
~ University of Colorado at Boulder

Department of Computer Science

ECOT 7-7 Engineering Center

Campus Box 430

Boulder, Colorado 80309-0430

(303) 492-7514, FAX: (303) 492-2844

Critics: An Emerging Approach

to Knowledge-Based Human Computer Interaction

Gerhard Fischer, Andreas C. Lemke and Thomas Mastaglio
Department of Computer Science and Institute for Cognitive Science

University of Colorado, Boulder, USA

Anders I. Morch
NYNEX Artificial Intelligence Laboratory

White Plains, NY, USA

To appear in: International Journal ofMan-Machine Studies (IJMMS)

Abstract: We describe the critiquing approach to building knowledge-based interactive systems. Critiquing
supports computer users in their problem solving and learning activities. The challenges for the next genera
tion of knowledge-based systems provide a context for the development of this paradigm. We discuss critics
from the perspective of overcoming the problems of high-functionality computer systems, of providing a new
class of systems to support learning, of extending applications-oriented construction kits to design environ
ments, and of providing an alternative to traditional autonomous expert systems. One of the critiquing systems
we have built - JANUS, a critic for architectural design - is used as an example for presenting the key aspects
of the critiquing process. V.Ie then survey additional critiquing systems developed in our and other reseaich
groups. The paper concludes with a discussion of experiences and extensions to the paradigm.

Acknowledgements. Many people have contributed to the development of our notion of the critiquing paradigm.

The authors would like to thank especially: the members of the Janus Design Project (Ray McCall, Kumiyo

Nakakoji, and Jonathan Ostwald), the members of the LISP-CRITIC project (Heinz-Dieter Boecker, Chris Morel,

Brent Reeves, and John Rieman), all the people who have participated in discussions about the general framework

for critiquing (Thomas Schwab, Helga Nieper-Lemke, Curt Stevens, Tom DiPersio, and Hal Eden), and the HCC

research group as a whole. This research was partially supported by grant No. IRI-8722792 from the National

Science Foundation, grant No. MDA903-86-C0143 from the Army Research Institute, and grants from the Intel

ligent Interfaces Group at NYNEX and from Software Research Associates (SRA), Tokyo.

Critics: An Emerging Approach

to Knowledge-Based Human Computer Interaction

Gerhard Fischer, Andreas C. Lemke, and Thomas Mastaglio
Department of Computer Science and Institute for Cognitive Science

University of Colorado, Boulder, USA

Anders I. Morch
NYNEX Artificial Intelligence Laboratory

White Plains, NY, USA

Abstract
We describe the critiquing approach to building

knowledge-based interactive systems. Critiquing
supports computer users in their problem solving and
learning activities. The challenges for the next
generation of knowledge-based systems provide a
.context for the development of this paradigm. We
discuss critics from the perspective of overcoming the
problems of high-functionality computer systems, of
providing a new class of systems to support learning,
of extending applications-oriented construction kits to
design environments, and of providing an alternative
to traditional autonomous expert systems. One of the
critiquing systems we have built - JANUS, a critic
for architectural design - is used as an example for
presenting the key aspects of the critiquing process.
We then survey additional critiquing systems
developed in our and other research groups. The
paper concludes with a discussion of experiences and
extensions to the paradigm.

Keywords: critics, critiquing, high functionality
computer systems, intelligent support systems, design
environments, cooperative problem solving systems.

Introduction

A critic is a system that presents a reasoned opinion

about a product or action generated by a human. The

critiquing approach is an effective way to make use of

computer knowledge bases to aid users in their work and

to support learning. Our experience with this approach

includes several years of innovative system building ef

forts, the integration of cognitive and design theories, em

pirical observations, and the evaluation of prototypes.

This paper combines our experience with the research ef

forts of others to articulate foundations and characteristics
for the critiquing paradigm. We describe the rationale for

critiquing (Section 2) and illustrate the approach using one
of our systems (JANUS) as an example (Section 4).

Section 5 gives a general characterization of the critiquing

process. Other critics are surveyed in terms of the critiqu

ing framework, showing the applicability and usefulness

of critics in other domains (Section 6). We conclude with

a discussion of future directions for research on the
critiquing paradigm.

Challenges for the Next Generation of

Knowledge-Based Systems

The next generation of knowledge-based systems will
present the following challenges:

• They will be high functionality systems, and their com
plete mastery will exceed the cognitive capabilities of
most individuals.

• They will need to support a broad spectrum of learning
and working activities.

• They should be integrated design environments.
• Rather than autonomous expert systems, they will often

be joint human-computer systems supporting coopera
tive problem solving.

We will discuss how critics can meet each of these chal
lenges.

High-Functionality Computer Systems

As powerful computer hardware has become widely
available, so have software systems for general applica
tions with a large range of capabilities. Technical com
plexity and the associated human cognitive costs to master
these systems have grown dramatically limiting the ability
of users to take full advantage of them. One illustration of
this situation is the Symbolics LISP machine; it contains
over 30,000 functions and 3300 flavors (or classes) ac
companied by 12 books with 4400 pages of written
documentation. Even a modern microcomputer word
processor has more than 400 pages of documentation and
an amount of functionality that very few people master in
its entirety.

For systems to be useful and applicable to a wide range
of problems, they have to offer rich functionality. Modern
computer systems are best understood not in their capacity
to compute but to serve as knowledge stores. And because
the amount of knowledge is extensive, these systems will
not be small and simple, but will be large and complex.

"Reality is not user friendly," i.e., typical problems are
complex and cannot be easily solved using a small set of
general building blocks and tools. Such minimal tools are
not always useful even though, in principle, anything can
be computed with them. These tools force the user to
reinvent the wheel rather than supporting reuse and
redesign of existing components.

Systems that offer a rich functionality are a mixed bless-

ing. In a very large knowledge spacet something related to

what we need is likely to exist but may be difficult to find.

It is impossible and infeasible for anyone individual to

know such systems completely. Empirical studies

(Draper, 1984) have shown that even very experienced

users know only a subset of a large system. They en

counter the following problems: They do not know about

the existence of building blocks and tools; they do not

know how to access tools, or when to use them; they do

not understand the results that tools producet and they can

not combinet adapt, and modify tools according to their

specific needs. Our goal is to increase the usability of high

functionality computer systemst not by "watering down
tt

functionality or steering the user toward only a subset of

the systems' capabilities, but by facilitating learning aboutt
access tOt and application of the knowledge these systems

contain. Critics contribute to these goals by providing the

user with selective information at the time it is needed.

Systems to Support Learning

The computational power of high functionality com

puter systems can provide qualitatively new learning en

vironments. Learning technologies of the future should be

multi-facetedt supporting a spectrum extending from open

ended, user-centered environments such as LOGO (papert,

1980) to guided, teacher-centered tutoring environments

(Wengert 1987).

Tutoring is one way to support learning the basics of a

new system. One can pre-design a sequence of

microworlds and lead a user through them (Anderson &
Reiser, 1985). However, tutoring is of little help in sup

porting learning on demand when users are involved in

their "own doing.
tt

Tutoring is not task-driven, because

the total set of tasks cannot be anticipated. To support

user-centered learning activities, we must build computa

tional environments that match individual needs and learn

ing styles. Giving users control over their learning and

working requires that they become the initiators of actions

and set their own goals.

In open learning environments users have unlimited

control (papertt 1980), but there are other problems. They

do not support situations where users get stuck during a

problem solving activity or settle at a suboptimal plateau

of problem solving behavior. To successfully cope with

new problems, users can benefit from a critic that points

out shortcomings in their solutions and suggests ways to

improve them.

In contrast to passive help systems, critics do not require

users to formulate a question. Critics allow users to retain

control; they interrupt only when users' products or ac

tions could be improved. By integrating working and

learningt critics offer unique opportunities: users under

stand the purposes or uses for the knowledge they are

learning; they learn by actively using knowledge rather

than passively perceiving it, and they learn at least one

condition under which the knowledge can be applied. A

strength of critiquing is that learning occurs as a natural
byproduct of the problem solving process.

Design Environments

To accomplish most things in this worldt selective

search, means-ends analysis, and other weak: methods are

not sufficient (Simon, 1986); one needs to employ strong

problem solving techniques with knowledge about the task

domain. Designers-architects, composerst user interface

designers, database experts, knowledge engineers-are ex

perts in their problem domain and are not interested in

learning the "languages of the computert>; they simply

want to use the computer to solve their problems and ac

complish required tasks. To shape the computer into a

truly usable as well as useful medium, we have to make

low-level primitives invisible. We must "teach
tt

the com

puter the 13.t'1guages of experts by endowing it w i L ~ L ~ e

abstractions of application domains. This reduces the

transformation distance between the domain experCs

description of the task and its representation as a computer

program. Human problem-domain communication is our

term for this idea (Fischer & Lemket 1988).

