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Summary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A theoretical analysis of acoustic waves refracted by a spherical boundary 
across which velocity and density increase abruptly and below which 
velocity and density may either increase or decrease continuously with 
depth is formulated in terms of waves generated at a harmonic point 
source and scattered by a radially heterogeneous spherical body. Through 
the application of an Earth-flattening transformation on the radial solu- 
tion and the Watson transform on the sum over eigenfunctions, the solu- 
tion to the spherical problem for high frequencies is expressed as an 
integral for the corresponding half-space problem in which the effect of 
boundary curvature maps into an effective positive velocity gradient with 
depth. The results of both analytical and numerical evaluation of this 
integral can be summarized as follows for body waves in the crust and 
upper mantle: 

(1) In the special case of a critical velocity gradient (a gradient equal 
and opposite to the effective curvature gradient), waves interacting with 
the boundary at the critical angle of incidence have the same form as the 
classical head wave for flat, homogeneous layers. 

(2) For gradients more negative than critical, the amplitude of waves 
incident at the critical angle decay more rapidly with distance than the 
classical head wave. 

(3) For gradients that are positive, null, and less negative than 
critical, the amplitude of waves near the critical angle decays less rapidly 
with distance than the classical head wave, and at sufficiently large 
distances, the refracted wave field can be adequately described in terms 
of ray-theoretical diving waves. At intermediate distances from the 
critical point, the spectral amplitude of the refracted wave is scalloped 
due to multiple diving wave interference. 

1. Introduction 

This paper describes the wave-theoretical nature of energy that is generated at a 
point source and critically refracted or nearly critically refracted by an abrupt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* Received in original form 1972 December 6. 
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150 D. P, Hill zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
increase in velocity in a spherically symmetric, radially heterogeneous body. Seismic 
waves in the Earth associated with such energy are commonly the first arrivals 
recorded on seismograms out to distance of lo00 km or more from the source. They 
form the well-known zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ,  and P ,  branches on local travel-time curves and represent 
the primary data of classical seismic-refraction studies. Much that is known about 
the best established and most widely recognized structures in the outer 200 km of 
the Earth (e.g. the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ granitic layer ’ in the continental crust or the Mohorovicic 
discontinuity at the base of the crust) is based on the travel times of these phases 
using geometrical ray theory. Because ray theory fails to predict the amplitude or 
wave form associated with critically refracted energy, however, a wave theory is 
necessary if these waves are to be used to further refine details of the major structural 
units of the crust and upper mantle in terms of velocity gradients, transition zones, 
and anelasticity. 

Theoretical methods for treating critically refracted waves, or head waves from a 
plane boundary between two homogeneous media are well established (Brekhovskikh 
1960; Cagniard 1962; Cerveny 1965; de Hoop 1960) and have been extended to 
include reflected and refracted waves in a arbitrary number of plane, homogeneous 
layers (Berry & West 1966; Fuchs 1968; Helmberger 1968; Miiller 1970). Through 
Earth-flattening approximation, these methods have been generalized to include the 
effects of curvature for outer layers in Earth models (Gilbert & Helmberger 1971; 
Miiller 1971). Cerveny & Ravindra (1971) provide a systematic treatment of the 
high-frequency properties of head waves based on asymptotic ray theory together 
with a fairly complete summary of the pertinent literature. 

A limited number of exact solutions have been obtained for waves reflected in 
plane media with continuous variations in material properties with depth (Brekhov- 
skikh 1960). Chekin (1964, 1965) has investigated some of the high-frequency, 
asymptotic effects of small velocity gradients on head wave propagation at a plane 
boundary; although, as Richards (1971) has pointed out, Chekin (1964) did not 
choose the proper potential representation for P - S V  motion in a vertically hetero- 
geneous elastic medium. Some of the effects of small positive velocity gradients on 
acoustic head waves have been summarized by Cerveny (1966) and Cerveny & 
Jansky (1967) based primarily on the basis of Chekin’s (1965) results for acoustic 
waves and ray theory. The effects of transition zones on reflected and refracted 
waves have been studied by Nakamura (1964), Hirasawa & Berry (1971), and 
Merzer (197 1). 

Mathematical methods such as the Watson transform and rainbow expansion 
(Bremmer 1937; Scholte 1956) have been used in seismology primarily to study the 
diffraction of body waves by the coremantle boundary in spherically symmetric 
Earth models. See Chapman & Phinney (1972) for a recent summary. Buldryev and 
Lanin, however, have taken this approach to investigate ‘ interference waves ’ 
generated by waves incident on homogeneous cylinders and spheres (Buldyrev 1964; 
Buldyrev & L a i n  1966a, b; Lanin 1968). These ‘interference waves’ are closely 
related to the head wave in plane, homogeneous layers. 

In this paper we consider waves from a point source interacting with a spherical 
boundary in terms of a steady-state boundary-value problem. To emphasize the 
principal aspects of the wave field with a minimum of algebra, we will consider 
acoustic waves in fluid media. The basic problem is similar to that treated by 
Buldyrev & Lanin (1966b) and Lanin (1968) for a homogeneous sphere, although 
in this paper an inhomogeneous sphere is considered and the results are expressed 
in a form more readily interpreted in terms of seismological applications. The 
analysis in this paper differs from Buldyrev & Lanin’s treatment of the homogeneous 
sphere in that an Earth-flattening transformation is used, which puts the final integrals 
in a form similar to those used by Chekin (1964, 1965) to study an inhomogeneous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
half-space. 
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FIG. 1. Co-ordinate system for a spherically symmetric medium with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdiscon- 
tinuous boundary at r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa between a homogeneous region (co) and a radially 
heterogeneous region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c(r)). The point source and receiver are located at ro and r, 

respectively. 

2. General formulation 

Consider the model illustrated in Fig. 1 in which waves generated by a point 
source at (ro, 0) are scattered by a spherical body of radius r = a (a < ro) within 
which the material properties may be radially heterogeneous, and the acoustic 
velocity at the surface of the body is greater than in the surrounding homogeneous 
space. This corresponds to the geophysical problem of a source in a homogeneous 
layer over a first-order discontinuity in velocity at r = a, below which the velocity 
may vary smoothly with depth. In this treatment, however, the effects of layering 
and the free surface above the source are neglected. 

