# Criticality of predictors in multiple regression 

Razia Azen*<br>Department of Educational Psychology, University of Wisconsin-Milwaukee, USA

David V. Budescu<br>Department of Psychology, University of Illinois at Urbana-Champaign, USA

Benjamin Reiser
Department of Statistics, University of Haifa, Israel

A new method is proposed for comparing all predictors in a multiple regression model. This method generates a measure of predictor criticality, which is distinct from and has several advantages over traditional indices of predictor importance.

Using the bootstrapping (resampling with replacement) procedure, a large number of samples are obtained from a given data set which contains one response variable and $p$ predictors. For each sample, all $2^{p}-1$ subset regression models are fitted and the best subset model is selected. Thus, the (multinomial) distribution of the probability that each of the $2^{p}-1$ subsets is 'the best' model for the data set is obtained.

A predictor's criticality is defined as a function of the probabilities associated with the models that include the predictor. That is, a predictor which is included in a large number of probable models is critical to the identification of the best-fitting regression model and, therefore, to the prediction of the response variable.

The procedure can be applied to fixed and random regression models and can use any measure of goodness of fit (e.g., adjusted $R^{2}, C_{p}$, AIC) for identifying the best model. Several criticality measures can be defined by using different combinations of the probabilities of the best-fitting models, and asymptotic confidence intervals for each variable's criticality can be derived. The procedure is illustrated with several examples.

## 1. Introduction

Multiple regression (MR) models are used to predict a single criterion variable from several predictors. Consider the MR model

$$
\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

where $\mathbf{Y}$ is an $n \times 1$ data vector (the criterion), $\mathbf{X}$ is an $n \times(p+1)$ full-rank data matrix (the predictors); $\boldsymbol{\varepsilon}$ is an $n \times 1$ vector of unobservable 'error' terms and $\boldsymbol{\beta}$ is a $(p+1) \times 1$ vector of parameters, estimated from the data by $\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$. Here $p$ represents the

[^0]number of predictors in the 'full' model (i.e., the maximum number of variables available for predicting the criterion variable), $n$ represents the number of observations in a data set, and $k$ represents the number of predictors in a particular (subset) regression model $(1 \leq k \leq p)$.

Two main concerns, related to two distinct stages of MR analysis, often arise. First, at the model selection stage, one wishes to determine if all predictors are necessary, or if there is a subset of predictors which can adequately predict the criterion. Second, at the interpretation stage, once a subset of predictors is chosen one often wishes to determine how to rank-order them in terms of how important, useful, necessary or relevant they are for predicting the criterion.

There are two distinct bodies of statistical literature related to these two questions. The first focuses on the development, validation, justification and implementation of various model selection procedures. A portion of this literature is concerned with various sequential procedures (forward inclusion, backward exclusion, stepwise methods). More recent work is concerned with the choice of optimal measures for identification of the best subset models. In addition to the traditional measures ( $R^{2}$, adjusted $R^{2}$, mean square error), most statistical textbooks discuss (and most statistical software packages implement) other meaningful measures such as $C_{p}$ (Mallows, 1973), Akaike's (1973) information criterion (AIC), and so on. For partial reviews of this literature, the reader is referred to Hocking (1976) or Judge, Griffiths, Hill, Lütkepohl \& Lee (1985). Regardless of the measure of optimality chosen by a researcher, and its mode of implementation, the final product of this stage of the analysis is the selection of a subset of $k(k \leq p)$ predictors that constitute the best model for a given data set.

The second literature focuses on the comparison of the predictors included in the model in an effort to rank and scale them in terms of their importance. Many measures have been proposed to quantify the concept of 'predictor importance' in MR. A review of the different measures can be found in Budescu (1993). Conceptually, importance refers to a predictor's ability to predict the criterion such that more important predictors are those that contribute more to the overall prediction of the response. In practice, however, goodness of prediction can be quantified in a wide variety of ways and interpreted in almost as many. Most measures of predictor importance attempt to partition some overall goodness-of-fit measure (such as $R^{2}$ ) among all the predictors in the model. Many of the problems with these measures generally stem from the fact that 'importance' is not clearly defined or agreed upon and therefore these measures fail to capture the connotations and implications of 'importance' in a scientific theory. For example, most measures of importance are model-dependent: they are not invariant across all subsets of the predictors. Clearly, most scientists examining all subset models would be puzzled by a conclusion such as ' $X_{1}$ is more important than $X_{2}$ in the presence of $X_{3}$, but $X_{2}$ is more important than $X_{1}$ when $X_{3}$ is absent from the model'. Such conclusions are particularly hard to accept when $X_{1}, X_{2}$ and $X_{3}$ are meaningful predictors embedded in a well-understood theoretical context.

It is interesting to note that these two literatures are almost independent of each other. Nothing in the work on predictor importance depends on, or is sensitive to, the method and criterion used to select the variables in the model (i.e., those variables which are to be ranked in terms of their importance). On the other hand, the literature on model selection is not concerned at all with the nature, identity and interrelations among the variables included in the model. In fact, it is fair to say that this literature implicitly assumes that, in some sense,
all variables in the selected model are equally important. This conclusion is sensible and easy to justify: after all, each predictor in the subset is necessary to make the chosen model the best. If a variable is omitted (regardless of how unimportant it may be according to regular measures of importance), the reduced subset may be outperformed by another set of predictors and no longer be the best. In addition, one may argue that all predictors in the best model are equally important because if the model is misspecified many of the attractive and optimal properties of the parameters do not hold. For example, the estimates may no longer be unbiased and/or have minimum variance.

The notion that all predictors in the best (selected) model are equally important implies that there is, in fact, a single true best model for a given phenomenon or behaviour, and that this best model can be identified unequivocally based on the sample evidence.

There are, of course, situations in which MR analysis is used as a theory-testing tool and its results are used to make inferences about the truth or falsehood of a given theory. In psychological research these cases often involve questions about the necessity of interactive terms; examples are given by Busemeyer and Jones (1983), Ganzach (1997) and Lubinski and Humphreys (1990). However, in many situations the assumption that there is a true model underlying the data is patently false. This is particularly true when MR is used as a predictive (not necessarily theory-driven) tool and/or in exploratory research. Consider the following illustrations:

- A financial forecasting firm wants to develop a new 'market index', that is a linear combination of a relatively small number of individual stocks, $X_{1}, \ldots, X_{p}$, that can predict accurately the performance of the stock market, $Y$, on a weekly basis.
- A political scientist tries to predict the likelihood that individuals would vote in the next election, $Y$, as a function of the voters' answers to a long list of questions about social, political and economic issues, $X_{1}, \ldots, X_{p}$.
- An industrial psychologist wishes to predict the prevalence of workers' absenteeism in a large organization, $Y$, based on a subset of items $X_{1}, \ldots, X_{p}$ in a large personality inventory.

In these (and in many similar) examples, standard model selection tools can be used to identify a subset of predictors that is best, in the sense that it optimizes the researcher's criterion of choice ( $R^{2}, C_{p}$, AIC, Bayesian information criterion, etc.) in the calibration sample. However, it is unlikely that any researcher would consider the selected subset as a realization of the true model. In particular, the researcher would not be surprised (a) if another subset of predictors performed almost, or exactly, as well as the one chosen, (b) if certain predictors are included in, or absent from, the selected subset, or (c) if a different random sample from the same population led to choosing a different subset of predictors, using the same methodology. In fact, in these cases, instead of discussing 'the single true model' it is more sensible to concede that there are 'multiple reasonable models' and try to estimate the probability that each of the candidates is the 'best-fitting model' (BFM). More specifically, assume that, given $p$ predictors, one can specify $2^{p}-1$ distinct models. ${ }^{1}$ We are seeking to estimate $P^{(c)}\left(M_{j} \mid \mathbf{Y}\right)$, the probability that model $M_{j}\left(j=1, \ldots, 2^{p}-1\right)$ fits the data ( $\mathbf{Y}$ ) best according to a criterion $c$.

[^1]Draper and Guttman (1987) describe a Bayesian approach to the problem of assigning a probability to each of the subset models, by which prior probabilities are placed on the regression coefficients $\left(\beta_{i}\right)$ and the error variance $\left(\sigma^{2}\right)$ for all $2^{p}$ subset models (including the intercept-only model). The resulting posterior probabilities, $P\left(M_{j} \mid \mathbf{Y}\right),\left(j=1,2, \ldots, 2^{p}\right)$, can then be determined, and the 'best' (i.e., most probable) subset model can be identified. The idea of generating a probability distribution across all subset models is appealing; however, specification of prior probabilities is always controversial and usually restricts the conclusions in other ways as well. For example, Draper and Guttman's results are not invariant under scale changes in either dependent or independent variables. The alternative approach to this problem, which we describe in this paper, is to estimate the empirical probability distribution of the subset models by a non-parametric method (the bootstrap), and use it to estimate both model probabilities and predictor criticalities.

## 2. Predictor criticality

The realization that there is no single true model suggests a new possible and important dimension along which predictors can be ranked, namely their criticality. Loosely speaking, a predictor, $X_{i},(i=1, \ldots, p)$, is said to be critical as a function of its likelihood of being included in the BFM.

Consider, for example, random samples of $n$ observations on one criterion variable $(Y)$ and three predictors $\left(X_{1}, X_{2}\right.$ and $\left.X_{3}\right)$. Within each sample the best subset model can be identified according to a criterion, $c$. If a large number of different random samples of size $n$ were available, and in each of these samples the best subset model included $X_{1}$, then $X_{1}$ would be considered a highly critical predictor variable. This does not necessarily imply that $Y$ could not be predicted accurately in the absence of $X_{1}$-this would be the claim made by a measure of predictor importance-but it is critical in the sense that in its absence the best subset for the prediction of $Y$ would not have been identified.

More precisely, predictor criticality is defined as the probability that a predictor is included in the best subset model for a given population. In contrast to the assignment of importance ranks, which is based on the contribution each variable makes to predicting the criterion in a given model, the assignment of criticality ranks is based on predictability across multiple models. A highly critical variable is one which is necessary for the identification of the best model, where 'best' refers to a subset model that is chosen with high probability according to some well-defined goodness-of-fit criterion, $c$.