Design environments (Lemke, 1989; Fischert McCall, &

Morcht 1989a) are tools that foster human problem

domain communication by providing a set of building

blocks that model a problem domain. Design environ

ments also incorporate knowledge about which com

ponents fit together and how. These systems contain

critics that recognize suboptimal design choices and in

efficient or useless structures.

Cooperative Problem Solving Systems

The goal of developing joint human-computer cognitive

systems in which the computer is considered a cognitive

amplifier has challenged the more widely understood goal

of artificial intelligence: The understanding and building

of autonomous, intelligentt thinking machines. For us, a

more important goal is to understand and build interactive

knowledge media (Stefik, 1986) or cooperative problem

solving systems (Fischer, 1990). The major difference be

tween classical expert systemst such as MYCIN and R 1t

and cooperative problem solving systems is in the respec

tive roles of human and computer.

Traditional expert systems ask the user for input, make

all decisions, and then return an answer. In a cooperative

problem solving systemt the user is an active agent and

participates together with the system in the problem solv

ing and decision making process. The precise roles played

by the two parties may be chosen depending on their dif

ferent strengths with respect to knowledge of goals and

task domain. Critics are an important component of

cooperative problem solving systems, especially when

they are embedded in integrated design environments.

These critics detect inferior designst provide explanations

and argumentation for their "opinion
tt

and suggest alter

native solutions.

Cooperative problem solving refers in our work to the

cooperation between a human and a computer. It shares

some research issues with two related but different

research areas: Computer Supported Cooperative Work

User Model

Domain

Knowledge

J

Critique

Proposed

Solution

"--.
('

Goals

Domain
Expertise

Figure 1: The Critiquing Approach

A critiquing system has two agents, a computer and a user, working in cooperation. Both agents contribute what they know

about the domain to solving some problem. The human's primary role is to generate and modify solutions, while the

computer's role is to analyze those solutions producing a critique for the human to apply in the next iteration of this process.

(esew) (Greif, 1988), which describes the cooperation

between humans mediated by computer, and Distributed

Artificial Intelligence (Bond & Grasser, 1988), which

refers to cooperation between computer systems.

Traditional expert systems are inadequate in situations

where it is difficult to capture all necessary domain

knowledge. Leaving the human out of the decision

process, autonomous expert systems require a comprehen

sive knowledge base covering all aspects of the tasks to be

performed; all "intelligent" decisions are made by the

computer. Some domains, such as user interface design,

are not sufficiently understood, and creating a complete set

of principles that adequately captures the domain

knowledge is not possible. Other domains are so vast that

tremendous effort is required to acquire all relevant

knowledge. Critics are well suited to these situations be

cause they need not be complete domain experts.

The traditional expert system approach is also in

appropriate when the problem is ill-defined, that is, the

problem cannot be precisely specified before a solution is

attempted. In contrast, critics are able to function with

only a partial task understanding.

rects a mistake in a word processor document or a se

quence of operating system commands.1 An agent, human

or machine, that is capable of critiquing in this sense is

classified as a critic. Critics often consist of a set of rules

or specialists for individual aspects of a product; we some

times refer to such an individual rule or specialist as a

critic, not only to the complete critiquing system as a

whole.

Critics do not necessarily solve problems for users. The

core task of critics is the recognition and communication

of deficiencies in a product to the user. Critics point out

errors and suboptimal conditions that might otherwise

remain undetected. Most critics make suggestions on how

to improve the product. With this information users can

fix the problems or seek additional advice or explanations.

Advisors (Carroll & McKendree, 1987) perform a func

tion similar to critics except that they are the primary

source for the solution. Users describe a problem, and

they obtain a proposed solution from the advisor. In con

trast to critics, advisors do not require users to present a

partial or proposed solution to the problem.

Critiquing systems are particularly well suited for

design tasks and for complex problem domains. In most

The Critiquing Approach

Critiquing is a way to present a reasoned opinion about

a product or action (see Figure 1). The product may be a

computer program, a kitchen design, a medical treatment

plan; an action may be a sequence of keystrokes that cor-

lIn the remainder of the paper the term product is often used in

a generic sense encompassing both product in a narrow sense and

actions.

;; Stove should be away from a door
(define-crack-rule stove-door-rule stove

"is not away from a door"
"is away from a door"
:argumentation-topic "answer (stove, door)"
:apply-to (all door)
:applicability

(has-design-unit 'door)
:condition

(not (away-from du-l du-2 threshold)))

; defined on design unit STOVE
; critic message
; praiser message
; access to JANUS-VIEWPOINTS

; test all doors (if any)
; test only if there is
; a door in the work area

; du-l is stove, du-2 is door

Figure 4: Definition of the stove-door critic rule

cases design tasks are ill-structured problems for which no
optimal solution exists. Complex problem domains re
quire a team of cooperating specialists rather than a single
expert. Not all problems fit this description; for example,
there are problems in engineering design and operations
research, where one can precisely specify problems and
generate optimal solutions. Those types of problems yield
to more algorithmic solutions and are not good candidates
for the critiquing approach.

The term "critic" has been used to describe several
closely related, yet different ideas. It was used first in
planning systems to describe internal demons that check
for consistency during plan generation. For example,
critics in the HACKER system (Sussman. 1975) discover
errors in blocks world programs. When a critic discovers
a problem. it notifies the planner, which edits the program
as directed by the critic. The NOAH system (Sacerdoti.
1975) contains critics that recognize planning problems
and modify general plans into more specific ones that con
sider the interactions of multiple subgoals. Critics in plan
ners interact with the internal components of the planning
system; critics in the sense of this paper interact with
human users.

JANUS: An Example

To illustrate the critiquing approach and to provide an
example for the subsequent theoretical discussion of
critiquing, we present in this section the JANUS design en
vironment. JANUS is based on the critiquing approach and
allows a designer to construct residential kitchen floor plan
layouts and to learn general principles underlying such
constructions (Fischer, McCall & Morch. 1989a; Fischer,
McCall & Morch. 1989b). JANUS is an integrated design
environment addressing the challenges of human problem
domain communication and testing the feasibility of ap
plying relevant information from large information stores
to a designer's task.

JANUS contains two integrated subsystems:
JANUS-CRACK and JANUS-VIEWPOINTs. JANUS-CRACK is
a knowledge-based design environment supporting the
construction of kitchens using domain-oriented building
blocks called design units (Figure 2). JANUS-VIEWPOINTS

is an issue-based hypertext system containing general prin-

ciples of kitchen design (Figure 3). The integration of
JANUS-CRACK and JANUS-VIEWPOINTS allows argumen
tation to resolve problematic (breakdown) situations that
occur when critics detect design rule violations.

Knowledge Representation in JANUS

The critics in JANUS-CRACK know how to distinguish
"good" designs from "bad" designs and can explain that
knowledge. This knowledge includes design principles
from Jones & Kapple (1984). These principles fall into
three categories: building codes. such as ({The window

area shall be at least 10% of the floor area." , safety stan
dards. such as({The stove should be at least 12 inches

away from a door.". and functional preferences, such as
({The work triangle should be less than 23 feet." Func
tional preferences are soft rules and may vary from desig
ner to designer. Building codes and safety standards are
harder rules and should be violated only in exceptional
cases.

The critics are implemented as condition-action rules,
which are tested whenever the design is changed. The
changes that trigger a critic are operations that modify the
construction situation in the work area: move. rotate. and
scale. Each type of design unit has a set of critic rules
whose condition parts are relationships between design
units that capture the design principles discussed above.
Protocol studies have shown that they are important prin
ciples that professionals use during the design process
(Fischer & Morch, 1988). The stove design unit. for ex
ample. has critic rules with the following condition parts:
(away-from stove door). (away-from stove window). (near
stove sink), (near stove refrigerator).

(not-immediately-next-to stove refrigerator). The code for
one of the stove critic rules is shown in Figure 4.

JANUS as a Design/Learning Tool

JANUS supports two design methodologies: design by
composition (using the Palette) and design by modifica
tion (using the Catalog). In addition. examples in the
catalog can be used to support learning. The user can copy
both good and bad examples into the work area. One
learning example is shown in Figure 5. The system can

critique such designs to show how they can be improved,

Janus-CRACK Worl< Area

Palette Context: Appliances

walls

doors

\JD
windows

[Sat 17 Feb 11:09:51] Keyboard

Catalog

Design State
~ vertical-wall-1

!! vertical-wall-2
!! horizontal-wall-2

right-hinged-door-1

window-1

double-bowl-sink-1

single-door-refrigera tor-1

base-cabinet-1

base-cabinet-2

right-hinged-door-2

corner-cabinet-l

base-cabinet-3

.. four-element-stove-1

dishwasher-1

New Class New Rule New Relation

.. HEWSIGI:/sigi/ai.tfischer/! ibl'hardcopiesl'janusl'shoY-exal'l" 13

Praise All

User InputCL USER:

Learning-Example-S

sinks

[]J][J
stoves

I: :11.-.11: ~11·icr~"'1

n'n
I!

