting that KEb(T ) can be represented exactly by the general form 

(5.5) with a suitable choice, say REb(T), of the cutoff: to reproduce (6.5) one needs 

R E b  - -  a ~ a/12T .4 at high T. Alternatively [2], one can take R --* oo and, by using 

(6.6), introduce a smooth cutoff function, wEb(b/y), in place of the sharp Bjerrum 

cutoff. As we will see, however, the Bjerrum scale R ~ ba, which the smooth cutoff 

retains, bears no useful relation to the microscopic size of a dipolar pair to which issue 

we now turn. 

6.3. The physical size of  a dipolar pair 

As we have seen, Ebeling's analysis of the association constant, which we accept as 

optimal, entails no commitment as to the size or structure of an "associated dipolar 

pair". The first point in our approach at which the nature and size of a dipolar ion pair 

plays a role is in constructing the hard-core free-energy contribution at a level beyond 

the free-volume approximation (where, as above, we may merely take B2 = 2B1). 

Specifically, although the hard-core second virial coefficient B] 2) needs no change, the 
n ( 2 )  

coefficients nx2 and Bt22) clearly require some knowledge of the dimensions or effective 

dimensions of a pair. Nevertheless, at the low densities of main interest, the results for 

the equation of state will be relatively insensitive to the precise approximations made 

(as in Fig. 1; see also below). 

At this point, however, it is clear that to understand and, hopefully, correct the 

unphysical banana effect, it is essential to study the electrical interactions of a dipolar 

pair. Since the dipole moment depends directly on the separation between charges we 

must address the question of how large a dipolar pair "really" is. 

Now, as discussed, Bjerrum took as a measure of the size of a dipolar pair the scale 
1 

R Bj = ~ba. Granted the basic Boltzmann weight 4~zr 2 exp(ba/r) in (5.5) this seems, at 

first sight, the most natural length scale set by the problem. It has the merit, evident in 

Fig. 3, that it locates that cutoff point at which the value of K is least sensitive to the 

choice of R. Nevertheless, it is clear from the figure that for b < 9, i.e. T * >  0.11, the 

value of K does depend strongly on R. Conversely, for b > 13 or T*  <0.070, there 

arises a remarkably broad plateau over which K(T;  R) is almost independent of R. In 

essence this constancy explains why KaJ(T) is an excellent approximation to KEb(T ) 

for T * < 0.07: see (6.8). 

An immediate corollary of the plateau, obvious from the figure, is that at low 

T there is another, shorter length scale measuring the rate at which K(T; R) rises to its 

plateau value. This length, say ao - (1 + so)a, may be specified precisely by taking the 

initial slope of the plots, set by the Boltzmann weight at contact, namely 4~a2e b, and 

using KBJ(T) as a measure of the plateau value. On recalling (5.6)-(5.9) this yields 

so(T) - K~J(T )/aK'(T; a)= Qo(b; ½)/b . (6.9) 

Of course one might more satisfactorily replace QBj = Qo(b;½) by QEb(b) but, as seen, 

the differences will be inconsequential in the region of criticality and below that is of 
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interest here. A moment ' s  consideration shows that a typical Bjerrum pair must have 

an ion-to-ion surface separation of magnitude so(T)a,  at least at low T (where, again, 

the definition is insensitive to the cutoff). Thus so(T) should provide a reasonable 

measure of the "true" size of a dipolar pair. 

Perhaps more natural is to recognize the fluctuations in pair size and so define an 

average separation ( r ) - a l -  [1 + S l (T ) ]a  using the basic Boltzmann factor; 

a cutoff is again needed and we adopt  R Bj. (A cutoff could be avoided here, but at 

a cost in analytical complexity, by using the effective, subtracted Boltzmann factor 

appearing in Ebeling's integral in (6.6).] More generally, we may examine the 

moments  of s = (r - a)/a. Thus, on introducing 

bc- 1 

Qt(b;c) = b I" e-b~/~l+s) Sl(1 + s )2ds '  (6.10) 

0 

which extends the definition of Q0 in (5.7), we obtain, for 1 > 0, 

[st(T)]t =- - O0(b; 1/2)' (6.11) 

1 ' ( . l + 5 1 1 3 + 1 2 1 2 + 4 1 1 + 3 8 )  
= b- ~ 1 + l ~ -  + 2b 2 + ... , (6.12) 

where, as previously, the expansion is only asymptotic but is valid for low T when 

truncated. 

From these results and (5.9) one finds so(T) ,~ s~(T) ,.~ T*  and T ~ 0  with a ratio 

sa/so = 1 + 2 T * +  1 4 T ' 2  + .--. Thus, as anticipated on intuitive grounds, the 

dipolar pairs rapidly approach hard-core contact at low T. From the behavior of the 

higher moments,  or more directly from (6.10), one sees that the low-T distribution of 

s approaches Poissonian form, i.e., ~(s)  ds ~ e-S/s° ds/so, which is fairly sharp. The 

behavior at higher values of T * can be read off from Fig. 4: so(T)  remains below 0.11 

up to T *  - 0.07, well above Ton;  although s l ( T )  = ( r ) /a  - 1, rises more rapidly, as 

the distribution ~(s)  broadens, it remains below 0.2 in the same range [61]. At the 

estimated critical point (3.4) one has ( r )  less than 1.10a. This certainly justifies the 

cutoff convention R 6 = 2a which Gillan used in his study of cluster free energies 

below T * = 0.050 [44]. One may also enquire as to the values of K(T;  R ) i f  one uses 

a cutoff scaled with so(T)  in place of RaJ(T). On choosing, for example, R = 3so one 

finds a reduction below K Bj of 5.0% at the lowest temperatures rising to 7% at 

T*-~0 .03 ,  and 15% at T*-~0 .06 .  

At temperatures above b = 10 or so the values of So and Sl become increasingly 

sensitive to the choice of the Bjerrum cutoff. (As mentioned, one could pursue better 

definitions if this regime were of special interest.) But it remains surprising that even 

within Bjerrum's own conception, the mean pair separation, ionic-surface-to- 

ionic-surface never exceeds 0.77a and, clearly, bears no relation to the cutoff 
1 

R aj = ~ba. 
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Fig. 4. Temperature variation of the ion-pair size parameters, so(T ) = (to - a)/a, based on the Coulombic 
distribution at contact normalized by KBJ(T ), and sl (T) = ((r) -- a)/a, using the Coulombic distribution 
with Bjerrum cutoff. Note the break in the vertical scale at s = 0.200 and in the horizontal scale between T * 
and b = 1/T* (at T* -~ 0.071 -~ 1/14.1). 

Having elucidated the physical sizes of associated ion pairs in the low temperature 

regime (T * < 1 ,  say) we now enquire into the thermodynamics of a dipole in a sea of 

free ions. 

7. Solvation free energy of an ionic pair 

An associated ion pair is electrically neutral and hence does not contribute directly 

to the inverse Debye length defined generally in (3.11). Furthermore,  at the 

temperatures of principal interest to us, say up to T * =  1.5T*-~ 0.08, a typical 

associated pair is quite small with center-to-center diameter a~ ~ ( r ) <  1.3a (see 

Fig. 5). Nevertheless, this nonvanishing charge separation results in a significant 

electric dipole moment,  q a l ,  which generates a (bare) electric potential decaying only 

as 1/r 2. That  is nonintegrable so that even at the lowest overall densities one must 

expect significant interaction with the free ions. These will screen the bare dipolar field 

and the resulting ionic correlations will reduce the free energy of a pair in the 

electrolyte. Evidently, this dipole ionic interaction leads to an additional, solvation 

free energy contribution fD] oC P2 that should be added to the previous DH, Bj, and 

HC terms. Going beyond the DHBj theory in this way corrects for its major physical 

defect: the total neglect of the strong Coulombic character of an ion pair. We may 

reasonably hope that it will eliminate the banana effect in Fig. 2 since the system can 

lower its free energy by dissolving associated pairs in the ionic liquid so draining away 

the excessive reservoir of ideal pairs predicted by pure Bjerrum theory. 
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Fig. 5. Depiction of a closely associated pair of oppositely charged ions of diameter a at separation al.  The 

true exclusion zone is the bispherical region traced by the center of a contacting free ion (indicated by the 

dotted circle). The circle of radius a2 represents the approximating spherical exclusion zone centered 

symmetrically on the coordinate origin (central dot). 

7.1. The approx imat ing  sphere  

To compute f ° X ( T ;  Pl , P 2 )  w e  return to the DH approach; instead of considering 

the energy of a single ion in the sea of free ions and deriving the linearized-PB or DH 

equation, (3.10), we now study a closely associated pair of oppositely charged ions in 

the ionic fluid: see Fig. 5. The mean electric potential, q~(r), close to each ionic center 

at v+ = 0 and v = 0, must still satisfy Laplace's equation and approach the 

pure-Coulombic-plus-background form (3.8) with r =  Iv+l, qi = - + q ,  and, by 

symmetry, t0i = + ~. Likewise the potential in the ionic fluid away from the ion pair 

still satisfies the DH equation. Finally, ~b(r) and V~b(v) must again be everywhere 

continuous. The major new feature is that these conditions must now be imposed on 

the boundaries of the bispherical hard-core exclusion region shown in Fig. 5 and 

defined by Iv_+ [, Iv_ [ ~< a. 