Using an acoustic pressure potential of the form 

(1) 

where P is the deviation from static ambient pressure and d is density, the Fourier 
transformed acoustic equations of motion for radially heterogeneous media reduce 
to a Helmholtz equation, or 

(2) 
under the condition that 

P 
@ = -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J d  ' 

Vz @(r)+ [k(r)]* @(r) = 0 

(Brekhovskikh 1960). The general solution to the Helmholtz equations and boundary 
conditions for the wave field generated by a steady-state point source and scattered 
by a spherical body is expressed in terms of an infinite sum over discrete wave 
numbers. In a separate paper (Hill 1972), an integral expression for this general 
solution is obtained by applying an exact Earth-flattening transformation to the 
radial part of the solution and the Watson transform to the angular part of the 
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solution. The far-field approximation to this integral for the scattered (reflected) 
field can be written as 

Q, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( in/4)(22~p*)-~/ '  J' exP{i[KP+q(Z+Zo)Il zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,(K)---K, (3) v 
- W  

where 

p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a0 arc distance, 

p* = a(sin0), 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK representing the horizontal (angular) component of the wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI +  1/2 x = -  
a 

number, k, while I is a spheroidal order number, 

number, k, and 

r -= a. 

q = (k' -K')~/ '  with q representing the vertical (radial) component of the wave 

V,(x) is a spherical reflection coefficient for the radially heterogeneous medium, 

The integral representation (1) is valid under the following conditions: 

(1) x > 8 > E and lxal E %- 1; arc distance (p  = a0) is greater than several wave 
lengths (the far-field approximation). 

(2) lzo/al < 1 and lz/al < 1; source height, zo, and receiver height, 2, above the 
boundary at r = a are small with respect to a (see Fig. 2). 

(3) l ~ a l  %- 1 and lnal %- 1; wave lengths are much less than the radius, a, and 
both near-normal and near-grazing angles of incidence at r = a are avoided. In the 
case of body waves impinging on major discontinuities in the crust and upper mantle 
near critical angles of incidence, these conditions are readily satisfied. Furthermore, 
for the outer layers of the Earth, the spherical reflection coefficient, K ( K ) ,  can be 
approximated by a reflection coefficient computed using boundary conditions 
appropriate for a plane boundary at r = a but with original velocity distribution in 
the spherical system, c(z) modified according to 

c(z) = c, exp (-z/a).  (4) 

FIG. 2(a). Co-ordinate system and parameters for acoustic waves reflected from a 
plane boundary. The point source is at +so, the receiver at (z, p). (b) Acoustic 
velocity, c, as a function of depth. Negative- and positive-gradient cases are 

represented by solid and dashed lines, respectively, for z < 0. 
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This expression, which defines the exact mapping of a radial velocity distribution 
in a spherical geometry into a flat geometry, together with 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaIn(r/a) 

form the Earth-flattening transformation for the homogeneous Helmholtz equation 
(Hill 1972, also see Miiller 1971). 

Although this formulation is used to study acoustic waves in spherically sym- 
metric radially heterogeneous fluid media, it can be applied to any heterogeneous 
media for which the steady-state equations of motion can be expressed as one or 
more uncoupled, scalar Helmholtz equations. Physically, this includes acoustic media 
as well as toroidal (SH) motion in elastic media, provided the radial density gradients 
are small with respect to the wave lengths considered; it also includes spheroidal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( P -  S V )  motion, provided the displacement potential representation introduced by 
Richards (1971) is used, which permits approximate uncoupling of P-SV motion 
at sufficiently high frequencies. 

Approximate analytic solutions to (3) are outlined in Sections 3-5 and results 
obtained by exact numerical integration of (3) are summarized in Section 6. Through- 
out this paper the word heterogeneous will refer to continuous variations in the 
physical properties of a medium and the word inhomogeneous will refer to differential 
equations with a source term on the right. 

3. The reflection coefficient V(K) 

To obtain the reflection coefficient V ( K ) ,  we consider two fluid, inviscid half 
spaces joined at z = 0 in a Cartesian co-ordinate system r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x, y, z). Let the upper 
half space (z > 0) be homogeneous with density do and acoustic velocity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco and let 
the lower half space (z < 0) be vertically heterogeneous with density d(z) and 
acoustic velocity c(z). Because this paper is concerned with waves near the critical 
angles of incidence whose turning points occur at small depths below the reflecting 
boundary, it will be sufficient to approximate the exact curvature-mapping velocity 
transformation (4) in the vicinity of the boundary r = a by 

c(z) = co(noz+yz)-1/2; z < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, (6) 

y = 2nO2/a+ y,,. (7) 

where the index of refraction at z = 0 is no = co/c(O-) and the gradient parameter is 

The first term on the right in y corresponds to the curvature-mapping gradient in (4), 
and the second term is the gradient describing the physical velocity variation for 
z < 0. The velocity gradient associated with y for Iyl < 1 is 

dc 
dz 

B = - N (co/2n03) y. 

This particular form for the velocity variation is chosen because it gives convenient 
solutions to the Helmholtz equation (2) in terms of Airy functions while providing a 
satisfactory approximation to the exact spherical mapping distribution (4) for 
lz/al 5 0.1. Furthermore, Airy functions form the leading term in the high-frequency 
asymptotic solutions to (2) for more general velocity variations (Langer 1949). Thus 
solutions obtained using (6) will be characteristic of the high-frequency behaviour 
of solutions for more general velocity variations. 

The density variation for z < 0 is taken to parallel the velocity variation or 

d(z) = do(no2 + yz)-’/’. (9) 

2 
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154 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Hill 

The solutions to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2)  for a plane wave incident on the boundary z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 at an 
angle 6 in the model defined by (6) are 

( 104 

( 1 Ob) 

1 
1 

Y < O  
@ ( x , z )  = exp [ ~ ( K x - - z ) ] +  V- exp [ i ( ~ x + q z ) ] ;  z > 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Q1(x, z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU-  A , [ - @ ) ~ ~ " / ~ ]  exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i K 1  x); z < 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y > O  

@ ( x , z )  = exp [i(rcx-qz)]+V+ exp [ ~ ( K x + ~ z ) ] ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz > 0 

@ , ( x , z )  = U +  A i [ - c ( z ) ]  exp ( i K 1  x) ;  z < 0 

where 

ko is the magnitude of the wave number in z > 0, 

K = koP, tt = ko4 

[ ( z )  = E - z ( t l o 2  -p2 + yz )  

p = sin6, q = cos0 

E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y/ko)1/3 

VT is a reflection coefficient, 

U, is a transmission coefficient, and 

A i ( - [ )  is an Airy function. 

The radiation conditions imposed on these solutions as z + -a are such that 
for y < 0 the wave field consist solely of downward propagating waves, and for 
y > 0 the wave field consist of waves that decay exponentially with depth below the 
turning point z = (p2-no2)/y. These radiation conditions for the half space z < 0 
can be related to those for the original spherical problem through the rainbow 
expansion (see Chapman & Phinney 1972). In particular, the above condition for 
y < 0 corresponds to retaining only the first term in the rainbow expansion, or the 
generalized ray reflected externally at the boundary r = a, while the condition for 
y > 0 corresponds to retaining the complete response in terms of an infinite number 
of generalized rays reflected internally at r = a. 