II
D

Figure 2: JANUS-CRACK: the STOVE-CRITIC

JANUs-CRACK is the construction part of JANUS. Building blocks (design units) are selected from the Palette and moved to
desired locations inside the Work Area. Designers can reuse and redesign complete floor plans from the Catalog. The

Messages pane displays critic messages automatically after each design change that triggers a critic. Clicking with the mouse
on a message activates JANUS-VIEWPOINrS and displays the argumentation related to that message (Figure 3).

thus allowing users to learn from negative examples. To
learn about good features of prestored designs, designers
can run the Praise All command, thus getting positive
feedback as well. V sers can add their own designs to the
catalog for future reuse or as additional learning examples.

V sers can modify and extend the JANUS-CRACK design
environment by modifying or adding design units, critic
rules, relationships (Fischer & Girgensohn, 1990). The
ability to modify critic rules is important if a designer
disagrees with the critique given. Standard building codes
(hard rules) cannot be changed, but functional preferences
(soft rules) vary from designer to designer and thus can
and should be adapted. In this way, users have the
capability to express their preferences. For example, if
users disagree with the design principle that the stove
should be away from a door, they can edit the stove door

rule by replacing the away-from relation between STOVE

and DOOR with another relation (selected from a menu).

After this modification, they will not be critiqued when a

stove is not away from a door.
We have found JANUS to be a useful environment for

design students. It teaches them about design principles.

JANUS is also an efficient tool for skilled designers as it

enhances their cognitive abilities for storing and remem

bering principles of good design such as the required

building codes.

A User Scenario with JANUS

In the following scenario, the designer has selected an

L-shaped kitchen from the catalog for reuse. The goal is

to modify this kitchen into a V-shaped kitchen by rear-

II
! ! Argument (Dining Room)
: i If the door leads into a dining room, it will be easy to bring hot
:I food from the stove into the dining area!

I j "' " " ,..

1 ~

9

II
II
i I
i!

II
iI
; !

II
! ~

i i
! !

II
if

Janus-ViewPoints

Answer (Stove. Door)

The stove should be away from a door.

~ ~ r
dist > 12 inches

Figure 5: stove-door

Argument (Fire Hazard)
By placing the stove too close to a door It will be a fire and
burn hazard to unsuspected passers by (such as small children)!

the stove ;s away from a door

Visited Nodes
Answer (Refrigerator, ~ i n d o w) Section
Description (~ o r k Triangle) Section
Answer (Refrigerator, Stove) Section
Answer (Stove, Sink) Section

• Answer (Stove, Door) Section

Viewer: Default Viewer

Commands
q
! \Show ExaMp1e: "Answer (Stove, Door) II

ld Show Exa.n.ple Rnswer (Stove, lJoor)

o

Mouse-R: Menu.
To see other commands, press Shift, Control. Meta-Shift. 01' Super.

Show Outline
Search For Topics
Show Argumentation

Show Context

Done
Show Example

Show Counter Example
Show Construction

[Sat 17 Feb 11:09:04] Keyboard CL USER: User Input

Figure 3: JANUS-VIEWPOINTs: Rationale for the stove-door rule

The JANUS argumentation component is a hypertext system implemented using the SYMBOUCS DOCUMENf EXAMINER. Clicking
with the mouse on a critique in the JANUS construction mode (Figure 2) activates JANUS-VIEWPOINfS. The Viewer pane shows

the arguments for and against the answer relating a stove and a door. The top right pane shows an example illustrating this
answer. The Visited Nodes pane lists in sequential order the argumentation topics previously discussed. By clicking with the
mouse on one of these items, or on any bold or italicized item in the argumentation text itself, the user can navigate to related

issues, answers, and arguments.

ranging some of the appliances and cabinets. Figure 2
shows the construction situation just after the stove
(FOUR-ELEMENT-STOVE-l) was moved to the lower right
corner of the kitchen floor plan.

Moving the stove triggers the stove critic, which tests

the stove's location relative to the doors, sink, and
refrigerator currently in the work area. Critic messages
displayed in the messages pane tell the designer that the
stove is not proper!y located relative to the door and the
sink, and that the WORK TRIANGLE is greater than 23 feet.
This identifies a problematic situation, and prompts the
designer to reflect on it. The designer has broken a
kitchen safety rule: The stove should be at least 12 inches
away from a door.

The user may not have known the safety rule or may not
understand the rationale for the rule, in which case an
explanation is desirable. Instead of providing the designer
with prestored text reflecting one expert's opinion, it is
preferable to acquaint the designer with multiple perspec

tives. This is supported by JANUS-VIEWPOINTS, which is
activated by clicking with the mouse on the critique in the
messages pane. The designer enters JANUS-VIEWPOINTS

automatically in the context relevant to the critique
(Figure 3). This argumentative context shows an answer
to the issue the designer is implicitly raising: ({What

should be the location of the stove?" The answer states
how the stove should be positioned relative to a door and
lists arguments for and against this answer. This argumen-

...

...

D
\ D

D
r--

DW • • DD• •lUI

Figure 5: JANUS-CRACK: A learning example from the Catalog

The critics in JANUS detect the following suboptimal features of the kitchen shown in this figure: The width of the door is less
than 36 inches, the dishwasher is not next to a sink, the stove is next to a refrigerator, the refrigerator is next to a sink, and the

sink is not in front of a window.

tative context also shows an example of how this design

rule was successfully applied in another design (shown in

the upper right comer of Figure 3). The example is taken

from the catalog of prestored designs in JANUS-CRACK.

All bold and italicized words in the Viewer pane (the

largest pane in JANUS-VIEWPOINTS) and all topics in the

Bookmarks pane allow further exploration with a mouse

click. Hypertext access and navigation is made possible

using this feature inherited from the SYMBOUCS

DOCUMENT EXAMINER. After finishing the search for re

lated infonnation in JANUS-VIEWPOINTS, the designer

resumes construction in JANUS-CRACK by selecting the

Done command.

The Process of Critiquing

Figure 6 illustrates the component processes of critiqu

ing: goal acquisition, product analysis, critiquing strategy,

explanation and advice giving. Not all of these processes

are present in every critiquing system. This section

describes these subprocesses and illustrates them with ex

amples. JANUS does not illustrate all of the issues, and we

will refer occasionally to systems that are described in

Section 6.

Goal Acquisition

Critiquing a product is enhanced if the system has an

understanding of the intended purpose of the product

(problem knowledge). Problem knowledge can be

separated into domain knowledge and goal knowledge.

Domain knowledge without any understanding of the par

ticular goals of the user restricts a critic to reasoning about

characteristics that pertain to all products in the domain.

For example, domain knowledge allows JANUS to point

out that stoves should not be placed close to doors, be

cause this arrangement constitutes a fire hazard. For a

more extensive evaluation of a product, some understand

ing of the user's specific goals and situation is necessary.

JANUS, like most critics, does not have that understanding.

The user's goal is assumed to be to design a functional

residential kitchen; the critic does not take into account

any individual requirements such as size of the kitchen or

number of people in the family.

Critics that work with specific goal knowledge can ac

quire it by asking the user (external goal specification) or

by analyzing the product the user has generated so far

(goal recognition). A kitchen with a table and chairs lo

cated in the center of the kitchen suggests that the user

intends to eat meals in the kitchen. The table and chairs

allow a kitchen critic to recognize the goal of providing an

eating area. Goal recognition is only possible if the cur

rent version of the artifact approximates a solution to the

goal to be recognized. If the product fails to come close to

the user's goal, the critic cannot infer that goal or might

infer a goal different from the user's goal. Goal recog

nition is related to task-oriented parsing (Hoppe,

1988) and plan recognition, a research area in artificial

intelligence (Schmidt, Sridharan & Goodson, 1978; Lon

don & Clancey, 1982; Carver, Lesser & McCue, 1984).

Tutorial systems define a goal structure for the user.

Critics, however, allow users to set their own goals and do

not restrict the space of possible goals. This complicates

the problem of goal recognition. A critic that implements

goal recognition is ACTIVIST (Section 6.3).

