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A new method is proposed for comparing all predictors in a multiple regression
model. This method generates a measure of predictor criticality, which is distinct
from and has several advantages over traditional indices of predictor importance.

Using the bootstrapping (resampling with replacement) procedure, a large
number of samples are obtained from a given data set which contains one response
variable and p predictors. For each sample, all 2p

2 1 subset regression models are
®tted and the best subset model is selected. Thus, the (multinomial) distribution
of the probability that each of the 2p

2 1 subsets is `the best’ model for the data set
is obtained.

A predictor’s criticality is de®ned as a function of the probabilities associated
with the models that include the predictor. That is, a predictor which is included in
a large number of probable models is critical to the identi®cation of the best-®tting
regression model and, therefore, to the prediction of the response variable.

The procedure can be applied to ®xed and random regression models and can use
any measure of goodness of ®t (e.g., adjusted R2, Cp, AIC) for identifying the best
model. Several criticality measures can be de®ned by using different combinations
of the probabilities of the best-®tting models, and asymptotic con®dence intervals
for each variable’s criticality can be derived. The procedure is illustrated with
several examples.

1. Introduction

Multiple regression (MR) models are used to predict a single criterion variable from several

predictors. Consider the MR model

Y 5 Xb 1 «,

where Y is an n 3 1 data vector (the criterion), X is an n 3 ( p 1 1) full-rank data matrix

(the predictors); « is an n 3 1 vector of unobservable `error’ terms and b is a ( p 1 1) 3 1

vector of parameters, estimated from the data by Ãb 5 (X 9 X) 2 1X 9 Y. Here p represents the
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number of predictors in the `full’ model (i.e., the maximum number of variables available

for predicting the criterion variable), n represents the number of observations in a data set,

and k represents the number of predictors in a particular (subset) regression model

(1 # k # p).

Two main concerns, related to two distinct stages of MR analysis, often arise. First, at the

model selection stage, one wishes to determine if all predictors are necessary, or if there is a

subset of predictors which can adequately predict the criterion. Second, at the interpretation

stage, once a subset of predictors is chosen one often wishes to determine how to rank-order

them in terms of how important, useful, necessary or relevant they are for predicting the

criterion.

There are two distinct bodies of statistical literature related to these two questions. The ®rst

focuses on the development, validation, justi®cation and implementation of various model

selection procedures. A portion of this literature is concerned with various sequential

procedures (forward inclusion, backward exclusion, stepwise methods). More recent work

is concerned with the choice of optimal measures for identi®cation of the best subset models.

In addition to the traditional measures (R2, adjusted R2, mean square error), most statistical

textbooks discuss (and most statistical software packages implement) other meaningful

measures such as Cp (Mallows, 1973), Akaike’s (1973) information criterion (AIC), and so

on. For partial reviews of this literature, the reader is referred to Hocking (1976) or Judge,

Grif®ths, Hill, LuÈtkepohl & Lee (1985). Regardless of the measure of optimality chosen by

a researcher, and its mode of implementation, the ®nal product of this stage of the analysis

is the selection of a subset of k (k # p) predictors that constitute the best model for a given

data set.

The second literature focuses on the comparison of the predictors included in the model

in an effort to rank and scale them in terms of their importance. Many measures have been

proposed to quantify the concept of `predictor importance’ in MR. A review of the different

measures can be found in Budescu (1993). Conceptually, importance refers to a predictor’s

ability to predict the criterion such that more important predictors are those that contribute

more to the overall prediction of the response. In practice, however, goodness of prediction

can be quanti®ed in a wide variety of ways and interpreted in almost as many. Most measures

of predictor importance attempt to partition some overall goodness-of-®t measure (such as

R2) among all the predictors in the model. Many of the problems with these measures

generally stem from the fact that `importance’ is not clearly de®ned or agreed upon and

therefore these measures fail to capture the connotations and implications of `importance’ in

a scienti®c theory. For example, most measures of importance are model-dependent: they

are not invariant across all subsets of the predictors. Clearly, most scientists examining all

subset models would be puzzled by a conclusion such as `X1 is more important than X2 in

the presence of X3, but X2 is more important than X1 when X3 is absent from the model’. Such

conclusions are particularly hard to accept when X1, X2 and X3 are meaningful predictors

embedded in a well-understood theoretical context.

It is interesting to note that these two literatures are almost independent of each other.

Nothing in the work on predictor importance depends on, or is sensitive to, the method and

criterion used to select the variables in the model (i.e., those variables which are to be ranked

in terms of their importance). On the other hand, the literature on model selection is not

concerned at all with the nature, identity and interrelations among the variables included

in the model. In fact, it is fair to say that this literature implicitly assumes that, in some sense,
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all variables in the selected model are equally important. This conclusion is sensible and

easy to justify: after all, each predictor in the subset is necessary to make the chosen model

the best. If a variable is omitted (regardless of how unimportant it may be according to regu-

lar measures of importance), the reduced subset may be outperformed by another set of

predictors and no longer be the best. In addition, one may argue that all predictors in the best

model are equally important because if the model is misspeci®ed many of the attractive and

optimal properties of the parameters do not hold. For example, the estimates may no longer be

unbiased and/or have minimum variance.

The notion that all predictors in the best (selected) model are equally important implies

that there is, in fact, a single true best model for a given phenomenon or behaviour, and that

this best model can be identi®ed unequivocally based on the sample evidence.

There are, of course, situations in which MR analysis is used as a theory-testing tool and

its results are used to make inferences about the truth or falsehood of a given theory. In

psychological research these cases often involve questions about the necessity of interactive

terms; examples are given by Busemeyer and Jones (1983), Ganzach (1997) and Lubinski and

Humphreys (1990). However, in many situations the assumption that there is a true model

underlying the data is patently false. This is particularly true when MR is used as a predictive

(not necessarily theory-driven) tool and/or in exploratory research. Consider the following

illustrations:

· A ®nancial forecasting ®rm wants to develop a new `market index’, that is a linear

combination of a relatively small number of individual stocks, X1, . . . , Xp, that can

predict accurately the performance of the stock market, Y, on a weekly basis.

· A political scientist tries to predict the likelihood that individuals would vote in the next

election, Y, as a function of the voters’ answers to a long list of questions about social,

political and economic issues, X1, . . . , Xp.

· An industrial psychologist wishes to predict the prevalence of workers’ absenteeism in

a large organization, Y, based on a subset of items X1, . . . , Xp in a large personality

inventory.

In these (and in many similar) examples, standard model selection tools can be used to

identify a subset of predictors that is best, in the sense that it optimizes the researcher’s

criterion of choice (R2, Cp, AIC, Bayesian information criterion, etc.) in the calibration

sample. However, it is unlikely that any researcher would consider the selected subset as

a realization of the true model. In particular, the researcher would not be surprised (a) if

another subset of predictors performed almost, or exactly, as well as the one chosen, (b)

if certain predictors are included in, or absent from, the selected subset, or (c) if a different

random sample from the same population led to choosing a different subset of predictors,

using the same methodology. In fact, in these cases, instead of discussing `the single true

model’ it is more sensible to concede that there are `multiple reasonable models’ and try to

estimate the probability that each of the candidates is the `best-®tting model’ (BFM). More

speci®cally, assume that, given p predictors, one can specify 2p
2 1 distinct models.1 We are

seeking to estimate P(c)(Mj | Y), the probability that model Mj ( j 5 1, . . . , 2p
2 1) ®ts the

data (Y) best according to a criterion c.
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Draper and Guttman (1987) describe a Bayesian approach to the problem of assigning

a probability to each of the subset models, by which prior probabilities are placed on the

regression coef®cients (bi) and the error variance (j2) for all 2p subset models (including

the intercept-only model). The resulting posterior probabilities, P(Mj | Y), ( j 5 1, 2, . . . , 2p),

can then be determined, and the `best’ (i.e., most probable) subset model can be identi®ed.