Applying the usual boundary conditions for fluid media (continuity of pressure 
and the normal component of particle velocity) to (lOa) and (lob) at z = 0 leads 
to the following expressions for the reflection coefficients: 

Ai( - lo exp (i2n/3)) iqm+ p3- +exp (i2n/3) &A'( - co exp (i2n/3)) 

( I W  
[ 4no E3 m- 1 

v- = 

&(-lo exp (i2n/3)) iqm- __ -exp (i2n/3) eAi'(-cO exp (i2n/3)) 
4nO3 E3 m 1 

and for y > 0 

v+ = 9 
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ANGLE OF INCIDENCE (DEGREES) 

FIQ. 3(a). Modulus of the plane wave reflection coefficient, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, for different values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Y/ko)”3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 
1 I I I I I I I 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20 40 60 80 

ANGLE OF INCIDENCE (DEGREES) 

Fro. 3(b). Phase of the reflection coefficient V. 

where m = d(0)/do, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo = ~ - ~ ( n , ~ - p ~ ) ,  and the primes indicate derivatives of the 
Airy functions with respect to their arguments. These are the exact plane wave 
reflection coefficients for vertically heterogeneous half space defined by (6). They 
represent approximate reflection coefficients for the radially heterogeneous spherical 
medium y < a when the gradient parameter is given by (7). If the exact form of the 
spherical boundary conditions had been used instead of plane boundary conditions, 
a term (2u)-’ would be included in the square brackets appearing in both the 
numerator and denominator of (11) (Hill 1972). 

The modulus and phase of the plane-wave reflection coefficient for the negative 
gradient case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y < 0) are plotted in Fig. 3 with E as a parameter. As E becomes very 
small, the modulus and phase approach the limiting values for two homogeneous 
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156 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Hill 

media. This can also be seen analytically by substituting the asymptotic forms of 
the Airy functions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi[ol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 1 into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV- and letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-+ 0. The result is 

which is the plane-wave reflection coefficient for two homogeneous media 
(Brekhovskikh 1960). 

The modulus of the plane-wave reflection coefficient for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > 0 is unity. In other 
words, all of the energy entering the lower medium is eventually reflected into the 
upper, homogeneous half-space, and the reflection coefficient can be expressed as 

For p > no (i.e. angle of incidence greater than critical), (l lb) also reduces to the 
homogeneous reflection coefficient when the asymptotic forms of the Airy functions 
are substituted. For p < no the analogous limiting process is complicated by the 
diving wave phenomenon. We will consider this later. 

The effect of the density gradient in the lower medium enters the reflection 
coefficients through the second term in the brackets multiplying zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi( -C0  exp (i2n/3)) 
and Ai(  - T o )  in (1 la) and (1 1 b), respectively. Under the assumption of small density 
gradients mzde in obtaining (5 ) ,  lmql zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB c3/4nO3 m except when q N 0. Thus since 
q = cos6, the density gradient in the lower medium has a negligible effect on the 
reflected wave except near grazing angles of incidence. (The same will be true for 
the factor ( 2 4 -  introduced by using the exact spherical boundary conditions.) 

4. Classification of the effects of curvature and gradients 

The effects of curvature and gradients can be classified through the Earth- 
flattening transformation by noting that an effective null gradient (y = 0) is associated 
with the critical gradient y p  = -2nO2/a (see equation (7)). By (8) the corresponding 
critical velocity gradient is p,, = -cola s - I .  This critical velocity gradient corres- 
ponds to the case in which the curvature of a geometrical ray at its turning point 
matches the curvature of the Earth (see Section 7.2.3 in Bullen (1963)). Here the 
ray is trapped and continues around the Earth at a constant radius. It turns out that 
the pure head wave occurs only in the presence of a critical velocity gradient beneath 
the boundary at r = a. This critical gradient will be used as a reference, and the cases 
y < 0 and y > 0 will be referred to as having subcritical and supercritical gradients, 
respectively. It follows that because of curvature, a homogeneous refractor ( p ,  = 0) 
has an effective supercritical gradient p = cola. These general relations between 
curvature and velocity gradients are illustrated in Fig. 4. 

The following terminology is adapted to describe the critically or nearly critically 
refracted waves for the cases illustrated in Fig. 4. 

Pure head waue refers to the critical gradient case (Fig. 4(c)) or the classical, 
critically refracted wave at a plane boundary between homogeneous media. 

Interference head waue refers to the supercritical gradient case (Fig. 4(a) and (b)) 
in which the ' head wave ' is formed by a series of interfering diving waves (Cerveny 
& Ravindra 1971). 

Diuing wave refers to a generalized ray that penetrates the boundary r = a, is 
turned around in the lower medium ( r  < a) by a super-critical gradient and eventually 
returned to the upper medium ( r  > a). 
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Critically refracted waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA157 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P,= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

FIG. 4. Schematic representation of effects of curvature and velocity gradients on 
near-critical waves: (a) Positive-gradient case showing two diving waves; (b) Homo- 
geneous case showing two diving waves; (c) Critical negative-gradient case showing 
classical head-wave path; (d) Subcritical gradient case showing ray shadow zone 

(shaded region). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Diflraction head wave refers to the subcritical gradient casc (Fig. 4(d)) in which 

a ray shadow zone is formed between the critically refracted ray and the boundary 
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a. Cerveny & Ravindra (1971) refer to the head wave associated with a negative 
velocity gradient as a 'damped head wave'. However, damping can be due to 
anelasticity, while diffraction accurately describes the physical process involved. 

5. Analytic evaluation of the integral 

We rewrite the integral (1) in the following form: 
m 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN exp (in/4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

Here the spherical reflection coefficient K ( K )  is replaced by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,  which represents 
V - ,  V+, or V,, and the variable of integration is changed to p according to IC = Ic, p. 
The integrand has branch points at p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1 associated with the radical q = J( l  - p 2 )  
and at p = 0 associated with J p .  We choose the branch cuts such that 

-n/2 < arg(q) < n/2 

- n/2 < arg ( J p )  < n/2 

on the upper Reimann sheet. The location of these branch cuts in the complex 
p-plane together with the original integration path are illustrated in Fig. 5. 
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158 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Hill 

FIG. 5. Branch cuts and original contour for Weyl integral in the complex 
p-plane. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(+, -) indicates signs of real and imaginary parts of the radical 

2/(1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-p2) in each quadrant. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV is a slowly varying function of p, (14) can be evaluated by the saddle 

point method. In this case the steepest descents path, I?, passes through the saddle 
point at p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp o  = sine, as shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5, and standard methods lead to 

This expression gives the geometrical ray theory approximation to waves 
reflected from the boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 0 at an angle of incidence O0. (See Section 19 in 
Brekhovskikh 1960). 