The four steps in the determination of predictor criticality are: (1) bootstrap (resample with replacement) the original data set in order to obtain a large number, $B$, of quasi-replications; (2) for each of the $B$ data sets select the best-fitting subset model according to some criterion, $c$; (3) obtain the relative frequencies (out of $B$ ) with which each subset model was selected (the empirical probability distribution of the subset models); and (4) derive measures of criticality which represent the probability of inclusion of each predictor in the empirical probability distribution of the subset models. In this section we discuss these steps in detail.

### 2.1. Data collection: bootstrapping

The original data set is a random sample of size $n$ from a certain population. It is of interest to examine as many random samples of size $n$, from the same population, as possible. Since
collecting a large number of random samples is not feasible, the bootstrapping procedure can be used to resample the original observations, with replacement, thereby producing samples of size $n$ that can be considered to have come from the same population as the original observations. Efron (1979) originally proposed the bootstrap as a technique for non-parametric estimation of the sampling distribution of a data-dependent random variable. Estimation proceeds by randomly sampling the observations of the data sample, with replacement, computing the value of the target random variable using each of the resamples, and thereby producing its empirical sampling distribution. Since the best-fitting model can be considered a random variable, the bootstrapping procedure is employed to estimate its sampling distribution.

There are two general resampling methods, which correspond to the two types of regression models. Case resampling corresponds to the random (or correlation) model, and residual resampling corresponds to the fixed (or classic regression) model (Efron, 1979; Freedman, 1981; Mooney \& Duval, 1993; Shao, 1996; Stein, 1996).

Case resampling assumes that the predictors are random variables and can take on any value within their distributions. Each case or observation is a $(p+1)$-dimensional vector, consisting of a criterion and its corresponding $p$ predictors. The method proceeds by taking a random sample of $n$ observations, with replacement, where each observation consists of the original criterion-predictors vector. Therefore, if $\mathbf{D}$ is the $n \times(p+2)$ data matrix, $\mathbf{D}=[\mathbf{Y} \mid \mathbf{X}]$, each resampled data matrix $\mathbf{D}_{i}^{*}$, or each replication $i(i=1,2, \ldots, B)$, consists of $n$ rows of $\mathbf{D}$ chosen randomly with replacement. In other words, on the $i$ th replication $n$ rows of $\mathbf{D}$ are randomly selected with replacement, and this constitutes the $i$ th data resample, $\mathbf{D}_{i}^{*}$.

Residual resampling assumes that the predictor variables can take on only (experimentally) fixed values. This is the assumption typically made in the classic regression model. Under this assumption, the predictors themselves need not be resampled (because they are fixed). The residuals, on the other hand, are random variables. Residual resampling proceeds by fitting the full regression model to the original data set, and obtaining the $n$ residuals. Then, $n$ of the residuals are randomly chosen, with replacement, and they are added to the $n$ expected criterion values (i.e., the predictor values do not change). Thus, the data resample consists of the original predictor values and the residual-modified criterion values. If $\mathbf{D}$ is again the $n \times(p+2)$ data matrix, $\mathbf{D}=[\mathbf{Y} \mid \mathbf{X}]$, let

$$
\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}},
$$

and let

$$
\mathbf{r e s}=\mathbf{Y}-\hat{\mathbf{Y}} .
$$

Let res* be a vector of $n$ residuals randomly chosen, with replacement, from res, and let $\mathbf{Y}^{*}=\hat{\mathbf{Y}}+$ res $^{*}$. Then the resampled data matrix on replication $i(i=1,2, \ldots, B)$ is the $n \times(p+2)$ matrix $\mathbf{D}_{i}^{*}=\left[\mathbf{Y}^{*} \mid \mathbf{X}\right]$.

In most data sets collected in the social sciences the majority of the predictors are random, so residual resampling is often inappropriate. In addition, if a regression model is inappropriate for some other reason (e.g., a linear model is used where a polynomial model is appropriate), using the residuals from the misspecified regression analysis would be highly problematic. These types of problems are less likely to arise with case resampling, since the relationship between $\mathbf{Y}$ and its predictors does not need to be specified in order for case resampling to proceed.

### 2.2. Model selection

In each of the $B$ bootstrapped samples, all $2^{p}-1$ subset regression models are fitted to the data. For each of the resamples, $\mathbf{D}_{i}^{*}(i=1,2, \ldots, B)$, one of these $2^{p}-1$ regression models can be chosen as the BFM according to some goodness-of-fit criterion. In principle, the method can be applied with any arbitrary choice of criterion. For illustration purposes, three distinct criteria were chosen here: adjusted $R^{2}$, AIC and Mallow's $C_{p}$. For general reviews of various model selection criteria, see Hocking (1976) and Weisberg (1985).

### 2.3. Probability distribution of BFMs

The number of times each of the $2^{p}-1$ possible models was selected as the BFM according to the selection criterion, $c$, defines the empirical sampling distribution of the BFM. This distribution is a non-parametric alternative to $P^{(c)}\left(M_{j} \mid \mathbf{Y}\right)$ generated by the Draper and Guttman (1987) method, and one could use it as a model selection procedure (i.e., pick the most probable BFM). However, we are interested in an analysis of the predictors rather than the models. The criticality of each predictor is a function of the membership of $X_{i}$ ( $i=1, \ldots, p$ ) in each BFM as well as the frequency of each BFM in the empirical sampling distribution.

### 2.4. Predictors' criticality

Consider all $\left(2^{p}-1\right)$ subset models of $p$ predictors. Let $F_{j}$ be the frequency with which the $j$ th model was identified as a BFM in the $B$ bootstrapping runs, and $P_{j}$ be the empirical probability of each $\operatorname{BFM}\left(\sum_{j} F_{j}=B\right)$. The subset models represent the $2^{p}-1$ outcomes of a multinomial distribution with their associated probabilities, $P_{j}$, where $\sum_{j} P_{j}=1$ $\left(j=1,2, \ldots, 2^{p}-1\right)$.

To quantify the criticality of each predictor, $X_{i}(i=1,2, \ldots, p)$, we define the measure $C_{i}$ as the linear combination

$$
C_{i}=\sum_{j} a_{i j} P_{j}, \quad\left(i=1,2, \ldots, p, j=1,2, \ldots, 2^{p}-1\right)
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if } X_{i} \text { is in model } j \\ 0 & \text { otherwise }\end{cases}
$$

Thus $C_{i}$ represents the expected value (probability of inclusion in a BFM) of $X_{i}$. As $C_{i}$ is the probability of membership in the BFM, a (minimum) value of $C_{i}=0$ indicates that $X_{i}$ is never included in a BFM and a (maximum) value of $C_{i}=1$ indicates that $X_{i}$ is included in all BFMs. The value of $C_{i}$ represents the expected probability of model misspecification, or misidentification, when $X_{i}$ is excluded from the analysis. Thus $C_{i}$ rank-orders the predictors according to their likelihood of being included in the best model over $B$ bootstrapped samples, and represents the criticality of the $i$ th predictor. Furthermore, $\sum_{i} C_{i}$ represents the average number of predictors in the BFMs, or the expected size of the BFM. Table 1 describes three hypothetical examples in which $p=3$. The top panel in the table describes the three hypothetical distributions over all possible models, and the second panel tabulates the criticality measures. The other panels will be discussed later in the paper.

Note that the average number of predictors in the BFM is about 2 for each example.

Table 1. Three hypothetical examples (with $p=3$ ) of the BFM probability distributions and their associated criticality values


Example 1 represents the extreme case in which the same model was chosen in all $B$ runs. This model contains both $X_{2}$ and $X_{3}$, and these two predictors should therefore be given equal, and the highest possible, criticality values. This is indeed the case, as $C_{1}=0, C_{2}=1.0$, and $C_{3}=1.0$. In example $2, X_{1}$ is included in all of the models that were chosen, while $X_{2}$ and $X_{3}$ are only included in a subset of these models. Therefore, we should expect that $X_{1}$ will receive the highest possible criticality value, which is indeed the case ( $C_{1}=1.0, C_{2}=0.5$, and $C_{3}=0.5$ ). Example 3 is more interesting, in that it results in equally critical predictors $\left(C_{1}=C_{2}=C_{3}=0.7\right)$.

## 3. Distribution theory for the criticality measures

Let $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{2^{p}-1}\right)^{\prime}$ be a vector of the multinomial class probabilities associated with each of the subset models in the population. Let the $j$ th element of the vector $\mathbf{p}=\left\{p_{j}\right\}$,
$j=1,2, \ldots, 2^{p}-1$, be the maximum likelihood estimate of $\pi_{j}$ (the $j$ th element of $\pi$ ), based on the $B$ bootstrapped samples.
For any linear combination of the probabilities, $\hat{\mathbf{L}}=\mathbf{A} \times \mathbf{p}$, where $\mathbf{A}$ is a matrix of constants, and rank $(\mathbf{A})=t<2^{p}-1$, the limiting distribution of $\hat{\mathbf{L}}$ is the $t$-dimensional normal distribution, with mean $E(\hat{\mathbf{L}})=\mathbf{L}=\mathbf{A} \times \mathbf{p}$ and covariance matrix $\Sigma_{\hat{\mathbf{L}}}=\mathbf{A} \Sigma_{\mathbf{p}} \mathbf{A}^{\prime}$ (Chernoff, 1956). The elements $\left\{\sigma_{i j}\right\}$ of the matrix $\boldsymbol{\Sigma}_{\mathrm{p}}$ are given by (see, for example, Lindeman, Merenda \& Gold, 1980):

$$
\sigma_{i j}= \begin{cases}\pi_{i}\left(1-\pi_{i}\right) / B, & i=j, \\ \left(-\pi_{i} \pi_{j}\right) / B, & i \neq j .\end{cases}
$$

Thus $\boldsymbol{\Sigma}_{\mathbf{p}}$ can be estimated by $\mathbf{S}_{\mathbf{p}}=\left\{s_{i j}\right\}$, where

$$
s_{i j}= \begin{cases}p_{i}\left(1-p_{i}\right) / B, & i=j, \\ \left(-p_{i} p_{j}\right) / B, & i \neq j .\end{cases}
$$

and $\boldsymbol{\Sigma}_{\hat{\mathbf{L}}}$ can be estimated by $\mathbf{S}_{\hat{\mathbf{L}}}=\mathbf{A} \mathbf{S}_{\mathbf{p}} \mathbf{A}^{\prime}$. When $B$ is large, the quadratic form $\mathbf{Q}(\hat{\mathbf{L}})=(\hat{\mathbf{L}}-\mathbf{L})^{\prime} \boldsymbol{\Sigma}_{\hat{\mathbf{L}}}^{-1}(\hat{\mathbf{L}}-\mathbf{L})$ has a $\chi^{2}$ distribution with $t$ degrees of freedom (Chernoff, 1956), and can be estimated by $\hat{\mathbf{Q}}(\hat{\mathbf{L}})=(\hat{\mathbf{L}}-\mathbf{L})^{\prime} \mathbf{S}_{\hat{\mathbf{L}}}^{-1}(\hat{\mathbf{L}}-\mathbf{L})$, which has the same limiting distribution (Wald, 1943).