The idea of generating a probability distribution across all subset models is appealing;

however, speci®cation of prior probabilities is always controversial and usually restricts the

conclusions in other ways as well. For example, Draper and Guttman’s results are not

invariant under scale changes in either dependent or independent variables. The alternative

approach to this problem, which we describe in this paper, is to estimate the empirical

probability distribution of the subset models by a non-parametric method (the bootstrap), and

use it to estimate both model probabilities and predictor criticalities.

2. Predictor criticality

The realization that there is no single true model suggests a new possible and important

dimension along which predictors can be ranked, namely their criticality. Loosely speaking, a

predictor, Xi, (i 5 1, . . . , p), is said to be critical as a function of its likelihood of being

included in the BFM.

Consider, for example, random samples of n observations on one criterion variable (Y ) and

three predictors (X1, X2 and X3). Within each sample the best subset model can be identi®ed

according to a criterion, c. If a large number of different random samples of size n were

available, and in each of these samples the best subset model included X1, then X1 would be

considered a highly critical predictor variable. This does not necessarily imply that Y could

not be predicted accurately in the absence of X1 Ðthis would be the claim made by a measure

of predictor importanceÐbut it is critical in the sense that in its absence the best subset for

the prediction of Y would not have been identi®ed.

More precisely, predictor criticality is de®ned as the probability that a predictor is included

in the best subset model for a given population. In contrast to the assignment of importance

ranks, which is based on the contribution each variable makes to predicting the criterion in a

given model, the assignment of criticality ranks is based on predictability across multiple

models. A highly critical variable is one which is necessary for the identi®cation of the best

model, where `best’ refers to a subset model that is chosen with high probability according to

some well-de®ned goodness-of-®t criterion, c.

The four steps in the determination of predictor criticality are: (1) bootstrap (resample with

replacement) the original data set in order to obtain a large number, B, of quasi-replications;

(2) for each of the B data sets select the best-®tting subset model according to some criterion,

c; (3) obtain the relative frequencies (out of B) with which each subset model was selected

(the empirical probability distribution of the subset models); and (4) derive measures of

criticality which represent the probability of inclusion of each predictor in the empirical

probability distribution of the subset models. In this section we discuss these steps in detail.

2.1. Data collection: bootstrapping

The original data set is a random sample of size n from a certain population. It is of interest

to examine as many random samples of size n, from the same population, as possible. Since
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collecting a large number of random samples is not feasible, the bootstrapping procedure

can be used to resample the original observations, with replacement, thereby producing

samples of size n that can be considered to have come from the same population as the

original observations. Efron (1979) originally proposed the bootstrap as a technique for

non-parametric estimation of the sampling distribution of a data-dependent random variable.

Estimation proceeds by randomly sampling the observations of the data sample, with

replacement, computing the value of the target random variable using each of the resamples,

and thereby producing its empirical sampling distribution. Since the best-®tting model can

be considered a random variable, the bootstrapping procedure is employed to estimate its

sampling distribution.

There are two general resampling methods, which correspond to the two types of

regression models. Case resampling corresponds to the random (or correlation) model, and

residual resampling corresponds to the ®xed (or classic regression) model (Efron, 1979;

Freedman, 1981; Mooney & Duval, 1993; Shao, 1996; Stein, 1996).

Case resampling assumes that the predictors are random variables and can take on any

value within their distributions. Each case or observation is a ( p 1 1)-dimensional vector,

consisting of a criterion and its corresponding p predictors. The method proceeds by taking

a random sample of n observations, with replacement, where each observation consists of

the original criterion±predictors vector. Therefore, if D is the n 3 ( p 1 2) data matrix,

D 5 [Y | X], each resampled data matrix Di , or each replication i (i 5 1, 2, . . . , B), consists of

n rows of D chosen randomly with replacement. In other words, on the ith replication n rows

of D are randomly selected with replacement, and this constitutes the ith data resample, Di .

Residual resampling assumes that the predictor variables can take on only (experimen-

tally) ®xed values. This is the assumption typically made in the classic regression model.

Under this assumption, the predictors themselves need not be resampled (because they are

®xed). The residuals, on the other hand, are random variables. Residual resampling proceeds

by ®tting the full regression model to the original data set, and obtaining the n residuals.

Then, n of the residuals are randomly chosen, with replacement, and they are added to the n
expected criterion values (i.e., the predictor values do not change). Thus, the data resample

consists of the original predictor values and the residual-modi®ed criterion values. If D is

again the n 3 ( p 1 2) data matrix, D 5 [Y | X], let

ÃY 5 X Ãb,

and let

res 5 Y 2 ÃY.

Let res be a vector of n residuals randomly chosen, with replacement, from res, and let

Y 5 ÃY 1 res . Then the resampled data matrix on replication i (i 5 1, 2, . . . , B) is the

n 3 ( p 1 2) matrix Di 5 [Y | X].
In most data sets collected in the social sciences the majority of the predictors are

random, so residual resampling is often inappropriate. In addition, if a regression model is

inappropriate for some other reason (e.g., a linear model is used where a polynomial model

is appropriate), using the residuals from the misspeci®ed regression analysis would be

highly problematic. These types of problems are less likely to arise with case resampling,

since the relationship between Y and its predictors does not need to be speci®ed in order

for case resampling to proceed.
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2.2. Model selection

In each of the B bootstrapped samples, all 2p
2 1 subset regression models are ®tted to the

data. For each of the resamples, Di (i 5 1, 2, . . . , B), one of these 2p
2 1 regression models

can be chosen as the BFM according to some goodness-of-®t criterion. In principle, the

method can be applied with any arbitrary choice of criterion. For illustration purposes, three

distinct criteria were chosen here: adjusted R2, AIC and Mallow’s Cp. For general reviews

of various model selection criteria, see Hocking (1976) and Weisberg (1985).

2.3. Probability distribution of BFMs

The number of times each of the 2p
2 1 possible models was selected as the BFM according

to the selection criterion, c, de®nes the empirical sampling distribution of the BFM. This

distribution is a non-parametric alternative to P(c)(Mj | Y) generated by the Draper and

Guttman (1987) method, and one could use it as a model selection procedure (i.e., pick the

most probable BFM). However, we are interested in an analysis of the predictors rather

than the models. The criticality of each predictor is a function of the membership of Xi

(i 5 1, . . . , p) in each BFM as well as the frequency of each BFM in the empirical sampling

distribution.

2.4. Predictors’ criticality

Consider all (2p
2 1) subset models of p predictors. Let Fj be the frequency with which the

jth model was identi®ed as a BFM in the B bootstrapping runs, and Pj be the empiri-

cal probability of each BFM ( j Fj 5 B). The subset models represent the 2p
2 1 out-

comes of a multinomial distribution with their associated probabilities, Pj, where j Pj 5 1

( j 5 1, 2, . . . , 2p
2 1).