5 . 1  Subcritical gradient 

The reflection coefficient V- ( l la) has a line of poles that extends from near 
p = no into the first quadrant of the complex p-plane at an angle of n/3, as shown 
in Fig. 6 (see Appendix I). It is clear from Fig. 6 that when p o  < no, the only 
contribution to (14) comes from the saddle point p o .  When p o  > no, however, the 

FIG. 6. Steepest-descents path and head-wave poles in complex p-plane for 
negative gradient case, Po is saddle point, no index of refraction at boundary. 
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Critically refracted waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA159 

steepest-descents path through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp o  passes through the line of poles associated with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV-. 
In this case, there will be contributions to (14) from both the saddle point, p o ,  which 
describes the reflected wave field (15), and the poles of V-, which describe the 
diffraction head wave. These zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ separate ’ contributions to the total wave field are 
indicated as follows 

@ r - ;  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPo -= no 

0,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ @ h - ;  p o  > no 

@- = (16) 

where 0,- is given by (15) with V ( p o )  replaced by V-(po) ,  and a,,- is the contribu- 
tion from the poles giving the diffraction head wave. For nearcritical angles of 
incidence (po  > no) the phase difference between these ‘ separate ’ contributions is 
small, and it is not meaningful to make a distinction between @,- and @,,-. The 
contributions of the poles of V- to (14) decrease exponentially with their distance 
from the real p axis such that the dominant contribution comes from poles in the 
vicinity of p = no. Furthermore, the contributions with phase velocities near the 
head-wave phase velocity are limited to the poles in the vicinity of p = no. Applying 
the residue theorem to those poles in the region Ip-nol 4 1, we obtain 

E~ exp [i($o+ n/4)] 5 exp (i ko LE’ uj exp (in/3) 

no P m(l-no2) j = l  2n0 

where uj is the j-th zero of Ai( - r), $o is the pure head wave phase given by 

$0 = ko(Lr+Ls)+k, L 

and the ray path distances Lr, L,, and L are as illustrated in Fig. 2 (see Appendix I). 
This expression can be recast into more meaningful forms for two limiting cases. 

We define 

371 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA213 k,  L E ~  
a - = i ( T )  - exp ( i  43) 

2n0 

and consider the cases for which 1 0 - 1  < 1 and Iu-( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1. 
For lu-1 < 1 the series (17) can be summed using the Euler-MacLaurin sum- 

mation formula and the integral representation of the incomplete gamma function 
(Abramowitz & Stegun 1964, p. 262). In the limit as e2 + 0, the result is 

2in0 exp (iq50) [ ko in( 1 - no2) p’12 L3I2 
@h- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN 

a-n 
1-a-3’2exp(-a-) n = O  C T(n/2+n) - ( g - ) - ’  ( f + t a - + . . . ) )  (19) 

where 

(Hill 1971b). The term in the square brackets is the pure head-wave potential for 
the case in which the lower medium is homogeneous (see Brekhovskikh 1960). This 
result is valid in the limit of small E ,  but at large distances from the critical point, 
many terms in the series must be included. At relatively small distance from the 
critical point, such that Iu-I < 1, the diffraction head wave is given by the product 
of the pure head wave and the correction term (1 - 0- 3/2). In the immediate vicinity 
of the critical point itself, (19) is invalid because of the interaction of the saddle point 
and head wave poles. However, la-I become negligibly small as the critical point 
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1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 D. P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHill 

is approached, and the theory for waves reflected and refracted from a homogeneous 
medium in the immediate vicinity of the critical point by Cerveny (1965) will provide 
a good approximation in the case of small velocity gradients as well. 

When zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$- 1, the dominant contribution to (14) comes from the pole nearest 
the real p-axis, and the diffraction head wave is given by the first term in (17), or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2nk0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe3 exp [i(40 +x, + n/4)] ah- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN - - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P m(1 -no2) 

Thus at large distances from the critical point ( L  $- l), the diffraction head wave 
spectral amplitude decays exponentially as (e2 L),  and is slightly dispersed by the 
negative velocity gradient. In particular, at large distance, the horizontal phase 
velocity of the diffraction head wave is approximately given by 

5.2 Supercritical gradient 

The reflection coefficient V+ (l lb) has a line of poles that lies just above the real 
p axis in the interval 0 < p < no, as shown in Fig. 7 (see Appendix 11). As before, 
there will be two ' separate ' contributions to (14) when p o  > no: one from the saddle 
point po,  which gives the field reflected by the boundary (15), and the other from the 
line of poles crossed by the steepest descents path, which gives the interference head 
wave. The saddle point method cannot be directly applied when po  < no, however, 
because the standard form of the saddle point is distorted by the adjacent poles. 
This difficulty can be avoided by representing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+ as an infinite series over the interval 
0 < p < no and evaluating each term by the saddle point method. 

These 'separate' contributions to (14) in the case of a supercritical velocity 
gradient are indicated as follows 

@r+ + @ d ;  P O  < 

@r+ + @ h + ;  P O  > 
@ + = [  (21) 

where 4r is given by (15) with V+ (Po) in place of V(po) ,  @d is the sum of saddle point 
contribution from the series expansion of V+,  and @h+ is the contribution from the 
poles of V+ giving the interference head wave. 

RO. 7. Steepest-descents path and diving wave poles in complex p-plane for 
positive gradient case. 
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Critically refracted zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves 161 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
All the poles in the interval 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< p < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno contribute to @,,+ when p o  > no (see 

Fig. 7). These poles describe normal modes leaking into the overlying homogeneous 
half-space and propagating in the wave guide formed between the discontinuity in 
velocity of z = 0 and the continuous increase in velocity at depth. The poles in the 
vicinity of p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno are associated with normal modes that have phase velocities near 
the pure head wave phase velocity. The poles closer to the origin describe deeply 
penetrating normal modes with high phase velocities and low group velocities. To 
obtain an approximate expression for the interference head wave, we consider only 
the contribution from poles in the region Ip-nol 4 1 to obtain 

exp(-i= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaj [ L- ~- iL* e3 + *]) (22) 
N 

j = 1  2n0 no2 4 c  m 2n0 

where L* = (L +pc/q2) ,  qc = cos6c, pc is the critical distance, N is the number of 
poles in Ip - no/ 4 1 and the remaining parameters are as in (1 7) (see Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11). 