The criticality measures are linear combinations of the multinomial distribution of the BFMs, and these results can be used to perform statistical tests involving variable criticality. For instance, $L$ can be a criticality 'parameter', $\theta_{i}$, which is defined as a linear combination of multinomial probabilities

$$
L=\theta_{i}=\mathbf{a}_{i} \times \boldsymbol{\pi},
$$

estimated by

$$
\hat{L}=C_{i}=\mathbf{a}_{i} \times \mathbf{p},
$$

where $\mathbf{a}_{i}$ is a $1 \times\left(2^{p}-1\right)$ row vector of constants and $\mathbf{p}$ is a $\left(2^{p}-1\right) \times 1$ vector of the probabilities from the BFM distribution. Therefore, asymptotic confidence intervals for the $\theta_{i}$ can be constructed using the $C_{i}$. Alternatively, $L$ can be defined as a linear combination of the criticality parameters $\left(\theta_{i}\right)$, such that

$$
L=\mathbf{b} \times \boldsymbol{\theta}=\mathbf{D} \times \boldsymbol{\pi},
$$

where $\mathbf{b}$ is a $1 \times p$ row vector of $p$ constants, $\boldsymbol{\theta}$ is a $p \times 1$ vector containing the $\theta_{i}, \mathbf{D}=\mathbf{b} \times \mathbf{A}$ where $\mathbf{A}=\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{p}\right)^{\prime}$, and the $\mathbf{a}_{i}$ are $1 \times\left(2^{p}-1\right)$ row vectors of constants. Then $L$ can be estimated by $\hat{L}=\mathbf{b} \times \mathbf{C}=\mathbf{D} \times \mathbf{p}$ (where $\mathbf{C}$ is a $p \times 1$ vector containing the $C_{i}$ ), and the statistical significance of the differences between $C_{i}$ (defined by the vector $\mathbf{b}$ ) can be tested using the fact that $\hat{\mathbf{Q}}(\hat{\mathbf{L}})=(\hat{\mathbf{L}}-\mathbf{L})^{\prime} \mathbf{S}_{\mathbf{L}}^{-1}(\hat{\mathbf{L}}-\mathbf{L})$ is $\chi^{2}$.

## 4. Examples

In this section we illustrate the procedure with artificial (simulated) and real data sets. In all cases we used data sets of moderate size $(10 \leq n \leq 100)$ and with a small number of potential predictors ( $p \leq 5$ ). Criticality analysis can be applied with any criterion for choosing BFMs, and, for illustration purposes, we employed AIC, $R_{\mathrm{adj}}^{2}$ and $C_{p}$. These three measures were chosen because they are commonly used in the social sciences and each of them includes
a penalty for the number of predictors $(k)$ included in the model $(j)$. We first describe the three criteria and their use in this context.

The $R_{\text {adj }}^{2}$ for subset model $j$ is written as

$$
R_{\mathrm{adj}}^{2}=1-\frac{\mathrm{SSE}_{j} /(n-k-1)}{\operatorname{SSTO} /(n-1)}=1-\frac{n-1}{n-k-1}\left(1-R_{j}^{2}\right)
$$

(Neter, Wasserman, \& Kutner, 1990), where $\mathrm{SSE}_{j}$ is the error sum of squares of model $j$, SSTO is the total sum of squares of the full model, and $R_{j}^{2}$ is the squared multiple correlation of (i.e., proportion of variance of $Y$ reproduced by) model $j$. The larger the value of $R_{\text {adj }}^{2}$ the better the model fits the data. Thus, the BFM is the subset model with the highest $R_{\text {adj }}^{2}$.

The AIC value (Akaike, 1973) for subset model $j$ is written as

$$
\mathrm{AIC}=n \ln \left(\frac{\mathrm{SSE}_{j}}{n}\right)+2(k+1)
$$

Since $n$ is fixed, the quantity $n \ln \left(\frac{\mathrm{SSEj}}{n}\right)$ is smallest for the model with the smallest error sum of squares $\left(\mathrm{SSE}_{j}\right)$. Thus, the BFM is the subset model with the lowest AIC.

The $C_{p}$ value (Mallows, 1973) for subset model $j$ is written as

$$
C_{p}=\frac{\mathrm{SSE}_{j}}{\mathrm{MSE}}+2(k+1)-n
$$

where MSE is the mean squared error for the full model. $C_{p}$ can also be rewritten as

$$
C_{p}=(p-k)\left(F_{j}-1\right)+(k+1)
$$

where $F_{j}$ is the $F$-statistic for testing the hypothesis that the predictors left out of the $j$ th subset model, but included in the full model, all have zero coefficients (Weisberg, 1985). In the full model $(k=p), C_{p}=k+1=p+1$. Moreover, if the predictors left out of the $j$ th subset model do indeed have zero coefficients, the expected value of $F_{j}$ will be approximately 1. Thus, good models should have $C_{p}$ values that are approximately equal to $k+1$, and $C_{p} \leq p+1$ (corresponding to $F_{j} \leq 2$ ) (Weisberg, 1985). ${ }^{2}$ Therefore, the model with the smallest positive value of the difference $k+1-C_{p}$ is identified as the BFM according to the $C_{p}$ criterion. If none of the models produces a positive value for $k+1-C_{p}$, then the model with $k+1-C_{p}=0$ (i.e., the full model) is considered to be the BFM.

### 4.1. Simulations

To examine the effect of the size of the correlations among the predictors (i.e., the degree of multicolinearity) on the criticality measures, several simulations were conducted. These simulations consist of:

1. specifying a certain pattern of correlations between the predictors and the criterion;
2. generating a multivariate normal data set based on the specified correlation pattern;
3. determining predictor criticalities using $B$ resamples of the data set; and
4. performing $R$ repetitions of steps 2 and 3 to eliminate any bias that might exist within any one data set.
[^2]For each simulation, the mean criticality and its standard error over $R$ runs were recorded under each model selection method (maximum $R_{\text {adj }}^{2}$, minimum AIC and minimum positive $k+1-C_{p}$ ).

### 4.1.1. Simulation set $A$

This set consists of four simulations in which the correlations between $Y$ and the predictors are kept constant, while the (equal) correlation among all six pairs of predictors is systematically varied. Specifically, for each of four predictors $(p=4)$, the correlation between $Y$ and the $i$ th predictor $\left(X_{i}\right)$ was specified to be $\rho\left(Y, X_{i}\right)=0.1+0.2(i-1)$ in all four simulations, while the common correlation among the predictors was specified to be $\rho\left(X_{i}, X_{j}\right)=0.75,0.5,0.25$ or 0.0 (for all $i \neq j=1, \ldots, p$ ) for simulation A1, A2, A3 and A4, respectively. The four correlation matrices are shown in the left panels of Table 2.

Importance measures for each simulation, based on the population correlations, are presented in Table 2. They include squared correlations, standardized regression coefficients and squared partial and semi-partial correlations. The mean criticalities and their standard errors across $R=40$ repetitions, based on $n=50$ and $B=500$, are presented in Table 3 under the three model selection methods. The distributions of the BFMs, for each simulation and each selection method, are presented in Table 4. (The models are listed according to the frequency with which they were identified as BFMs by the specific selection criterion). Note that the ranking of the predictors based on criticality is similar, though not identical, to the ranking based on (most of) the population importance measures.