To quantify the criticality of each predictor, Xi (i 5 1, 2, . . . , p), we de®ne the measure

Ci as the linear combination

Ci 5
j

aij Pj, (i 5 1, 2, . . . , p, j 5 1, 2, . . . , 2p
2 1),

where

aij 5
1 if Xi is in model j,

0 otherwise.

Thus Ci represents the expected value (probability of inclusion in a BFM) of Xi. As Ci is the

probability of membership in the BFM, a (minimum) value of Ci 5 0 indicates that Xi is

never included in a BFM and a (maximum) value of Ci 5 1 indicates that Xi is included in all

BFMs. The value of Ci represents the expected probability of model misspeci®cation, or

misidenti®cation, when Xi is excluded from the analysis. Thus Ci rank-orders the predictors

according to their likelihood of being included in the best model over B bootstrapped

samples, and represents the criticality of the ith predictor. Furthermore, i Ci represents the

average number of predictors in the BFMs, or the expected size of the BFM. Table 1 describes

three hypothetical examples in which p 5 3. The top panel in the table describes the three

hypothetical distributions over all possible models, and the second panel tabulates the

criticality measures. The other panels will be discussed later in the paper.

Note that the average number of predictors in the BFM is about 2 for each example.
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Example 1 represents the extreme case in which the same model was chosen in all B runs.

This model contains both X2 and X3, and these two predictors should therefore be given equal,

and the highest possible, criticality values. This is indeed the case, as C1 5 0, C2 5 1.0, and

C3 5 1.0. In example 2, X1 is included in all of the models that were chosen, while X2 and X3

are only included in a subset of these models. Therefore, we should expect that X1 will receive

the highest possible criticality value, which is indeed the case (C1 5 1.0, C2 5 0.5, and

C3 5 0.5). Example 3 is more interesting, in that it results in equally critical predictors

(C1 5 C2 5 C3 5 0.7).

3. Distribution theory for the criticality measures

Let p 5 (p1, p2, . . . , p2p 2 1) 9 be a vector of the multinomial class probabilities associated

with each of the subset models in the population. Let the jth element of the vector p 5 {pj},
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Table 1. Three hypothetical examples (with p 5 3) of the BFM probability distributions

and their associated criticality values

Pj

BFM k Example 1 Example 2 Example 3

X1 1 0 0.3 0.3
X2 1 0 0 0
X3 1 0 0 0
X1X2 2 0 0.2 0
X1X3 2 0 0.2 0
X2X3 2 1.0 0 0.3
X1X2X3 3 0 0.3 0.4

Ci

Xi Example 1 Example 2 Example 3

X1 0 1.0 0.7
X2 1.0 0.5 0.7
X3 1.0 0.5 0.7
Total 2.0 2.0 2.1

wCi

Xi Example 1 Example 2 Example 3

X1 0 0.6 0.433
X2 0.5 0.2 0.283
X3 0.5 0.2 0.283
Total 1.0 1.0 1.0

Example 1: Example 2: Example 3:

X1 X2 X3 dCi X1 X2 X3 dCi X1 X2 X3 dCi

X1 · 2 1 2 1 2 1 X1 · 1 1 0.5 X1 · 0 0 0
X2 1 · 0 0.5 X2 2 1 · 0 2 0.5 X2 0 · 0 0
X3 1 0 · 0.5 X3 2 1 0 · 2 0.5 X3 0 0 · 0



j 5 1, 2, . . . , 2p
2 1, be the maximum likelihood estimate of pj (the jth element of p), based

on the B bootstrapped samples.

For any linear combination of the probabilities, ÃL 5 A 3 p, where A is a matrix of

constants, and rank (A) 5 t < 2p
2 1, the limiting distribution of ÃL is the t-dimensional

normal distribution, with mean E( ÃL) 5 L 5 A 3 p and covariance matrix S ÃL 5 ASpA 9

(Chernoff, 1956). The elements {jij} of the matrix Sp are given by (see, for example,

Lindeman, Merenda & Gold, 1980):

jij 5
pi(1 2 pi)/B, i 5 j,

( 2 pipj)/B, i Þ j.

Thus Sp can be estimated by Sp 5 {sij}, where

sij 5
pi(1 2 pi)/B, i 5 j,

( 2 pipj)/B, i Þ j.

and S ÃL can be estimated by S ÃL 5 ASpA 9 . When B is large, the quadratic form

Q( ÃL) 5 ( ÃL 2 L)9 S 2 1
ÃL ( ÃL 2 L) has a x2 distribution with t degrees of freedom (Chernoff,

1956), and can be estimated by ÃQ( ÃL) 5 ( ÃL 2 L) 9 S 2 1
ÃL ( ÃL 2 L), which has the same limiting

distribution (Wald, 1943).

The criticality measures are linear combinations of the multinomial distribution of the

BFMs, and these results can be used to perform statistical tests involving variable criticality.

For instance, L can be a criticality `parameter’, vi, which is de®ned as a linear combination

of multinomial probabilities

L 5 vi 5 ai 3 p,

estimated by

ÃL 5 Ci 5 ai 3 p,

where ai is a 1 3 (2p
2 1) row vector of constants and p is a (2p

2 1) 3 1 vector of the

probabilities from the BFM distribution. Therefore, asymptotic con®dence intervals for

the vi can be constructed using the Ci. Alternatively, L can be de®ned as a linear combination

of the criticality parameters (vi), such that

L 5 b 3 v 5 D 3 p,

where b is a 1 3 p row vector of p constants, v is a p 3 1 vector containing the vi, D 5 b 3 A
where A 5 (a1, a2, . . . , ap) 9 , and the ai are 1 3 (2p

2 1) row vectors of constants. Then L can

be estimated by ÃL 5 b 3 C 5 D 3 p (where C is a p 3 1 vector containing the Ci), and the

statistical signi®cance of the differences between Ci (de®ned by the vector b) can be tested

using the fact that ÃQ( ÃL) 5 ( ÃL 2 L) 9 S 2 1
L ( ÃL 2 L) is x2.

4. Examples

In this section we illustrate the procedure with arti®cial (simulated) and real data sets. In all

cases we used data sets of moderate size (10 # n # 100) and with a small number of potential

predictors ( p # 5). Criticality analysis can be applied with any criterion for choosing BFMs,

and, for illustration purposes, we employed AIC, R2
adj and Cp. These three measures were

chosen because they are commonly used in the social sciences and each of them includes
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a penalty for the number of predictors (k) included in the model ( j ). We ®rst describe the

three criteria and their use in this context.

The R2
adj for subset model j is written as

R2
adj 5 1 2

SSEj/(n 2 k 2 1)
SSTO/(n 2 1)

5 1 2
n 2 1

n 2 k 2 1
(1 2 R2

j )

(Neter, Wasserman, & Kutner, 1990), where SSEj is the error sum of squares of model j,
SSTO is the total sum of squares of the full model, and R2

j is the squared multiple correlation

of (i.e., proportion of variance of Y reproduced by) model j. The larger the value of R2
adj the

better the model ®ts the data. Thus, the BFM is the subset model with the highest R2
adj.

The AIC value (Akaike, 1973) for subset model j is written as

AIC 5 n ln
SSEj

n
1 2(k 1 1).