A critic may also have access to an external specifica

tion of the problem to be solved. For example, users may

communicate to the system that they need a kitchen with

an eating area for informal meals. This can be done with

User
Model

Legend

e

Figure 6: The Critiquing Process

Users initiate the critiquing process by presenting a product to the critic. In order to evaluate the product, the critic needs to
obtain the user's goals either by recognizing them or from explicit user input. The product analyzer evaluates the product
against the goal specification. Some critics do this by generating their own solution and comparing it to the user's. A
presentation component uses the product analysis to formulate a critique, to give advice on how to make improvements, and to

provide explanations. Critiquing strategies and a user model control the kind of critique, its form and timing. Based on the
critique, the user generates a new version of the product, and the cycle repeats, integrating the new insight.

electronic questionnaires as well as with more sophis
ticated techniques such as natural language communica
tion.

Product Analysis

There are two general approaches to crItiquing:
differential and analytical critiquing. In the former ap
proach, the system generates its own solution and com
pares it with the user's solution pointing out the dif
ferences. An advantage of differential critiquing is that all
differences can be found. Some domains allow radically

different, but equally valid solutions, which is a potential

problem if the system generates its solution without regard

to the user's solution approach. If user and system solu

tions differ fundamentally, the critic can only say that the

system solution achieves good results but cannot explain
why the user's solution is less than optimal.

Different solution attempts fulfill the goals to different
degrees or are associated with different undesirable ef

fects. In such situations, metrics are needed to measure

the quality of alternative solutions (Fischer, Lemke &
Schwab, 1985). Based on the controversial nature of

design problems, alternative, conflicting metrics can be

defined and may have to be reconciled by negotiation and
argumentation.

An analytical critic checks products with respect to
predefined features and effects. Analytical critics identify
suboptimal features using pattern matching (e.g., Fischer,
1987), and expectation-based parsers (e.g., Finin, 1983).

In analytical approaches, critics do not need a complete

understanding of the product. JANUS is an analytical critic

that uses a set of rules to identify undesirable spatial

relationships between kitchen design units. JANUS does
not identify all possible problems within a kitchen design.

Its rule base allows it to critique kitchens without knowing

exact requirements and preferences of the kitchen user.

Critics for large designs must operate on intermediate

states and not only on complete products. A design rule in

the domain of kitchen design specifies a certain minimum
window area. The critiquing component of JANUS must be

able to deal with temporary violations to avoid bothering

users when they have not yet included all the windows in
their design.

Some critics receive a stream of information that is not

yet separated into individual products or actions.
ACTIVIST (Fischer, Lemke & Schwab, 1985) is a critic for

a text editor, which critiques keystroke sequences and, if

possible, proposes shorter alternatives. Systems such as

ACTIVIST face several problems: action sequences are hard

to delineate; sequences of actions may constitute a useful

plan but may also be the beginning of a different, larger,

not yet complete plan, and different plans may overlap or

be included within each other. For example, users may

delete a word at one place in a text, then correct a spelling

mistake, and finally paste the word at a different place.
This composite action sequence needs to be recognized as
an interleaved execution of a correct-spelling plan and an

exchange-words plan. A critic capable of task-oriented

parsing must decide how long to wait for later parts of a

plan and whether interspersed actions interfere with the
interrupted plan.

Critiquing Strategies

Critiquing strategies and an optional user model control

the presentation component of a critic. The critiquing

strategies determine what aspects of a design to critique

and when and how to intervene in the working process of

the user. Critiquing strategies differ depending on the

predominant use of the system, either to help users solve

their problems or as a learning environment.

The user's perception of critics. Like recommen

dations from colleagues or co-workers, messages from a
critic can be seen as helpful or hindering, as supportive of

or interfering with work or the accomplishment of goals.

Critiquing strategies should consider intrusiveness and

emotional impact on the user. Intrusiveness is the users'

perception of how much the critiquing process is inter

fering with their work. Critics can either interfere too

much or fail to provide sufficient help, depending on the

frequency of feedback, the complexity of the tasks, and the

sophistication of the user. Emotional impact relates to
how users feel about having a computer as an intelligent

assistant. Critiquing from a computer might be more

tolerable than critiquing from humans if it is handled as a
private matter between the human and the computer.

What should be critiqued? Educational critics, whose
prime objective is to support learning, and performance

critics, whose primary objective is to help produce better

products, have different requirements for their critiquing

strategies. A performance critic should help users create

high-quality products in the least amount of time using as

few resources as possible. Learning is not the primary

concern of performance systems but can occur as a by

product of the interaction between user and critic. Educa

tional critics should maximize the information users retain

to improve their future performance.
Most performance critics (e.g., FRAMER, JANUS,

ROUNDSMAN, KATE; see Section 6) do not select specific

aspects of a product to critique. They evaluate the product

as a whole to achieve the highest possible quality. Some

critics selectively critique based on a policy specified by
the user. LISP-CRITIC, for,. example, operates differently

depending on whether cognitive efficiency or machine ef

ficiency is specified as the primary concern for writing

LISP programs.

Educational critics, such as the WEST system by Burton

& Brown, 1982 (see Section 6) usually employ a more

complex intervention strategy that is designed to maximize
information retention and motivation. For example, an

educational critic may forego an opportunity to critique

when it occurs directly after a previous critiquing episode.

Most existing critics operate in the negative mode, that

is, they point out suboptimal aspects of the user's product
or solution. A positive critic recognizes the good parts of a

solution and informs users about them (the Praise All

command in JANUS-CRACK). For performance critics, a

positive critic helps users retain the good aspects of a

product in further revisions; a positive educational critic

reinforces the desired behavior and aids learning.

Intervention strategies. Intervention strategies deter

mine when a critic should interrupt and how. Active

critics exercise control over the intervention strategy by

critiquing a product or action at an appropriate time. They

function like active agents continuously monitoring users

and responding to individual user actions. Passive critics

are explicitly invoked by users when they desire an

evaluation. Passive critics usually evaluate the (partial)

product of a design process, not the individual user actions

that resulted in the product.

For active critics the intervention strategy must specify

when to send messages to the user. Intervening im

mediately after a suboptimal or unsatisfactory action has

occurred (an immediate intervention strategy) has the ad

vantage that the problem context is still active in the users'

mind, and they remember how they arrived at the solution.

The problem can often be corrected immediately. A dis

advantage of active critics is that they may disrupt a cog

nitive process causing short term memory loss. Users then

need to reconstruct the goal structure that existed before

the intervention. Delayed critic messages may appear out
of context and hence come too late to prevent the user

from heading towards an undesirable state.
Critics can use any of various intervention modes that

differ in the degree to which users' attention is attracted.

A critic can force users to attend to the critique by not
allowing them to continue with their work. A less in
trusive mode is the display of messages in a separate critic

window on the screen. This gives users a choice whether

to read and process the message immediately or first com

plete an action in progress. The messages should be dis

played in such a way that they do not go unnoticed. Those

messages that pertain to users' current focus of attention
should be easy to find rather than being hidden among a

large set of messages related to other aspects of the

product.

Adaptation Capability

To avoid repetitive messages and to accommodate dif

ferent user preferences and users with different skills, a

critiquing system needs an adaptation capability. A critic
that persistently critiques the user on a position with which

the user disagrees is unacceptable, especially if the critique

is intrusive. A critic that constantly repeats an explanation

that the user already knows is also unacceptable.
Critics can be adaptable or adaptive. Systems are called

adaptable if the user can change the behavior of the sys

tem. An adaptive system is one that automatically changes

its behavior based on information observed or inferred.

An adaptation capability can be implemented by simply
disabling or enabling the firing of particular critic rules, by

allowing the user to modify or add rules, and by making

the critiquing strategy dependent on an explicit. dynami
cally maintained user model.

User modeling in critics (Fischer, Lemke & Schwab,
1985) shares ideas and goals with student modeling in in

telligent tutoring systems (Clancey, 1986) and advice

giving natural language dialogue systems (Kobsa &

Wahlster, 1989). Computer critics require dynamic, per

sistent user models that can change over time but are ac

cessible to the human user for inspection and modification.

How to acquire and represent individual user models is a

topic of ongoing research (Mastaglio, 1990).

Explanation Capability

Critics have to be able to explain the reasons for their

interventions. This provides users with an opportunity to

assess the critique and then to decide whether to accept it.

Knowing why a product was critiqued helps users to learn
the underlying principles and avoid similar problems in the

future. In a critiquing system, explanations can be focused

on the specific differences between the system's and the
user's solutions, or on violations of general guidelines.

Critics can either give detailed explanations spontaneously

or provide them on demand. When users can indicate the

issues they are interested in, the system can provide en

hanced explanations on demand. One particular approach

uses argumentation as the fundamental structuring

mechanism for explanations; this is illustrated in the
JANUS-VIEWPOINTS system (Fischer, McCall & Morch,

1989).

