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Abstract

The common marmoset, a New World (platyrrhine) monkey, 

is currently being fast-tracked as a non-human primate mod-

el species, especially for genetic modification but also as a 

general-purpose model for research on the brain and behav-

ior bearing on the human condition. Compared to the cur-

rently dominant primate model, the catarrhine macaque 

monkey, marmosets are notable for certain evolutionary 

specializations, including their propensity for twin births, 

their very small size (a result of phyletic dwarfism), and fea-

tures related to their small size (rapid development and rela-

tively short lifespan), which result in these animals yielding 

experimental results more rapidly and at lower cost. Ma-

caques, however, have their own advantages. Importantly, 

macaques are more closely related to humans (which are 

also catarrhine primates) than are marmosets, sharing ap-

proximately 20 million more years of common descent, and 

are demonstrably more similar to humans in a variety of ge-

nomic, molecular, and neurobiological characteristics. Fur-

thermore, the very specializations of marmosets that make 

them attractive as experimental subjects, such as their rapid 

development and short lifespan, are ways in which marmo-

sets differ from humans and in which macaques more close-

ly resemble humans. These facts warrant careful consider-

ation of the trade-offs between convenience and cost, on 

the one hand, and biological realism, on the other, in choos-

ing between non-human primate models of human biology. 

Notwithstanding the advantages marmosets offer as mod-

els, prudence requires continued commitment to research 

on macaques and other primate species.

© 2019 S. Karger AG, Basel

Why Primates?

Historically, the most popular mammalian species for 
experimental neuroscientific research have been mem-
bers of the rodent order, including rats (especially Rattus 
norwegicus) and mice (Mus musculus) [Manger et al., 
2008], the latter being increasingly favored in this era of 
translational research owing to its tractability for genetic 
manipulation. Rodents have also been favored because of 
their convenience, being easy to breed and maintain in 
captivity, and by the belief that the important features of 
mammalian biology (including neurobiology) are shared 
widely, if not universally, among mammals [Logan, 2001, 
2002]. 

Notwithstanding the convenience of rodents as re-
search animals, there is increasing evidence of the inad-
equacy of rodents in translational research, at least for 
certain disorders [Kolata, 2013; Check Hayden, 2014]. 
Currently available genetically modified mouse models of 
human neurological disorders, especially age-related dis-
eases such as Alzheimer’s disease, Parkinson’s disease, 
amyotrophic lateral sclerosis, and Huntington’s disease, 
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have failed to reproduce important features of the human 
disease phenotype [Levine et al., 2004; Li and Li, 2012; 
Perrin, 2014; Burns et al., 2015; Onos et al., 2016]. Fur-
thermore, drugs developed in rodents frequently do not 
produce comparable effects in humans [Rittirsch et al., 
2007; Hyman, 2012; Perlman, 2016; van Dyck, 2018]. 
Sometimes, much higher drug doses in rodents are neces-
sary to yield effects seen at lower doses in non-human 
primates and humans, as for example with the adrenergic 
α-2A agonist guanfacine [Arnsten, pers. commun.], 
which has proven useful for treatment of ADHD [Arn-
sten, 2010] and PTSD [Arnsten et al., 2015]. In addition 
to the deficiencies of mouse models of neurological dis-
eases, mouse models of human immunology, inflamma-
tion, and sepsis have also been found wanting (see Mestas 
and Hughes [2004], and citations therein), and the genet-
ics of development in rodents and humans differ in im-
portant respects [e.g., Liao and Zhang, 2008]. 

In retrospect, it is not difficult to understand why ro-
dent models of the human brain have important limita-
tions: rather than sharing a common brain organiza-
tion, comparative studies have revealed that mammals 
are remarkably diverse. For example, rodents and pri-
mates differ in the numbers of cortical areas, the fiber 
systems that link them, the numbers of neurons in a 
cortical column, the morphologies of pyramidal and 
non-pyramidal cells, the pattern of peptide expression 
by cortical neurons, the regional and laminar distribu-
tion of neurotransmitters and receptors, and the embry-
ology of the cortex [for reviews, see Preuss, 2001, 2007, 
2010; Hof and Sherwood, 2007; Molnár and Clowry, 
2012; Kaas, 2013] – and that is just the anatomy of the 
cortex! Differences in neuroanatomy and other aspects 
of brain biology are only to be expected, given the sub-
stantial phylogenetic distance between primates and ro-
dents (Fig. 1).

Cebidae

PlatyrrhiniCatarrhini

Haplorhini

Primates

Strepsirrhini

Euarchonta

Euarchontoglires

Glires

Ro
den

tia

La
gom

orp
ha

D
er

m
opte

ra

Sc
an

den
tia

Le
m

ur
oid

ea

Lo
ris

oid
ea

Ta
rs
io

id
ea

Cer
co

pith
ec

oid
ea

H
om

in
oid

ea

Pi
th

ec
iid

ae

Cal
lit

ric
hi

na
e

Ceb
in

ae

Ate
lid

ae

~25 mya

~45 mya Anthropoidea
(Simiiformes)

Fig. 1. The ordinal and supraordinal phylogeny of the primates. The primates (black lines) are a monophyletic 
group, the closest relatives of which are the Scandentia (tree shrews) and Dermoptera (colugos or flying lemurs). 
Together, these clades constitute the Euarchonta. The sister group of the euarchontans is Glires, comprised of the 
order Rodentia and order Glires (rabbits and pikas). Collectively, these groups constitute the Euarchontoglires. 
The primate phylogeny is from Fleagle [2013]. The phylogeny of Euarchontoglires is from Murphy et al. [2001].
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Why Marmosets?