This set of simulations highlights the difference between the interpretation of criticality and importance. For example, in simulation A1, all predictors are equally and maximally critical (although this is not the case using the population importance measures). The reason for this is that the correlations among the predictors are quite high and the full model is identified as best fitting in each and every case. Thus, removing any of the predictors would result in misidentification of the best-fitting model (even though not all $p=4$ predictors are equally correlated with $Y$ ).
The effects of the inter-predictor correlations, $\rho\left(X_{i}, X_{j}\right)$, on the results are evident, though not always easy to characterize. Note, first, that the size of the selected BFM (as measured by $\Sigma C_{i}$ ) is smallest for low values of $\rho\left(X_{i}, X_{j}\right)$ and that the two predictors that correlate highly with $Y\left(X_{4}\right.$ and $\left.X_{3}\right)$ are assigned almost equal (and invariably high) criticalities by all selection methods in all cases. However, there are wide differences, and order reversals, between the criticalities of $X_{1}$ and $X_{2}$ across the various conditions. It is instructive to consider first the two extreme cases. Simulation A1 is an extreme case of multicollinearity (very close to singularity) where all methods select the full model. Since in such cases the predictors are almost interchangeable, they are identified as equally critical. In the case of uncorrelated predictors (simulation A4) the four criticalities are monotonically related to the predictors' correlation with the criterion. As $\rho\left(X_{i}, X_{j}\right)$ increases, the criticality of $X_{2}$ (a predictor that has a 0.3 correlation with $Y$ ) decreases steadily, while the criticality of $X_{1}$ (a predictor that has a 0.1 correlation with $Y$ ) increases at an even faster rate. In fact, all selection methods rate $X_{1}$ as more critical than $X_{2}$ when $\rho\left(X_{i}, X_{j}\right) \geq 0.25$. This seems to indicate that when a predictor is only slightly correlated with $Y$, a high correlation with other predictors will increase its criticality. This was explored to some extent in simulation set B.
Table 2. Simulations A1-A4: Importance measures in the population

| Simulation | Population Correlation matrix |  |  |  |  |  | $R^{2}$ of full model | Importance measures (population) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Y | $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{4}$ |  | $\rho^{2}\left(y, x_{i}\right)$ | $\beta_{i}$ | Partial $\rho^{2}$ | Semi-partial $\rho^{2}$ |
| A1 | Y | 1 |  |  |  |  | 0.9969 |  |  |  |  |
|  | X1 | 0.1 | 1 |  |  |  |  | 0.01 | -1.0769 | 0.9919 | 0.3769 |
|  | X2 | 0.3 | 0.75 | 1 |  |  |  | 0.09 | -0.2769 | 0.8901 | 0.0249 |
|  | X3 | 0.5 | 0.75 | 0.75 | 1 |  |  | 0.25 | 0.5231 | 0.9666 | 0.0889 |
|  | X4 | 0.7 | 0.75 | 0.75 | 0.75 | 1 |  | 0.49 | 1.3231 | 0.9946 | 0.5689 |
| A2 | Y | 1 |  |  |  |  | 0.6560 |  |  |  |  |
|  | X1 | 0.1 | 1 |  |  |  |  | 0.01 | -0.4400 | 0.2602 | 0.1210 |
|  | X2 | 0.3 | 0.5 | 1 |  |  |  | 0.09 | -0.0400 | 0.0029 | 0.0010 |
|  | X3 | 0.5 | 0.5 | 0.5 | 1 |  |  | 0.25 | 0.3600 | 0.1906 | 0.0810 |
|  | X4 | 0.7 | 0.5 | 0.5 | 0.5 | 1 |  | 0.49 | 0.7600 | 0.5121 | 0.3610 |
| A3 | Y | 1 |  |  |  |  | 0.6324 |  |  |  |  |
|  | X1 | 0.1 | 1 |  |  |  |  | 0.01 | -0.1714 | 0.0654 | 0.0257 |
|  | X2 | 0.3 | 0.25 | 1 |  |  |  | 0.09 | 0.0952 | 0.0211 | 0.0079 |
|  | X3 | 0.5 | 0.25 | 0.25 | 1 |  |  | 0.25 | 0.3619 | 0.2377 | 0.1146 |
|  | X4 | 0.7 | 0.25 | 0.25 | 0.25 | 1 |  | 0.49 | 0.6286 | 0.4846 | 0.3457 |
| A4 | Y | 1 |  |  |  |  | 0.8400 |  |  |  |  |
|  | X1 | 0.1 | 1 |  |  |  |  | 0.01 | 0.1000 | 0.0588 | 0.0100 |
|  | X 2 | 0.3 | 0 | 1 |  |  |  | 0.09 | 0.3000 | 0.3600 | 0.0900 |
|  | X3 | 0.5 | 0 | 0 | 1 |  |  | 0.25 | 0.5000 | 0.6098 | 0.2500 |
|  | X4 | 0.7 | 0 | 0 | 0 | 1 |  | 0.49 | 0.7000 | 0.7538 | 0.4900 |

Table 3. Simulations A1-A4: Criticalities $\left(C_{i}\right)$ and their standard errors over $R=40$ replications

| Simulation | $\rho\left(X_{i}, X_{j}\right)$ | Predictor | $C_{i}$ (SE of $C_{i}$ ) by criterion$n=50, B=500, R=40$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | AIC | Adjusted $R^{2}$ | $C_{p}$ |
| A1 | 0.75 | $X_{1}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | $X_{2}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | $X_{3}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | $X_{4}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | Sum | 4.00 | 4.00 | 4.00 |
| A2 | 0.5 | $X_{1}$ | 0.965 (0.004) | 0.978 (0.003) | 0.977 (0.003) |
|  |  | $X_{2}$ | 0.359 (0.019) | 0.450 (0.020) | 0.450 (0.010) |
|  |  | $X_{3}$ | 0.943 (0.007) | 0.967 (0.004) | 0.964 (0.005) |
|  |  | $X_{4}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | Sum | 3.27 | 3.40 | 3.39 |
| A3 | 0.25 | $X_{1}$ | 0.627 (0.016) | 0.729 (0.015) | 0.758 (0.015) |
|  |  | $X_{2}$ | 0.525 (0.019) | 0.644 (0.018) | 0.668 (0.018) |
|  |  | $X_{3}$ | 0.963 (0.005) | 0.981 (0.003) | 0.979 (0.004) |
|  |  | $X_{4}$ | 0.999 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | Sum | 3.11 | 3.35 | 3.40 |
| A4 | 0.0 | $X_{1}$ | 0.622 (0.019) | 0.730 (0.017) | 0.731 (0.017) |
|  |  | $X_{2}$ | 0.989 (0.001) | 0.994 (0.001) | 0.994 (0.001) |
|  |  | $X_{3}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | $X_{4}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  | Sum | 3.61 | 3.72 | 3.73 |

### 4.1.2. Simulation set $B$

This set consists of five simulations, each involving three predictors ( $p=3$ ). The correlation matrices were specified such that the correlation between $Y$ and the predictors was kept constant across the five simulations, with $\rho\left(Y, X_{1}\right)=0.6$ and $\rho\left(Y, X_{2}\right)=\rho\left(Y, X_{3}\right)=0$. Two predictors, $X_{2}$ and $X_{3}$, were also uncorrelated in all cases; i.e., $\rho\left(X_{2}, X_{3}\right)=0$. For the matrix to be positive semi-definite its elements are constrained by the inequality $-\left[1-\rho\left(Y, X_{1}\right)^{2}\right], \leq$ $\left[\rho\left(X_{1}, X_{2}\right)^{2}+\rho\left(X_{1}, X_{3}\right)^{2}\right] \leq\left[1-\rho\left(Y, X_{1}\right)^{2}\right]$. Thus in three of the simulations $\rho\left(X_{1}, X_{2}\right)=$ $\rho\left(X_{1}, X_{3}\right)=0, \sqrt{0.1}$, and $\sqrt{ } 0.2$ (these are simulations B1, B3, and B5, respectively). In the other two simulations $\rho\left(X_{1}, X_{2}\right)=0$ while $\rho\left(X_{1}, X_{3}\right)=\sqrt{ } 0.2$ or $\downarrow 0.4$ (these are simulations B2 and B4, respectively). The five correlation matrices, along with the population importance measures, are presented in Table 5.

The goal of these simulations was to examine how the systematic variation in $\rho\left(X_{1}, X_{2}\right)$ and $\rho\left(X_{1}, X_{3}\right)$ affects the criticality of $X_{2}$ and $X_{3}$. The mean criticalities and their standard errors for $n=50, B=500$ and $R=40$ are presented in Table 6, and the BFM distributions obtained for each simulation are presented in Table 7 (for each selection criterion, the models are listed in descending order of observed frequency).

Not surprisingly, the results (in Table 6) show that $X_{1}$ is always highly critical (in this case, it is always essential). Our primary interest is in the criticalities of $X_{2}$ and $X_{3}$, which

Table 4. Simulations A1-A4: The BFM frequency distribution for each simulation, based on 20000 samples ( $B=500$ bootstraps $\times R=40$ replications)

| Simulation | AIC |  | Adjusted $R^{2}$ |  | $C_{p}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Predictors in the BFM | $f$ (BFM) | Predictors in the BFM | $f(\mathrm{BFM})$ | Predictors in the BFM | $f(\mathrm{BFM})$ |
| A1 | 1234 | 20000 | 1234 | 20000 | 1234 | 20000 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| A2 | 134 | 12082 | 134 | 9902 | 134 | 9829 |
|  | 1234 | 6194 | 1234 | 9017 | 1234 | 9017 |
|  | 14 | 528 | 123 | 385 | 124 | 524 |
|  | 124 | 491 | 234 | 365 | 234 | 370 |
|  | 234 | 437 | 14 | 244 | 14 | 157 |
|  | 34 | 138 | 34 | 52 | 34 | 66 |
|  | 4 | 65 | 24 | 25 | 24 | 22 |
|  | 24 | 61 | 4 | 8 | 4 | 12 |
|  | 123 | 3 | 123 | 2 | 123 | 2 |
|  | 13 | 1 |  |  | 13 | 1 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| A3 | 1234 | 6424 | 1234 | 9217 | 1234 | 9217 |
|  | 134 | 5767 | 134 | 5136 | 134 | 5640 |
|  | 34 | 3565 | 234 | 3341 | 234 | 3776 |
|  | 234 | 3496 | 34 | 1930 | 34 | 946 |
|  | 24 | 348 | 24 | 156 | 124 | 255 |
|  | 124 | 213 | 124 | 155 | 24 | 101 |
|  | 14 | 135 | 14 | 60 | 14 | 48 |
|  | 4 | 40 | 4 | 2 | 4 | 14 |
|  | 23 | 8 | 123 | 2 | 23 | 2 |
|  | 123 | 3 | 23 | 1 | 123 | 1 |
|  | 2 | 1 |  |  |  |  |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| A4 | 1234 | 12315 | 1234 | 14522 | 1234 | 14522 |
|  | 234 | 7472 | 234 | 5361 | 234 | 5357 |
|  | 134 | 117 | 134 | 85 | 134 | 97 |
|  | 34 | 94 | 34 | 32 | 34 | 24 |
|  | 4 | 1 |  |  |  |  |
|  | 24 | 1 |  |  |  |  |
| Total: |  | 20000 |  | 20000 |  | 20000 |