Advisory Capability

All critics detect suboptimal aspects of the user's

product (problem detection mode). Some critics require
the user to determine how to improve the product by

making changes to address the problems pointed out by

the critic. Other critics, however, are capable of suggest

ing alternatives to the user's solution. We call these

solution-generating critics. In the JANUS system, a simple
problem detecting critic points out that there is a stove
close to a door. A solution-generating critic would, in

addition, suggest a better location.

Descriptions of Critics

The purpose of this section is to provide an overview of

critiquing systems that have influenced the development of

the paradigm or that illustrate an interesting aspect of it.

We first describe in some detail two critic systems
developed in our laboratory: LISP-CRITIC and FRAMER.

After that, we survey systems developed by others.

LISP-CRITIC

LISP-CRITIC is a system designed to support program
mers (Fischer, 1987; Fischer & Mastaglio, 1989). It helps

its users to both improve the program they are creating and
to acquire programming knowledge on demand. Program

mers ask LISP-CRITIC for suggestions on how to improve

their code. The system then suggests transformations that

make the code more cognitively efficient (i.e., easier to

read and maintain) or more machine efficient (i.e., faster

or requiring less memory).
When LISP-CRITIC finds pieces of code that could be

improved, it shows the user its recommendation
(Figure 7). Users can accept the critic's suggestion, reject

it or ask for an explanation to aid in making that decision.

In Figure 7, LISP-CRITIC suggests that the user replace a

conditional expression using cond with an expression

using if. The.user can request an explanation of why if is

preferable to condo The system develops an appropriate

explanation, consulting a user model, and displays the ex

planation in hypertext form. The user can use the explana

tion to access more detailed information available about

LISP in an on-line documentation system (the Symbolics

Document Examiner). To adequately support a wide

range of user expertise, LISP-CRITIC incorporates a user
modeling component (Mastaglio, 1990). LISP-CRmc

uses the model to customize explanations so that they

cover exactly what the user needs to know.

FRAMER

FRAMER (Lemke, 1989) is an innovative design en

vironment for the design of program frameworks, com

ponents of window-based user interfaces on Symbolics

Lisp-CRITIC

(car u) y»)

(cond «equal r 1) (Mapcar #'list s»
(t (Mapcan #'(laMbda (x)

(Mapcar #'(laMbda (y) (cons x y» (perM (reMove x s) (sub1 r»»
s»)

v»
(car s)
(power (cdr s»»)~

II

i i(defunlperM (s r)
!! (cond «equal r 1) (Mapcar (function list) s»
! ! (t (Mapcan (function
II (laMbda (x)
I I (Mapcar (function (laMbda (y) (cons x y»)

II s»» (perM (reMove x s) (sub1 r»»)

II (defun cOMb (s r)
i I (cond «= r 1) (Mapcar (function list) s»
I I (t (Mapcon (function
! ! (laMbda (u)
II (cond « < (length u) r) ni 1)
! ! (t (Mapcar (function (laMbda (y) (cons
i I (coMb (cdr u) (1- r»»»)
i i s»»

Iliii subseqs 5 r
i liii all consecutive subsequences of length r
I I(defun subseqs (s r)
I i (if « (length 5) r) nil
! ! (cons (seq 5 r) (subseqs (cdr s) r»»
II(defun seq (s r)
!! (cond «= r e) nil)
i I (t (cons (car s) (seq

i I(d(~~~ds(~~~~~r~~ ~~~~ 1) A
«null sub) t) Ii
(t (sub-search sub (cdr ===>

(if (equal r 1)

(Mapcar »'list s)
(Mapcan #'(laMbda (x)

(Mapcar #'(laMbda (y) (cons x y» (perM (reMove x s) (subl r»»
s»

Explanation (Why-cond-to-if-else)

IF Is more readable than COND because It uses fewer parentheses
and because IF has a common English meaning.

Abort Explain New Code Show New Code
Accept Reject Show Original Code
Accept All Set Parameters IWhy Is IhIS Betterl

ZMacs (LISP Font-lock) power. lisp >brentr>zlc MUNCH: (2) * More above]
Nove point

Figure 7: The User Interface of LISP-CRITIC

The large editor window shows a program that a user is working on. The LISP-CRITIC window on top of it displays a cond-to-if

transformation and an explanation of why LISP-CRITIC recommended changing the cond function to an if.

LISP machines (Figure 8). The purpose of the FRAMER

design environment is to enable designers to make use of a
high-level abstraction - program frameworks - with lit
tle prior training.

FRAMER contains a knowledge base of design rules for
program frameworks. The rules evaluate the completeness
and syntactic correctness of the design as well as its con
sistency with the interface style used on Symbolics Lisp
machines. The critics are either mandatory or optional.
Mandatory critics represent absolute constraints that must
be satisfied for program frameworks to function properly.
Optional critics inform the user of issues that typically are
dealt with differently. The critics are active, and the sys
tem displays the messages relevant to the currently
selected checklist item in the window entitled Things to

take care of. Each message is accompanied by up to three

buttons: Explain, Reject, and Execute. The Explain button
displays an explanation of the reasons why the designer
should consider this critic suggestion; it also describes
ways to achieve the desired effect. Optional suggestions
have a Reject or Unreject button depending on the state of
the suggestion. The Execute button accesses the advisory
capability of FRAMER, which is available for issues that
have a reasonable default solution.

A previous version of FRAMER employed a passive
critiquing strategy. Experimental evidence (Lemke,
1989) showed that users often invoked the critic too late
when a major incorrect decision had already been made.
The active strategy with continuous display of messages
used in the newest version of FRAMER solved this
problem. FRAMER prevents its users from permanently
ignoring the critics by using the checklist. Checklist items

Frarner2 Version 5.0

Arrange the panes as desired in your prograM fraMework shown in the work area. Choose frOM
the following Mouse cOMnands.

-Move the title pane to the top of the fraMe. (Explain) (Reject) (E x ~ u t e)

-ReMOVe the overlap of DATA and TITLE. (Explain)
(Requ.ired)

Palette
Nouse Button Operation

Left Get pane of this type.

Middle Describe this type.

-Fill the eMpty space inside the prograM
fraMework. (Required)

hlngs to take care of:
-Add a Menu bar.

hat you can do:
Check list iteR: Rrrangeftent of panes

Work Area
Nouse Button Operation

Left Move pane.

Middle Resize pane.

Right Menu of all possible operations.

Shift-Left Edit pane options.

Shift-Middle Delete pane.

t:jc:.:.:.::.;.:.::.:.:.;:....:.:..:.:.::.:.:.::.;.:.;:.;.:.::.:.:.::.:.;.;;.:.;.:;.;.:.:;.::.::.:.;.;;.;.;.::.;,;,;:,:,:,:;,;;,::':.:.:1

o (Code Generat ion)

IZJ (PrOgraM nane)

IZJ (In it i 0 1 progrlllM frlllMework)

o (Invoking this prograM)

=>[] t Rrrangeftent of panes j

o (CoMMand loop funct ion)

o (Col'lI"land def ; n i ng nacro)

o (Types of input)

D ~

o (CoMMand tab1es)

Check List

Work Area Palette

display-pane named DATA

title-pane named TITLE

I~tl=tle=-~pa=ne==:::-_--,I [listener-pane

display-pane .

lacoopt-valu.. -pano

Mouse-L: Select this item; Mouse-R: Menu.
To see other' commands, pr'ess Shift, Control, Meta-Shift, or Super.
[Fri 15 Sep 5:14:26] Screen Hardcopy CL USER: User Input

Figure 8: FRAMER

This figure shows a screen image of a session with FRAMER. The system has the following components. The checklist
describes the elements of the task of designing a program framework. The What you can do window shows the detailed options

pertaining to a checklist item. The window entitled Things to take care ofdisplays the critic messages. The work area is the
place were frameworks are assembled in a direct manipulation interaction style. A palette contains title panes, display panes,

and other primitive parts for constructing program frameworks. FRAMER also offers a catalog (not shown) for design by

modification.

cannot be checked off until all suggestions are either
resolved or rejected.

Short Descriptions of Critics

What makes the critiquing approach attractive is that it
has generality across a wide range of domains. The ap
proach has been applied to the domains of medical diag
nosis and patient management, electronic circuit design,
learning environments, support of education programs,
writing, programming, and text editing. This section of
fers short descriptions of critiquing systems from these
domains. Most critics have been developed as research
vehicles, but a few are successful commercial applications.
We have tried to select those systems that have had sig-

nificant impact on the development of the CrItiquing

paradigm and ones that have interesting features or address
unique applications. We begin this section with a discus
sion of the WEST system because it pioneered fundamental
ideas that the critiquing paradigm incorporates.