It is evident that rodent models of the human brain 
and human neurological diseases have shortcomings 
that, for many purposes, outweigh the benefits of conve-
nience. The case for models more closely related to hu-
mans – non-human primate models, that is – has received 
new impetus. But in what non-human primate should ef-
fort and resources be concentrated? The most intensively 
studied non-human primates are species of the genus 
Macaca, most commonly M. mulatta, the rhesus ma-
caque. Macaques have many advantages: we have had 
captive colonies for many decades, and know much about 
their rearing, housing needs, behavior, and neurobiology. 
Macaques, however, have liabilities as well: they are rela-
tively large, mature slowly, and have a low reproductive 
rate (compared to smaller primates), are quite aggressive 
(especially M. mulatta), and their saliva and other body 
fluids and tissues can harbor a virus (macacine herpes vi-

rus, also known as herpes B virus) that is potentially lethal 
to humans [Wisely et al., 2018], necessitating specialized 
engineering and administrative controls. Collectively, 
these factors make macaque colonies expensive to estab-
lish and maintain, with the result that the number of ma-
caque facilities available to researchers is limited. More-
over, the diversity of primate species available for neuro-
scientific research has been markedly reduced in recent 
years. 

Recently, support has been growing for increased use 
of the common marmoset, Callithrix jacchus, as a non-
human primate model. In this role, marmosets have been 
placed at the center of the Japanese national brain initia-
tive, the Brain/MINDS project [Cyranoski, 2014; Okano 
et al., 2016], and the importance of marmosets has been 
highlighted in recent special issues of Neuroscience Re-
search (2015) and Developmental Neurobiology (2017) 
[see especially the essays by Burkart and Finkenwirth, 
2015; Mitchell and Leopold, 2015; Miller, 2017]. Interest 

Common marmosets
� Small (~400 g)
� Short gestation (~4.5 months)
� Twin births common 
� Rapid development (~1.5 years to adulthood)
� Old-age reached early (~8 years)
� Short-lived (~14–16 years in captivity)
� Small, unconvoluted brains

Rhesus macaques
� Larger (~6.5 kg)
� Longer gestation (6 months)
� Single births 
� Slower development (3–5 years to sexual maturity)
� Longer-lived (median = 25+ years; maximun = 40 years)
� Larger, convoluted brains
� Potentially dangerous (herpes B virus), requiring 
 major commitment to engineering and administrative
controls, personal protective equipment

Fig. 2. Some characteristics of marmosets and macaques relevant to their utility as models of human neurobiol-
ogy. The marmoset photograph is courtesy of Texas Biomedical Research Institute and Kathy West Studios. The 
macaque photograph is courtesy of the Yerkes National Primate Research Center, Emory University.
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in marmosets as research animals is not new: there is, in 
fact, a long history of research on marmosets, particu-
larly (although not exclusively) in the neurosciences, 
where the small size of the brain facilitates cortical map-
ping studies [Miller, 2017]. What is different today is that 
marmosets have come to be seen as having important ad-
vantages compared to macaques. Among the favorable 
features are their small size, rapid development, rapid re-
production, and a lifespan that is longer than that of mice 
but shorter than that of macaques [Okano et al., 2012; 
Sasaki, 2015; Tokuno et al., 2015; Salmon, 2016] (Fig. 2). 
In addition, marmosets are safer to work with, as they do 
not carry macacine herpes virus. These factors make them 
less expensive to rear and maintain than macaques, and 
the rapid development and short lifespan of marmosets 
means that studies of brain development and aging can 
be completed more quickly in marmosets than in ma-
caques. Marmosets also possess features of prosocial be-
havior that, due to convergent evolution, mirror those of 
humans, including female-male bonding and aspects of 
cooperative breeding, such as infant carrying and food 
sharing by adult males, the infants’ siblings, and even 
non-kin [Fernandez-Duque et al., 2009; Burkart and 
Finkenwirth, 2015; Erb and Porter, 2017; Schiel and Sou-
to, 2017]. Marmosets are also sometimes said to be mo-
nogamous, although they have been observed in the wild 
to form monogamous, polygynous, and polyandrous 
groupings [reviewed by Schiel and Souto, 2017]. 

Marmosets, then, are increasingly being viewed as a 
general non-human primate model with which to address 
issues of human behavioral and cognitive neuroscience 
across the lifespan. Nevertheless, there is no question that 
the greatest impetus for the current interest in marmosets 
stems from the opportunity they provide to apply tech-
niques for genetic modification that have been developed 
in mice to a non-human primate, including the powerful 
CRISPR/Cas9 techniques [Okano et al., 2012; Kishi et al., 
2014; Sasaki, 2015; see also Ledford, 2016]. Compared to 
macaques, the high rate of reproduction and rapid matu-
ration exhibited by marmosets could accelerate the pro-
cess of creating and evaluating genetically modified mod-
els. American researchers, perceiving the need for mar-
mosets to fill this role, have decried their present lack of 
availability in the USA [Servick, 2018].

The question I want to address here is whether mar-
mosets are really the best choice as a non-human primate 
stand-in for humans, paying particular attention to the 
advantages and disadvantages of marmosets compared to 
the currently dominant macaque model. My purpose is 
not to discourage research on one species or the other. In 

fact, I hold the view that our understanding of the funda-
mental principles underlying nervous system structure 
and function benefits from studying a diverse array of 
species [Preuss, 2000; Preuss and Robert, 2014; Striedter 
et al., 2014], as does the reconstruction of brain evolution. 
That said, the variety of primate species available for 
study by neuroscientists has shrunk dramatically over the 
past several decades. For this reason, and because of the 
concentration of resources that must be achieved to de-
velop genetically modified animals, for practical purpos-
es, we have been nearly reduced to having to choose be-
tween marmosets and macaques, or some combination of 
the two. While the choice of marmosets over macaques 
will seem to many to be an obvious one, given their many 
practical advantages, I think the case is less clear. To un-
derstand why, it is necessary to delve into the phylogeny 
and comparative biology of primates.