This problem has been analyzed recently [27(b, c)] in a somewhat broader setting 

but for large separations requiring, in particular, al > 2a: then the exclusion zone 

becomes two separated spheres. But when al < 2a, as here, the technical difficulties of 

obtaining a precise, numerically tractable solution have not been overcome [271c)]. 

Accordingly, we adopt a strategy first used, to our knowledge, by Kirkwood [48] in 

considering zwitterions: specifically, the ideal bispherical exclusion zone will be 

approximated by a symmetrically centered sphere of radius a2: see Fig. 5. 

The optimal choice of a2(T) would, clearly, be that value which yields the exact but, 

alas, unknown answer! Simple geometrical considerations (see Fig. 5) suggest bounds 
1 

[5], namely, (i) a2 ~< a + 5al ,  for which the approximating sphere can just envelop the 
1 1 2,1/2 r 

bispherical region, and vice-versa (ii) a 2 ~ a(¼ - 5s1 - -  ~S 11 ; mr T * < ~  these yield 

0.825a < a2 < 1.565a and have a mean value 1.195a which falls to 1.183a as T * ~ 0. 

Matching the volumes of bisphere and approximating sphere yields a2 --- 1.19~a when 

al = a (as at T = 0). However, we opt to set a2 equal to the angular average radius of 

the bisphere, which seems somewhat more appropriate: this yields 

a 2 ( T = 0 ) ~ g i 2  = 1.16198a (al = a ) .  17.11 
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It would, clearly, be appropriate to incorporate a temperature dependence by 

taking, say, a2(T) -~ a2(0) [1 + clsl(T)].  The behavior of the upper bound suggests 

cl <½ so that up to T DH an increase in a2 of only 4% is expected. Since, however, the 

uncertainties in the approximation for a2(0) are probably at least 3% this refinement 

is hardly worthwhile. Rather we propose to vary a2 in subsequent numerical studies 

(see below) to check that there is no undue sensitivity to the choice made. Note, 

furthermore, that a full treatment would also require averaging the solvation free 

energy over a thermal distribution of ionic separations: see Section 6.3 above. 

7.2. Dipolar potential 

To solve the boundary value problem posed in terms of the approximating sphere, 

we adopt polar coordinates with origin at the center of symmetry and z axis passing 
1 

through the centers of the two ions at z = _+ 5al. Appealing to the azimuthal 
1 

symmetry the solution in the region ~al < r ~< az can be expanded as 

q~< (r,0) = ~, ( A f  + ctr- l -1)Pl(cosO).  (7.2) 
/ = 0  

As indicated above, this solution must consist of two parts: one part is the potential 

due to the ionic pair alone which must survive (out to r = ~ )  in the absence of any 

free ions. This can be written 

~0(r, 0) - q q 
Dr + Dr_'  

2q 
= D--r j~>o P2j+ 1(cos 0)(a l /2r)  2j+1 , (7.3) 

1 Comparison with (7.2), noting that the At must the expansion being valid for r > 2al .  

vanish when x z ~ Pl ~ 0, determines the coefficients 

t !~ ~2j+ 1 (7.4) CZj = O, C2j+1 = 2(q/D) ~2-1, • 

The second part of q5 < (r, 0) represents the potential within the exclusion zone due 

to the external, induced screening charge. This must be regular for r ~< a2 and 

determines the mean electrostatic energy of the associated ion pair as 

,2S+1 (7.5) q~2({qj}; T, pl) = 2q A2j+l~2Ul!11-~ , 

j = O  

using ( _+)~P~( _+ 1) = 1. Note that successive contributions can be associated with the 

pure multipole moments of the discrete pair of ions at spacing al.  

To expand the exterior solution it is expedient to introduce the spherical Bessel 

functions [62] 

kt(x) = gt(x) e X/xt+ 1 (7.6) 
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The first few polynomials  int roduced here are 9o = l, .ql = x + 1, 

92 = x 2 + 3x + 3 . . . .  , and the general coefficient of  x ~ " (m = 0, 1 . . . . .  l) is 

91m=(2m--1)"( /+2mm)'  (7.7) 

adopt ing the convent ion ( - 1 ) ! !  = 1 [62]. The coefficients increase uniformly from 

91o = 1 to 9n = ( 2 / -  1)!! so that 9t(x) is bounded  by ( / +  I) ( 2 / -  1)!! when x <  1. 

Conversely, for x > l  one has 91(x) < (1 + 1) ( 2 / -  1)!!xk while 9t(x) ~ x t as x --, 7_,. 

Now the solution for r >~ a2 vanishing when r ~ 9c can be written 

4)> (r,O) = ~ Btkl(kr)Pl(cos 0). 
l=O 

Matching q9 < and Vq~ < to ~b > and Vq~ > 

A t = _ C t k  l_ l (X2) /a~  l+ lk/+ l (X2),  

Bz = ( 2 / +  1)Ci/alz+lxzkt+x(X2), 

on r = a2 yields the relations 

17.8) 

(7.9) 

<7.10) 

with x2 - Ka2. Finally, the energy of  a dipole in the ionic a tmosphere  can be written 

ql~2-  q2K2aZl~ gzJ(tca2)(al~ 4j 

Da2 j=o g2j+2(h 'a2)  \2a2 f  " (7.11) 

7.3. Dipole ion interaction free energy 

Let us examine the result (7.11) for the energy of  interaction of  a dipolar  pair with 

the induced screening charge. First note that  for temperatures of interest the 

mult ipolar  sum converges rapidly, the terms decreasing as 1/)~ j with g = (2az/al)4 

~- 19 to 30. Fur thermore,  from (7.7) one sees that the coefficients hj - Y2j/(JZj+2 are 

reliably est imated by [1 + O(x~)]/(4j + 3) (4j + 1) even up to x 2 -  1, which is 

appropr ia te  for the critical region, while for x ~ oo one has hi(x ) ~ 1/x 2. It follows 

that  the sum in (7.11) is very well approximated  for all relevant T and x by its first 

term which represents just  the ideal dipole contr ibut ion (I = 1). In an explicit test the 

first term fell short  of the full sum by about  0.7% for x2 = 1 and by less than 2% for 

x2 = 5. Accordingly,  we will henceforth retain only the first term (al though there are 

no obstacles to working with the full expression (7.11) should it be desired). 

Finally, to obtain  the free energy one must  carry out  the Debye charging process 

(3.6). The result can be conveniently written 

tc2aa2 pzOO2(K.a2 ) ~ rca2p~ 
f ° I ( T ; p l ' P 2 )  -- T * a 2  3 T , Z a a 2  Pz , (7.12) 

where one has 

~o2(x) = 3[ln(1 + x + 13x2 ) - x + ~x2]/x 4 

- - g x + g x  - - ~ x  3 +  ---).  (7.13) 
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The prefactor a~ in (7.12) is recognized as deriving from the square of the dipole 

moment, qal. The appearance of the factor 1/a2 is hard to understand at first sight but 

it can be justified with the aid of the following heuristic picture of the Debye screening 

of the charges "seen" by the ionic fluid on the boundary surface of an excluded zone. 

To be specific, suppose an effective surface charge is q~; then we postulate that an 

effective localized screening charge qs = - q~ is induced in the electrolyte at a distance 

~u = 1/to from the surface. To check this, consider a single, spherical test ion of charge 
1 

q0 and diameter ao. The exclusion radius is then a2 = ~(ao + a ) .  The total surface 

charge q~ must, clearly, be spread uniformly over the surface of the exclusion sphere 

and, in order to create the same, bare long-distance field, should equal qo- The 

localized screening charge q~ = - qo then resides uniformly spread on a sphere of 

radius a 2 -]- ~D" At the origin, where the original charge qo is located, the screening 

charge generates a potential ~1 = qs/D(~D + a2). Thence the screening energy is 

U1 = qo~/1 = - q~ic/D(1 + tca2). This is, indeed, the exact DH result [27(c)] as can be 

checked from (3.14) for the standard case: qo = q, ao = a. 

Now consider the dipole pair with charges _+q on the z axis at z = + 5al and an 

exclusion sphere of radius a2. The surface charges must reproduce the same dipole 

moment qa~ (to preserve the long distance field). To simplify the calculation we 

suppose they also are localized on the axis at z = +_ a 2. Then they have values 

q~ = +_ qal/2a2. The complementary screening charges of magnitude qs = qal/2a2 

may likewise be localized on the axis at z = + (az + ~D). Finally, their interactions 

with the original charges yield the electrostatic energy 

U2 = O a2 -~- ~D 1 -[- 1 
-- 2al a2 + ~D + 2al 

E 1 Da2(1 + xz) 2 1 + \~2a2,] (1 + x2) --------~ + "'" " (7.14) 

We see that the leading factor precisely reproduces the.] = 0 term in (7.11) when x is 

small apart from a missing . . . . .  ~ geometrical factor ofs .  That presumably results from the 

diffuse and off-axis nature of the true screening charge distribution. [Furthermore, the 

quadratic prefactor in x2 in (7.14) and the correction terms, of order (al/2a2) 2 and 

entailing a rational function ofx  of degree zero, closely resemble the structure of(7.11)!] 