Since n is ®xed, the quantity n ln(SSEj
n ) is smallest for the model with the smallest error sum of

squares (SSEj). Thus, the BFM is the subset model with the lowest AIC.

The Cp value (Mallows, 1973) for subset model j is written as

Cp 5
SSEj

MSE
1 2(k 1 1) 2 n,

where MSE is the mean squared error for the full model. Cp can also be rewritten as

Cp 5 ( p 2 k)(Fj 2 1) 1 (k 1 1),

where Fj is the F-statistic for testing the hypothesis that the predictors left out of the jth
subset model, but included in the full model, all have zero coef®cients (Weisberg, 1985). In

the full model (k 5 p), Cp 5 k 1 1 5 p 1 1. Moreover, if the predictors left out of the jth
subset model do indeed have zero coef®cients, the expected value of Fj will be approxi-

mately 1. Thus, good models should have Cp values that are approximately equal to k 1 1,

and Cp # p 1 1 (corresponding to Fj # 2) (Weisberg, 1985).2 Therefore, the model with the

smallest positive value of the difference k 1 1 2 Cp is identi®ed as the BFM according to

the Cp criterion. If none of the models produces a positive value for k 1 1 2 Cp, then the

model with k 1 1 2 Cp 5 0 (i.e., the full model) is considered to be the BFM.

4.1. Simulations

To examine the effect of the size of the correlations among the predictors (i.e., the degree

of multicolinearity) on the criticality measures, several simulations were conducted. These

simulations consist of:

1. specifying a certain pattern of correlations between the predictors and the criterion;

2. generating a multivariate normal data set based on the speci®ed correlation pattern;

3. determining predictor criticalities using B resamples of the data set; and

4. performing R repetitions of steps 2 and 3 to eliminate any bias that might exist within any

one data set.

Criticality of predictors in multiple regression 209

2 If Cp > k 1 1 then Fj > 1, and the difference between k 1 1 and Cp is due to bias; if Cp < k 1 1 then Fj < 1, and
the difference between k 1 1 and Cp is due to random error (Neter et al., 1990).



For each simulation, the mean criticality and its standard error over R runs were recorded

under each model selection method (maximum R2
adj, minimum AIC and minimum positive

k 1 1 2 Cp).

4.1.1. Simulation set A

This set consists of four simulations in which the correlations between Y and the predictors

are kept constant, while the (equal) correlation among all six pairs of predictors is

systematically varied. Speci®cally, for each of four predictors ( p 5 4), the correlation

between Y and the ith predictor (Xi) was speci®ed to be r(Y , Xi) 5 0.1 1 0.2(i 2 1) in all

four simulations, while the common correlation among the predictors was speci®ed to be

r(Xi, Xj) 5 0.75, 0.5, 0.25 or 0.0 (for all i Þ j 5 1, . . . , p) for simulation A1, A2, A3 and A4,

respectively. The four correlation matrices are shown in the left panels of Table 2.

Importance measures for each simulation, based on the population correlations, are

presented in Table 2. They include squared correlations, standardized regression coef®cients

and squared partial and semi-partial correlations. The mean criticalities and their standard

errors across R 5 40 repetitions, based on n 5 50 and B 5 500, are presented in Table 3

under the three model selection methods. The distributions of the BFMs, for each simula-

tion and each selection method, are presented in Table 4. (The models are listed according

to the frequency with which they were identi®ed as BFMs by the speci®c selection criterion).

Note that the ranking of the predictors based on criticality is similar, though not identical,

to the ranking based on (most of) the population importance measures.

This set of simulations highlights the difference between the interpretation of criticality

and importance. For example, in simulation A1, all predictors are equally and maximally

critical (although this is not the case using the population importance measures). The reason

for this is that the correlations among the predictors are quite high and the full model is

identi®ed as best ®tting in each and every case. Thus, removing any of the predictors would

result in misidenti®cation of the best-®tting model (even though not all p 5 4 predictors are

equally correlated with Y ).

The effects of the inter-predictor correlations, r(Xi, Xj), on the results are evident, though

not always easy to characterize. Note, ®rst, that the size of the selected BFM (as measured

by SCi) is smallest for low values of r(Xi, Xj) and that the two predictors that correlate

highly with Y (X4 and X3) are assigned almost equal (and invariably high) criticalities by all

selection methods in all cases. However, there are wide differences, and order reversals,

between the criticalities of X1 and X2 across the various conditions. It is instructive to

consider ®rst the two extreme cases. Simulation A1 is an extreme case of multicollinearity

(very close to singularity) where all methods select the full model. Since in such cases

the predictors are almost interchangeable, they are identi®ed as equally critical. In the case

of uncorrelated predictors (simulation A4) the four criticalities are monotonically related

to the predictors’ correlation with the criterion. As r(Xi, Xj) increases, the criticality of X2 (a

predictor that has a 0.3 correlation with Y ) decreases steadily, while the criticality of X1

(a predictor that has a 0.1 correlation with Y ) increases at an even faster rate. In fact, all

selection methods rate X1 as more critical than X2 when r(Xi, Xj) $ 0.25. This seems to

indicate that when a predictor is only slightly correlated with Y, a high correlation with

other predictors will increase its criticality. This was explored to some extent in simulation

set B.
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4.1.2. Simulation set B

This set consists of ®ve simulations, each involving three predictors ( p 5 3). The correlation

matrices were speci®ed such that the correlation between Y and the predictors was kept

constant across the ®ve simulations, with r(Y , X1) 5 0.6 and r(Y , X2) 5 r(Y , X3) 5 0. Two

predictors, X2 and X3, were also uncorrelated in all cases; i.e., r(X2, X3) 5 0. For the matrix to

be positive semi-de®nite its elements are constrained by the inequality 2 [1 2 r(Y , X1)2], #

[r(X1, X2)2 1 r(X1, X3)2] # [1 2 r(Y , X1)
2]. Thus in three of the simulations r(X1, X2) 5

r(X1, X3) 5 0, Ö 0.1, and Ö 0.2 (these are simulations B1, B3, and B5, respectively). In the

other two simulations r(X1, X2) 5 0 while r(X1, X3) 5 Ö 0.2 or Ö 0.4 (these are simulations

B2 and B4, respectively). The ®ve correlation matrices, along with the population importance

measures, are presented in Table 5.

The goal of these simulations was to examine how the systematic variation in r(X1, X2)
and r(X1, X3) affects the criticality of X2 and X3. The mean criticalities and their standard

errors for n 5 50, B 5 500 and R 5 40 are presented in Table 6, and the BFM distributions

obtained for each simulation are presented in Table 7 (for each selection criterion, the models

are listed in descending order of observed frequency).