What Is a Marmoset? A Very Short Course in Primate 

Phylogeny and Brain Evolution

Primate Diversity and Taxonomy
It is tempting to think of non-human primates as a ho-

mogenous entity – “the primate” or “the monkey.” Yet 
primates are a diverse group of mammals consisting of no 
fewer than 200 species in several major subgroups, vary-
ing markedly in ecology, behavior, and social organiza-
tion [Fleagle, 2013]. With a few exceptions, the composi-
tion and relationships among these major subgroups are 
now largely agreed upon, and in any event the areas of 
controversy do not affect the following presentation. The 
platyrrhine primates, which include the marmosets, have 
historically been one of those exceptions, but there is now 
broad consensus about the relationships of marmosets 
and their close relatives, the tamarins and Goeldi’s mon-
key, which collectively constitute the callitrichine sub-
family of primates [Schneider and Sampaio, 2015]. For 
the purposes of this paper, I base the taxonomic terms, 
phylogenies, and divergence dates mainly on the author-
itative treatment of Fleagle [2013]. Additional valuable 
sources about primate evolution and anatomy include 
Ankel-Simons [2007], Gebo and Severson [2014], Martin 
[1990], Ravosa and Dagosto [2007], and Ross and Kay 
[2004], while Baum and Smith [2012] provide an excel-
lent introduction to modern phylogenetic concepts and 
methods. Note, however, that while there is now consid-
erable (if not universal) agreement about who is related 
to whom among primates – that is, the branching order 
of the primate tree – the same tree can be accommodated 
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within different systems of taxonomic nomenclature. So, 
for example, the marmosets and their close relatives are 
classified by some workers as a subfamily (Callitrichinae) 
and by others as a family (Callitrichidae). Fleagle [2013] 
treats them as a subfamily and I have adopted that usage. 
To complicate matters further, while most authorities 
prefer their taxonomies to consist only of monophyletic 
groups, others retain older, non-monophyletic taxono-
mies even when they accept modern interpretations of 
relationships. So, while most authors accept that tarsiers 
are more closely related to anthropoid primates than they 
are to the lemurs and lorises, and so prefer a main division 
of the primates into Strepsirrhini and Haplorhini, others 
prefer a more traditional taxonomy, grouping tarsiers 
with lemurs and lorises in the Prosimii, as distinct from 
the Anthropoidea (also known as the Simiiformes). Fi-
nally, I make little distinction in this paper between com-
mon marmosets and other marmoset species, or between 
rhesus macaques and other macaque species.

Primate Phylogenetics and Evolutionary 
Specializations
Groups of animals are defined by common ancestry; a 

natural group of animals (a “clade” in phyletic parlance) 
is the complete set of species descended from a single an-
cestral species, also known as a “monophyletic” group. 
The features (character states) of the last common ances-
tor (LCA) that distinguish a species or a clade from its 

close relatives (its outgroups) are referred to as its shared 
derived traits (informally: “specializations”). While com-
parative molecular data are increasingly used to identify 
clades and reconstruct their relationships, reconstructing 
the anatomy of ancestral species typically requires com-
parative anatomical data from living species, with addi-
tional data provided by fossils, when available. 

What, then, were the shared, derived traits present in 
the LCA of the primates? Answering this question re-
quires an examination of the living primate groups, and 
comparison to their close relatives. The closest relatives 
of the order Primates are the orders Scandentia (tree 
shrews) and Dermoptera (flying lemurs or colugos), fol-
lowed by Glires (the rodent-rabbit group; Fig. 1). The fea-
tures primates share that distinguish them from these 
non-primate groups include, among other things, close-
set, forward-facing eyes (orbital approximation and con-
vergence, respectively) surrounded by complete bony 
rings, and grasping extremities with opposable first digits 
and broad terminal digits tipped with nails rather than 
claws [Cartmill, 1974, 1992; Martin, 1968; Sussman and 
Kinzey, 1984] (Fig.  3). The behavioral reconstructions 
presented in the papers cited above suggest that the pri-
mate LCA was nocturnally active and foraged for flowers, 
fruit, and insects in the terminal branches of trees (the 
“fine-branch niche”) using their nail-tipped digits to 
grasp branches too fine to be effectively gripped with 
claws.

We can conduct the same kind of analysis for each of 
the different primate subgroups. Today, the order Pri-
mates is usually considered to consist of two infraorders, 
Strepsirrhini and Haplorhini. The former consists of two 
main groups, the lemurs of Madagascar and the loris-ga-
lago (bushbaby) group from Africa and Asia. The strep-
sirrhines are important for comparative analysis because 
they are in certain respects more conservative evolution-
arily than the haplorhines, retaining such ancestral mam-
malian characteristics as a dog-like wet, hairless nose 
(rhinarium), and a groove connecting the rhinarium to 
the vomeronasal organ (VNO), a chemosensory receptor 
epithelium that in turn sends neural projections to the ac-
cessory olfactory bulb (AOB). Moreover, many of the liv-
ing strepsirrhines are nocturnal, consistent with recon-
structions of the primate LCA, and strepsirrhines retain 
a number of ancestral features of the visual system (to be 
discussed below).