In summary, then, the leading dependence on a2 in the solvation free energy (7.12) 

arises because the screening charge is of magnitude qal/a2. These heuristic 

considerations also suggest other types of average, specifically invoking electrostatic 

weighting, for estimating a2 optimally. However, it does not seem worthwhile at this 

stage to pursue such possibilities. 

8. Coexistence and criticality in D H B j D I  theory 

We define DHBjDI  theory by adding the dipole-ionic coupling term, 

f DE(T; P l, P2), just evaluated in (7.12) and (7.13), to the original free energy (5.12) for 
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the DHBj theory and adopting Ebeling's association constant KEb(T) as given in 

(6.5) (6.7), although we may recall that for low temperatures KBJ(T) [see (5.5)-(5.1 l j] 

represents a more than adequate approximation which has been used for convenience 

in the calculations quoted below. Note also that the full specification of .f TM requires 

the values of a l (T )  and of a2(T) as discussed in Sections 6.3 and 7.1. The coexistence 

curve may now be calculated by matching chemical potentials and pressure, expressed 

as functions of the densities in the vapor and liquid phases, using the mass action law 

(5.3) to relate Pl and P2. Iterative processes are involved in the computer programs 

employed and precision may suffer near criticality and at low temperatures 

(T*<0.03) .  Since, on the one hand, one knows, as explained previously, that the 

predicted critical behavior must be classical and, on the other hand, accuracy of 

greater than + 1% is hardly needed, no special effort has been made to optimize the 

numerical analysis. 

8.1. Criticali~ with dipole ion interactions 

For a first calculation [5] consider pure DHBjDI theory, with no hard-core terms, 

and let us set 

a* ~ al /a  => 1, a* =-- a2/a ~ d* = 1.16198, 18.1) 

both corresponding to T = 0. The results [5] are shown in Fig. 6a: for a plot with 

a larger horizontal scale, see Fig. 3 in Ref. [5]. Note that the open horizontal "boxes" 

and square "diamonds" represent the Monte Carlo simulation estimates of 

Panagiotopoulos [14]; as discussed [14-17], however, they are subject to some 

revision in light of later studies. 

Evidently the overall shape of the coexistence curve is now, once again, perfectly 

reasonable! The critical parameters are found to be 

x~ = tcca = 1.123, T*  = 0.0574o, 

p* = 0.02775, Zc = 0.2236, (8.2) 

These values (some of which differ slightly from those quoted in Ref. [5]) may be 

contrasted with the DH and DHBj results in Figs. 1 and 2 and Eqs. (4.8), (4.9), (5.13) 

and (5.14), and compared with the simulation-based estimates (3.5) and (3.6), the 

former being represented by the vertical box in Fig. 6. Inclusion of the dipole-ionic 

interactions clearly yields a significant improvement in the estimates of both T * and 

p*. The value of h'ca oc Plc implies PZc/Plc  = 1.91 for the critical-point ratio of dipole 

to free ion densities: that seems quite reasonable [44]. The critical osmotic coefficient 

Z~ is seen to be smaller than in DHBj theory by a factor of about 2 and so is much 

closer to the estimate (3.6); that, however, must be regarded as rather uncertain [37]. 

The natural next step [5] is to include the hard-core repulsions. As before, it is 

simplest to invoke the free-volume form (2.12) with B2 = 2B1. With B1 = (4/3\/'3)a 3, 
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Fig. 6. Coexistence curves predictions for the R P M  within DHBj theory augmented with dipole ion (DI) 

interactions: (a) with no hard-core terms and al = a, a2 = d2; (b) with added free-volume hard-core terms 

with B 1 = ½B2 = (4/3x/3)a3; (c) with the same hard-core terms but al increased to 1.070a (corresponding 

to so ~- 0.070 in Fig. 4); (d) with al = a but  including a further phenomenological  term varying as p~/3 with 

a coefficient chosen to fit the Monte  Carlo results of Ref, 1-14]; and (e) with al = 1.070a, a2 = ~i2, and 

B~ = ½Bz = Z3za3, only. The Monte  Carlo estimates are represented by the open diamonds and horizontal 

boxes but  are subject to revision: see Refs. [16, 17]. The vertical box locates the current simulation-based 

critical point estimates (3.5). Note, in comparison with Figs. 1 and 2, the differences in vertical and, 

especially, horizontal scales. 

corresponding to bcc close packing, the coexistence curve narrows and T¢ falls: see 

plot (b) in Fig. 6. The critical parameters  are now 

~cCa = 1.0285, T *  --- 0.05543, p~* = 0.02590, Zc = 0.2484, (8.3) 

corresponding to percentage shifts of - 8.4, - 3.4, - 6.7 and + 11, respectively. The 

critical dipole-to-ion ratio increases by 19% to P2c/Pl¢ = 2.28. The coexistence curve 

evidently now falls below the original Panagiotopoulos estimates but the critical 

point, in particular, lies closer to the more recent estimate of Orkoulos and 

Panagiotopoulos [16, 17]. 

The bcc choice of B1 underestimates the true ion- ion hard-sphere second virial 

coefficient by a factor around 2.7 so that significantly larger shifts in critical 
1 2 3 

parameters  must be anticipated. Indeed, B~ = ~B2 = 5~za yields 

x~a = 0.9227, T *  = 0.05229, Pc* = 0.02438, Zc = 0.2822, (8.4) 

so the critical point is still consistent with the region of uncertainty currently 

estimated from the simulations [17]. The ratio P2~/P~ rises to 2.94. The free-volume 

form with the correct second-virial coefficient, as used here, significantly overestimates 

the further repulsive terms so xca, T * ,  and p* here are effectively lower bounds 

(within the theory). 



Y. Levin, M.E. Fisher/Physica A 225 (1996) 164 220 199 

0.058 

0.055 

0 . 0 5 2  

0.03 

0 . 0 2 5  

' ~ - i  , i i 

• . . . .  ~ . < > .  

;..Pc" 

0 . 0 6  ,b, 

x~ x 1.2 ~. - ,  

1.o[ 

0'3 I 
0.05 

0 .2  

I I I I t 

~ 7 - : 7 . .  %a 

. . . . . . . . . " ' "  ~ ~ - o  ~ w ~  

~ Z C 

1.2 

1.1 

1.0 

0.9 

).25 

0.15 

0 . 0 2  0 . 0 2  

i I , I ~  0 .1  ~ i [ ' I t  

0 1 B l / a  3 2 , 1 B 1 / a  3 2 

Fig. 7. Some data illustrating the sensitivity of the critical parameters T * ,  p*, Kca, and Z~ = pc/p~kfl'~ 

within DHBjDI theory to the reduced dipole dimensions a~ ~ al /a  and a'~ =- a2/a for different values of the 

hard-core, free-volume, second-virial coefficients B1 = ½Bz. Note Bl/a  3 = 0, 0.7698, and 2.0944 correspond 

to no hard-core terms, bcc close packing, and the true ion- ion  hard-core second virial coefficient, 

respectively. In the plots the curves are mainly guides to the eye: (a) solid circles and solid curves denote 

a~' = I, a* = 6 '  = 1.1620; (b) open diamonds and dashed curves, a* = 1.150, a* = 1.1620; and (c) open 

circles, displaced slightly to the right, and dotted curves, a~' = 1, a* = 1.100. The most appropriate values 

for a* are probably 1.05 1.10: see Fig. 4; but a~ is less certain. 

However, we must still recognize the uncertainties in a 2 and allow for the 

temperature variation of al and a2. Fig. 7 displays the estimates (8.2)-(8.4) graphically 

and is designed to illustrate the sensitivity to the expected range of variations in al and 

a2. Note that a* = 1.150 (open diamonds and dashed lines) corresponds, via Fig. 4 

with s l ( T ) ~ a * -  1, to T*-~0 .065  which is somewhat above criticality. The 

coexistence curve for the lower assignment al = 1.070a with the bcc free-volume 

hard-core terms is represented by plot (c) in Fig. 6. Evidently, Tc increases (to 

T* = 0.0575) and the coexistence curve is in somewhat better accord with the Monte 

Carlo estimates [14-17] than plots (a) and (b). If, further, the true second-virial 

coefficient is used, as in plot (e), both T* and p* lie in the Monte Carlo range but the 

coexistence curve below 0.95Tc narrows significantly. 

When the free-volume approximation is adopted with the true second-virial 
1 2 3 

coefficient, i.e., B1 = 5 B z  = 3 n a  , one can extend the set of values (8.4) roughly via 

T * ( a , , a 2 )  ~- T*[1  + c , ( a *  - 1) + c2(a~ - 1)], (8.5) 

with T~ = 0.05897, cl = 0.528, and c2 = -0.700. Clearly, the estimates are fairly 

sensitive to the adopted value of a2. Indeed, at the anticipated extreme a* = 1.50, the 
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critical parameters become tcca -~ 1.048, T * -~ 0.0413, p* -~ 0.0400 and Zc ~ 0.288 for 

1 = (4 /3x~)a  3. Thus a more sophisticated analysis of the mean a * = l  a n d B l = s B 2  

exclusion radius of a dipolar bisphere would be worthwhile. 