Not surprisingly, the results (in Table 6) show that X1 is always highly critical (in this

case, it is always essential). Our primary interest is in the criticalities of X2 and X3, which
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Table 3. Simulations A1±A4: Criticalities(Ci) and their standard errors over R 5 40

replications

Ci (SE of Ci) by criterion
n 5 50, B 5 500, R 5 40

Simulation r(Xi, Xj) Predictor AIC Adjusted R2 Cp

A1 0.75 X1 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X2 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X3 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X4 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Sum 4.00 4.00 4.00

A2 0.5 X1 0.965 (0.004) 0.978 (0.003) 0.977 (0.003)
X2 0.359 (0.019) 0.450 (0.020) 0.450 (0.010)
X3 0.943 (0.007) 0.967 (0.004) 0.964 (0.005)
X4 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Sum 3.27 3.40 3.39

A3 0.25 X1 0.627 (0.016) 0.729 (0.015) 0.758 (0.015)
X2 0.525 (0.019) 0.644 (0.018) 0.668 (0.018)
X3 0.963 (0.005) 0.981 (0.003) 0.979 (0.004)
X4 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
Sum 3.11 3.35 3.40

A4 0.0 X1 0.622 (0.019) 0.730 (0.017) 0.731 (0.017)
X2 0.989 (0.001) 0.994 (0.001) 0.994 (0.001)
X3 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X4 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
Sum 3.61 3.72 3.73



are uncorrelated with Y. The results indicate that there is a clear monotonic relationship

between the predictors’ correlations with X1 and their respective criticality measures.

Consider, for example, C3 (the criticality of X3), under the AIC selection criterion. As

r(X1, X3) increases from 0 (simulation B1) to Ö 0.1 (B3), to Ö 0.2 (B2 and B5), and to Ö 0.4
(simulation B4), C3 increases gradually from 0.348 to 0.999. A similar trend can be observed

for the other selection criteria and for C2, as r(X1, X2) increases from 0 (simulations B1,

B2 and B4) to Ö 0.1 (B3), and to Ö 0.2 (B5). In fact, in B5, where the correlations of both

X2 and X3 with X1 are maximal (under the constraint of this example), the full model is

Criticality of predictors in multiple regression 213

Table 4. Simulations A1±A4: The BFM frequency distribution for each simulation, based

on 20000 samples (B 5 500 bootstraps 3 R 5 40 replications)

AIC Adjusted R2 Cp

Predictors in Predictors in Predictors in
Simulation the BFM f (BFM) the BFM f (BFM) the BFM f (BFM)

A1 1234 20000 1234 20000 1234 20000
Total: 20000 20000 20000

A2 134 12082 134 9902 134 9829
1234 6194 1234 9017 1234 9017

14 528 123 385 124 524
124 491 234 365 234 370
234 437 14 244 14 157
34 138 34 52 34 66
4 65 24 25 24 22

24 61 4 8 4 12
123 3 123 2 123 2
13 1 13 1

Total: 20000 20000 20000

A3 1234 6424 1234 9217 1234 9217
134 5767 134 5136 134 5640
34 3565 234 3341 234 3776

234 3496 34 1930 34 946
24 348 24 156 124 255

124 213 124 155 24 101
14 135 14 60 14 48
4 40 4 2 4 14

23 8 123 2 23 2
123 3 23 1 123 1

2 1
Total: 20000 20000 20000

A4 1234 12315 1234 14522 1234 14522
234 7472 234 5361 234 5357
134 117 134 85 134 97
34 94 34 32 34 24
4 1

24 1
Total: 20000 20000 20000

Note: Models are ordered according to their frequency.
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selected practically always, and the three variables are almost equally critical (just as in

simulation A1).3

In all simulations there is a high level of agreement between the criticality measures based

on the three distinct model selection criteria. However, the measures are not identical. In

particular, note that AIC favours smaller models.

4.2. Real data

Suh, Diener, Oishi and Triandis (1998) collected the responses of over 7000 people in 41

countries on numerous variables pertaining to satisfaction with life.4 For this analysis, we

selected a subset of variables and averaged their values by country; therefore, we used 41

(averaged) observations on ®ve predictors and one criterion. The criterion, Y, is the score on

a `satisfaction with life’ scale consisting of ®ve items. The ®ve predictors are responses to
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Table 6. Simulations B1±B5: Criticalities (Ci) and their standard errors over 40 replications

Ci (SE of Ci) by criterion
n 5 50, B 5 500, R 5 40

Simulation r(X1, X2) r(X1, X3) Predictor AIC Adjusted R2 Cp

B1 0 0 X1 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
X2 0.366 (0.020) 0.512 (0.021) 0.582 (0.021)
X3 0.348 (0.020) 0.496 (0.021) 0.569 (0.021)
Sum 1.71 2.01 2.15

B2 0 Ö 0.2 X1 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
X2 0.356 (0.019) 0.498 (0.020) 0.520 (0.021)
X3 0.857 (0.011) 0.909 (0.009) 0.911 (0.009)
Sum 2.21 2.41 2.43

B3 Ö 0.1 Ö 0.1 X1 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X2 0.642 (0.017) 0.749 (0.015) 0.764 (0.015)
X3 0.728 (0.017) 0.824 (0.014) 0.830 (0.014)
Sum 2.37 2.57 2.59

B4 0 Ö 0.4 X1 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X2 0.311 (0.020) 0.461 (0.021) 0.462 (0.021)
X3 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
Sum 2.31 2.46 2.46

B5 Ö 0.2 Ö 0.2 X1 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
X2 0.966 (0.004) 0.982 (0.003) 0.983 (0.003)
X3 0.970 (0.004) 0.985 (0.002) 0.985 (0.002)
Sum 2.94 2.97 2.97

3 The results of simulation B1 show that variables X2 and X3 are critical about 30% of the time, even though they
are uncorrelated with the criterion or each other. This is due to sampling error, which exists in our simulations as well
as in real data sets. Note that we do not necessarily recommend the use of the criticality analysis for model selection;
rather, we propose its use for ranking predictors once a reasonable choice for a model has been made. In the case
of simulation B1, for example, variable X1 is clearly the most critical variable as its criticality value is twice that of X2

and X3 . Thus one can safely say that X1 is the most critical of the three available predictors.
4 We thank these authors for sharing their data with us.



single items (different from the global scale) pertaining to domain-speci®c reported levels

of satisfaction. The domains are X1 5 health, X2 5 ®nancial situation, X3 5 family, X4 5
housing and X5 5 self.

Standard results from the multiple regression analysis of the original data set are

presented in Table 8. They include, for each predictor, zero-order correlations with Y,

standardized regression coef®cients, partial and semi-partial correlations with Y as well as

the averaged results of the dominance analysis (Budescu, 1993). These results all pertain to
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Table 7. Simulations B1±B5: The BFM frequency distribution for each simulation, based on

20 000 samples (B 5 500 bootstraps 3 R 5 40 replications)

AIC Adjusted R2 Cp

Predictors in Predictors in Predictors in
Simulation the BFM f (BFM) the BFM f (BFM) the BFM f (BFM)

B1 1 8378 123 5120 12 6517
12 4653 12 5110 13 6240
13 4283 1 4974 123 5121

123 2665 13 4787 1 2105
3 12 3 5 3 10
2 6 2 2 23 6

23 3 23 2 2 1
Total: 20000 20000 20000

B2 13 10771 123 9212 123 9214
123 6366 13 8964 13 8997

1 2113 1 1080 12 1170
12 739 12 737 1 604
2 7 2 5 2 6
3 4 3 1 23 6

23 1 3 3
Total: 20000 20000 20000

B3 123 9786 123 12515 123 12515
13 4773 13 3967 13 4067
12 3042 12 2457 12 2758
1 2394 1 1058 1 646
2 4 2 2 23 3
3 1 3 1 2 2

Total: 20000 20000 20000

B4 13 13760 13 10769 13 10767
123 6223 123 9226 123 9227

1 11 1 4 1 3
12 6 12 1 12 3

Total: 20000 20000 20000

B5 123 18851 123 19381 123 19381
13 549 13 312 13 311
12 463 12 267 12 281
1 137 1 40 1 27

Total: 20000 20000 20000

Note: Models are ordered according to their frequency.



predictor importance, and appear to indicate that in the full model (including all ®ve

predictors), X4 (housing) is the most important predictor of the score on the satisfaction

with life scale.