While strepsirrhines are the “wet-nosed” primates, 
haplorhines are the “dry-nosed” primates: they lack a wet 
rhinarium and associated median groove and typically 
have a shorter snout than the strepsirrhines. The eye is 

Cebidae

Marmosets

Goeldi‘s
monkey

Lion
tamarins

Tamarins

Capuchins
and squirrel monkeys

Callitrichinae
(47 species)

Ceb
in

ae

Ceb
ue

lla

Cal
lit

hr
ix
/M

ico

Cal
lim

ico

Le
on

to
pi

th
ec

us

Sa
gu

in
us
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rhine family Cebidae. Based on Fleagle [2013].



Critique of Pure Marmoset 97Brain Behav Evol 2019;93:92–107
DOI: 10.1159/000500500

enclosed partially (tarsiers) or virtually completely (an-
thropoids) posteriorly by a bony plate, and the orbits are 
set even more closely together than in strepsirrhines 
[Ross, 1996; Fleagle, 2013]. The haplorhines include the 
tiny, but huge-eyed, tarsiers and the anthropoids. The 
species-rich anthropoid group includes the platyrrhines 
and catarrhines – the New World and Old World anthro-
poids, respectively. The catarrhines consist of the homi-
noids (apes and humans) and the cercopithecoids (the 
Old World “monkeys”). The platyrrhines are usually re-
ferred to as the New World “monkeys.” Features of the 
visual system suggest that the haplorhine LCA was diur-
nal, with nocturnality evolving secondarily in tarsiers and 
in the platyrrhine owl monkeys.

Anthropoid primates are distinguished from other 
primates by a variety of modifications of the teeth and 
skull, as shown in Figure 4. Also, they are generally larger 
than other primates, and display a wide range of mor-
phologies, social organizations, and behaviors. Among 
anthropoids, the platyrrhine and catarrhine groups are 
distinguished by the breadth of the external nose, differ-
ences in the sutural patterns of the skull, in the structure 
of the middle ear, and in the number of teeth in the dental 
rows (Fig. 4).

“Monkey” – An Aside
I have put “monkey” is scare quotes above because the 

term is problematic, for at least two reasons. For one, it 
suggests that New World monkeys (platyrrhines) and 
Old World monkeys (catarrhines; cercopithecoids) are, 
collectively, a natural group, more closely related to each 
other than either is to apes and humans. In fact, Old 
World monkeys are more closely related to apes and hu-
mans than they are to New World monkeys (Fig. 1). From 
a phylogenetic perspective, “monkey” is not a monophy-
letic group and therefore does not represent a valid bio-
logical category [Baum and Smith, 2012].

The problem is amplified by the central place of “mon-
key” in an older, but highly influential, view of primate 
evolution, exemplified in the work of the pioneering pri-
mate anatomist W.E. Le Gros Clark, whose influential 
synthesis of primatology, The Antecedents of Man [Le 
Gros Clark, 1959] went through multiple editions. Like 
most scientists working before the modern era of phylo-
genetics, Le Gros Clark viewed the primate order as ap-
proximating an ascending scale, with tree shrew, lemur, 
tarsier, monkey, and ape stages, each representing an 
adaptive grade that increasingly approximates the highest 
stage, namely humans (Fig. 5). This view of primate evo-
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Fig. 4. The evolutionary history of the ana-
tomical characteristics of the callitrichines. 
See the text for citations. 
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lution has been rejected by modern evolutionary biolo-
gists, who understand evolution in terms of diversifica-
tion rather than ascent, a view better represented by the 
metaphor of a tree than by a scale [Baum and Smith, 2012; 
Preuss and Robert, 2014]. In primatology, this change has 
come about with the accumulation of knowledge about 
the differences and similarities displayed by the various 
primate clades. The idea that the New World platyrrhines 
and Old World cercopithecoids collectively represent a 
coherent monkey stage of primate evolution cannot be 
sustained today, nor can the idea that the living primates 
form a progressive series from simpler to more complex 
forms.

The Marmoset Anatomical Mosaic
The branching nature of the evolutionary tree implies 

that any natural group of animals can be understood as 
displaying a mosaic of features: some shared with its rela-
tives, by virtue of common ancestry, and some distinctive 
of that group – its derived or specialized features. It is in-
structive to consider a few of the morphological features 
that make up the marmoset mosaic (Fig. 4). These include 
character states inherited from the common ancestor of 
the primate order, including relatively forward-facing, 
closely spaced bony orbits. As anthropoids, however, 
marmosets exhibit even greater convergence of the bony 

orbits and their eyes are enclosed within a bony cup. As 
platyrrhines, and in contrast to catarrhines, marmosets 
have widely spaced nasal apertures and a ring-like tym-
panic bone to which the tympanic membrane is attached 
(in contrast to catarrhines, in which the tympanic bone 
extends laterally to form a tube), and they retain three 
premolars from their haplorhine ancestors. 

Marmosets also possess distinctive specializations. 
Marmosets and other callitrichines are remarkable for 
having lost the grasping hands and feet that characterize 
most primates, and for having transformed the digital 
nails into claw-like forms. These changes permit callitri-
chines to cling to tree trunks in order to exploit saps and 
gums as food sources. As callitrichines, marmosets also 
exhibit the loss of the most distal molar in the upper and 
lower tooth rows, which is retained in other platyrrhines 
and in catarrhines. This may be a consequence of the very 
small size of callitrichines, compared to other anthro-
poids. The C. jacchus adult body size averages approxi-
mately 320 g, which is in the mid-range for callitrichines 
(approximately 110–620 g), and as a group the callitrich-
ines show no overlap with the size range of other anthro-
poid primates [Martin, 1992]. The very small size of cal-
litrichines is evidently the result of phyletic dwarfism, a 
dramatic evolutionary reduction of size from ancestors 
that were larger [Ford, 1980; Rosenberger, 1984; Sussman 
and Kinzey, 1984; Martin, 1992; Montgomery and Mun-
dy, 2013]. 