Note: Models are ordered according to their frequency.
are uncorrelated with $Y$. The results indicate that there is a clear monotonic relationship between the predictors' correlations with $X_{1}$ and their respective criticality measures. Consider, for example, $C_{3}$ (the criticality of $X_{3}$ ), under the AIC selection criterion. As $\rho\left(X_{1}, X_{3}\right)$ increases from 0 (simulation B1) to $\sqrt{ } 0.1$ (B3), to $\sqrt{ } 0.2$ (B2 and B5), and to $\sqrt{ } 0.4$ (simulation B 4 ), $C_{3}$ increases gradually from 0.348 to 0.999 . A similar trend can be observed for the other selection criteria and for $C_{2}$, as $\rho\left(X_{1}, X_{2}\right)$ increases from 0 (simulations B 1 , B2 and B4) to $\sqrt{0.1}$ (B3), and to $\sqrt{0.2}$ (B5). In fact, in B5, where the correlations of both $X_{2}$ and $X_{3}$ with $X_{1}$ are maximal (under the constraint of this example), the full model is
Table 5. Simulations B1-B5: Importance measures in the population

| Simulation | Population correlation matrix |  |  |  |  | $R^{2}$ of full model | Importance measures (population) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $Y$ | $X_{1}$ | $X_{2}$ | $X_{3}$ |  | $\rho^{2}\left(y, x_{i}\right)$ | $\beta_{i}$ | Partial $\rho^{2}$ | Semi-partial $\rho^{2}$ |
| B1 | Y | 1 |  |  |  | 0.3600 |  |  |  |  |
|  | $X_{1}$ | 0.6 | 1 |  |  |  | 0.36 | 0.6000 | 0.3600 | 0.3600 |
|  | $X_{2}$ | 0.0 | 0.0 | 1 |  |  | 0.00 | 0.0000 | 0.0000 | 0.0000 |
|  | $X_{3}$ | 0.0 | 0.0 | 0.0 | 1 |  | 0.00 | 0.0000 | 0.0000 | 0.0000 |
| B2 | Y | 1 |  |  |  | 0.4500 |  |  |  |  |
|  | $X_{1}$ | 0.6 | 1 |  |  |  | 0.36 | 0.7500 | 0.4500 | 0.4500 |
|  | $X_{2}$ | 0.0 | 0.0 | 1 |  |  | 0.00 | 0.0000 | 0.0000 | 0.0000 |
|  | $X_{3}$ | 0.0 | $\sqrt{0.2}$ | 0.0 | 1 |  | 0.00 | -0.3354 | 0.1406 | 0.0900 |
| B3 | $Y$ | 1 |  |  |  | 0.4500 |  |  |  |  |
|  | $X_{1}$ | 0.6 | 1 |  |  |  | 0.36 | 0.7500 | 0.4500 | 0.4500 |
|  | $X_{2}$ | 0.0 | 10.1 | 1 |  |  | 0.00 | -0.2372 | 0.0833 | 0.0500 |
|  | $X_{3}$ | 0.0 | $\sqrt{0.1}$ | 0.0 | 1 |  | 0.00 | -0.2372 | 0.0833 | 0.0500 |
| B4 | Y | 1 |  |  |  | 0.6000 |  |  |  |  |
|  | $X_{1}$ | 0.6 | 1 |  |  |  | 0.36 | 1.0000 | 0.6000 | 0.6000 |
|  | $X_{2}$ | 0.0 | 0.0 | 1 |  |  | 0.00 | 0.0000 | 0.0000 | 0.0000 |
|  | $X_{3}$ | 0.0 | $\sqrt{0.4}$ | 0.0 | 1 |  | 0.00 | -0.6325 | 0.3750 | 0.2400 |
| B5 | $Y$ | 1 |  |  |  | 0.6000 |  |  |  |  |
|  | $X_{1}$ | 0.6 | 1 |  |  |  | 0.36 | 1.0000 | 0.6000 | 0.6000 |
|  | $X_{2}$ | 0.0 | $\sqrt{0.2}$ | 1 |  |  | 0.00 | -0.4472 | 0.2727 | 0.1500 |
|  | $X_{3}$ | 0.0 | $\sqrt{0.2}$ | 0.0 | 1 |  | 0.00 | -0.4472 | 0.2727 | 0.1500 |

Table 6. Simulations B1-B5: Criticalities $\left(C_{i}\right)$ and their standard errors over 40 replications

| Simulation | $\rho\left(X_{1}, X_{2}\right)$ | $\rho\left(X_{1}, X_{3}\right)$ | Predictor | $\begin{aligned} & \hline C_{i}\left(\mathrm{SE} \text { of } C_{i}\right) \text { by criterion } \\ & n=50, B=500, R=40 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | AIC | Adjusted $R^{2}$ | $C_{p}$ |
| B1 | 0 | 0 | $X_{1}$ | 0.999 (0.000) | 1.000 (0.000) | 0.999 (0.000) |
|  |  |  | $X_{2}$ | 0.366 (0.020) | 0.512 (0.021) | 0.582 (0.021) |
|  |  |  | $X_{3}$ | 0.348 (0.020) | 0.496 (0.021) | 0.569 (0.021) |
|  |  |  | Sum | 1.71 | 2.01 | 2.15 |
| B2 | 0 | $\sqrt{0.2}$ | $X_{1}$ | 0.999 (0.000) | 1.000 (0.000) | 0.999 (0.000) |
|  |  |  | $X_{2}$ | 0.356 (0.019) | 0.498 (0.020) | 0.520 (0.021) |
|  |  |  | $X_{3}$ | 0.857 (0.011) | 0.909 (0.009) | 0.911 (0.009) |
|  |  |  | Sum | 2.21 | 2.41 | 2.43 |
| B3 | $\sqrt{0.1}$ | $\sqrt{0.1}$ | $X_{1}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  |  | $X_{2}$ | 0.642 (0.017) | 0.749 (0.015) | 0.764 (0.015) |
|  |  |  | $X_{3}$ | 0.728 (0.017) | 0.824 (0.014) | 0.830 (0.014) |
|  |  |  | Sum | 2.37 | 2.57 | 2.59 |
| B4 | 0 | $\sqrt{0.4}$ | $X_{1}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  |  | $X_{2}$ | 0.311 (0.020) | 0.461 (0.021) | 0.462 (0.021) |
|  |  |  | $X_{3}$ | 0.999 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  |  | Sum | 2.31 | 2.46 | 2.46 |
| B5 | $\sqrt{0.2}$ | $\sqrt{0.2}$ | $X_{1}$ | 1.000 (0.000) | 1.000 (0.000) | 1.000 (0.000) |
|  |  |  | $X_{2}$ | 0.966 (0.004) | 0.982 (0.003) | 0.983 (0.003) |
|  |  |  | $X_{3}$ | 0.970 (0.004) | 0.985 (0.002) | 0.985 (0.002) |
|  |  |  | Sum | 2.94 | 2.97 | 2.97 |

selected practically always, and the three variables are almost equally critical (just as in simulation A1). ${ }^{3}$

In all simulations there is a high level of agreement between the criticality measures based on the three distinct model selection criteria. However, the measures are not identical. In particular, note that AIC favours smaller models.

### 4.2. Real data

Suh, Diener, Oishi and Triandis (1998) collected the responses of over 7000 people in 41 countries on numerous variables pertaining to satisfaction with life. ${ }^{4}$ For this analysis, we selected a subset of variables and averaged their values by country; therefore, we used 41 (averaged) observations on five predictors and one criterion. The criterion, $Y$, is the score on a 'satisfaction with life' scale consisting of five items. The five predictors are responses to

[^3]Table 7. Simulations B1-B5: The BFM frequency distribution for each simulation, based on 20000 samples ( $B=500$ bootstraps $\times R=40$ replications)

| Simulation | AIC |  | Adjusted $R^{2}$ |  | $C_{p}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Predictors in the BFM | $f$ (BFM) | Predictors in the BFM | $f$ (BFM) | Predictors in the BFM | $f$ (BFM) |
| B1 | 1 | 8378 | 123 | 5120 | 12 | 6517 |
|  | 12 | 4653 | 12 | 5110 | 13 | 6240 |
|  | 13 | 4283 | 1 | 4974 | 123 | 5121 |
|  | 123 | 2665 | 13 | 4787 | 1 | 2105 |
|  | 3 | 12 | 3 | 5 | 3 | 10 |
|  | 2 | 6 | 2 | 2 | 23 | 6 |
|  | 23 | 3 | 23 | 2 | 2 | 1 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| B2 | 13 | 10771 | 123 | 9212 | 123 | 9214 |
|  | 123 | 6366 | 13 | 8964 | 13 | 8997 |
|  | 1 | 2113 | 1 | 1080 | 12 | 1170 |
|  | 12 | 739 | 12 | 737 | 1 | 604 |
|  | 2 | 7 | 2 | 5 | 2 | 6 |
|  | 3 | 4 | 3 | 1 | 23 | 6 |
|  |  |  | 23 | 1 | 3 | 3 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| B3 | 123 | 9786 | 123 | 12515 | 123 | 12515 |
|  | 13 | 4773 | 13 | 3967 | 13 | 4067 |
|  | 12 | 3042 | 12 | 2457 | 12 | 2758 |
|  | 1 | 2394 | 1 | 1058 | 1 | 646 |
|  | 2 | 4 | 2 | 2 | 23 | 3 |
|  | 3 | 1 | 3 | 1 | 2 | 2 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| B4 | 13 | 13760 | 13 | 10769 | 13 | 10767 |
|  | 123 | 6223 | 123 | 9226 | 123 | 9227 |
|  | 1 | 11 | 1 | 4 | 1 | 3 |
|  | 12 | 6 | 12 | 1 | 12 | 3 |
| Total: |  | 20000 |  | 20000 |  | 20000 |
| B5 | 123 | 18851 | 123 | 19381 | 123 | 19381 |
|  | 13 | 549 | 13 | 312 | 13 | 311 |
|  | 12 | 463 | 12 | 267 | 12 | 281 |
|  | 1 | 137 | 1 | 40 | 1 | 27 |
| Total: |  | 20000 |  | 20000 |  | 20000 |

Note: Models are ordered according to their frequency.
single items (different from the global scale) pertaining to domain-specific reported levels of satisfaction. The domains are $X_{1}=$ health, $X_{2}=$ financial situation, $X_{3}=$ family, $X_{4}=$ housing and $X_{5}=$ self.