8.2. DHBjDI  coexistence at low temperatures 

As seen in Sections 7.2 and 5.3, the predictions of the various theories at low 

temperatures are quite revealing. Indeed, to be certain that inclusion of the DI 

coupling always banishes the banana effect, a low-T analysis is really called for. It also 

serves to exhibit further features of the DHBjDI  theory. 

Now fD~ varies inversely with a 2 and, since qal is the dipole moment, it is also 

proportional to a 2. Consequently it is convenient to use the parameters 

2 k - 2 /  k 
X2 ~ Ka2, Ak = ala / a 2 .  (8.6) 

The dipole-ion contributions to the chemical potentials and pressure are then 

/72 DI = - 47rA1 o92(x2)p*/T , 2 ,  (8.7) 

fi~' = - 2~A1 co ' ( x2 )p* /T*2 ,  (8.8) 

~DI _ (flpa3)D, = riD, p * ,  (8.9) 

where co2(x) is given by (7.13) while 

Of(X)  ~ X ~ X  [X2092(X) ] = ~ - -  ~ X -[- O(X2),  

~ 3 x  - 3 - 1 2 x  ~ l n x +  .-., ( x +  oo). (8.10) 

Finally, from (5.7), (5.9), and (6.7) et seq., it is helpful to recall the low-T behavior of the 

association constant, namely, 

in [ K ( T ) / a  3] = T *-a + l n 4 ~ T *  + 4 T *  + . . . .  (8.11) 

To obtain the phase boundary the pressures and chemical potentials of the vapor 

(v) and liquid (:)  must be matched. This yields four rather complex equations for P~v, 

Pzv, Pl/ ,  and P2:. To make progress when T --, 0 we suppose the solutions then satisfy: 

AI: p x v / T  ~ O, A2: pzv/T 2 __. 0,  (8.12) 

2 A3: x:  oc p l : / T  ~ oo . (8.13) 

Having obtained the solutions, these assumptions must be checked. Note that A1 and 

A2 imply pvap(T) ~ 0 and, hence, the absence of any banana effect. Using A1, 2, and 

3 the matching chemical potential equations can be solved successively in terms of p2:, 

which is then determined by the pressure equation. The derivation is quite informative 

but rather intricate: it is outlined in Appendix A while the results are described here. 
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Consider, first, pure DHBjDI theory with no hard-core contributions. On the vapor 

side of the coexistence curve one has 

( 6 , )  
-- 3A1/2A4 e -(2+A3) '4T* 1 A33 + (8.14) 

P*~ 8roT ,3/~ - , 

9A3A2 -a3/2r*( 12T* ) 
P~v - 647rT,~ e 1 -A33 + .-. , (8.151 

where the ellipses denote terms of order T .3/2 and e x p [ -  (2 + A3) /4T*] /T  .7/2 

Clearly A1 and A2 are valid and the vapor density vanishes exponentially with T in 

standard fashion. 

The vapor pressure curve follows in leading order simply from 

p~(T ) ~ ( P l v +  p2v)kB T ~ e-a3/2r*/T * (8.16) 

On the liquid side one finds 

9A2 (1 4 x / - ~ T * l n T * + O ( T * ) )  (8.17) 
P*/ - 1 6 ~  -- ~ 

P2/ - 6 4 7 r T * ~ ,  9a3a] ( 1~33T 4 ) 1 -  * +~3A~ T*3"2 + O ( T * 2 1 n  T*)  , (8.18) 

so that Pl//P2r "~ 4T  */A4 and A3 is verified. These results may be compared with the 

pure DH predictions (4.15) (4.17). 

Of course, the divergence of Pl/ and P2/ as 1/T and I /T  2 is not realistic and is 

suppressed by the inclusion of hard-core terms. However, at intermediate 

temperatures when p*q is not too large, (8.17) and (8.18) are probably numerically 

reasonable. In Appendix A the effects of including the hard cores within the 

free-volume approximation (2.12) with Ba = 2B1 = 2B* are studied: but note that only 

the form of divergence of the pressure near Igma x plays a role [35]. On the liquid side of 

the coexistence curve one now finds 

B'p*~ ko T*l/3 2 2 :,g2/3 = - 3 k o T  + O(T*) ,  (8.19) 

2B*p~/ = 1 - ko T.1:3 - (kl - j 0 ) T  .2'3 + O(T*) ,  (8.20t 

• l/B* and a, al,  and a2 according to with coefficients depending on Pmax ~ 

9a2 /R*\t/3,~Y--~) k, 27a4 
ko = 7ra~ - 2~2a ~ (2B*) 4'3 , (8.21) 

Jo = 4xf~/3A4(2B*)l/3. (8.22) 

Not surprisingly, the free-ion density, pl / (T) ,  vanishes when T ~ 0  and so 

P2~ approaches its close-packing value 1/2B*. 

On the vapor side of coexistence the inclusion of hard-core terms does not change 

the leading exponential behavior; however, the correction factors become more 
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complex and reflect the approach to close packing. Specifically, following the 

Appendix, one finds for the free ions 

p*v --= e - 1 / e r * ~  * [1 + O(p*vlT*2)]  

exp[  - (2 + A3)/4T * ] ,  (8.23) 

while the dipolar-pair density varies as 

P~v = F0 exp[  - A3/2T* + F t / T  .2/3 - F2/T  .1/3] 

× [T*(Z/3)+(B*/6*t)] - 1  [1 + O ( T  *1/3 l n T * ) ] ,  (8.24) 

where the various amplitudes are given by 

1 • 2 2 , 
Fo = exp [5(Jo - ko + 83ko) - 1]~2joB* (8.25) 

F1 = 1/jo, F2 = 5ko/3jo. (8.26) 

The vapor pressure curve follows as in (8.16), yielding p, ~ T ~ exp( - A3/2T *) with 

1 _ (B*/6zt). If the exact second virial coefficient is used for B* one has a - 2 0 " = 5  9" 

8.3. Cluster densities in the vapor 

As mentioned previously, Gillan [17(c), 44] has studied quantitatively the densities 

of free ions and clusters in the vapor phase of the RPM for 0.05 > T*>0.25 .  

Specifically, he presents plots of logt0p* (with p* = /~T* = pa4D/q 2) and logl0p(,.s)* 

versus b = 1/T * for the neutral clusters (r, s) = ( + ,  - ) ,  (2 +,  2 - ) ,  and (3 +,  3 - )  and 

for the charged clusters (+  ,0), ( 2 + , 1 - ) ,  ( 3 + , 2 - )  and, by symmetry, for their 

charge conjugates [44]. Higher order clusters have negligible relative densities over 

the range considered. Within graphical accuracy Gillan's results may be represented 

by 

In p* ~ - 0.478/T*, In * "~ - 0.445/T* (8.27) Pvap ~ 

where additive constants have been dropped and Pvap denotes the total vapor 

density [17(c)]. Since, to excellent approximation, one has p* oc p*T * in the vapor, 

the two amplitudes here may appear inconsistent until one notices that 

In T * _~ const. + 0.033Ab for the range of T * (or b) in question. 

It is of interest to compare the results with our DH based theories using the low-T 

forms derived. Allowance may be made for the correction factors involving T*  but 

errors will still be entailed since we actually desire results around T * ~_ 0.03 to 0.04. 

With those provisos pure DH theory (see Section 4.2) indicates amplitudes of about 

0.55 and 0.515 in (8.27). These are distinctly higher than Gillan's values and, we 

believe, this is significant. Furthermore, within DH theory we cannot separately 

estimate the neutral and charged cluster densities. 

By using DHBjDI  theory we can, of course, go further. To that end note, first, that 

Gillan's result for the total neutral and charged cluster densities can be represented 
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(again to graphical accuracy and dropping additive constants) as 

In Po ~ - ~o/T *, In p *  ~ - ~; + / T  *,  (8.28) 

with e,o -~ 0.442 and e, _+ __ 0.71o. Now within DHBj theories it is natural to identify Po 

with the neutral, dipole, ion-pair density P2 and, similarly, to identify p ± with the 

total free-ion density Pl.  If that is valid Po and p + and, hence, E0 and ~ +, should be 

related in the vapor  phase through the law of mass action in terms of the 

Bjerrum/Ebeling association constant. This statement is embodied explicitly in the 

first line of (8.23): allowing for the factor T*,  that leads to 2~ + -~ 1 + ~:(> - 0.033. 

Indeed, the quoted values satisfy the relation to within better than 1% which confirms 

both the Pl and P2 identifications and the temperature variation of the association 

constant. 