To identify the head wave-like contribution from the poles, we proceed as 
before by introducing a parameter 

k, LE’ 
a+ =- 

h 0  

and applying the Euler-MacLaurin summation formula. The summation process, 
which in this case involves identifying the Euler-MacLaurin integral as the integral 
representation for a parabolic cylinder function of three-halves order, can be shown 
to result in an expression of the following form for Ia+I 4 1 (Hill 1971b) 

2in0 exp ( i+o)  

@”+ = [ ko m(l -no2) pl’’ L3” 

where 

This expression is analogous to (19) for the subcritical gradient case. It shows that at 
small distances, L, beyond the critical point, the interference head wave is like the 
pure head wave plus a correction term. As L increases for a given frequency, how- 
ever, it becomes necessary to include additional terms of increasing order in b+ in 
(24). This rapidly becomes impractical because of the complicated nature of the 
higher-order terms, and at large distances becomes convenient to describe the wave 
field in terms of the series @,,. 

To obtain the representation Od, the reflection coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+ (p) (1 1 b) is expanded 
into an infinite series, the n-th term of which can be identified as the reflection coef- 
ficient for the generalized ray bottoming n times in the heterogeneous medium 
and reflecting (n- 1) times at the boundary z = 0. The expansion is accomplished 
by replacing the standing wave form of the Airy function appearing in (1 1 b) with a 
combination of Airy functions representing upgoing and downgoing travelling waves 
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162 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD. P. Hill 

(equation 10.4.7 in Abramowitz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Steugn 1964) and forming the following Airy 
function ratios zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d") = Ai'( -lo exp (i2n/3))/Ai( - lo exp (i2rr/3)) 

d2) = Ai'( - co exp (-i2n/3))/Ai( - co exp (- i2n/3)) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d = Ai( - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo exp ( i 2 ~ / 3 ) ) / A i (  - 

For real angles of incidence (IpI < 1 )  V+(p )  can then be written as 

exp ( 4 2 4 3 ) ) .  

where 

iqm- ~ E 3  ) - E exp (- i2n/3) 
4n02 m 

Y, = 

+ E exp (- i2n/3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsd2) 

Y, = (- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI)"-' 2iqm exp (in/3) d"[d" exp (-i2rr/3) d 2 ' e x p  (-i2n/3)] 

X 

When substituted into the integral (14), this series representation of the reflection 
coefficient provides a complete description of the reflected field in terms of an infinite 
number of generalized rays. The singularities associated with each term in the series 
involve a line of poles extending from p = no into the lower half of the complex 
p-plane at an angle of - n/3. The singularities are simple poles for Yo and poles of 
order ( n + l )  for the n-th term under the summation sign in (26). 

An approximate expression for the reflected field at large distances can be 
obtained by replacing the Airy function ratios in (26) by their asymptotic forms for 
lcol % 1 (10.4.59-10.4.68 in Abramowitz & Stegun 1964), putting (26) into (14), 
and interchanging the order of integration. Thus 

and 

with 

Here Vo is the plane wave reflection coefficient (12). As suggested in (21), the first 
integral (27) describes waves reflected by the boundary z = 0, and its saddle point 
evaluation is given by (15). The series (28) describes the infinite number of diving 
waves reflected by the positive velocity gradient in z < 0. 
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Critically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArefracted waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA163 

I m p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

FIG. 8. Branch cuts and steepest descents path for n-th diving wave generalized 
ray expansion of reflection coefficient for positive gradient. 

Each integral in (28) has a pair of branch points at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = +no associated with the 
radical (no2-  = p2)3/2 in f,,(p) in addition to the branch points at p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 1 and 
p = 0 described earlier. These new branch cuts are the asymptotic equivalents of 
the lines of poles associated with the exact series representation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+ (26). To 
insure that the integrals in (28) will be convergent along the original integration path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-co < p < co, these new branch cuts are chosen to follow the lines defined by the 
poles (see Fig. 8) by requiring - 4n/3 < arg [no2 < 2n/3. 

The saddle point for the n-th term in (28) is given by 

or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As can be seen from the geometrical ray relations illustrated in Fig. 9 (29) is satisfied 
by p = p,, = sine,,. Thus the saddle point, p,,, for the n-th term in (28) is the sine of 
the angle of incidence, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn, for the diving wave entering the lower medium and bottom- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn times beneath the boundary z = 0 before arriving at the point r = (p,  z). The 

jr 

L d -  

FIG. 9. Parameters and geometry of direct (P) and once-reflected diving (PUP) 
rays in the case of a positive gradient in the lower medium. The source and receiver 

at (0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo) and (p ,  z), respectively. 
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164 D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Hill 

steepest descents path for this integrand approaches the saddle point at an angle of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-344 for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn0/J(2)  < p,, e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAno and 3x14 for pn  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn0/J2, as illustrated in Fig. 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
no singularities are crossed in deforming the contour, the entire contribution for each 
term in the series comes from the immediate vicinity of the respective saddle points. 

Evaluating (28) by the saddle point method we obtain 

N exp [ikoffl(p,,) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin(n - 1)/2] 

for n0/J(2)  c p,, < no. Heref&,) is given in (28) and Vo(p,,) is given by (12). This 
result expresses the geometrical ray-theory phase and amplitude for diving waves 
that bottom n times in the heterogeneous medium at depths less than z = -no/(2y). 
The result for p,, < no/J2, which describes diving waves that bottom at depths 
greater than z = -n0/(27), is the same as (30) but with the phase factor 
exp [in(n- 1)/2] replaced by exp (-i7rn/2). These deeper diving waves form a 
caustic that intersects the surface ( z  N zo) where the direct diving wave (n = 1) with 
an angle of incidence corresponding to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp1 = n0/J2 emerges; the difference in the 
phase factor describes the -n/2 phase shift acquired by these waves as they pass 
through the caustic (Tolstoy 1968). 

This caustic for waves with angles of incidence corresponding to pn Z n0/J2  is a 
result of the particular velocity distribution chosen in this paper (equation (6)). In 
general, a similar caustic will occur in any half space in which the velocity gradient 
increases monotonically with depth (e.g. equation (6) or the exact Earth-curvature 
mapping distribution, equation (4)), whereas such a caustic will not occur in a 
medium with a constant positive gradient or a positive gradient that decreases mono- 
tonically with depth. The primary concern in this paper is with the effect of small 
gradients on waves near the critical angle of incidence; we will thus limit our con- 
sideration of diving waves (30) with no/J(2) < p,, e no. These waves are not involved 
with the caustic formed by the more deeply penetrating diving waves, and they 
provide a reliable analogue of the family of chord waves in the Earth reflected 
internally at the boundary r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa for moderate epicentral distances (A ;5 20-30 
degrees). 