The bootstrapping analysis was performed using the case resampling method since the

predictors are random variables. Resampling was performed for B 5 250, 500 and 1000 to

investigate the degree to which the number of resamples affects the results. Within each

of these analyses, the BFM was selected according to each of the three criteria described

earlier (maximum R2
adj, minimum AIC and minimum positive k 1 1 2 Cp).

To examine the level of agreement between the model selection methods in identifying

the BFM, Cohen’s k (see, for example, Fleiss, 1973) was computed as a measure of the degree

of agreement beyond chance. For perfect agreement k 5 1, and for chance agreement k 5 0.

The large-sample approximation for the standard error of k (Fleiss, Cohen & Everitt, 1969)

was also computed.

The BFM frequency distributions, for each value of B and each model selection method,

are presented in Table 9, along with pairwise measures of agreement between the various

model selection methods. There is a high level of agreement between the models selected

by the R2
adj and AIC criteria, but a lower (though signi®cantly larger than 0) agreement with

the models identi®ed by the Cp criterion. This pattern is consistent across all three values of

B. In addition, for each selection method there is a high level of agreement between the

distributions of the BFMs obtained for various numbers of bootstraps (B).

In Table 10 all 25
2 1 5 31 subset models are listed in descending order according to

their R2
adj values in the original data set. This table also presents the probabilities (and their

corresponding ranks) obtained from the empirical probability distributions (with B 5 250,

500, 1000) under the maximum R2
adj model selection criterion. At the bottom of the table

we present the Pearson and Kendall rank-order correlations between the four columns. The

results show a very high level of agreement between the three bootstrapped solutions, but
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Table 8. Multiple regression analysis results for the satisfaction with life data set

Correlations between the predictors

X1 X2 X3 X4 X5

X1 1.0000
X2 0.418 1.000
X3 0.556 0.216 1.000
X4 0.602 0.362 0.381 1.000
X5 0.606 0.345 0.258 0.396 1.000

Predictor importance measures

X1 X2 X3 X4 X5

r(y, xi) 0.4832 0.4436 0.2578 0.7279 0.5291

r2(y, xi) 0.2335 0.1968 0.0665 0.5298 0.2800
Standardized bi 2 0.1028 0.1522 2 0.2430 0.6556 0.4337
r2(y, xi·x1, x2, . . . , xi2 1, xi1 1, . . . , xp) 0.0135 0.0512 0.0868 0.4406 0.2150

r2(y(xi·x1, x2, . . . , xi2 1 , xi1 1, . . . , xp)) 0.0046 0.0182 0.0321 0.2663 0.0926
Average dominance 0.0714 0.0759 0.0259 0.3473 0.1379



somewhat less agreement with the measures from the original data set, highlighting again

the distinction between criticality and model ®t.

The criticality measures (and their 95% con®dence limits) under each model selection

method and for each value of B are presented in Table 11. The 100(1 2 a)% con®dence
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Table 9. Best-®tting model frequency distributions for the satisfaction with life data, with

B 5 250, 500 or 1000 and according to three model-selection methods

B 5 250 B 5 500 B 5 1000

Selection method Selection method Selection method
Model AIC R2

adj Cp AIC R2
adj Cp AIC R2

adj Cp

X1 0 0 0 0 0 0 0 0 0
X2 0 0 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 0 0
X4 1 0 0 2 0 0 7 0 2
X5 0 0 0 0 0 0 0 0 0
X1X2 0 0 0 0 0 0 0 0 0
X1X3 0 0 0 0 0 0 0 0 0
X1X4 3 1 2 1 0 0 2 1 0
X1X5 0 0 0 0 0 0 1 0 0
X2X3 0 0 0 0 0 0 0 0 0
X2X4 5 1 2 8 3 4 39 14 3
X2X5 0 0 0 1 0 0 0 0 0
X3X4 0 0 0 2 2 1 2 1 2
X3X5 0 0 0 0 0 0 0 0 0
X4X5 11 2 1 17 1 6 40 6 16
X1X2X3 0 0 0 0 0 0 0 0 0
X1X2X4 10 5 3 16 12 3 37 26 12
X1X2X5 0 0 0 0 0 0 1 0 1
X1X3X4 1 0 0 0 0 2 0 2 3
X1X3X5 0 0 0 0 0 0 1 0 0
X1X4X5 8 3 5 22 15 12 49 16 33
X2X3X4 1 0 1 2 2 0 4 4 4
X2X3X5 0 0 0 0 0 0 1 1 0
X2X4X5 12 10 8 43 23 33 60 40 38
X3X4X5 68 46 16 137 102 32 248 165 56
X1X2X3X4 2 4 4 0 2 7 7 10 15
X1X2X3X5 0 0 0 0 0 0 1 2 1
X1X2X4X5 9 13 24 26 35 49 46 70 88
X1X3X4X5 26 33 52 54 67 98 107 134 163
X2X3X4X5 71 80 80 124 142 159 254 279 334
X1X2X3X4X5 22 52 52 45 94 94 93 229 229

Total 250 250 250 500 500 500 1000 1000 1000

B 5 250 B 5 500 B 5 1000

Agreement between: k SE(k) k SE(k) k SE(k)

R2
adj and AIC 0.6251 0.027 0.6540 0.019 0.5961 0.013

R2
adj and Cp 0.4950 0.028 0.4394 0.019 0.4892 0.014

Cp and AIC 0.4367 0.024 0.4372 0.017 0.4035 0.012
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Table 10. Comparison of the rank of the subset models in the satisfaction with life data set

and in the BFM distributions, according to the maximum R2
adj criterion

Probability (rank) of subset models in BFM
distribution according to maximum

R2
adj criterion

R2
adj values in

Subset model original data set B 5 250 B 5 500 B 5 1000

X2X3X4X5 0.619193 0.320 (1) 0.283 ( 1) 0.279 (1)
X1X2X3X4X5 0.613590 0.208 (2) 0.188 (3) 0.229 (2)
X3X4X5 0.612835 0.184 (3) 0.204 (2) 0.165 (3)
X1X3X4X5 0.604065 0.132 (4) 0.134 (4) 0.134 (4)
X1X2X4X5 0.588638 0.052 (5) 0.070 (5) 0.070 (5)
X2X4X5 0.585974 0.040 (6) 0.046 (6) 0.040 (6)
X4X5 0.577600 0.008 (10) 0.002 (13) 0.006 (11)
X1X4X5 0.574334 0.012 (9) 0.030 (7) 0.016 (8)
X2X4 0.544437 0.004 (11.5) 0.006 (9) 0.014 (9)
X2X3X4 0.533743 0.004 (11) 0.004 (12)
X1X2X4 0.532148 0.020 (7) 0.024 (8) 0.026 (7)
X1X2X3X4 0.521430 0.016 (8) 0.004 (11) 0.010 (10)
X4 0.517775
X1X4 0.508452 0.004 (11.5) 0.001 (16)
X3X4 0.505550 0.004 (11) 0.001 (16)
X1X3X4 0.498011 0.002 (13.5)
X1X2X3X5 0.328409 0.002 (13.5)
X1X2X5 0.323998
X2X5 0.323498
X2X3X5 0.316001 0.001 (16)
X1X3X5 0.295931
X1X5 0.286021
X1X2 0.267648
X5 0.267648
X3X5 0.252804
X1X2X3 0.247910
X1 0.213871
X1X3 0.193356
X2X3 0.183503
X2 0.176197
X3 0.042531