Now, via (8.14) and (8.15), DHBjDI  theory yields the following asymptotic, low-T 

1 aZa/2a 3 and ~1 = ~ + ~A3. If we amplitudes corresponding to (8.27): ~;2 = ~A3 = 1 t 

accept a 2 =  1.162oa, as previously, and, following Fig. 4 for T*-~0 .033 ,  use 

al -~ 1.05a, we find E2 -~ 0.35 and e,1 ~- 0.68. These in turn imply amplitudes ~- 0.39 

and 0.36 in (8.27). (In principle, since al = 1.05a exceeds a, one should recompute the 

angular average used to estimate a2: this actually yields a 2 _~ 1.1649 a.) The changes 

from pure D H  theory are in the correct direction but the values now lie below the 

Gillan estimates. They would increase slightly (by 0.02 and 0.01) with T * since a l (T ) 

increases. However, as effective slopes the values should be decreased (by about 0.08 

and 0.06) in view of the correction factors displayed in (8.14) and (8.15). On the other 

hand, if a 2 is decreased to, say, 1.04a (which is low but, perhaps, not unreasonably so) 

one is led to e,2 -~ 0.41 and el ~- 0.69 which fall below Gillan's values by only 0.03 and 

0.02. 

Inclusion of the hard-core term changes the correction factors significantly as seen 

in (8.24). In this case the exhibited corrections serve to decrease ~2 by only about 0.04: 

but since the magnitude of the T * 1/3 In T * and subsequent corrections is not known, 

this cannot be considered reliable. Nevertheless, accepting that estimate and the "low" 

value a2 -~ 1.04a yields essentially perfect agreement with the values of ~:o =~ ~:2 and 

~; + ~ ~:~ derived from Gillan's data. 

8.4. Assessment and theory f o r  larger clusters 

Even though the value az/a  ~- 1.04 needed to precisely match the explicit cluster 

calculations in D H B j D I H C  theory is rather low, the possibility of agreement is 

nevertheless quite encouraging. To go further, two issues must be addressed (beyond 

the question of the optimal value of a2). The first is to improve the description of the 

liquid phase at low and intermediate temperatures. Since, as we have seen, P~/P2 ~ 0 

in the low-T liquid, it is clearly essential to address the residual dipole-dipole pair or 

collective interactions. This question is taken up briefly below. The other task is to 

account more directly in the theory for the higher-order clusters. Within the 

framework we have set out, this is a relatively straightforward matter  in principle, 
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although the complications obviously multiply and judicious approximations will be 

needed in assessing the appropriate  equilibrium constants and multiple-ionic 

interaction terms. 

As regards the associat ion constants ,  we will sketch a plausible approach as follows. 

First we may assume (as can be checked in various ways: see e.g., Ref. [44]) that the 

most important  clusters will be of the form (k + ,  1 - )  with I = k or k _+ 1, i.e., neutral or 

singly charged. Then for an n = ! + k >~ 2 cluster we can extend the mass action law 

(5.3) to the form 

1 n 
P,  = (~Pl )  K , ( T )  exp (nil Ex - f lex).  (8.29) 

Of  course, K z ( T )  will just be the previous Bjerrum/Ebeling association constant. 

Following (5.6)-(5.11) and generalizing to d > 2 dimensions [34] we can write that as 

K 2 ( T )  = Caaa-~z(b) eb/b(d - 2), (8.30) 

where Ca is the area of a unit d-sphere, 

b - q 2 / D a d - 2 k B T  - 1 / T * ,  (8.31) 

while the important  point is that ~2(b ~ ~ )  = 1 is finite. 

To make progress we need the form of K , ( T ) .  In Appendix B we advance 

a tentative argument based on picturing the most typical clusters as + - + . . . .  

wandering "polymer" chains. We suspect that for n not too large and T * not too small 

this will be a rather reasonable representation. The conclusion of Appendix B is that 

one then has 

K ,  = [Cdaa/(d - 2)]"-  1 ~,(b) e""b/b ~l/2)~d+ 1),-a , (8.32) 

where the amplitude ~,(b) approaches a finite positive value when T * ~ 0 or b ~ ~ .  

The parameters v, determine the ground states of an n-cluster via 

E,  = - v n E o ,  Eo = q Z / D a d -  2 . (8.33) 

One has vz = 1, v3 = 2 - 2  d-2 while the polymer picture suggests the bound 

v, ~< n - 1 (based on neglecting all interactions beyond nearest-neighbor attractions). 

To calculate the constants 2,(  ~ ) needed at low T *, a harmonic mode expansion is 

proposed in Appendix B: explicit results should be computable for small n > 2. We 

may note, however, that even in the critical region, the results of Gillan [44] suggest 

rather small relative populations for larger clusters. At present, therefore, it does not 

seem especially worthwhile to pursue this line of calculation. 

8.5. The ionic liquid at higher densities 

Our  primary aim has been to understand the critical region of the RPM. It is 

evident, however, both from our various calculations, as illustrated in Fig. 6, and from 

the simulations, that when T falls significantly below Tc the liquid density increases 

extremely rapidly. Indeed, judging by the simulations, a 15% drop below Tc leads to 
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a ten-fold increase in density! The critical region is, thus, limited on the liquid side in 

particular. Two issues then arise in the liquid regime: first, the free-volume 

approximations used for the hard-core contributions to the free energy become 

suspect; second, since the density of free ions falls - -  see (8.19) .... the adequacy of 

representing the ionic energy through the DH plus DI terms alone must also be 

questioned. 

As regards the free-volume approximation, notice that setting B1 equal to the exact 

second virial coefficient badly overestimates the pressure which, indeed, must then 

diverge at a false maximum density of p* = 3/2n -~ 0.477 compared with the true 

maximum density of p*ax = x ~  ~ 1.414. This must cause the computed liquid-side of 

the coexistence curve to fall much too rapidly: see (8.20). This observation provides the 

argument in favor of using the bcc (or fcc) close-packing value for B1 in the 

free-volume expressions as we have done in Fig. 6. In that case, however, the pure 

hard-core fluid pressure is underestimated by a factor of about 2.0 once p* reaches 0.5. 

(For knowledge of the pressure of a hard-sphere fluid reliable estimates exist up to the 

solidification density: see Chapter 13 of Ref. [3]). On the other hand, choosing 

B* ~_ 1.50 in the free-volume approximation reproduces the correct pure hard-core 

pressure to within _+ 9% up to p* <0.45. As seen from Fig. 7, the critical parameters 

do not change dramatically with the choice of B1 although the effects on the liquid 

side of the coexistence curve are appreciable. 

As discussed originally in Section 2, one could well investigate various improved 

approximations, such as (2.14). But one must recall that results for mixtures of hard 

spheres or, to better represent the dipolar pairs, of hard spheres and bispherical 

dumbells, are really called for. At this stage some further calculations might be worth 

pursuing, using, for example, the Percus Yevick approximation for mixtures of hard 

spheres [68], or work by Mansoori et al. [69]. 

When the density of Bjerrum pairs becomes large with respect to the density of free 

ions one should expect residual dipole dipole interactions to play a role. It seems very 

hard to identify such contributions explicitly since the major part of the ionic 

interactions is accounted for by the DH treatment of the free ions and our D1 analysis 

of the dipole ionic contributions. Nevertheless, one might attempt to incorporate 

dipole dipole interactions at a purely phenomenological level. One way of doing so 

would be in terms of van der Waals (vdW) contributions to the total free energy as 

specified in (2.16). However, in the absence of a systematic theory for calculating the 

dipole dipole amplitude, A22, it can be treated only as a fitting parameter. (We 

neglect A12 and, of course, A ll .) We find that values of A~' 2 (using reduced units for p 2 

and T ) around 0.1 are sufficient to improve the fit of the liquid side of the coexistence 

curve to the Monte Carlo data shown in Fig. 6, although the nearly linear shape for 

p* >0.1 is not very well reproduced. 

The failure of a vdW approach to provide a good match to the liquid branch 

suggests that a quadratic density contribution to the free energy does not capture all 

the relevant physics of the low-temperature ionic fluid. Indeed, it seems possible that 

at low temperatures and densities well above Pc, the ionic liquid starts to resemble, in 
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local structure, an ionic crystal (frozen from the "fused salt") with, in effect, 

a periodically varying charge density. Such a picture seems to have been suggested 

many years ago by J. Ch. Ghosh (cited in Ref. [1]) in discussions of electrolyte 

solutions antedating the analysis of Debye and HiJckel. It was, also, in effect, adopted 

in an interesting treatment by McQuarrie [70] on the basis of a cell model of the 

liquid. 

If this proposal has validity, the "organized dipoles" will no longer contribute to the 

free energy quadratically in vdW fashion. Rather, the appropriate density scaling can 

be deduced by considering some ionic crystalline form, say, for simplicity, an NaC1 

structure. If the interionic spacing of the "expanded crystal" approximating the liquid 

is R, the electrostatic energy for N ions is UN -- - N~q2/2DR where ~ is the Madelung 

constant which, for NaC1, is ~ -- 1.747565 [71]. The overall ionic density is p = 1/R 3 

and N = pV so that on neglecting the entropic contributions because T*  ~ 1, the 

reduced free energy density becomes [70] f = ~q2p4/3/2D. In the limit that the density 

Pl of free ions can be neglected relative to the dipolar density Pc, the leading 

dipole-dipole contribution would thus be 

o~q221/3p42/3 A 'p*4~ 3 

fDD-- DkBT a3 T • (8.34) 

We suppose that the dominant dipole-ionic effects are described as previously. 