Note that the phase of the n-th diving wave differs from the geometrical ray 
theory phase koffl(pfl) ,  by n(n- 1)/2. Physically, this can be attributed to a n(n- 1) 
phase shift acquired by (n- 1) internal reflections at the boundary r = a and 
a - n ( n - l ) / 2  phase shift associated with (n -1 )  internal caustics formed by the 
multiply reflected waves. Thus the phases of P ,  Pap ,  P2aP are 0, 4 2 ,  and n with 
respect to the geometrical ray theory phase. 

The range of validity of the diving wave result is limited by two approximations. 
The first is the assumption that llol 9 1 made in obtaining the asymptotic form of 
the reflection coefficient. For most purposes, it will be adequate to take 

Using the geometrical ray theory results illustrated in Fig. 7, this restriction can be 
translated into limitations on the minimum depth of penetration by the diving wave 
below the boundary, z = 0, or 
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and the minimum horizontal distance travelled by the diving wave in the lower 
medium, or 

The second approximation comes from retaining only the first term in the 
steepest descents evaluation of the integral; this is the geometrical ray-theory 
approximation. To obtain a frequency dependent correction to the geometrical 
ray-theory approximation, it is necessary to include the next term in the steepest- 
descent result, which is of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA($,). 

The results for the effect of a supercritical gradient on refracted waves can be 
summarized as follows: 

(1) At relatively short distances beyond the critical distance, such that 
L < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2no/(ko zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyz)1/3, the interference head wave can be represented by (22) as a sum 
of normal modes propagating between the discontinuous boundary and the under- 
lying positive gradient and leaking into the overlying half space. The combination 
of these modes results in a wave with the properties of a pure head wave plus a 
correction of order Q + .  

(2) At sufficiently large distances beyond the critical distance, such that 
Ld > (413) p, / (k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyz)113, the refracted field can be described as a sum of diving waves 

where is given by (30) in the ray-theoretical limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Iy/kol -4 1); and L d  is the 
horizontal distance covered by the direct diving wave. By (31), the expression for 
any given diving wave, @d(n), will be valid as long as the wave bottoms at a depth 
greater than at least z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN (A2/y)1/3 beneath the boundary z = 0 and does not touch 
the caustic defined by pn = no/J2. 

DISTANCE ( K M )  

FIG. 10. Theoretical amplitudes for reflected and refracted waves from a plane 
boundary and vertically heterogeneous half-space. Both source and receiver are 
30 km above the boundary at which no = 0.875, m = 1.2. Dash-dot curves are 
pure head-wave amplitudes (y = 0); heavy solid curves are diffraction head-wave 
amplitudes for negative gradient (y = km-I); short dashed curves are 
envelopes of amplitude curves for the interference head wave (y = km-I); 
long dashed curves are amplitudes of direct (P) and once reflected (PUP) diving 

waves. 
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\ I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2  A I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I 
\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p p -  - ~ x I O - ~  te;' 

- 

1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

DISTANCE ( D E G R E E S )  

FIG. ll(a). Comparison of exact numerical solutions (solid lines) and asymptotic 
solutions (dashed lines) for head waves from a spherical boundary with a sub- 
critical velocity gradient in the lower medium. Short and long-dashed lines 
indicate asymptotic solution for ((1-1 Q 1 and 1 0 - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 1, respectively. Exact 
solution for pure head waves are indicated by dash-dotted curves for reference. 
Both source and receiver are 30km above the boundary at which n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.80, 

m = 1.2. 

"2 

-3  
W 

3 
n 

t 

a 
$ -4  
I 

(3 

3 -5 

-6 
I 2 3 

DISTANCE ( D E G R E E S  1 

FIG. ll(b). Comparison of exact numerical solutions and asymptotic solutions 
for diving waves from the same model as in ll(a), but with a positive velocity 
gradient in the lower medium. Heavy lines are envelopes for exact diving wave 
amplitudes; short-dashed lines are asymptotic solutions for I u + I  < 1; long- 
dashed line is ray-theoretical amplitude for direct diving wave; light solid lines 

are exact amplitudes for direct diving wave. 
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At sufficiently large distances, the direct diving wave will arrive first and will be 
followed at successively later times by waves making an increasibg number of 
internal reflections at the boundary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= a. The direct diving wave (P) will have the 
same wave form as the source, and the diving wave internally reflected once at the 
boundary r = a (Pap)  will have a wave form modified by a 7r/2 phase shift in 
agreement with results for the analogous phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and P P  in a homogeneous sphere 
(Jeffreys & Lapwood 1957). 

The last group of diving waves to arrive will be those that propagate just below the 
boundary making a great number of internal reflections. Their travel time will be 
essentially that of a pure head wave. These boundary-layer waves, which can be 
regarded as the interference head wave at large distances, are described by the 
first term in the normal mode equation (22). The amplitude of this interference head 
wave is small with respect to the first few diving waves, and in practice, would be 
difficult to identify. 

5.3 The critical gradient 

In the special case of a critical gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[y, = - (2n02/a)] the reflection coefficient 
reduces to the form for a homogeneous half-space (12). Methods for the asymptotic 
evaluation of the integral (14) with V ( p )  given by (12) are well known and are 
described in Brekhovskikh (1960) or Grant & West (1965). The saddle point 
contribution describing the reflected wave is given by (15), and the pure head-wave, 
which arises from the branch cut associated with the radical (no2-p2) ' /2  in (12), 
is given by the term in the square brackets in (19). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6. Numerical results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

In this section we will compare numerical results based on both the analytic 
asymptotic expressions obtained for the refracted and reflected waves as well as 
results obtained by exact numerical integration of the integral (14) containing the 
appropriate reflection coefficients for some specific models. The consideration of 
both asymptotic solutions and exact numerical solutions together often provides 
insight into a problem that would not necessarily be realized through either approach 
by itself. The method of numerical integration used is similar to that described by 
Phinney & Cathles (1969), Richards (1970), or Chapman & Phinney (1972). The 
Airy functions occurring in the reflection coefficients were numerically evaluated 
using SHARE subrouting HF13 (Berry 1964). 

Fig. 10 summarizes the basic results obtained by numerical integration of (14) 
in terms of amplitudes of reflected and refracted waves from a plane boundary as a 
function of distance from the source. In this model both source and receiver are at 
a height of 30 km above the boundary, across which the acoustic velocity increases 
from 7.0 to 8.0 km zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-'. Theoretical amplitudes were computed for three frequencies 
(0.5, 1.0, and 5 Hz) and three values of the gradient parameter in the lower half- 
space (7, = 0, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf Because in this case the boundary is flat, 
a -+ a, y -+ yp, p*  -, p and (14) reduces to the far-field form of the Weyl integral. 