WEST. WEST was an early effort to build a computer

coach or critic (Burton & Brown, 1982). WEST teaches

arithmetic skill in a gaming environment (a game called

"How the West was won"). Burton and Brown's goal

was to augment an informal learning activity with a com
puter coach that would retain the engagement and excite

ment of a student directed activity. At the same time, the

system was to provide context-sensitive advice on how to
play better so students wouldn't get stuck at suboptimal

levels of playing.

Burton and Brown pioneered several important ideas in

WEST. The computer coach builds a bridge between open

learning environments and tutoring in order to support

guided discovery learning. To prevent the coach from
being too intrusive, the system constructs a model of each
individual user. The system has diagnostic modeling
strategies for inferring student problems from student be
havior. WEST determines the causes of suboptimal be
havior by comparing the concepts used in the solution of a

built-in expert and those used in the user's solution. Ex

plicit intervention and tutoring strategies (the most impor

tant one being "tutoring by issue and example") are ex

plicitly represented in the system and operate based on the

information contained in the model of the user. These

knowledge structures enable the coach "to say the right

thing at the right time' , and to provide an overall

coherence to the coach's comments.

Although WEST provides an early demonstration of how
to construct an intelligent learning environment, its
development pointed out certain limitations of the ap

proach. The WEST system was a success in demonstrating
the value of a computer coach in an informal learning
activity. But the domain chosen for the system has a num

ber of properties which do not hold for other domains in

which critics are needed. The computer expert can play an

optimal game (i.e., there is a best solution), and it can

determine the complete range of alternative behaviors. In

WEST one can speak of "bugs" whereas for many other

domains one can only speak of "suboptimal" behavior.

The metric to compute the best move is simple, whereas

metrics in domains such as kitchen or software design in

volve a potentially large number of controversial issues.

The set of issues for the game is closed whereas it is open

ended in many other domains. The goal of the user is

obvious in WEST - to win the game while obeying its

rules. This is another simplifying assumption which does

not apply to many other domains. The explanation

strategy in WEST relies on the assumption that the advice

given is self-explanatory because it contains a good il

lustrating example. The existence of a best solution and
no need for modifying the rlies in the domain eliminates

the need for an argumentation component such as the one

found in JANUS.

Medical applications of the critiquing approach.

Researchers in the domain of medicine developed several

of the early critiquing systems. In general, these systems

are designed to aid the physician in diagnosis and planning

of patient treatment. Miller and colleagues at Yale Medi

cal School have done a majority of the work in this area.

Their systems assist a physician or nurse by analyzing

plans for prescribing medication, managing the ad
ministration of medication, ventilator management, and

administration of anesthetics (Miller, 1986).
Miller's ATTENDING system (Miller, 1986) uses the dif

ferential critiquing approach. ATTENDING parses the
physician's plan into a hierarchical form. Starting from

the top-level decisions, the system evaluates each step of

the physician's plan by trying to find alternatives as

sociated with lower or equal risks to the patient. This

method provides a more reasonable critique than one that

discards the physician's solution and proposes a com

pletely new solution developed by the system expert. By
working from the physician's solution, the system's solu
tion is as close to the physician's solution as possible, and

the critique is more helpful and easier to understand.
The differential critiquing approach is also used in one

version of ONCOCIN, an expert system for cancer therapy
(Langlotz & Shortliffe, 1983). The critiquing approach

was chosen because it eliminates the need for the

physician to override the system solution when minor

deviations in the therapy are desired for the convenience

of the patient.
The ROUNDSMAN system (Rennels, 1987; Rennels,

Shortliffe, Stockdale & Miller, 1989) is a critic in the

domain of breast cancer treatment. ROUNDSMAN ex
plicitly bases its critique on studies from the medical

literature. It is a passive critic with explicit goal specifica
tion. ROUNDSMAN automatically provides a detailed ex
planation of its reasoning and suggests improvements to
the physicians therapy proposal. It does not use a user or

dialog model and, therefore, repeats similar explanations.
Circuit design. CRITTER (Kelly, 1985) is a design aid

in the domain of digital circuit design. CRITTER requires a

schematic diagram of the circuit and a set of specifications

that the circuit must satisfy. Given this information, Crit

ter produces a report about the circuit, which can be used

in a subsequent design cycle to revise the design. CRITTER

evaluates the circuit using various circuit analysis tech

niques and knowledge of the primitive components. The

results of this evaluation include general information about

whether the circuit will work and by what margins, its

weaknesses, and performance limits.

NCR developed the Design Advisor (TM) (Steele,

1988), a commercial expert system that provides advice on
application-specific, integrated circuit designs. The sys

tem uses a logic-based rule mechanism (Hom clauses) in

cluding both forward and backward chaining rules with a

frame based representation and a truth maintenance sys

tem. The Design Advisor analyzes the performance, tes
tability, manufacturability, and overall quality of CMOS

semi-custom VLSI designs. The knowledge it applies is a

hierarchy of design attributes compiled by studying major

problems from several years of commercial VLSI design.

The designer submits a proposed design to the system for

analysis and critiquing using a batch type approach. The

system returns its analysis to the designer who is respon

sible for actually modifying the proposed design.

Discovery learning. A suite of three computer-based

coaching systems for discovery learning developed at

LRDC, University of Pittsburgh, are based on critics.

These systems each address a different domain: Smith
town - microeconomics (Raghaven, Schultz, Glaser &
Schauble), Voltaville - direct current electricity (Glaser,
Raghavan & Schauble, 1988), and Refract - geometrical

optics (Reimann, Raghaven, GlaserI988). These dis-

covery environments are designed to build scientific in

quiry skills. Active critics judge the efficiency of the

processes used to build scientific theory and inform users

about errors that characteristically trap less successful stu

dents as well as guide them to effective strategies.

Decision making. The DecisionLab system from the
European Computer Industry Research Center (Schiff &
Kandler, 1988) applies the critiquing approach to coach
users in managerial decision making. DecisionLab

promotes "learning while doing" by providing construc

tive feedback on a user developed management plan in a
simulated management game. The system critiques deci

sions and informs users when they pursue a non optimal
approach. This system is of interest because it attempts to

integrate a critic with a simulation exercise in a computa

tional environment designed to support learning.

Another direction of research is investigating how to
apply the critiquing approach to improve the performance

of decision makers, not through training, but in the context

of their actual work. Mili (1988) has proposed a system

called DECAD, which watches over the shoulder of the

decision maker, interjecting advice or a critique when ap

propriate. Critiquing is one of the approaches under inves

tigation for a class of knowledge-based systems called
"active and symbiotic decision support systems" (Mili &
Manheim, 1988).

Curriculum development. The Alberta Research
Council (Canada) and a company called Computer Based

Training Systems have developed a knowledge-based sys

tem which provides assistance to teachers who do cur

riculum and course development (Wipond & Jones, 1988).

The system includes an Expert monitor module that

monitors the curriculum and course development process,

intervening when necessary or when the teacher asks for

assistance. It provides a critique which the user can accept

or reject. The expert monitor is also capable of suggesting

what the user should do next, where to look for relevant

examples or how to get more help. Computer Based

Training Systems is now marketing the product as part of

their Computer Managed Learning software package.
Writing. WANDAH (Friedman, 1987) is a system that

assists authors in all phases of writing. This system is

commercially available for personal computers as 'HBJ

Writer." WANDAH has heuristics to help the user design

and prepare a document. Once a writer has created some

text (it need not be a completed document), it can be sub

jected to one of four sets of reviewing and revising aids.

These aids go over the written work, provide feedback on

structural problems, and recommend revisions. Testing of

WANDAH showed that users find it easy to use and learn to
write better.

Text editing. ACTIVIST (Fischer, Lemke & Schwab,

1985) is an active help system for a screen-oriented editor.

ACTIVIST continuously monitors the editing actions of the

user. By doing this, it recognizes, using finite state

machines, sequences of actions that achieve some goal

known to the system. ACTIVIST understands twenty dif

ferent goals, such as deleting a word or moving the cursor

to the end of the current line. The system evaluates each

recognized action sequence to update a user model.
ACTIVIST uses the following critiquing strategy: After

three suboptimal executions of a task type (measured by

the number of keystrokes), ACTIVIST infonns the user of a

better procedure for the task. After a certain number of

correct executions, the plan will no longer be watched. In
order to be less intrusive, ACTIVIST ceases to critique ac

tions when the user ignores its suggestions.
Operating system usage. WIZARD (Finin, 1983) is an

active help system for users of the VMS operating system
command language. Like ACTIVIST, WIZARD has to

recognize sequences of commands that, taken together,

form a plan to achieve a goal known to the system. The

expectation-based parser used for this purpose allows non

contiguous command sequences that contain interspersed

commands from other goals. Metrics such as amount of

typing and use of system resources are implicit in the

representations of the plans. Advice is given using text

templates.