Whereas callitrichines were once considered primitive 
anthropoids, recognition of the extensive and remarkable 
anatomical and behavioral specializations of callitrich-
ines has led to their being characterized as the most spe-
cialized of all the platyrrhine primates. As Sussman and 
Kinsey [1984] put it, “[Callitrichines] have a suite of high-
ly derived morphological features, and they can no longer 
be regarded as morphologically primitive New World 
primates.” Similarly, Fleagle [2013, p. 109] has concluded, 
“Callitrichines are the smallest and most morphological-
ly derived New World anthropoids.”

The Marmoset Neuroanatomical Mosaic
One can carry out a similar exercise with callitrichine 

and marmoset neurobiological features (Fig. 6). A dispro-
portionate number of these features involve the visual 
system, likely reflecting the fact that this is the part of the 
nervous system that has received the most comparative 
study in primates. For example, callitrichines possess a 
pair of retinal cone photopigments, namely the short-
wavelength sensitive (S) and medium-to-long wavelength 
sensitive (M/L) opsins [Jacobs, 2008], which they inher-
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Fig. 5. Le Gros Clark’s conception of primate evolution as a series 
of grades, including a monkey grade, culminating in humans 
[based on Le Gros Clark, 1959]. This older view stands in contrast 
to the modern conception of primate evolution as being tree-like, 
and in which Old World monkeys (cercopithecoids) are under-
stood to be more closely related to humans than are New World 
monkeys (platyrrhines). Note that tree shrews are no longer con-
sidered primates (although they are close relatives), and that none 
of the living insectivore species are considered close relatives of 
primates.
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ited from their mammalian ancestors. However, the X-
linked M/L opsin gene is polymorphic in callitrichines, as 
in many other platyrrhines, so that some females are tri-
chromats, whereas the males are dichromats [Jacobs, 
2008].

Callitrichines also possess a host of features inherited 
from early primates that appear to be primate specializa-
tions. These include an enlarged primary visual area (area 
V1) [Stephan et al., 1981], and a lateral geniculate nucleus 
(LGN) that has four main layers, two magnocellular and 
two parvocellular [Le Gros Clark, 1941; Kaas et al., 1978; 
Solomon and Rosa, 2014]. In some other anthropoids, 
such as macaques and humans (but not all other platyr-
rhines and catarrhines), the parvocellular layers have split 
and interdigitated, creating the appearance of a six-lay-
ered LGN [Kaas et al., 1978]. Marmosets also possess cy-
tochrome oxidase-rich “blobs” in the primary visual area 
[Solomon, 2002; Solomon and Rosa, 2014], which receive 
projections from the koniocellular cells of the LGN, cells 
that reside outside the magnocellular and parvocellular 
layers. This is a specialization of primate area V1 [Horton 

and Hubel, 1981; Horton, 1984; Preuss and Kaas, 1996], 
although similar features evolved convergently in carni-
vores [Murphy et al., 1995].

Callitrichines also share with haplorhines and with 
other anthropoids modifications of the visual system re-
lated to the change from ancestral primate nocturnality 
to diurnality [Ross, 1996] (Fig. 6). Among these are the 
loss of a reflecting tapetum lucidum, which enhances 
nocturnal visual sensitivity and is present in strepsir-
rhines and many other mammals [Martin, 1990, pp. 298–
300; Ollivier et al., 2004; Peichl, 2005]. Also, like most 
haplorhines, but unlike most strepsirrhines [Ross, 1996; 
Collins et al., 2005], callitrichines possess a retinal fovea, 
with a concentration of cones in and around the fovea 
[Troilo et al., 1993; Finlay et al., 2008]. Additionally, 
whereas area V1 in the catarrhines that have been exam-
ined show clear segregation of projections from the LGN 
representing the left and right eyes [Horton, 1984; LeVay 
et al., 1985; Horton et al., 1990; Florence and Kaas, 1992; 
Cheng et al., 2001; Adams et al., 2007], in callitrichines 
and several other platyrrhine taxa, the degree of segrega-
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tion may be more variable or reduced [Hendrickson et al., 
1978; Livingstone, 1996; Sengpiel et al., 1996; Roe et al., 
2005].

As in strepsirrhines and in other anthropoids that have 
been studied [Rosa and Tweedale, 2005; Lyon, 2006], 
marmosets possess a large number of extrastriate visual 
areas, divisible into dorsal and ventral systems, and in-
cluding the higher-order outposts of the visual system in 
the posterior parietal cortex and inferotemporal cortex 
[Rosa and Krubitzer, 1999; Paxinos et al., 2012; Atapour 
et al., 2018]. Marmosets possess additional regions of pri-
mate-specific, higher-order territories: these include the 
granular areas of the dorsolateral prefrontal cortex [Bur-
man et al., 2006; Burman et al., 2011], which are unique 
to primates [Preuss, 1995; Passingham and Wise, 2012]. 
Marmosets possess primate-specific limbic cortices  
[Preuss and Goldman-Rakic, 1991b; Vogt et al., 2013; 
Vogt and Paxinos, 2014], including posterior cingulate 
areas 23 and 31 [Armstrong, 1985; Zilles et al., 1986] and 
the posterior parahippocampal cortex [Palmer and Rosa, 
2006]. Finally, marmosets, like other strepsirrhine and 
anthropoid primates, possess a dorsal pulvinar (also 
known as medial pulvinar) nucleus [Brysch et al., 1990; 
Hackett et al., 1998; Roberts et al., 2007], a structure that 
appears to be unique to primates and is connected main-
ly with higher-order frontal, parietal, temporal, and lim-
bic cortical areas [Preuss, 2007].