Standard results from the multiple regression analysis of the original data set are presented in Table 8. They include, for each predictor, zero-order correlations with $Y$, standardized regression coefficients, partial and semi-partial correlations with $Y$ as well as the averaged results of the dominance analysis (Budescu, 1993). These results all pertain to

Table 8. Multiple regression analysis results for the satisfaction with life data set

| Correlations between the predictors |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{4}$ | $X_{5}$ |  |
| $X_{1}$ | 1.0000 |  |  |  |  |  |
| $X_{2}$ | 0.418 | 1.000 |  |  |  |  |
| $X_{3}$ | 0.556 | 0.216 | 1.000 |  |  |  |
| $X_{4}$ | 0.602 | 0.362 | 0.381 | 1.000 |  |  |
| $X_{5}$ | 0.606 | 0.345 | 0.258 | 0.396 | 1.000 |  |
| Predictor importance measures |  |  |  |  |  |  |
|  |  | $X_{1}$ | $X_{2}$ | $X_{3}$ | $X_{4}$ | $X_{5}$ |
| $r\left(y, x_{i}\right)$ |  | 0.4832 | 0.4436 | 0.2578 | 0.7279 | 0.5291 |
| $r^{2}\left(y, x_{i}\right)$ |  | 0.2335 | 0.1968 | 0.0665 | 0.5298 | 0.2800 |
| Standardized $\beta_{i}$ |  | -0.1028 | 0.1522 | -0.2430 | 0.6556 | 0.4337 |
| $r^{2}\left(y, x_{i} \cdot x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{p}\right)$ |  | 0.0135 | 0.0512 | 0.0868 | 0.4406 | 0.2150 |
| $r^{2}\left(y\left(x_{i} \cdot x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{p}\right)\right)$ |  | 0.0046 | 0.0182 | 0.0321 | 0.2663 | 0.0926 |
| Average dominance |  | 0.0714 | 0.0759 | 0.0259 | 0.3473 | 0.1379 |

predictor importance, and appear to indicate that in the full model (including all five predictors), $X_{4}$ (housing) is the most important predictor of the score on the satisfaction with life scale.

The bootstrapping analysis was performed using the case resampling method since the predictors are random variables. Resampling was performed for $B=250,500$ and 1000 to investigate the degree to which the number of resamples affects the results. Within each of these analyses, the BFM was selected according to each of the three criteria described earlier (maximum $R_{\text {adj }}^{2}$, minimum AIC and minimum positive $k+1-C_{p}$ ).

To examine the level of agreement between the model selection methods in identifying the BFM, Cohen's $\kappa$ (see, for example, Fleiss, 1973) was computed as a measure of the degree of agreement beyond chance. For perfect agreement $\kappa=1$, and for chance agreement $\kappa=0$. The large-sample approximation for the standard error of $\kappa$ (Fleiss, Cohen \& Everitt, 1969) was also computed.

The BFM frequency distributions, for each value of $B$ and each model selection method, are presented in Table 9, along with pairwise measures of agreement between the various model selection methods. There is a high level of agreement between the models selected by the $R_{\text {adj }}^{2}$ and AIC criteria, but a lower (though significantly larger than 0 ) agreement with the models identified by the $C_{p}$ criterion. This pattern is consistent across all three values of $B$. In addition, for each selection method there is a high level of agreement between the distributions of the BFMs obtained for various numbers of bootstraps ( $B$ ).

In Table 10 all $2^{5}-1=31$ subset models are listed in descending order according to their $R_{\text {adj }}^{2}$ values in the original data set. This table also presents the probabilities (and their corresponding ranks) obtained from the empirical probability distributions (with $B=250$, $500,1000)$ under the maximum $R_{\mathrm{adj}}^{2}$ model selection criterion. At the bottom of the table we present the Pearson and Kendall rank-order correlations between the four columns. The results show a very high level of agreement between the three bootstrapped solutions, but

Table 9. Best-fitting model frequency distributions for the satisfaction with life data, with $B=250,500$ or 1000 and according to three model-selection methods

somewhat less agreement with the measures from the original data set, highlighting again the distinction between criticality and model fit.

The criticality measures (and their $95 \%$ confidence limits) under each model selection method and for each value of $B$ are presented in Table 11. The $100(1-\alpha) \%$ confidence

Table 10. Comparison of the rank of the subset models in the satisfaction with life data set and in the BFM distributions, according to the maximum $R_{\text {adj }}^{2}$ criterion

| Subset model | $R_{\text {adj }}^{2}$ values in original data set | Probability (rank) of subset models in BFM distribution according to maximum $R_{\text {adj }}^{2}$ criterion |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $B=250$ | $B=500$ | $B=1000$ |
| $X_{2} X_{3} X_{4} X_{5}$ | 0.619193 | 0.320 (1) | 0.283 ( 1) | 0.279 (1) |
| $X_{1} X_{2} X_{3} X_{4} X_{5}$ | 0.613590 | 0.208 (2) | 0.188 (3) | 0.229 (2) |
| $X_{3} X_{4} X_{5}$ | 0.612835 | 0.184 (3) | 0.204 (2) | 0.165 (3) |
| $X_{1} X_{3} X_{4} X_{5}$ | 0.604065 | 0.132 (4) | 0.134 (4) | 0.134 (4) |
| $X_{1} X_{2} X_{4} X_{5}$ | 0.588638 | 0.052 (5) | 0.070 (5) | 0.070 (5) |
| $X_{2} X_{4} X_{5}$ | 0.585974 | 0.040 (6) | 0.046 (6) | 0.040 (6) |
| $X_{4} X_{5}$ | 0.577600 | 0.008 (10) | 0.002 (13) | 0.006 (11) |
| $X_{1} X_{4} X_{5}$ | 0.574334 | 0.012 (9) | 0.030 (7) | 0.016 (8) |
| $X_{2} X_{4}$ | 0.544437 | 0.004 (11.5) | 0.006 (9) | 0.014 (9) |
| $\mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$ | 0.533743 |  | 0.004 (11) | 0.004 (12) |
| $X_{1} X_{2} X_{4}$ | 0.532148 | 0.020 (7) | 0.024 (8) | 0.026 (7) |
| $X_{1} X_{2} X_{3} X_{4}$ | 0.521430 | 0.016 (8) | 0.004 (11) | 0.010 (10) |
| $X_{4}$ | 0.517775 |  |  |  |
| $X_{1} X_{4}$ | 0.508452 | 0.004 (11.5) |  | 0.001 (16) |
| $X_{3} X_{4}$ | 0.505550 |  | 0.004 (11) | 0.001 (16) |
| $X_{1} X_{3} X_{4}$ | 0.498011 |  |  | 0.002 (13.5) |
| $X_{1} X_{2} X_{3} X_{5}$ | 0.328409 |  |  | 0.002 (13.5) |
| $X_{1} X_{2} X_{5}$ | 0.323998 |  |  |  |
| $X_{2} X_{5}$ | 0.323498 |  |  |  |
| $X_{2} X_{3} X_{5}$ | 0.316001 |  |  | 0.001 (16) |
| $X_{1} X_{3} X_{5}$ | 0.295931 |  |  |  |
| $X_{1} X_{5}$ | 0.286021 |  |  |  |
| $X_{1} X_{2}$ | 0.267648 |  |  |  |
| $X_{5}$ | 0.267648 |  |  |  |
| $X_{3} X_{5}$ | 0.252804 |  |  |  |
| $X_{1} X_{2} X_{3}$ | 0.247910 |  |  |  |
| $X_{1}$ | 0.213871 |  |  |  |
| $X_{1} X_{3}$ | 0.193356 |  |  |  |
| $X_{2} X_{3}$ | 0.183503 |  |  |  |
| $X_{2}$ | 0.176197 |  |  |  |
| $X_{3}$ | 0.042531 |  |  |  |

Correlations between $R_{\text {adj }}^{2}$ values in original data and probabilities from bootstrapping

|  |  | Probabilities |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $R_{\text {adj }}^{2}$ values | $B=250$ | $B=500$ | $B=1000$ |
| $R_{\text {adj }}^{2}$ values | - | 0.5207 | 0.5478 | 0.5451 |
| $B=250$ | 0.7350 | - | 0.9921 | 0.9923 |
| $B=500$ | 0.7580 | 0.8508 | - | 0.9881 |
| $B=1000$ | 0.8013 | 0.8474 | 0.8725 | - |