At this level of approximation one should not take the coefficient in (8.34) at face 

value. The best that might be hoped is that the p4/3/T form reasonably represents 

some of the essential physics at higher densities: then the amplitude A* could be 

adjusted to fit the Monte Carlo data. One such trial is represented by the plot (d) in 

Fig. 6: this corresponds to A* = 0.030 ( - 1.26 ~eff) which evidently provides good 

agreement with the data up to p*-~ 0.5. (The critical parameters are xca ~-1.1, 

T * -~ 0.0574, p* -~ 0.032.) 

One particular defect of the form (8.34) should be mentioned. At low overall 

densities P2 varies as p2, via the law of mass action, and hence as p2. The 

approximation for fDD thus generates a term varying as pS/3: but no such power 

occurs in the true low-density expansion for the RPM [2, 3, 59]. One could, however, 

argue that this term lies beyond the "second virial" term by a factor p2/3 and that it is, 

therefore, of small consequence granted that, in any case, other terms that are to be 

expected [2, 59] will be absent within our approximations. 

Finally, we remark that the plot (c) in Fig. 6, which embodies a value of the dipolar 

+ / -  separation al exceeding the closest contact value a (see Fig. 5), mirrors the 

Monte Carlo liquid-side data moderately well, especially in the light of the more 

recent simulations [15, 16]. Furthermore, although p~(T) falls to zero when T ---, 0, it 

does so, according to (8.19) only as T *~/3, that is, relatively slowly at intermediate 

values of T*.  One can well imagine, therefore, that an improved calculation of a2, 

which would depend on T, as should al,  combined with a better approximation for 

the hard-core terms might effectively account for all the important electrostatic 

contributions so obviating the need for a separate dipole-dipole term except at 
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temperatures below the triple point which, it is reasonable to suppose, is present in the 

true behavior of the RPM. 

9. The mean spherical approximation and variants 

The mean spherical approximation (MSA) [63] relies on a simple and appealing 

microscopic approximation for the direct correlation functions combined with the 

Ornstein Zernike relation between the direct and standard correlation functions. It is 

beloved since the defining integral equations can be solved exactly for the RPM in 

d = 3 dimensions [63] (although we remark that DH theory and its extensions can be 

handled analytically [34] for all d). When the charges vanish the theory reduces to the 

Percus Yevick (PY) equation for hard spheres: that is reasonably accurate (see Ref. 

[2], Chapter 13). The ionic contribution to the reduced Helmholtz free energy density, 

derived via the energy, is given by [2, 63] 

fMSA = [2 + 6X + 3X 2 - -  2(1 + 2x)3/z]/12na 3 

= (tr3/12n) [1 3 3 2 - - ~ x  + Xx . . . .  ] ,  (9.1) 

with x = xa. This may be compared with the fOil result (3.15); they differ only in order 
X 2" 

The full MSA theory then corresponds to f_~fncPv +fMSA where the first term 

denotes (one of) the PY expressions for the hard-core free energy (differing according 

to the thermodynamic route used to obtain the pressure [3]). However, following 

Ebeling [11, 42], we may regard (9.1) as an approximation for f~o, in its own right: 

then we may analyze it along lines parallel to those we have used to study f DH. This 

will provide an instructive comparison with the DH-based results obtained above. 

Because the analysis follows closely that explained for f on, only few details of the 

derivation will be presented. 

9.1. Pure MSA (without hard-core terms) 

The simplest M SA-based theory, as for DH, is obtained by combining (9.1) with the 

ideal-gas term (2.9). This can be handled analytically by studying the spinodal curves 

as in Section 4.2. The critical parameters are found to be 

xo = K~a = 1 + ~ = 1.414 213...  , (9.2) 

which is much higher than any of the DH values, as seen in Fig. 7, and 

T*  = 1/2(1 + x/2) 2 = 0.0857 864...  , (9.31 

p* = 1/Sn = 0.0397 887 . - . ,  (9.4) 

Zc =- pc/pck, Tc = 1 - 2 x ~  = 0 .0577. . . .  (9.5) 
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Fig. 8. Coexistence curve predictions for the RPM from the MSA and its variants. The crosses represent 
the central values of the Monte Carlo estimates of Ref. [14] (subject to some revision [16, 17]) while the box 
locates current critical-point estimates: see also Fig. 6 but note the change in vertical scale. Plot (a) derives 
from the MSA ionic free energy term supplemented only by ideal gas terms. For (b) and (c) hard-core 
interactions have been included within the free-volume approximation with B* = 4/3xf3 and B~' = 1, 
respectively. The standard MSA with a Percus-Yevick hard-core contribution (embodying the exact second 
virial coefficient) is reproduced in (d) (after Ref. [64(b)]). The dashed curve, (e), is as for case (b) but with 
Bjerrum association into (ideal) dipoles also included. 

The  co r r e spond ing  coexis tence curve is shown in Fig. 8a. By con t ras t  with the para l le l  

D H  theory  [see Fig. 1 and  (4.8), (4.9)] the cri t ical  t empera tu re  is s ignif icantly high by 

a b o u t  60%. This  p roves  to be an undes i rab le  feature of all the M S A - b a s e d  theories.  

F u r t h e r m o r e ,  the l iquid side of  the coexis tence curve, with only the ideal  gas terms 

included,  is qui te  unrealist ic ,  d r o p p i n g  ex t r ao rd ina r i ly  slowly. Explici t ly,  the l o w - T  

sp inoda l  on the v a p o r  side is descr ibed  by the re la t ions  

ps /p~ ~ 4T*3 /n ,  ~c~_a ~ 4 T * ,  (9.6) 

which a sympto t i ca l ly  coincide with the D H  results  (4.13), while on the l iquid side one 

has 

Ps+/P¢ ~ 1 /32T-z ,  Ks+a ~ 1/ST .2 , (9.7) 

which diverge as 1/T 2 when T ~ 0 in place of  1/T in D H  theory.  The  coexistence 

curves at  low T are  s imilar ly  given by 

p* = (81nT*3) -1 [1 -- 6 , , / 2 T *  + O ( T * 2 ) ] ,  (9.8) 

P* - 18T1 • e -a / r*  [1 --  6 ( 2 x / 2 -  1 )T*  + ... ] . (9.9) 



Y. Levin, M.E. Fisher/Physica A 225 (1996) 164 220 209 

Since the vapor rapidly becomes ideal the vapor pressure curve obeys/5 , (T)a  3 ~ p* 

with exponentially vanishing corrections of relative order (p*/T*3)  1:2. By 

comparison with (4.16) we see that the MSA vapor pressure vanishes with T faster 

than according to DH theory by a factor e x p ( -  1/2T*). By the same token the 

reduced chemical potential on the phase boundary, /7~(T), diverges as 

- l / T * - I n  T*  according to the MSA while DH theory predicts the weaker 

divergence ~ - 1/2T* - In T *. Various significant consequences of this behavior 

will be mentioned below. 

9.2. MSA with hard-core terms 

One may suspect intuitively that the anomalous behavior of the liquid side of the 

(ideal gas) + MSA plot (a) in Fig. 8 arises from neglect of hard-core contributions 

even though their absence in zeroth-order DH theory was not so harmful. At a first 

level of improvement consider adding the free-volume hard-core terms to the MSA 

ionic free energy. With B* = 4/3x/3 = 0.769... (as for bcc close packing) the solid 

curve (b) in Fig. 8 is obtained: the critical parameters are 

Kca ~ 1.83899, T~ ~ 0.082127, 

p~ ~ 0.022102, Z~ ~ 0.07369 s . (9.10) 

Evidently the critical temperature has fallen somewhat, the critical density 

significantly. Increasing B* to unity yields further reduction in T~ and p~ as seen from 

plot (c) in Fig. 8. 

Finally, the "full" MSA with PY hard-core contributions is presented in Fig. 8d 

[64(b)]. The critical temperature has fallen significantly to T*  ~_ 0.0785, that is 45% 

higher than the current estimates, while the critical density becomes p* -~ 0.015 which 

is about 50% smaller than the best estimates. Note also that although the PY form of 

the hard-core term is more accurate than the free-volume approximation, the liquid 

side of the coexistence curve is not well represented in any range of density. 

9.3. MSA with Bjerrum pairing 

The MSA sets the direct correlation function for r > a proportional to the bare 

Coulomb interactions scaled by kBT. This approximation is strongly reminiscent of 

the DH linearization of the Poisson Boltzmann equation. (Both approaches also 

impose the obvious relation gij(r) = 0 for r < a on the ordinary correlation functions: 

screening then appears in the DH approach via solution of the linearized PB equation 

while, within the MSA, it comes about through the imposition of the OZ relation.) 

The similarity of MSA and DH "linearizations" suggests that the MSA also may be 

improved I-11, 42] by inclusion of Bjerrum pairing [72, 73]. 