Correlations between R2
adj values in original data and probabilities from bootstrapping

Probabilities

R2
adj values B 5 250 B 5 500 B 5 1000

R2
adj values ± 0.5207 0.5478 0.5451

B 5 250 0.7350 ± 0.9921 0.9923
B 5 500 0.7580 0.8508 ± 0.9881
B 5 1000 0.8013 0.8474 0.8725 ±

Note: values above the diagonal are Pearson’s correlations; values below the diagonal are Kendall’s correlations.



interval for each criticality parameter (L 5 vi 5 ai 3 p) was constructed using its estimate,
ÃL 5 Ci 5 ai 3 p (i 5 1, 2, 3, 4), and using the fact that p (the multinomial probabilities

vector), and linear combinations (ÃL) of p, are asymptotically multivariate normal. Therefore,

the 95% con®dence interval for the criticality parameter vi is

Ci 6 1.96 SCi 5 (ai 3 p) 6 1.96 ai Spa 9i,

where S ÃL is as discussed previously. Of course, simultaneous con®dence intervals could be

obtained by appropriate adjustments of the probability levels.

There are very few (and small) differences between the mean values obtained with

different numbers of bootstraps (B), indicating that for practical purposes B 5 250 resamples

are suf®cient. Similarly, there is a high level of agreement between the three model selec-

tion methods (note that Cp tends to choose the largest, and AIC the smallest, subsets). In

all cases, X4 (satisfaction with housing) is identi®ed as the most critical variable, followed

by X5 (satisfaction with self ), and X1 (satisfaction with health) is always the least critical

predictor.

5. Extensions—alternative measures of criticality

In this section we propose a few variations on the main theme discussed so far. In particu-

lar, we propose alternative measures of predictor criticality that can be computed from the
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Table 11. Criticality measures (and their 95% con®dence limits) for the satisfaction with

life data with B 5 250, 500 or 1000, according to three model-selection methods

Model selection method

AIC R2
adj Cp

B Predictor Ci 95% limits Ci 95% limits Ci 95% limits

250 X1 0.324 (0.266, 0.382) 0.444 (0.382, 0.506) 0.568 (0.507, 0.629)
X2 0.528 (0.466, 0.590) 0.660 (0.601, 0.719) 0.696 (0.639, 0.753)
X3 0.764 (0.711, 0.817) 0.860 (0.817, 0.903) 0.820 (0.772, 0.868)
X4 1.000 (1.000, 1.000) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
X5 0.908 (0.872, 0.944) 0.956 (0.931, 0.981) 0.952 (0.926, 0.979)
Total 3.52 3.92 4.04

500 X1 0.328 (0.287, 0.369) 0.450 (0.406, 0.494) 0.530 (0.486, 0.574)
X2 0.530 (0.486, 0.574) 0.626 (0.584, 0.668) 0.698 (0.658, 0.738)
X3 0.728 (0.689, 0.767) 0.822 (0.788, 0.856) 0.786 (0.750, 0.822)
X4 0.998 (0.994, 1.002) 1.000 (1.000, 1.000) 1.000 (1.000, 1.000)
X5 0.938 (0.917, 0.959) 0.958 (0.940, 0.976) 0.966 (0.950, 0.982)
Total 3.52 3.86 3.98

1000 X1 0.345 (0.316, 0.374) 0.490 (0.459, 0.521) 0.545 (0.514, 0.576)
X2 0.543 (0.512, 0.574) 0.675 (0.646, 0.704) 0.725 (0.697, 0.753)
X3 0.718 (0.690, 0.746) 0.827 (0.804, 0.850) 0.807 (0.783, 0.831)
X4 0.995 (0.991, 0.999) 0.997 (0.994, 1.000) 0.998 (0.995, 1.001)
X5 0.902 (0.884, 0.920) 0.942 (0.928, 0.956) 0.959 (0.947, 0.971)
Total 3.50 3.93 4.03



BFM distribution derived through bootstrapping and model selection. To motivate these

alternative measures, consider again the three hypothetical examples in Table 1.

Note that in the third example X1 by itself is chosen as a BFM with probability greater

than zero, but this is not the case for X2 or X3, which always appear jointly. One may wish to

develop an alternative criticality measure to highlight this distinction. This can be achieved

by assigning different values to the coef®cient aij in the computation of Ci; for example, the

aij scores could be inversely proportional to the complexity of (or number of predictors in)

the model. The weighted criticality measure, wCi, is de®ned as

wCi 5
j

aij

kj
Pj, (i 5 1, 2, . . . , p, j 5 1, 2, . . . , 2p

2 1),

where

aij 5
1 if Xi is in model j,

0 otherwise,

and kj is the number of predictors in the jth subset model. Evidently wCi overweights

(underweights) simple (complex) models. The weights used here are somewhat arbitrary,

and were chosen because of their simplicity, but any other scheme that preserves a mono-

tonic relationship between the weights and the number of predictors in the model would

also have this property. Weighted criticality ranges between 0 and 1, where a 0 indicates (as

in Ci) that Xi is not in any BFM, and a 1 indicates that predictor Xi appears in all BFMs

alone (i.e., the model chosen is always Xi). The weighted criticality values for the predictors

in the three examples are presented in the third panel of Table 1. Note that i wCj 5 1, and

so the weighted criticality of a given predictor is in some sense a criticality `percentage’, or

the proportion of the maximum criticality that is allocated to each predictor, where the

allocation depends on model complexity. However, unlike Ci, wCi can no longer be inter-

preted as the expected probability of model misidenti®cation.

Occasionally, one may be interested in comparing the criticality of a pair of predictors

without involving the other p 2 2 predictors in this comparison. To compare the criticality

of Xi to that of Xh, we can de®ne Ci(h) as the linear combination

Ci(h) 5
j

aij Pj, (h, i 5 1, 2, . . . , p, j 5 1, 2, . . . , 2p
2 1),

where

aij 5
1 if Xi is in model j and Xh is not in model j,

0 otherwise.

Similarly,

Ch(i ) 5
j

aij Pj, (h, i 5 1, 2, . . . , p, j 5 1, 2, . . . , 2p
2 1),

where

aij 5
1 if Xh is in model j and Xi is not in model j,

0 otherwise.

The difference Ci(h) 2 Ch(i) is a measure of the relative criticality of Xi compared to Xh which,
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by excluding models that include both Xi and Xh, is independent of the relationship between

these two predictors, and Ci(h) 2 Ch(i) 5 Ci 2 Ch. More sensitive measures can be obtained

by standardizing this difference through division by factors such as the sum Ci(h) 1 Ch(i ) or

the number of bootstrapping runs (B). Using these values, a pattern of pairwise dominance

can be established which may then be used to rank the criticality of the predictors. The last

panel of Table 1 displays the pairwise dominance matrices, where the entry in row i and

column h represents the value of (Ci(h) 2 Ch(i))/(Ci(h) 1 Ch(i)), or 0 when Ci(h) 5 Ch(i) 5 0.