[^4]Table 11. Criticality measures (and their $95 \%$ confidence limits) for the satisfaction with life data with $B=250,500$ or 1000 , according to three model-selection methods

| B | Predictor | Model selection method |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AIC |  | $R_{\text {adj }}^{2}$ |  | $C_{p}$ |  |
|  |  | $C_{i}$ | 95\% limits | $C_{i}$ | 95\% limits | $C_{i}$ | 95\% limits |
| 250 | $X_{1}$ | 0.324 | (0.266, 0.382) | 0.444 | (0.382, 0.506) | 0.568 | (0.507, 0.629) |
|  | $X_{2}$ | 0.528 | (0.466, 0.590) | 0.660 | (0.601, 0.719) | 0.696 | (0.639, 0.753) |
|  | $X_{3}$ | 0.764 | (0.711, 0.817) | 0.860 | (0.817, 0.903) | 0.820 | (0.772, 0.868) |
|  | $X_{4}$ | 1.000 | (1.000, 1.000) | 1.000 | (1.000, 1.000) | 1.000 | (1.000, 1.000) |
|  | $X_{5}$ | 0.908 | (0.872, 0.944 ) | 0.956 | (0.931, 0.981 ) | 0.952 | (0.926, 0.979) |
|  | Total | 3.52 |  | 3.92 |  | 4.04 |  |
| 500 | $X_{1}$ | 0.328 | (0.287, 0.369) | 0.450 | (0.406, 0.494) | 0.530 | (0.486, 0.574) |
|  | $X_{2}$ | 0.530 | (0.486, 0.574) | 0.626 | (0.584, 0.668) | 0.698 | (0.658, 0.738) |
|  | $X_{3}$ | 0.728 | (0.689, 0.767) | 0.822 | (0.788, 0.856$)$ | 0.786 | (0.750, 0.822) |
|  | $X_{4}$ | 0.998 | (0.994, 1.002) | 1.000 | (1.000, 1.000) | 1.000 | (1.000, 1.000) |
|  | $X_{5}$ | 0.938 | (0.917, 0.959) | 0.958 | (0.940, 0.976) | 0.966 | (0.950, 0.982) |
|  | Total | 3.52 |  | 3.86 |  | 3.98 |  |
| 1000 | $X_{1}$ | 0.345 | (0.316, 0.374) | 0.490 | (0.459, 0.521) | 0.545 | (0.514, 0.576) |
|  | $X_{2}$ | 0.543 | (0.512, 0.574) | 0.675 | (0.646, 0.704) | 0.725 | (0.697, 0.753) |
|  | $X_{3}$ | 0.718 | (0.690, 0.746) | 0.827 | (0.804, 0.850) | 0.807 | (0.783, 0.831) |
|  | $X_{4}$ | 0.995 | (0.991, 0.999) | 0.997 | (0.994, 1.000) | 0.998 | (0.995, 1.001) |
|  | $X_{5}$ | 0.902 | (0.884, 0.920$)$ | 0.942 | (0.928, 0.956$)$ | 0.959 | (0.947, 0.971) |
|  | Total | 3.50 |  | 3.93 |  | 4.03 |  |

interval for each criticality parameter ( $L=\theta_{i}=\mathbf{a}_{i} \times \mathbf{p}$ ) was constructed using its estimate, $\hat{L}=C_{i}=\mathbf{a}_{i} \times \mathbf{p}(i=1,2,3,4)$, and using the fact that $\mathbf{p}$ (the multinomial probabilities vector), and linear combinations ( $\hat{L}$ ) of $\mathbf{p}$, are asymptotically multivariate normal. Therefore, the $95 \%$ confidence interval for the criticality parameter $\theta_{i}$ is

$$
C_{i} \pm 1.96 \sqrt{\mathbf{S}_{C_{i}}}=\left(\mathbf{a}_{i} \times \mathbf{p}\right) \pm 1.96 \sqrt{\mathbf{a}_{i} \mathbf{S}_{p} \mathbf{a}_{i}^{\prime}}
$$

where $\mathbf{S}_{\hat{L}}$ is as discussed previously. Of course, simultaneous confidence intervals could be obtained by appropriate adjustments of the probability levels.
There are very few (and small) differences between the mean values obtained with different numbers of bootstraps ( $B$ ), indicating that for practical purposes $B=250$ resamples are sufficient. Similarly, there is a high level of agreement between the three model selection methods (note that $C_{p}$ tends to choose the largest, and AIC the smallest, subsets). In all cases, $X_{4}$ (satisfaction with housing) is identified as the most critical variable, followed by $X_{5}$ (satisfaction with self), and $X_{1}$ (satisfaction with health) is always the least critical predictor.

## 5. Extensions-alternative measures of criticality

In this section we propose a few variations on the main theme discussed so far. In particular, we propose alternative measures of predictor criticality that can be computed from the

BFM distribution derived through bootstrapping and model selection. To motivate these alternative measures, consider again the three hypothetical examples in Table 1.

Note that in the third example $X_{1}$ by itself is chosen as a BFM with probability greater than zero, but this is not the case for $X_{2}$ or $X_{3}$, which always appear jointly. One may wish to develop an alternative criticality measure to highlight this distinction. This can be achieved by assigning different values to the coefficient $a_{i j}$ in the computation of $C_{i}$; for example, the $a_{i j}$ scores could be inversely proportional to the complexity of (or number of predictors in) the model. The weighted criticality measure, $w C_{i}$, is defined as

$$
w C_{i}=\sum_{j} \frac{a_{i j}}{k_{j}} P_{j},\left(i=1,2, \ldots, p, j=1,2, \ldots, 2^{p}-1\right),
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if } X_{i} \text { is in model } j \\ 0 & \text { otherwise }\end{cases}
$$

and $k_{j}$ is the number of predictors in the $j$ th subset model. Evidently $w C_{i}$ overweights (underweights) simple (complex) models. The weights used here are somewhat arbitrary, and were chosen because of their simplicity, but any other scheme that preserves a monotonic relationship between the weights and the number of predictors in the model would also have this property. Weighted criticality ranges between 0 and 1 , where a 0 indicates (as in $C_{i}$ ) that $X_{i}$ is not in any BFM, and a 1 indicates that predictor $X_{i}$ appears in all BFMs alone (i.e., the model chosen is always $X_{i}$ ). The weighted criticality values for the predictors in the three examples are presented in the third panel of Table 1 . Note that $\sum_{i} w C_{j}=1$, and so the weighted criticality of a given predictor is in some sense a criticality 'percentage', or the proportion of the maximum criticality that is allocated to each predictor, where the allocation depends on model complexity. However, unlike $C_{i}, w C_{i}$ can no longer be interpreted as the expected probability of model misidentification.

Occasionally, one may be interested in comparing the criticality of a pair of predictors without involving the other $p-2$ predictors in this comparison. To compare the criticality of $X_{i}$ to that of $X_{h}$, we can define $C_{i(h)}$ as the linear combination

$$
C_{i(h)}=\sum_{j} a_{i j} P_{j}, \quad\left(h, i=1,2, \ldots, p, j=1,2, \ldots, 2^{p}-1\right),
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if } X_{i} \text { is in model } j \text { and } X_{h} \text { is not in model } j \\ 0 & \text { otherwise }\end{cases}
$$

Similarly,

$$
C_{h(i)}=\sum_{j} a_{i j} P_{j}, \quad\left(h, i=1,2, \ldots, p, j=1,2, \ldots, 2^{p}-1\right),
$$

where

$$
a_{i j}= \begin{cases}1 & \text { if } X_{h} \text { is in model } j \text { and } X_{i} \text { is not in model } j \\ 0 & \text { otherwise }\end{cases}
$$

The difference $C_{i(h)}-C_{h(i)}$ is a measure of the relative criticality of $X_{i}$ compared to $X_{h}$ which,
by excluding models that include both $X_{i}$ and $X_{h}$, is independent of the relationship between these two predictors, and $C_{i(h)}-C_{h(i)}=C_{i}-C_{h}$. More sensitive measures can be obtained by standardizing this difference through division by factors such as the sum $C_{i(h)}+C_{h(i)}$ or the number of bootstrapping runs $(B)$. Using these values, a pattern of pairwise dominance can be established which may then be used to rank the criticality of the predictors. The last panel of Table 1 displays the pairwise dominance matrices, where the entry in row $i$ and column $h$ represents the value of $\left(C_{i(h)}-C_{h(i)}\right) /\left(C_{i(h)}+C_{h(i)}\right)$, or 0 when $C_{i(h)}=C_{h(i)}=0$. The row averages rank-order the predictors in terms of relative criticality, while the matrix entries can be used to determine the criticality dominance pattern between any pair of predictors. It can be shown that these pairwise dominance relations are transitive (see Appendix). Thus, it is meaningful to rank-order the predictors according to the row averages, which define the dominance criticality measure, $d C_{i}$ :

$$
d C_{i}=\left(\frac{1}{p-1}\right) \sum_{h \neq i=1}^{p}\left[\frac{C_{i(h)}-C_{h(i)}}{C_{i(h)}+C_{h(i)}}\right] .
$$

This is a measure of the dominance of the $i$ th predictor over all other predictors $(h \neq i=1, \ldots, p)$. It has a minimum value of -1 (when $C_{i(h)}$ is 0 and $C_{h(i)}$ is 1 for all $h \neq i$ ) and a maximum value of +1 (when $C_{i(h)}$ is 1 and $C_{h(i)}$ is 0 for all $h \neq i$ ). Of course, these bounds identify the cases in which $X_{i}$ is strictly dominated, or strictly dominates, all other predictors in the model. A value of $d C_{i}=0$ indicates that $C_{i(h)}$ dominates and is dominated to the same degree by the other predictors.

## 6. Summary

We have proposed a new approach to the old problem of comparing predictors in multiple regression models (Kruskal, 1987; Budescu, 1993) by defining the criticality of the predictors. Traditional measures of predictor importance are conditional on the choice of a model and its overall goodness of fit. They seek to rank-order and/or scale the predictors on a scale that reflects their contributions towards the prediction of the response by a model, or in terms of the average of such measures across all subset models. Unlike these measures of importance, the criticality analysis proposed here does not depend on the choice of a particular model. A predictor's criticality is defined as the probability that its omission from a model would result in the misspecification of the model. Thus, by its definition, the analysis considers all possible models. Criticalities are extracted from, and expressed in terms of, the conditional probability distribution of best-fitting models for a given data set.

The criticality analysis relies on resampling (using the bootstrap), and can be used for data sets containing fixed and/or random predictors. Residual resampling is recommended for the fixed model, and case resampling is suggested when the predictors are random variables. Data sets containing a mixture of fixed and random predictors can also be analysed, and in such a case one would be advised to 'default' to case resampling.