To do this, consider first the ideal-gas MSA with (ideal) Bjerrum pairs. As in DH 

theory, this approximation is analytically tractable. Again there can be no change in 
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~:ca or Tc so that (9.2) and (9.3) still apply. For the present exercise the Bjerrum form 

(5.5)-(5.7) of the association constant suffices and we record the value 
Bj ,.~ Q6+4,,/2- 1.7587956 corresponding to the temperature (9.3). Then the ratio of 

dipolar pairs to free ions at criticality is 

o2f~BJ  

P 2 c  __ '~ Y-~6+4~/'2 ~ 0.13936 . (9.11) 
Pxc 16(1 + x/2) 2 

This is very much smaller than the corresponding DH value of 4.0479: see (5.13) and 

following discussion. As explained previously [44], Gillan's work 1-17(c)] shows that 

the DH prediction is probably of the correct order of magnitude. By the same token 

the MSA result (9.11) seems too small by a factor of 10 or more. From (9.11) the critical 

density follows as 

P* = P~'c 4- 2p*¢ ~- 0.050879, (9.12) 

which is only 28% higher than (9.4), while the osmotic ratio increases by a factor of 2.7 

to 

Zc = pc/pckBT ~- 0.15371 . (9.13) 

Now comes a surprise! In DH theory inclusion of ideal Bjerrum pairs led to 

"banana" coexistence curves as illustrated in Fig. 2. But that does not happen here. 

On the contrary, the liquid side of the coexistence curve of plot (a) in Fig. 8 hardly 

changes visibly; the vapor side does rise to much larger relative values of the density 

but the overall changes in density remain quite small! 

The quantitative nature of the changes induced by Bjerrum pairs can be judged well 

from the dashed curve (e) in Fig. 8. This represents the result of adding ideal Bjerrum 

pairs to the MSA with free-volume hard-core terms using B* = ~B21, = 4/3,~f3. In this 

case the critical parameters, namely 

Kca ~_ 1.84858, T* _~ 0.082374, 

p* -~ 0.033074, Zc ~- 0.22274, (9.14) 

are all enhanced with respect to those reported in (9.10) even though the rise in T~ is 

only 0.3%. The pairing ratio P2c/Pl¢ also increases somewhat but only to 0.23825. 

Evidently the plots (b) and (c) in Fig. 8 merge closely on both liquid and vapor 

branches for T * < 0.05. The only significant differences are on the vapor side of the 

coexistence curve which, however, still approaches the zero-density axis in perfectly 

standard fashion when T falls! In other words the banana pathology is absent [42]. 

What is the origin of this striking difference from DH theory? In the ideal (no hard 

core) approximation it is quite easy to calculate the density of Bjerrum pairs at 

coexistence: one finds 

e - l / T *  

P% - 324rrT* [1 - 8(3~/-2-- 2)T* + .--], (MSA). (9.15) 
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This decays rapidly to zero confirming analytically the no-banana feature; the 

exponential factor is, indeed, the same as in (9.9). By contrast, in DH theory p ~ ( T )  

diverges like e2/128nT*,  as follows from (5.20). The crucial difference can now be 

traced by returning to the derivation of the DH result (5.20): there the ionic chemical 

potential is given by 

- x ( D H )  ( 9 . 1 6 )  fill°n = In 7+ - 2T*(1 + x)' 

with, of course, x oc x / ~ T * :  see (4.4). On the phase boundary, a, the chemical 

potential is the same in both phases while in the liquid, the density increases without 

bound or attains some hard-core limit. Hence one has x , ( T )  -o :~ when T ~ 0 and 
- I o n  

so /~l~ diverges as - I / 2T*  [see also (5.19)]. In computing p*v(T) this leads to 

a cancellation as explained in Section 5.3. 

In place of (9.16) the MSA yields 

- - X  

fi~o, = (MSA) (9.17) 
T*(1 + x + x / 1  + 2 x '  

which, when x , -~  oo, yields the larger-amplitude divergence /a-~°nl, ~ - 1/T* ,  as 

mentioned above. Then no cancellation occurs in calculating p*v(T). Said more 

physically, the law of mass action asserts 

P2 ~ K ( T ) p ~  ~ T*  e '/r* [p~(T)]  2, (9.18) 

where we appeal to (5.7)-(5.9), etc. On the phase boundary in the MSA we found 

px ~ e ~/r*/T* which thus leads to the exponential decay recorded in (9.15); but in 

DH theory one has p 1 ~ e -  1/2r*/T * so the exponential factors cancel in (9.18) leaving 

only a power variation for the density p2(T) of ideal Bjerrum pairs. 

9.4. Assessment o f  the MSA 

At first sight the absence of the banana effect in the MSA appears to be a positive 

feature of the approximation. But a few moments'  reflection shows that, on the 

contrary, it is a misleading symptom. The physical point is that we know from Gillan's 

studies [12, 17(c), 44] that the relative density of dipolar pairs in the vapor must 

increase as T falls; but by (9.18) this is at best a weak effect in the MSA. In the DH 

theory with ideal pairs the growth of P2/Pl is vastly overestimated: but this is repaired 

in a physical way by inclusion of the dipole-ionic solvation effects. Then, either from 

(8.14)-(8.15), with no hard-core terms, or from (8.23)-(8.24), which allow for 

hard-cores, one finds 

P 2 v / P l v  ~ e~2 A 3 ) / 4 T *  = e Cl -,:2);27"*, (9.16) 

in the vapor phase. The "activation energy" g2 was discussed in Section 8.3: values 

of 0.35 to 0.41 were in accord with the DI analysis. These lead to 

(1--g2)/2---0.31 +0.02. On the other hand, Gillan's estimates of the relative 
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populations, summarized to leading order in (8.28), yield the activation energy 

(to - ~ + ) -~ 0.27 in rather satisfactory accord in light of the neglect of higher cluster 

formation (see Section 8.4). 

Furthermore, Gillan's estimate for the total vapor pressure [see (8.27)] corresponds 

to an activation energy e~ ~- 0.48. This is clearly consonant with the DH factor e 1/2r* 

(up to relatively small corrections of the sort discussed in Section 8.3 and associated 

with the parameter A3 in Section 8.2). 

On the other hand, it is clear that within MSA theory the more rapidly falling factor 

e -l/T* will dominate the vapor pressure and the population densities pzv(T) and 

plv(T). Allowance for hard-core contributions cannot change this leading behavior, 

as can be seen from the analysis of the coexistence curves in Appendix A, even though 

more complex corrections will arise as in (8.24). The inclusion of dipole-ionic terms in 

the MSA analysis presumably can change the behavior somewhat, as seen in Section 

8.2; but the numerics discussed in Section 8.3 show that the differences are unlikely to 

alter the activation energies by more than about 0.10. We conclude that the MSA 

factor e-l/T* and the associated divergence of the chemical potential on the phase 

boundary as 1/T * (in place of 1/2T *), represent defects of the approximation relative 

to the DH approach which necessarily hinder its improvement. The small ratios of 

P2c/Plc predicted by the MSA point to a closely related defect. 

It is hard to pinpoint the reasons for the relatively poor performance of the MSA. 

Like other integral-equation-based treatments of the theory of liquids, it primarily 

embodies low-density virial-type information; but even then, of course, it fails at order 

p2 since, like DH theory, it evidently contains no description of Bjerrum pairing. On 

the other hand, the DH theory, being based on a physical picture in real space seems, 

like other mean-field-theories, to give a more evenly balanced overall picture; in 

addition, further physical effects, like the pairing and dipole ion solvation, can be 

incorporated rather transparently. 

Nevertheless, currently missing from the DH formulation is some overall 

variational principle for the ionic free energy, or some special limiting process 

(resembling, say, the Baker-Kac theory of weak long-range forces) that would provide 

some independent basis for confidence in its reliability beyond agreement of the 

critical parameters, etc., with (current!) simulation estimates. Be that as it may, we 

believe that the account we have given of criticality in the restricted primitive model of 

an ionic fluid on the basis of the Debye-Hfickel approach has identified the crucial 

physical effects and accounted for them in at least semiquantitative fashion. It should 

provide a groundwork on which to attack the still outstanding challenge of 

determining the universality class of the critical behavior of ionic fluids [6, 18-25, 27]. 
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Appendix A. Low-temperature coexistence in DHBjDI theory 

In this appendix we sketch the derivation of the results (8.14)-(8.26) for the phase 

boundary and the densities p l ( T )  and p z ( T  ) in the coexisting vapor (v) and liquid (/) 

phases at low temperatures according to DHBjDI theory, first with no hard-core 

corrections, then with free-volume terms. We use the parameters (8.6), the basic 

expressions (4.6), (5.1)-(5.4) and (5.16) for the pressure and the chemical potentials, 

together with the dipolar-ionic terms (8.7)-(8.10), and the low-T form (8.10) for K ( T  ). 