In addition to these primate specializations, callitrich-
ines share with other haplorhines a reduction of the main 
olfactory bulb and AOB compared to early primates 
(Fig. 6), which themselves had reduced these structures 
relative to their mammalian ancestors [Stephan et al., 
1981; Barton, 2006]. In catarrhines, the major elements of 
the accessory olfactory system (VNO and AOB) are ab-
sent or vestigial in adults [Bhatnagar and Smith, 2007; 
Smith et al., 2014]. However, the VNO and AOB remain 
present in callitrichines and evidently in most other plat-
yrrhines [Smith et al., 2004; Bhatnagar and Smith, 2007; 
Smith et al., 2011], and consistent with this, vomeronasal 
receptor genes that appear to be functional are present in 
callitrichines [Moriya-Ito et al., 2018]. Thus, the acces-
sory olfactory system, including VNO and AOB, is prob-
ably functional in callitrichines, but not in catarrhines.

Callitrichines also possess a number of neuroanatom-
ical specializations that evolved after their separation 
from other platyrrhines (Fig. 6). For one, marmosets and 
tamarins are reported to have higher densities of cones in 
the peripheral retina (particularly in the nasal retina) than 
do other platyrrhines or catarrhines [Troilo et al., 1993; 
Finlay et al., 2008]. In the somatosensory cortex, all an-

thropoid primates that have been examined, with the ex-
ception of callitrichines, have a pair of representations of 
the body surface’s cutaneous receptors, occupying areas 
3b and 1 of the primary somatosensory region (S1) [Kaas, 
1983; Padberg et al., 2007]. The callitrichines, however, 
have only a single cutaneous representation, correspond-
ing to area 3b [Carlson et al., 1986; Krubitzer and Kaas, 
1990]. Callitrichines also lack monosynaptic projections 
of corticospinal neurons onto the motor neurons of the 
spinal cord ventral horn [Kondo et al., 2015]. In this, cal-
litrichines differ from Homo and Macaca, among catar-
rhines, and at least Cebus among platyrrhines – all ani-
mals with well-developed digital opposability and grasp-
ing abilities [reviewed by Padberg et al., 2007]. These 
features of the somatosensory and motor systems may be 
related to callitrichine modifications of gross anatomy 
and locomotor behavior: it seems plausible that with the 
anatomical transformation of flattened nails into claw-
like forms, and the behavioral change from digital grasp-
ing to gripping with the claws, there was a reduction in 
the role of sensory feedback from the digital pads and nail 
beds to the corticospinal system.

Callitrichines also have very small brains, much small-
er in absolute terms than those of any other anthropoids, 
and among the smallest relative to body size [Isler et al., 
2008]. While data on the size of higher-order cortical re-
gions relative to the rest of the cortex are not available for 
comparing marmosets to other primates, visual inspec-
tion of recent marmoset cortical maps [Paxinos et al., 
2012; Majka et al., 2016; Atapour et al., 2018] and quan-
titative analysis of regional size change [Chaplin et al., 
2013] suggest that portions of the prefrontal cortex are 
smaller in marmosets than in other, larger-brained plat-
yrrhines (Cebus [Cruz-Rizzolo et al., 2011]) and catar-
rhines (Macaca and Homo [Preuss and Goldman-Rakic, 
1991a; Petrides and Pandya, 1999; Sallet et al., 2013; Mar-
kov et al., 2014; Neubert et al., 2014; Glasser et al., 2016]). 
Chaplin et al. [2013] identified the temporoparietal junc-
tion cortex and anterior cingulate cortex as additional re-
gions that are relatively larger in macaques and humans 
than in marmosets. 

Marmosets Compared to Macaques
It is useful to summarize some features shared by mar-

mosets and macaques and those they do not share (Fig. 7). 
Marmosets and macaques share a number of features by 
virtue of being primates (reduced main olfactory bulbs, 
V1 blobs; multiple extrastriate areas divisible into dorsal 
and ventral streams, new higher-order association areas, 
addition of the dorsal pulvinar) and by virtue of being 
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anthropoid primates (a fovea, with a central concentra-
tion of cones). In addition, there are features of ancestral 
primates and ancestral anthropoids that marmosets and 
macaques do not share, notably the accessory olfactory 
system (present in marmosets, absent or vestigial in ma-
caques and other catarrhines). The visual systems of mar-
mosets and macaques also differ in a number of respects 
that mainly reflect catarrhine specializations, involving 
opsin proteins, the LGN, and the primary visual area. Fi-
nally, marmosets differ from macaques in ways that re-
flect callitrichine specializations, including differences in 
the retinal distribution of photoreceptors and in the sen-
sorimotor cortex, and a likely reduction of brain size that 
disproportionately affected the higher-order association 
cortex.

Despite the limitations of the comparative neuroana-
tomical data set, it is clear that marmosets are, in a variety 
of ways, more different from humans than are macaques. 
That is not to say that macaques do not also differ from 
humans in significant ways – they clearly do. Even in the 
visual system, commonly considered to differ only in mi-
nor, quantitative ways between humans and macaques, 
one can in fact identify numerous differences at all levels 
of the visual system [Preuss, 2004; Preuss and Robert, 
2014]. Every clade has its own mosaic of features, includ-
ing its own specializations, and macaques are no excep-
tion. Nevertheless, for the purpose of modeling the hu-
man condition, macaques (along with other catarrhines) 
have the advantage of being much more closely related to 
humans than are marmosets, sharing about 20 million 
years of additional common ancestry (Fig.  1). Further-

more, human-macaque comparisons are uncomplicated 
by the platyrrhine and callitrichine specializations pres-
ent in marmosets, and by the retention in marmosets of 
ancestral features lost in catarrhines (Fig. 6, 7). 