Criticality analysis can be performed with any reasonable criterion of model fit. Our results (simulations and real data) indicate that criticality analysis is relatively insensitive to the choice of this criterion in the ordinal sense. In all our simulations we found a high level of agreement among the ranking of the $p$ predictors from the most to the least critical according to the three selection criteria employed. Indeed, it is important to point out that
the criticalities of predictors can be compared directly only if they are based on the same selection criterion. Comparisons across selection criteria are difficult, unless one has a good deal of experience in converting measures from one scale to another. Therefore we recommend that they be avoided. Recall that all criticality measures are based on the frequency with which certain models are identified as best-fitting, and this varies from one criterion to another. To illustrate this point, consider the results from simulation B 1 (see Tables 5, 6 and 7). One would expect that $C_{1}=1$ and $C_{2}=C_{3}=0\left(X_{2}\right.$ and $X_{3}$ are correlated neither with $Y$ nor with $X_{1}$ ). Yet, in all cases, both $C_{2}$ and $C_{3}$ are clearly greater than 0 . Furthermore, note that their values vary considerably and systematically across the selection methods, with the AIC measures being the smallest and the $C_{p}$-based measures the largest. These differences reflect the inherent biases of the various selection methods. For example, in this case $C_{p}$ tended to select larger models (average size of 2.15 predictors) than AIC (average size 1.71 ), and this tendency affects the various predictors' criticalities. ${ }^{5}$

The major innovation of the proposed method is the linkage between the distribution of best-fitting models to the criticality of single predictors. A variety of measures of a predictor's criticality can be defined through different linear combinations of the probability distributions across the models. These combinations determine the specific weight to be associated with each model in the assessment of any given predictor. We have discussed in this paper three such measures. The first measure $\left(C_{i}\right)$ is simply the sum of the probabilities associated with all models containing the predictor, and can be interpreted as the expected probability of model misidentification resulting from excluding the predictor. Weighted criticality $\left(w C_{i}\right)$ is defined as a weighted sum of these probabilities, where the weights are inversely proportional to the number of predictors in the model. This measure gives models with fewer (more) predictors greater (less) weight in the determination of criticality. It also has the convenient normalizing property that the sum of the criticalities (over all predictors) is one. The third criticality measure $\left(C_{i(h)}\right)$ is defined in a pairwise fashion. It is based on the sum of the probabilities associated with models containing one predictor ( $X_{i}$ ) and excluding another $\left(X_{h}\right)$, and can be described as a measure of comparative criticality. By aggregating across all pairs, one can also define an overall index $\left(d C_{i}\right)$ that captures the relative dominance of $X_{i}$ over all other predictors. We consider the three measures to be intuitively compelling and easy to justify and interpret, but realize that numerous alternative functions can be used in this context. For example, since there is a nesting structure for the subset models (for instance, the model ' $X_{1} X_{2} X_{4}$ ' contains six subset models: ' $X_{1}$ ', ' $X_{2}{ }^{\prime},{ }^{\prime} X_{4}{ }^{\prime}$, ' $X_{1} X_{2}$ ', ' $X_{1} X_{4}$ ' and ' $X_{2} X_{4}$ '), it may be of interest to develop a linear combination that takes this nesting into account. Another intriguing possibility is to calculate all the criticality measures based on a subset of the bootstrapped samples, which consists of only those models which were identified as BFMs with a sufficiently high probability.

Most criteria of goodness of fit are invariant under linear transformations (of the response and predictors). Consequently, the criticality measures are also unaffected by such transformations. In addition, the simple asymptotic distribution theory for these measures allows one to test hypotheses about the difference in the magnitude of criticality values.

We conclude by pointing out that this method is not necessarily restricted to multiple

[^5]regression. With minor changes this approach to model selection and predictor ranking can easily be extended to other multi-factor procedures such as log-linear and logistic regression models with categorical data, discriminant analysis and multivariate multiple regression.

## 7. Software

A SAS macro that implements the procedures described in this paper can be obtained by writing to the first author, or from the web page at http://www.uwm.edu/~ azen/ critmacro.html.

## Acknowledgement

The authors wish to thank the editor and three anonymous reviewers for their helpful comments and suggestions.

## References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In B. N. Petrov and F. Csáki (Eds.), Proceedings of the 2nd InternationalSymposium on Information Theory (pp. 267-281). Budapest Akadémiai Kiado.
Budescu, D. V. (1993). Dominance analysis: A new approach to the problem of relative importance of predictors in multiple regression. Psychological Bulletin, 114, 542-551.
Busemeyer, J. R., \& Jones, L. E. (1983). Analysis of multiplicative combination rules when the causal variables are measured with error. Psychological Bulletin, 93, 549-562.
Chernoff, H. (1956). Large sample theory: Parametric case. Annals of Mathematical Statistics, 27, 1-22.
Draper, N. R., \& Guttman, I. (1987). A common model selection criterion. In R. Viertl (Ed.), Probability and Bayesian statistics. New York: Plenum Press.
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1-26.
Fleiss, J. L. (1973). Statistical methods for rates and proportions. New York: Wiley.
Fleiss, J. L., Cohen, J., \& Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72, 323-237.
Freedman, D. A. (1981). Bootstrapping regression models. Annals of Statistics, 9, 1218-1228.
Ganzach, Y. (1997). Misleading interaction and curvilinear terms. Psychological Methods, 2, 235-247.
Hocking, R. R. (1976). The analysis and selection of variables in linear regression. Biometrics, 32, 1-49.
Judge, G. G., Griffiths, W. E., Hill, R. C., Lütkepohl, H., \& Lee, T. C. (1985). The theory and practice of econometrics (2nd ed.). New York: Wiley.
Kruskal, W. (1987). Relative importance by averaging over orderings. American Statistician, 41, 6-10.
Lindeman, R. H., Merenda, P. F., \& Gold, R. Z. (1980). Introduction to bivariate and multivariate analysis. Glenview, IL: Scott, Foresman \& Co.
Lubinski, D., \& Humphreys, L. G. (1990). Assessing spurious 'moderator effects': Illustrated substantively with the hypothesized ('synergistic') relation between spatial and mathematical ability. Psychological Bulletin, 107, 385-393.
Mallows, C. L. (1973). Some comments on $C_{p}$. Technometrics, 15, 661-675.
Mooney, C. Z., \& Duval, R. D. (1993). Bootstrapping: A nonparametric approach to statistical inference. Newbury Park, CA: Sage.
Neter, J., Wasserman, W., \& Kutner, M. H. (1990). Applied linear statistical models (3rd ed.). Homewood, IL: Irwin.
Shao, J. (1996). Bootstrap model selection. Journal of the American Statistical Association, 91, 655-665.

Stein, R. (1996, July). Re-sampling techniques: Jackknife and bootstrap. Workshop conducted at the Inter-university Consortium for Political and Social Research, Ann Arbor, MI.
Suh, E., Diener, E., Oishi, S., \& Triandis, H. C. (1998). The shifting basis of life satisfaction judgments across cultures-emotions versus norms. Journal of Personality and Social Psychology, 74, 482-493.
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426-482.
Weisberg, S. (1985). Applied linear regression (2nd ed.). New York: Wiley.
Received 18 August 1999; revised version received 5 October 2000

## Appendix: Transitivity of dominance matrices

Let $p=3$, let the three predictors be $X_{h}, X_{i}$, and $X_{j}$, and let $P(X)$ be the probability that the model containing predictor(s) $X$ is identified as a best-fitting model. Let $C_{h(i)}>C_{i(h)}$ and $C_{i(j)}>C_{j(i)}$. Then

$$
\begin{aligned}
P\left(X_{h}\right)+P\left(X_{h} X_{j}\right)> & P\left(X_{i}\right)+P\left(X_{i} X_{j}\right) \\
& P\left(X_{i}\right)+P\left(X_{i} X_{h}\right)>P\left(X_{j}\right)+P\left(X_{j} X_{h}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{array}{r}
P\left(X_{h}\right)+P\left(X_{h} X_{j}\right)+P\left(X_{i}\right)+P\left(X_{i} X_{h}\right)> \\
P\left(X_{i}\right)+P\left(X_{i} X_{j}\right)+P\left(X_{j}\right)+P\left(X_{j} X_{h}\right), \\
P\left(X_{h}\right)+P\left(X_{i} X_{h}\right)>P\left(X_{j}\right)+P\left(X_{i} X_{j}\right)
\end{array}
$$

and $C_{h(j)}>C_{j(h)}$. Therefore, the dominance pattern is transitive. This can be similarly extended to $p>3$.


[^0]:    * Requests for reprints should be addressed to Dr Razia Azen, Department of Educational Psychology, University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201, USA.

[^1]:    ${ }^{1}$ For the sake of simplicity we do not consider models involving polynomials or interactive terms. However, there is nothing in the nature of the proposed procedure that excludes this.

[^2]:    ${ }^{2}$ If $C_{p}>k+1$ then $F_{j}>1$, and the difference between $k+1$ and $C_{p}$ is due to bias; if $C_{p}<k+1$ then $F_{j}<1$, and the difference between $k+1$ and $C_{p}$ is due to random error (Neter et al., 1990).

[^3]:    ${ }^{3}$ The results of simulation B1 show that variables $X_{2}$ and $X_{3}$ are critical about $30 \%$ of the time, even though they are uncorrelated with the criterion or each other. This is due to sampling error, which exists in our simulations as well as in real data sets. Note that we do not necessarily recommend the use of the criticality analysis for model selection; rather, we propose its use for ranking predictors once a reasonable choice for a model has been made. In the case of simulation B1, for example, variable $X_{1}$ is clearly the most critical variable as its criticality value is twice that of $X_{2}$ and $X_{3}$. Thus one can safely say that $X_{1}$ is the most critical of the three available predictors.
    ${ }^{4}$ We thank these authors for sharing their data with us.

[^4]:    Note: values above the diagonal are Pearson's correlations; values below the diagonal are Kendall's correlations.

[^5]:    ${ }^{5}$ To illustrate this point, we also ran a simulation where all $p=4$ predictors were (a) mutually uncorrelated and (b) uncorrelated with $Y$. All predictors were equally critical, but their average criticality varied across selection methods from 0.4 for adjusted $R^{2}$ to 0.65 for $C_{p}$.