Amplitude curves for the homogeneous case (y, = 0) illustrate the properties of 
reflected waves and pure head waves described earlier by Cerveny (1965, 1966). 
Note in particular the frequency-dependent shift of the maximum in the reflected 
wave amplitude away from the geometrical ray critical point, which is located at 
108 km in this model. The reflected wave amplitudes are insensitive to small velocity 
gradients in the lower half-space, and the amplitude curves for the reflected waves 
plotted in Fig. 10 apply for y, = & 1O-j km-' as well as for y = 0. 

The amplitudes obtained by numerical integration of (14) for the diffraction head 
wave and interference head wave (y, = - low3 and + respectively) confirm 

km-'). 
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- 2  

- 3  

w - 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
3 

2 -5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r 

-6 
l3 
0 
-I 

- 7  

- 8  
0 10 20 30 

DISTANCE ( D E G R E E S )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIG. 12. Theoretical amplitude curves for reflected and refracted waves from a 
spherical M-discontinuity and a homogeneous, 8.0 km s - '  mantle; source and 
receiver are 30 km above the M-discontinuity in a 6.4 km s-' ' crust' . Solid lines 
are ray-theoretical amplitudes for direct (P) and once-reflected (PP) diving waves; 
vertical bars show minimum distance for valid description for wave of indicated 
frequency. Heavy dashed lines indicate envelopes of interfering diving-wave 
amplitudes. Heavy long-dashed-short-dashed lines show pure head-wave 
amplitudes and heavy dash-dotted line is the reflected-wave amplitude. 

-2 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

I 
a 

1 - 4  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.J 
a 

0 
0 

..r; t l  I I I I I I I I I I 

DISTANCE (DEGREES) 

FIG. 13. Details of exact numerical solution for interference head wave amplitudes in 
model described in Fig. 12. Dashed lines are pure head-wave amplitudes. 
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Critically zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArefracted waves 169 

the general behaviour predicted by the asymptotic solutions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(19), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20), and (24). 
The exact numerical results, however, reveal that the amplitude curves for the inter- 
ference head wave have a scalloped character not predicted by the first two terms 
in the asymptotic result (24). The curves plotted in Fig. 10 for the interference head 
wave are the upper envelopes of the scalloped curves; examples illustrating the 
details of the scalloping are presented below. 

The ray-theoretical amplitudes of the first two diving waves for the positive 
gradient computed using (30) are also plotted in Fig. 10. According to the criteria 
given by equations (31) and (32), the ray theory amplitudes for the direct diving 
wave (P in Fig. 10) becomes valid beyond 550 km at 1.5 Hz and the amplitudes of 
the lower frequency components of the direct diving wave as well as the once-reflected 
diving wave zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PUP in Fig. 10) become valid at distances beyond 600 km. 

The remaining computations are based on a spherical Earth model composed of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
' crust ' 30 km thick with acoustic velocity of 6.4 km s-' and a mantle with a velocity 
of 8.0kms-' just below the M discontinuity at a radius of 6367km. The source 
and receiver are located on the ' surface ' 30 km above the M discontinuity, although, 
as indicated earlier, the effects of a free surface are not included in the computations. 

A comparison of approximate analytical solutions with exact results obtained 
by numerical integration of (14) is presented in Fig. 11 (a) and (b) for subcritical 
(j?, = - 5 x and supercritical (& = 5 x gradients, respectively. Exact 
amplitude curves for the pure head wave are plotted in both figures for reference. 

In both cases asymptotic solutions for la-1 < 1 or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlu+l < 1 provide only fair 
approximations to the exact results if all but the lowest order terms in u- and u+ 
are neglected in (19) and (24). In contrast, the asymptotic solutions for the diffraction 
head wave (20) and the direct diving wave (30 with n = 1) provide fair approximations 
to the exact results when 10- I and In+ I - 1, and arbitrarily good approximations for 
increasing values of la-1 and In+l. By (33), the asymptotic solution for the direct 
diving wave (P) should only be valid beyond about 3 degrees for a 5 Hz wave. The 

-2 

w 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 

_I 
n 
I 
c[ 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

I- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-3 - 

_I 

-4 

\, 
I I I I I I I I  I 1 I I I L  

FREQUENCY ( H z )  

FIG. 14. Spectral amplitudes of interference head wave at distances of 1.0 air& 
3 0 degrees for model described in Fig. 13. Dashed lines are pure head-wave spectra. 
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results plotted in Fig. ll(b), however, show good agreement with the exact 
beginning about 2.5 degrees. Evidently (32) and (33) are rather conservative criteria 
for the validity of (30). 

Theoretical amplitude curves for 0.5, 1.0, and 5.0Hz waves in an Earth model 
with a homogeneous mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlow3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp p  = 0) and models with mantle 
velocity gradients of 1, = + 5 x  and p p  = + 1 x lO-’s-l are plotted in 
Figs 12, 15, and 16, respectively. These figures serve to illustrate the sensitivity of the 
diffraction head wave, interference head wave, and diving wave amplitudes to 
different velocity gradients. 

-2 

-3 

W 
n 
= -4 k 

k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a -5 

-I 

0 
0 

-6 

-7 
0 1 2 3 4 5 

DISTANCE (DEGREES) 

FIG. 15. Theoretical amplitude curves for reflected and refracted waves in same 
model as in Fig. 12 but with negative and positive velocity gradients in mantle of 
kO.5 x Heavy solid lines are head-wave amplitudes in negative 
gradient case; code for curves in positive-gradient case is the same as in Fig. 15. 

s-’. 

-2 

-3 

i 
a 2 -5  

0 
0 .J -6 

0 I 2 3 4 5 
-7 

DISTANCE (DEGREES) 

FIG. 16. Theoretical amplitude curves for reflected and refracted waves in same 
model as in Figs 12 and 15 but with positive and negative velocity gradients in 
the mantle of f 1 x s- ’ .  Code for curves is same as in Figs 12 and 15. 
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FIG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Critically refracted waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 
I 2 

DISTANCE (DEGREES) 

17. Details of exact numerical solution for interference head wave 
tudes for model in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15 with a positive gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x s- ' .  