The row averages rank-order the predictors in terms of relative criticality, while the matrix

entries can be used to determine the criticality dominance pattern between any pair of

predictors. It can be shown that these pairwise dominance relations are transitive (see

Appendix). Thus, it is meaningful to rank-order the predictors according to the row averages,

which de®ne the dominance criticality measure, dCi:

dCi 5
1

p 2 1

p

h Þ i 5 1

Ci(h) 2 Ch(i )

Ci(h) 1 Ch(i )
.

This is a measure of the dominance of the ith predictor over all other predictors

(h Þ i 5 1, . . . , p). It has a minimum value of 2 1 (when Ci(h) is 0 and Ch(i) is 1 for all

h Þ i) and a maximum value of 1 1 (when Ci(h) is 1 and Ch(i) is 0 for all h Þ i). Of course,

these bounds identify the cases in which Xi is strictly dominated, or strictly dominates, all

other predictors in the model. A value of dCi 5 0 indicates that Ci(h) dominates and is

dominated to the same degree by the other predictors.

6. Summary

We have proposed a new approach to the old problem of comparing predictors in multiple

regression models (Kruskal, 1987; Budescu, 1993) by de®ning the criticality of the

predictors. Traditional measures of predictor importance are conditional on the choice of a

model and its overall goodness of ®t. They seek to rank-order and/or scale the predictors on

a scale that re¯ects their contributions towards the prediction of the response by a model, or

in terms of the average of such measures across all subset models. Unlike these measures

of importance, the criticality analysis proposed here does not depend on the choice of a

particular model. A predictor’s criticality is de®ned as the probability that its omission from

a model would result in the misspeci®cation of the model. Thus, by its de®nition, the

analysis considers all possible models. Criticalities are extracted from, and expressed in

terms of, the conditional probability distribution of best-®tting models for a given data set.

The criticality analysis relies on resampling (using the bootstrap), and can be used for data

sets containing ®xed and/or random predictors. Residual resampling is recommended for the

®xed model, and case resampling is suggested when the predictors are random variables. Data

sets containing a mixture of ®xed and random predictors can also be analysed, and in such

a case one would be advised to `default’ to case resampling.

Criticality analysis can be performed with any reasonable criterion of model ®t. Our

results (simulations and real data) indicate that criticality analysis is relatively insensitive

to the choice of this criterion in the ordinal sense. In all our simulations we found a high

level of agreement among the ranking of the p predictors from the most to the least critical

according to the three selection criteria employed. Indeed, it is important to point out that
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the criticalities of predictors can be compared directly only if they are based on the same

selection criterion. Comparisons across selection criteria are dif®cult, unless one has a good

deal of experience in converting measures from one scale to another. Therefore we recom-

mend that they be avoided. Recall that all criticality measures are based on the frequency with

which certain models are identi®ed as best-®tting, and this varies from one criterion

to another. To illustrate this point, consider the results from simulation B1 (see Tables 5,

6 and 7). One would expect that C1 5 1 and C2 5 C3 5 0 (X2 and X3 are correlated

neither with Y nor with X1). Yet, in all cases, both C2 and C3 are clearly greater than 0.

Furthermore, note that their values vary considerably and systematically across the selection

methods, with the AIC measures being the smallest and the Cp-based measures the largest.

These differences re¯ect the inherent biases of the various selection methods. For example,

in this case Cp tended to select larger models (average size of 2.15 predictors) than AIC

(average size 1.71), and this tendency affects the various predictors’ criticalities.5

The major innovation of the proposed method is the linkage between the distribution

of best-®tting models to the criticality of single predictors. A variety of measures of a

predictor’s criticality can be de®ned through different linear combinations of the probability

distributions across the models. These combinations determine the speci®c weight to be

associated with each model in the assessment of any given predictor. We have discussed

in this paper three such measures. The ®rst measure (Ci) is simply the sum of the probabili-

ties associated with all models containing the predictor, and can be interpreted as the expected

probability of model misidenti®cation resulting from excluding the predictor. Weighted

criticality (wCi) is de®ned as a weighted sum of these probabilities, where the weights are

inversely proportional to the number of predictors in the model. This measure gives models

with fewer (more) predictors greater (less) weight in the determination of criticality. It also

has the convenient normalizing property that the sum of the criticalities (over all predictors)

is one. The third criticality measure (Ci(h)) is de®ned in a pairwise fashion. It is based on

the sum of the probabilities associated with models containing one predictor (Xi) and

excluding another (Xh), and can be described as a measure of comparative criticality. By

aggregating across all pairs, one can also de®ne an overall index (dCi) that captures the

relative dominance of Xi over all other predictors. We consider the three measures to be

intuitively compelling and easy to justify and interpret, but realize that numerous alternative

functions can be used in this context. For example, since there is a nesting structure for the

subset models (for instance, the model `X1X2X4’ contains six subset models: `X1’, `X2’, `X4’,

`X1X2’, `X1X4’ and `X2X4’), it may be of interest to develop a linear combination that takes

this nesting into account. Another intriguing possibility is to calculate all the criticality

measures based on a subset of the bootstrapped samples, which consists of only those

models which were identi®ed as BFMs with a suf®ciently high probability.

Most criteria of goodness of ®t are invariant under linear transformations (of the response

and predictors). Consequently, the criticality measures are also unaffected by such trans-

formations. In addition, the simple asymptotic distribution theory for these measures

allows one to test hypotheses about the difference in the magnitude of criticality values.

We conclude by pointing out that this method is not necessarily restricted to multiple
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5 To illustrate this point, we also ran a simulation where all p 5 4 predictors were (a) mutually uncorrelated and
(b) uncorrelated with Y. All predictors were equally critical, but their average criticality varied across selection
methods from 0.4 for adjusted R2 to 0.65 for Cp.



regression. With minor changes this approach to model selection and predictor ranking can

easily be extended to other multi-factor procedures such as log-linear and logistic regression

models with categorical data, discriminant analysis and multivariate multiple regression.

7. Software

A SAS macro that implements the procedures described in this paper can be obtained

by writing to the ®rst author, or from the web page at http://www.uwm.edu/~ azen/

critmacro.html.
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Appendix: Transitivity of dominance matrices

Let p 5 3, let the three predictors be Xh, Xi, and Xj, and let P(X ) be the probability that

the model containing predictor(s) X is identi®ed as a best-®tting model. Let Ch(i) > Ci(h) and

Ci( j ) > Cj(i). Then

P(Xh) 1 P(XhXj) > P(Xi) 1 P(XiXj)

P(Xi) 1 P(XiXh) > P(Xj) 1 P(XjXh).

Therefore,

P(Xh) 1 P(XhXj) 1 P(Xi) 1 P(XiXh) > P(Xi) 1 P(XiXj) 1 P(Xj) 1 P(XjXh),

P(Xh) 1 P(XiXh) > P(Xj) 1 P(XiXj)

and Ch( j ) > Cj(h). Therefore, the dominance pattern is transitive. This can be similarly

extended to p > 3.
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