Additional Considerations

The foregoing discussion has focused on anatomical 
features of the nervous system, primarily because anato-
my has received more comparative study than other di-
mensions of nervous system organization. As our knowl-
edge of primate neurobiology grows, so will the number 
of different characters that can be evaluated, and, assum-
ing we study a large enough variety of species, this knowl-
edge will extend beyond anatomical features to include 
life history and behavior, on the one hand, and biochem-
istry, molecular biology, and genomics, on the other. 
Even with the limited information currently available, 
however, there is evidence for additional differences be-
tween callitrichines and catarrhines that likely bear on the 
utility of marmosets as stand-ins for humans in experi-
mental studies.

I have noted above some differences in aspects of high-
er-order cortical organization between the small-brained 
marmosets and the larger-brained platyrrhines and catar-
rhines. The very small size of the marmoset brain makes 
it very likely that the functions of its cortical systems dif-
fer in important ways from those of larger-brained pri-
mates, if only because of the much more limited amount 
of neural machinery marmosets and other callitrichines 
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have to work with. In this regard, it is significant that two 
recent meta-analyses concluded that absolute brain size 
is a better predictor of cognitive function than is brain 
size relative to body size [Reader et al., 2011; Deaner et al., 
2007] and a third indicated that absolute brain size is the 
best predictor of self-control [Maclean et al., 2014].

Given the small size and rapid development of mar-
mosets, it is tempting to view marmoset life history as a 
condensed version of that of longer-lived primates. Yet 
there is evidence primates vary in patterns of postnatal 
growth and development. Bogin [2007] indicates that cer-
copithecoid and hominoid development includes an ex-
tended period of slow growth, defining a juvenile stage 
that has no counterpart in marmosets. This difference, 
and the specializations of human development recog-
nized by Bogin – namely, the addition of childhood and 
adolescent stages – imply differences in the hormonal 
control of development [Bogin, 2009]. It is noteworthy 
that comparative studies of humans, macaques, and mar-
mosets have identified remarkable species differences in 
the production of the androgen hormone dehydroepian-
drosterone (DHEA) [Abbott and Bird, 2009], which is in-
volved in sexual maturation. There is also a remarkable 
sex difference in marmosets, with adult males lacking a 
functional zona reticularis [Pattison et al., 2009], the com-
ponent of the adrenal gland that produces most of the 
body’s DHEA.

Callitrichines, like humans, engage in prosocial behav-
iors that are unusual among primates. These include co-
operative breeding, in which adult males as well as fe-
males participate in carrying and sharing food with off-
spring, and alloparenting, in which other individuals, 
both related to and unrelated to the mother, contribute to 
the support of her offspring [Fernandez-Duque et al., 
2009; Erb and Porter, 2017]. These have been cited as pos-
sible instances of convergent evolution in the human and 
callitrichine clades [Burkart and Finkenwirth, 2015], and 
there are other behavioral and cognitive similarities be-
tween humans and marmosets [Miller et al., 2016] that 
could be viewed in the same light. In evolutionary biolo-
gy, convergence is considered to provide information 
about the similarities in selection pressures that shape 
similar phenotypes [Arendt and Reznick, 2008]. Conver-
gence may not be what one is looking for in a human 
model, however, as convergently evolved features of so-
cial behavior or other phenotypes need not share homol-
ogous neural and genetic underpinnings [Arendt and 
Reznick, 2008]. Moreover, the proximate mechanisms 
regulating social behavior in callitrichines likely differ 
from those of humans in some important respects, con-

sidering that callitrichines mark their substrates, and 
sometimes other group members, with a mixture of urine 
and circumgenital secretions, and these chemical cues 
have been postulated to regulate the reproductive physi-
ology of group individuals [Epple, 1970; Abbott et al., 
1997; Lazaro-Perea et al., 1999; Smith et al., 2001]. As in 
many other mammalian groups, detection of such cues 
likely involves the accessory olfactory system, which is 
absent or vestigial in catarrhines, as discussed above.

Callitrichines are highly unusual among mammals in 
that their dizygotic twins exchange cell lines very early in 
development, resulting in genetically chimeric individu-
als [Benirschke et al., 1962; Gengozian et al., 1964]. Al-
though the range of tissues that exhibit chimerism is con-
troversial (compare Ross et al. [2007] and Sweeney et al. 
[2012]), it is clear that it involves hematopoietic tissues, 
such as blood and lymph cells, and possibly also germ-
line tissues [Sweeney et al., 2012]. Chimerism could com-
plicate the interpretation of genetic modification experi-
ments because the presence of a modified gene in blood 
cells collected in routine assays would not necessarily in-
dicate its presence in neural cells. In addition, the analysis 
of phenotypic responses in experiments involving brain 
damage, infection, inflammation, and aging could be 
complicated by the fact that macrophages and other com-
ponents of the immune system that infiltrate brain tissue 
in these conditions are derived from hematopoietic cells. 