171 

ampli- 

FIG. 18. Spectral amplitudes of refracted waves at distances of 1 .O and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 degrees 
for model in Fig. 15. Solid curve is spectrum for the interference head wave 
(& = 5 x  s-I); dash-dotted curve is spectrum of diffraction head wave 

s-l); dashed curve is spectrum for pure head wave. (8, = - 5  x 
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Details of the scalloping associated with the exact numerical result for the 
interference head wave are illustrated in Fig. 13 for a homogeneous mantle and 
Fig. 17 for a mantle with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 x s - ’  velocity gradient. Note that at small distances 
beyond the critical point, the interference head wave amplitudes are virtually 
coincident with the pure head wave amplitudes. With increasing distance, how- 
ever, the scalloping increases and the relative amplitude levels of high frequency 
components gain with respect to those of lower frequency. Comparison of inter- 
ference and pure head wave amplitudes in Fig. 13 suggests that the Earth’s curvature 
has a significant effect on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPn amplitudes at distances as small as 2 to 3 degrees in the 
case of a homogeneous mantle. 

The amplitude spectra for interference head waves at distances of 1.0 and 3.0 
degrees are plotted in Fig. 14 for a homogeneous mantle and Fig. 18 for a mantle 
with a 5 x  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlO-’s-* velocity gradient. The scalloped nature of these curves is 
characteristic of spectra for multiple, interfering wave forms. Note that the envelopes 
of the scalloped spectra fall off less rapidly with frequency than the spectral amplitude 
of the pure head wave. 

s-l 
velocity gradient are also plotted in Fig. 18. These spectra are smooth and fall off 
more rapidly with frequency than the pure head wave as predicted by (20). 

Amplitude spectra for the diffraction head wave for a mantle with a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5 x 

7. Conclusions 

The above results emphasize Cerveny’s (1966) observation that the pure head 
wave is a fragile entity. Its character is destroyed by small velocity gradients in the 
refracting medium as well as by slight curvature of the refracting boundary. The 
sensitivity of the closely-related diffraction and interference head waves to velocity 
gradients and boundary curvature, however, provide useful criteria for studying the 
fine velocity structure of the crust and upper mantle. Hill (1971a) used a simple 
application of these properties with published Pg and Pn amplitude data in an effort 
to infer some bounds on anelasticity and velocity gradients in the crust and mantle 
lid. Much more definitive applications should be possible, however, using the time 
series or spectra seismic waves recorded on broad-band digital instruments. 
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Appendix I 

Evaluation of the poles of V- for a subcritical gradient 

Let the numerator and denominator of the reflection coefficient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV- (Ila) be 
given by N -  and D - ,  respectively. The Airy functions appearing in (1 1) are entire 
functions in the finite complex p-plane, and the only singularities of I/_ will be 
associated with the zeros of D - .  In the region Ip-n,l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 (designated as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9) the 
term containing Ai( -c(p)) dominates D - ,  and the zeros of D -  will be near the zeros 
of Ai(-c(p)). The argument of the Airy function in 9 is 

-z(p) = -cob) exp (i2a/3) N -2n0 &-'(n0-p) exp (i2a/3). (Al. 1) 
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A simple application of the Newton-Raphson algorithm shows that the zeros of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D- are approximately given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

sL aj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
pi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN no zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ -~ exp (in/3), 

2n0 
(Af .2) 

where a, is a real, positive number defining the j-th zero of Ai(-aj) (see Table 
10.13 in Abramowitz & Stegun 1964). 

The residues of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(14) with V- in the integrand are given by 

(A1 .3) 

where 
4 = ko R I (440 + PPO) 

s2 7 exp (in/3) 

24, 
4 ( l )  = 4 c -  ; qc = (1 -no2)1’2. 

For s 2 q c  @ lrn’ql 

and (Al.3) becomes 

is3 ko Ls2 aj exp (in/3) 
Res N - --__ 

mno1/2q, 2n0 

which leads directly to (17) in Section 5.1.  

Appendix I1 

Evaluation of the poles of V+ for a supercritical velocity gradient 

The analysis for this case parallels that given in Appendix I for the subcritical 
velocity gradient except that here it is necessary to carry an extra term in the 
expansions about p = no to insure that the residue series converges. In this case 
let the numerator and denominator of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV+ be given by N +  and D+, respectively. 
As before, the term containing A i ( - l O )  dominates D, in W and the zeros of D, 
approximately given by 

(A2.1)  

The residues of (14) with V+ in the integrand are given by (Al.3) with N,, D,‘ 
and lo in place of N - ,  D-’ and z. In this case, however 

(A2.2)  
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and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ko zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALE' ko zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc2 iL* E2 L* 

k o q c m  k o  no 40 2% 
-i- [ ( L -  rm) a,+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 a;] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 4 = 4 0 -  

Substituting these results into the expression for the residues zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A1 .3) leads directly 
to (22) in Section 5.2. 

Symbol 

VO 

B, s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY p  

& 

List of principal symbols 

Meaning 

Radius of inhomogeneous sphere 
j-th zero of A,( - 2) 

Airy functions 
Airy function ratios 
Acoustic wave velocity 
Density 
Wave number 
Path lengths of the critical ray 
Horizontal distance covered by diving ray 
Distance parameter 
Spheroidal order number 
Density ratio 
Index of refraction 
Sin 8 
Saddle points for reflected wave and diving waves 

Deviation from ambient acoustic pressure 
cos e, cos eo 
cod,  = , / ( I  -no2) 

Radius in spherical co-ordinates 
Path length of refracted ray 
Spherical reflection coefficient 
Plane wave reflection coefficient for 

Plane wave reflection coefficient for two homogeneous 

Factors in generalized ray expansion of V+ 

Elevation of receiver and source 
Minimum bottoming depth for ray description of 

diving wave 
Velocity gradients 
Index of refraction gradients 
Dimensionless gradient parameter 

6 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 (-), 6 > 0 (+) 

half spaces 

Equation or 
Figure 

3 
16 
10 
26 

4, 6 
9 
3 

Fig. 2 
Fig. 9 

22 
3 

11 
6 

10 
Fig. 4(b) 
Fig. 6 

1 
10 
22 

3 
Fig. 2 

3 

11 

12 
26 
3 

31 
8 
6 

11 
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Airy function arguments 
Radial component of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 
Spherical co-ordinate 
Angle of incidence 
Critical angle of incidence 
Angular component of k 
Arc distance along boundary 
Critical arc distance 
a sin (9) 
Minimum distance for ray description of diving wave 
Dimensionless parameter in asymptotic solutions 
Acoustic pressure potential 
Reflected wave potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0, y > 0 
Diffraction head wave potential 
Interference head wave potential 
n-th diving wave potential 
Pure head wave phase 

177 

11 
3 
3 

Fig. 2 
Fig. 2 

3 
3 

22 
14 
32 

18,23 
1 

15,28 
20 
24 
30 
17 
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