The necessary equilibrium equations may be taken as /~2v = 2~t1,., ~t2, = 2p~/, 

~tt2v = ,tt2/, and Pv = P~: these are four equations determining Plv, P2v, PI~, and P2/. As 

mentioned in the text, we employ the assumptions A1-3, in (8.12) and (8.13), to solve 

the equations successively. Thus using AI and A2 for the vapor we may rewrite 

tt2~ = 2Ftlv as 

~ b  e-b/2 P*v ~ (p'v) 1/2 [1 +jlb2p~v • ,~5 * ,,,'2 b,,2~ --,12~ 0 P2vl' e j ,  (A.I) 

with b -  l / T * ,  Jl = 2~A~/3 and J2  = 2~/3. For the liquid, using A3 converts 

[/2/ = 2fll/ to 

/ p*, ) A3 3A4 p*/ 
n~rr~*tZ*2 ~ 2T* 2 x / ~  (T  *p *3) ~:2" (A.2) 

Now A3 and A4 cannot vanish so the terms on the right-hand side here must balance 

asymptotically when T * --* 0: this leads to 

(9a2T * ~ '/3 
P~/ "~ ~ - a ~ ;  (p~/)2/3 (1 - - j z T *  In T *), tA.3) 

with J3 = 4/3A3. 

Next note that K ( T )  cancels from the equation/~2v = tt2/ which then yields 

a,b,2,,* [1 " 5 * e - A ' h i  +g~(b P2/) (A.4) 
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1 1 
with A * = y  + ~ A  3. This relation together with (A.1) and (A.3) expresses all four 

densities in terms of P~t alone. 

Equating the pressures, using (8.9) for pDI, (5.16) for pDHBj, and (4.6) for pDH, gives 

P *v + P *~ - J4(bP *~) 3/2 • 2 * * - J s b  Pl~P2~ + "'" 

1 4np*t 3A4 p*e 
~ P * e  + P*f-- j6(bp*t) l /2  +-~n ln  ~ 4 x / ~ ( p * f T * )  1/2 + ... (A.5) 

with j 4  = x/~/6, J5 ~- ~zA1/3, and J6 = 1/4x/-n. Now one may substitute for P'v, P'v, 

and P*e in terms of P*t =-- b2z and match the terms which diverge most strongly when 

b = 1 / T *  ~ ~ :  these turn out to be the second and fifth (or last displayed) on the 

right hand side of (A.5). One may then solve recursively for z 1/3 and thence obtain 

(8.18) for P*l. Using (A.3) yields (8.17) whence A3 is verified. Likewise (A.4) and (A.1) 

give (8.15) for P*v and (8.14) for p*~. Consequently A1 and A2 are valid. Finally, as in 

the text, the vapor pressure curve follows asymptotically simply from the ideal gas 

laws: p~ ,,~ kBT(pl~ + Pzv). 

The inclusion of hard-core terms changes these results since p~q = p~: + 2p2t is 

now bounded above. The same procedures, however, prove effective. Note that A3 is 

now obviously valid; A1 and A2 will be verified post facto. On the vapor side only the 

second virial coefficients need be considered. In (A.1) the coefficients Jl and Jz gain 

factors no worse than [1 + O(T  *)], and further quadratic terms in p*~ and p*~ appear 

in (A.5); but all these changes have negligible effect for small T *. 

As regards the liquid phase, the simplest case to analyze is the free-volume 

approximation (2.12) with B 2 = 2B~ - 2B*a 3. An additive term in ® with 

® ( T )  = 1 - B*p*r- -  2B*p*f, (A.6) 

then appears on the left-hand side of (A.2). To handle this we adopt, and later check, 

the further ansatz A4: ® ( T ) / T  ~ ~ ~ for some ~ > 0, i.e. ® does not vanish too 

rapidly. Then the balance of the two right-hand terms is not spoiled and (A.3) is 

reproduced except for the replacement of In T*  by In(T*/®). This shows that 

p l t ( T ) ~ O  when T ~ 0  so that ®(T)  ~ 1 - 2B*p~ .  

On equating/t2f to #2v as before we now find 

irA1 , 
in P*v = In p~  + 3T ,----5 Ply -- - -  

A 3 1 
2T * + O -- In ® -- 1. (A.7) 

Because of the terms in ® this can no longer be solved for P~v in terms of p*~ as in 

(A.4). Accordingly, we consider instead the pressure-matching relation (A.5): the terms 

P*F and p ~  on the right-hand side now gain factors 0 - 1  which, with the aid of (A.3), 

can be expressed in terms of p~  alone. The last term in (A.5) varies as 

pz~ / (p l tT )  1 / z ~  (pz~ /T)  2/3 and so still diverges when T ~ 0 .  Now, however, its 

divergence must be balanced by the p*F/O term. Thence O ~ T z/3 follows directly. 
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Fur ther  careful analysis yields p ~  and  p~( as given in (8.19) and (8.21) and 

B *  261 .2  1 1 - T * - 2 / 3  5k° T *-1/3 - - - I n  T *  + 3kl 
Ig (T  ) J0 3jo 672 9 ,~0 -- 

1 • 0 ( T , 1 / 3  , )  + S J o +  l n T  , (A.8) 

where the B*-dependent  coefficients are given in (8.21) and (8.22). This validates the 
2 

ansatz  A4 for any exponent  ~ > 5. 

Finally, one can re turn to (A.7), substi tute for P~t and 19(T), and so find P~v and 

then P'[v as given in (8.23) and (8.24). 

Appendix B. Higher-order cluster association 

In this appendix  we present  a tentative,  heuristic a rgument  yielding the expression 

(8.32) for the n-cluster associat ion constant ,  K,(T),  which enters the general 

mass-act ion law (8.29). As explained in the text, we wish to extend the n = 2 

(d > 2)-dimensional  form (8.30). To  that  end, recall f rom (5.5) or (6.2) (6.4) that  K2(T ) 

m a y  be regarded as a par t i t ion-funct ion-l ike restricted or cutoff  conf igurat ional  

integral. Fur the rmore ,  at l ow-T* ,  on which we focus here, the precise form of the 

cutoff  becomes irrelevant. 

As argued in the text, we regard a typical n-cluster as a wander ing "po lymer"  chain 

of  a l ternat ing + and - ions. Accept ing this picture, there will be a series of  n - 1 

neares t -ne ighbor  breathing (or bond) modes.  If we neglect all couplings to further 

neighbors  each bond  yields a factor  like 

R S 

Io =_ Cd f ebaa"/rd"rd dr = cdadeb f e-a"bs+°tbS2} ds, (B.I) 

a 0 

where Cd = 2rta/2/F(½d), d" - d -  2, r = a(1 + s), and S = (R /a ) -  1. N o w  let us 

suppose  the cutoff  R(T)  does not  vanish faster than  T so that  bS(T)-~ ~ when 

b--* oo (or T ~ 0 ) .  

Under  change of variable to y = d"bs, the correct ion term O(bs 2) then becomes 

O(y2/b) --* O. Thus  we conclude 

Io(T) ~ Caaaeb/d"b as b--* oc . (B.2) 

In this expression the factor  e b is clearly recognized as deriving simply from the 

ground-s ta te  pair  conf igurat ion with energy E2 = -- E o : =  - qZ/Daa". Fol lowing the 

definition (8.31) for E, ,  the full n-cluster conf igurat ional  integral must  entail the 

exponent ia l  factor  e v-b [ ra ther  than  e ~"- ~)b as would naively follow f rom (B.2)]. 

The  total  nd cluster degrees of f reedom m a y  be separa ted  into d free t ranslat ional  

modes,  d - 1 free ro ta t ional  modes,  plus the n - 1 breathing or bond  modes,  which 

leaves (d - 1) (n - 2) internal angula r  coordinates ,  say, Oj. These coordinates  will be 
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subject to strong exclusion forces arising from the hard-core repulsions and, of course, 

will also interact with the breathing modes. It is plausible, however, that one can make 

a Taylor expansion of the full Coulombic energy about a "thermally expanded ground 

state", with nearest-neighbor separations ri along the chain only slightly exceeding the 

hard-core diameter a. In leading order this should yield a well-defined quadratic form, 

d ~, in the deviation angles Cj =- (Oj - 0°),  where the 0 ° specify the thermal ground 

state. In particular, at low enough T* the hard-core constraints can probably be 

ignored (beyond the extent to which they are already captured in the integrals Io). In 

the standard way, the quadratic form g can be diagonalized yielding (d - 1) (n - 2) 

Gaussian angular integrals each reducing to (2~/¢trb) 1/2, where the 2r are the 

appropriate eigenvalues. Should it transpire that an n-cluster has a number of distinct 

thermal ground states of comparable energies they may, at low enough T *, be treated 

as distinct species. 

In total there are thus (n - 1) + ½(d - 1) (n - 1) = ½(d + 1)n - d inverse factors of 

b in the expression for K,: this finally justifies the form (8.32) quoted in the text. 

Although in the case n = 2 one simply has 22(oo)  = 1, the values of 23(oo), 24(oo),  

etc. will be nontrivial since, as evident from our arguments, they vary inversely with 

the square root of the determinant, ~ -= H,2r, of the quadratic form g describing the 

angular parts of the Coulombic energy. Because the net repulsive interactions reduce 

the phase space estimated via I~ - t ,  we expect 2 , ( o o ) <  1 for n > 2. Explicit 

calculations should be feasible for n = 3 and, probably, for n = 4. 
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