Programming. PROLOG Explaining (Coombs & Alty,

1984) critiques a user's explanation of PROLOG code.

The system uses the critiquing approach to guide the user

toward a better understanding of the PROLOG language.
Users construct an explanation of what they believe the

code will do. The system's job is to critique that explana
tion. The user may request a critique at any point during
the process of the explanation building. Also, the system

automatically critiques the explanation at the end of a

program run.

The GRACE Project at the NYNEX Artificial Intel

ligence Laboratory (Dews, 1989; Atwood, Gray, Burns &
Morch, 1990) has developed an integrated learning en

vironment for COBOL programming. The GRACE sys

tem combines a tutor, a critic, and a hypertext system to

support a spectrum of teaching methods ranging from

guided teaching by the tutor, to integrating working and

learning with the critic, and to exploratory browsing in

hypertext. While the system is functioning as a critic, it
can decide to adopt the tutoring mode to give remedial

problems; conversely, while functioning as a tutor, the sys

tem may decide to let the student explore in the critiquing

mode. In either case the system provides directly acces

sible hypermedia documentation with text, graphics, and

other presentation media.

Software engineering. KATE (Fickas & Nagarajan,

1988) critiques software specifications (for automated

library systems) represented in an extended Petri net nota

tion. The knowledge of the critic is represented as

"cases" that consist of a pattern describing a behavior in a

specification, links to one or more goals, simulation

scenarios, and canned text descriptions. The critic

evaluates the specification with respect to goals or policy

values given by the user. The simulation scenarios back

up the system's critique and are designed to approximate

the rich set of examples that software professionals have

been found to use.

Mechanical design. STEAMER/Feedback Mini-Lab

(Forbus, 1984) is an environment in which simulated

devices, such as steam plant controllers, can be assembled
and tested. A device is assembled from simple building
blocks such as actuators and comparators. The Mini-Lab

is able to generate code from the building block specifica
tions to produce a simulation program for the device.

After students have constructed their device, they can ask
for a critique by the system. This critique identifies com

mon bugs and recognizes some instances of known

devices.

Conclusion

The systems described in this paper show that critiquing

is an emerging paradigm for knowledge-based systems.

Building a knowledge-based system is a major effort, and
critics are no exception. Realistic systems that provide
broad functionality and support tools are needed to test the
usefulness of critics in actual settings. Critics are often
embedded systems; for example, they constitute only one
part of the JANUS and FRAMER environments.

The strengths of critics are that they support users who

are involved in their own work and that they integrate

learning with that work. As noted in several recent

research efforts (e.g., Schoen, 1983; Suchman, 1987; Bod

ker, Knudsen, Kyng, Ehn & Madsen, 1988; McCall, Fis

cher & Morch, 1989), professional practice in design is

both action and reflection. The basis for design is a com

bination of personal involvement and rational understand
ing, rather than detached reflection. Systems such as
JANUS and FRAMER allow "the situation to talk back"

through critics that point out breakdowns. By showing

t h ~ ~ the artifact under construction has shortcomings,
cnttcs cause users to pause for a moment, to reflect on the
situation, and to apply new knowledge to the problem as

well as to explore alternative designs. By serving as skill

enhancing tools, critics support the ' 'Scandinavian ap

proach to system design" (Bodker et al., 1988). Critics

help inexperienced users to become lay designers; for ex

perienced users, they serve as reminders of the principles

of good design.

One of the features that contributes to the strengths of

critics is at the same time a potential weakness. Support

i?g users in their own doing means that detailed assump

ttons about what a user might do cannot be built into the
system. Our critic systems have only a limited under

standing of the goals that users pursue. This limitation

r e ~ t r i c t s the amount of assistance and detailed goal
onented analysis that critics can provide, in contrast to

systems that have a deep understanding of a very small set

of problems (for example, Johnson & Soloway, 1984).

Critics need inspectable knowledge structures so that

users can understand, modify, and augment them (Fischer

& Girgensohn, 1990). This modification should not re

quire users to possess detailed programming knowledge.

Users should be able to deactivate and reactivate in

dividual critics according to their needs and their goals.

With sufficient inference and user modeling capabilities,

systems can adapt themselves dynamically (ACTIVIST con-

tains a mechanism to support this).

Observing users of JANUS and FRAMER showed that
users do not always notice the critique generated by the

system or that they ignore the advice. A more detailed
analysis of attention and intervention is required to devel

op critiquing strategies that insure that users do not miss

important information, but at the same time are not inter

rupted in situations where they should focus on other

issues.

Currently, most critics support only "one-shot dialogs"

(Aaronson & Carroll, 1987). They respond to actions

taken by the user; they give suggestions and provide ex

planations and argumentation. But human critiquing is a

more cooperative problem solving activity, during which

an increased understanding of the problem develops.

We have attempted to provide answers to some of these
issues by presenting the critiquing paradigm as an alter
native approach to using knowledge-based computer sys

tems to support human work and learning. Existing

critiquing systems were surveyed. Critics are not the only

solution to building better knowledge-based systems, but

we believe that a growing number of them will contain a

critiquing component. Some of these systems will have

elaborate problem understanding, but more commonly

they will have limited yet helpful capabilities. Critics are

an important step towards the creation of more useful and

more usable computer systems for the future.

Acknowledgments

Many people have contributed to the development of

our notion of the critiquing paradigm. The authors would
like to thank especially: the members of the Janus Design

Project (Ray McCall, Kumiyo Nakakoji, and Jonathan
Ostwald), the members of the LISP-CRITIC project (Heinz

Dieter Boecker, Chris Morel, Brent Reeves, and John

Rieman), all the people who have participated in discus

sions about the general framework for critiquing (Thomas

Schwab, Helga Nieper-Lemke, Curt Stevens, Tom DiPer

sio, and Hal Eden), and the HCC research group as a

whole. This research was partially supported by grant No.

IRI-8722792 from the National Science Foundation, grant

No. MDA903-86-C0143 from the Army Research In

stitute, and grants from the Intelligent Interfaces Group at

NYNEX and from Software Research Associates (SRA),

Tokyo.

References

Aaronson, A. & Carroll, J. M. (1987). Intelligent Help in

a One-Shot Dialog: A Protocol Study. Human Factors

in Computing Systems and Graphics Interface,

CHI+GI'87 Conference Proceedings (Toronto,

Canada), 163-168. New York: ACM.

Anderson, J. R. & Reiser, B. J. (1985). The LISP Tutor.

BYTE, 10(4), 159-175.

Atwood, M. E., Gray, W. D., Bums, B., Morch, A. 1. &
Radlinski, B. (1990). Cooperative Learning and

Cooperative Problem Solving: The Case of Grace.

Working Notes, 1990 AAAl Spring Symposium on
Knowledge-Based Human-Computer Communication,

6-10. Menlo Park, CA: AAAL

Bodker, S., Knudsen, J. L., Kyng, M., Ehn, P. & Madsen,

K. H. (1988). Computer Support for Cooperative

Design. Proceedings of the Conference on

Computer-Supported Cooperative Work (CSCW'88),

377-394. New York: ACM.

Bond, A. H. & Gasser, L. (Eds.). (1988). Readings in

Distributed Artificial Intelligence. San Mateo, CA:

Morgan Kaufmann Publishers.

Burton, R. R. & Brown, J. S. (1982). An Investigation of

Computer Coaching for Informal Learning Activities:

In Sleeman, D. H. & Brown, J. S. (Eds.), Intelligent

Tutoring Systems (pp. 79-98). London - New York:

Academic Press.

Carroll, J. M. & McKendree, J. (1987). Interface Design

Issues for Advice-Giving Expert Systems.

Communications of the ACM, 30(1), 14-31.

Carver, N. F., Lesser, V. R. & McCue, D. L. (1984).

Focusing in Plan Recognition. Proceedings of

AAAl-84, Forth National Conference on Artificial

Intelligence (Austin, TX), 42-48. Los Altos, CA:

William Kaufmann.

Clancey, W. J. (1986). Qualitative Student Models.

Annual Review ofComputing Science, 1,381-450.

Coombs, M. J. & Alty, J. L. (1984). Expert Systems: An

Alternative Paradigm. International Journal of

Man-Machine Studies, 20.

Dews, S. (1989). Developing an ITS in a Corporate

Setting. Proceedings of the 33rd Annual Meeting of

the Human Factors Society, 1339-1342.

Draper, S. W. (1984). The Nature of Expertise in UNIX.

Proceedings ofINTERACT'84, IFIP Conference on

Human-Computer Interaction, 182-186. Amsterdam:

Elsevier Science Publishers.

Fickas, S. & Nagarajan, P. (1988). Critiquing Software

Specifications. IEEE Software, 5(6),37-47.

Finin, T. W. (1983). Providing Help and Advice in Task

Oriented Systems. Proceedings of the Eighth

International Joint Conference on Artificial

Intelligence, 176-178.

Fischer, G. (1987). A Critic for LISP. Proceedings of the

10th International Joint Conference on Artificial

Intelligence (Milan, Italy), 177-184. Los Altos, CA:

Morgan Kaufmann Publishers.

Fischer, G. (1990). Communications Requirements for

Cooperative Problem Solving Systems. The

International Journal ofInformation Systems (Special

Issue on Knowledge Engineering).

Fischer, G. & Girgensohn, A. (1990). End-User

Modifiability in Design Environments. Human

Factors in Computing Systems, CHI'90 Conference

Proceedings (Seattle, WA), 183-191. New York:

ACM.

Fischer, G. & Lemke, A. C. (1988). Construction Kits and

Design Environments: Steps Toward Human

Problem-Domain Communication. Human-Computer

Interaction, 3(3), 179-222.

Fischer, G., Lemke, A. C. & Schwab, T. (1985).

Knowledge-Based Help Systems. Human Factors in

Computing Systems, CHI'85 Conference Proceedings

(San Francisco, CA), 161-167. New York: ACM.

Fischer, G. & Mastaglio, T. (1989). Computer-Based

Critics. Proceedings of the 22nd Annual Hawaii

Conference on System Sciences, Vol. III: Decision
Support and Knowledge Based Systems Track,

427-436. IEEE Computer Society.

Fischer, G., McCall, R. & March, A. (l989a). Design

Environments for Constructive and Argumentative

Design. Human Factors in Computing Systems,

CHI'89 Conference Proceedings (Austin, TX),

269-275. New York: ACM.

Fischer, G., McCall, R. & Morch, A. (1989b). JANUS:

Integrating Hypertext with a Knowledge-Based Design

Environment. Proceedings ofHypertext' 89, 105-117.

New York: ACM.

Fischer, G. & Morch, A. (1988). CRACK: A Critiquing

Approach to Cooperative Kitchen Design.

Proceedings of the International Conference on

Intelligent Tutoring Systems (Montreal, Canada),

176-185. New York: ACM.

Forbus, K. (1984). An Interactive Laboratory for

Teaching Control System Concepts (Report 5511).

Cambridge, MA: BBN.

Friedman, M. P. (1987). WANDAH - A Computerized

Writer's Aid: In Berger, D. E., Pezdek, K. & Banks,

W. P. (Eds.), Applications ofCognitive Psychology,

Problem Solving, Education and Computing (pp.

219-225). Hillsdale, NJ: Lawrence Erlbaum

Associates.

Glaser, R., Raghavan, K. & Schauble, L. (1988).

Voltaville: A Discovery Environment to Explore the

Laws of DC Circuits. Proceedings of the International

Conference on Intelligent Tutoring Systems (Montreal,

Canada),61-66.

Greif, 1. (Ed.). (1988). Computer-Supported Cooperative

Work: A Book ofReadings. San Mateo, CA: Morgan

Kaufmann Publishers.

Hoppe, H. U. (1988). Task-Oriented Parsing: A

Diagnostic Method to be Used by Adaptive Systems.

Human Factors in Computing Systems, CHI' 88
Conference Proceedings (Washington, DC), 241-247.

New York: ACM.

Johnson, W. L. & Soloway, E. (1984). PROUST:

Knowledge-Based Program Understanding.

Proceedings of the 7th International Conference on

Software Engineering (Orlando, FL), 369-380. Los

Angeles, CA: IEEE Computer Society.

Jones, R. J. & Kapple, W. H. (1984). Kitchen Planning

Principles - Equipment - Appliances.

Urbana-Champaign, IL: Small Homes Council

Building Research Council, University of Illinois.

Kelly, V. E. (1985). The CRITTER System: Automated

Critiquing of Digital Circuit Designs. Proceedings of

the 21 st Design Automation Conference, 419-425.

Kobsa, A. & Wahlster, W. (Eds.). (1989). User Models in
Dialog Systems. New York: Springer-Verlag.

Langlotz, C. P. & Shortliffe, E. H. (1983). Adapting a

Consultation System to Critique User Plans. Int.

J. Man-Machine Studies, 19, 479-496.

Lemke, A. C. (1989). Design Environmentsfor

High-Functionality Computer Systems. Unpublished

doctoral dissertation, Boulder, CO: Department of

Computer Science, University of Colorado.

London, B. & Clancey, W. J. (1982). Plan Recognition

Strategies in Student Modeling: Prediction and

Description. Proceedings ofAAAI-82, Second

National Conference on Artificial Intelligence

(Pittsburgh, PA), 335-338.

Mastaglio, T. (1990). User Modelling in Computer-Based

Critics. Proceedings of the 23rd Hawaii International
Conference on System Sciences, Vol III: Decision

Support and Knowledge Based Systems Track,
403-412. IEEE Computer Society.

McCall, R., Fischer, G. & Morch, A. (1989). Supporting

Reflection-in-Action in the Janus Design Environment.

Proceedings of the CAAD Futures'89 Conference.

Cambridge: Havard University.Pre-Publication

Edition.

Mili, F. (1988). A Framework for a Decision Critic and

Advisor. Proceedings of the 21 st Hawaii International

Conference on System Sciences, 381-386.

Mili, F. & M:anheim, M. L. (1988). And What Did Your

DSS Have to Say About That: Intoduction to the DSS

Minitrack on Active and Symbiotic Systems.

Proceedings of the 21st Hawaii International

Conference on System Sciences, 1-2.

Miller, P. (1986). Expert Critiquing Systems:

Practice-Based Medical Consultation by Computer.

New York - Berlin: Springer-Verlag.

Papert, S. (1980). Mindstorms: Children, Computers and

Powerful Ideas. New York: Basic Books.

Raghaven, K., Schultz, J., Glaser, R. & Schauble,

L. (1990). A Computer Coachfor Inquiry Skills.

Unpublished.draft submission to Intelligent Learning

Environments Journal.

Rennels, G. D. (1987). A computational model of
reasoning from the clinical literature. Springer

Verlag.

Rennels, G. D., Shortliffe, E. H., Stockdale, F. E. &
Miller, P. L. (1989). A computational model of

reasoning from the clinical literature. AI Magazine,

10(1),49-56.

Riemann, P., Raghaven, K. & Glaser, R. (1988). Refract,

a Discovery Environment for Geometrical Optics

(Technical Report). Learning Research &

Development Center, University of Pittsburgh.

Sacerdoti, E. D. (1975). A Structure for Plans and

Behavior (Technical Note 109). Stanford, CA:

Stanford Research Institiute.

Schiff, J. & Kandler, J. (1988). Decisionlab: A System

Designed for User Coaching in Managerial Decision

Support. Proceedings of the International Conference

on Intelligent Tutoring Systems (Montreal, Canada),

154-161.

Schmidt, C. F., Sridharan, N. S. & Goodson, J. L. (1978).

The Plan Recognition Problem: An Intersection of

Psychology and Artificial Intelligence. Artificial

Intelligence, 11,45-83.

Schoen, D. A. (1983). The Reflective Practitioner: How

Professionals Think in Action. New York: Basic

Books.

Simon, H. A. (1986). Whether Software Engineering

Needs to Be Artificially Intelligent. IEEE

Transactions on Software Engineering, SE-12(7),

726-732.

Steele, R. L. (1988). Cell-Based VLSI Design Advice

Using Default Reasoning. Proceedings of3rd Annual

Rocky Mountain Conference on AI, 66-74. Denver,

CO: Rocky Mountain Society for Artificial

Intelligence.

Stefik, M. J. (1986). The Next Knowledge Medium. AI

Magazine, 7(1), 34-46.

Suchman, L. A. (1987). Plans and Situated Actions. New

York: Cambridge University Press.

Sussman, G. J. (1975). A Computer Model ofSkill

Acquisition. New York: American Elsevier.

Wenger, E. (1987). Artificial Intelligence and Tutoring

Systems. Los Altos, CA: Morgan Kaufmann

Publishers.

Wipond, K. & Jones, M. (1988). Curriculum and

Knowledge Representation in a Knowledge-Based

System for Curriculum Development. Proceedings of

the International Conference on Intelligent Tutoring

Systems (Montreal, Canada), 97-102.