There are numerous differences in the distribution of 
receptors in the cortex of marmosets compared to catar-
rhines (based mainly on studies of macaques and hu-
mans). These include differences in the regional and lam-
inar distribution of adrenergic α1, muscarinic M1 and 
M2, and serotonergic 5-HT2 receptors in the hippocam-
pus [Kraemer et al., 1995] and in the laminar distribution 
of GABAA and 5-HT1 receptors in the primary visual cor-
tex [Gebhard et al., 1993]. Given the lack of evidence 
about receptor distribution in platyrrhines other than 
marmosets, it is unclear whether these represent differ-
ences between platyrrhines and catarrhines or between 
marmosets and catarrhines or, most likely, some combi-
nation of both. There is evidence for additional molecular 
and biochemical differences as well, for example, in the 
distribution and concentrations of manganese and zinc 
in marmoset and human brains [Knauer et al., 2017], and 
in the neuroendocrinology of stress and reproduction be-
tween platyrrhines and catarrhines [Bercovitch and 
Ziegler, 2002; Abbott et al., 2003].

The existence of differences such as these should not 
be surprising, given the longer period of shared ancestry 
between humans and macaques compared to humans 
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and marmosets (Fig. 1). The greater shared ancestry of 
humans and macaques is reflected in genomic similarities 
as well: the genome-wide identity of amino-acid coding 
nucleotide sequences is 94.0% for macaques and humans, 
compared to 91.7% for marmosets and humans [Harris 
and Rogers, pers. commun.; see also Worley et al., 2014]. 
Given that chimpanzees and humans, which are even 
more similar genetically, exhibit a remarkable diversity of 
genomic, molecular, and biochemical differences [e.g., 
Konopka et al., 2012; Bauernfeind et al., 2015; Reilly et al., 
2015; Mora-Bermúdez et al., 2016; Li et al., 2017], there is 
a great deal of room for molecular and biochemical dif-
ferences between marmosets and humans, and corre-
sponding differences in nervous system organization and 
function. In fact, a recent comparison of human-marmo-
set orthologs [Harris, pers. commun.] provides evidence 
for selection acting on marmoset genes, identifying 49 
potentially positively selected genes at p < 0.01 with a role 
in the brain, based on Gene Ontology Biological Process 
terms (the analysis employed HyPhy aBSREL [Smith et 
al., 2015] to evaluate the selection on orthologs identified 
in Ensembl v.91 [Herrero et al., 2016]). 

Conclusions

Given the variability of primate brain organization, 
how do we choose the model or models most relevant for 
understanding the human brain and behavior? In view of 
the decreasing diversity of primate species available for 
research, and the growing imperative to generate geneti-
cally modified primate models, we are likely faced with 
the choice of marmosets or macaques or some combina-
tion of both. Therefore, it is important to evaluate the 
relative merits of marmosets and macaques, as non-hu-
man primate models for understanding the human brain 
and behavior. From the standpoint of cost and conve-
nience, marmosets have some clear advantages, such as 
their rapid rate of growth and reproduction, which pro-
vide the potential for the speedier development of genet-
ically modified models and for the speedier completion 
of developmental and aging studies. From a purely bio-
logical standpoint, however, macaques have clear advan-
tages over marmosets: they have more in common with 
us, owing to our closer phylogenetic relationship.

There are additional points in favor of macaques. 
Compared to marmosets, we have much more experience 
with macaque husbandry and with the assessment of ma-
caque neurobiology and behavior, including changes 
across the lifespan. It should be remembered, too, that the 

very characteristics of marmosets that make them conve-
nient experimentally for the purposes of genetic modifi-
cation, studies of development and aging, and cortical 
mapping – their small size, rapid development, and short 
lifespan, which are all likely related to the callitrichine 
specialization of dwarfing – are ways in which marmosets 
differ from humans but in which macaques are more like 
humans (Fig. 2). Finally, while it is clear that marmosets 
offer advantages for genetic modification, it is not clear 
that these advantages involve anything more than cost 
and speed of development: the same procedures appear 
to be feasible in macaques, and in fact China’s brain proj-
ect, which includes gene-editing approaches, focuses on 
macaques [Poo et al., 2016].

From a research-resources perspective, if the question 
is how best to understand the features of human brain 
organization that cannot be studied directly in humans, 
the best solution (in lieu of even broader studies) would 
be to study both macaques and marmosets. Studying 
multiple species is necessary for reconstructing evolu-
tionary history and, in particular, for disambiguating fea-
tures shared among larger groups from the specializa-
tions of subgroups. So, for example, features shared by 
both macaques and marmosets are likely to have been 
present in the immediate ancestry of catarrhines (includ-
ing humans), whereas features present only in macaques, 
for example, might be shared derived features of ma-
caques, or of cercopithecoids, or of catarrhines, or of an-
thropoids, and so forth down the phylogenetic tree – 
there is no way to tell by studying only macaques. Analo-
gous considerations apply to research limited to 
marmosets. Therefore, we should view marmoset and 
macaque research as complementary [see also Mitchell 
and Leopold, 2015; Miller, 2017]. If we could only study 
one animal from which to extrapolate results to humans, 
the choice would necessarily be macaques, given their 
longer period of shared ancestry with humans – the like-
lihood of a given feature of macaques having a homo-
logue in humans is greater than for a given feature of mar-
mosets. However, it would be extremely unfortunate if we 
were forced to make that choice, as it would be inimical 
to good science.

If the question is, what animal is best for genetic mod-
ification, measured as the rate at which translatable re-
sults can be obtained, the answer is less clear, depending 
as it does on two unknown quantities: the rate at which 
models can be developed and the likelihood that a model 
will yield results that translate to humans. Marmosets 
probably have the edge with respect to model develop-
ment, whereas macaques probably have the edge in trans-
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latability. We could perhaps narrow this knowledge gap 
by carrying out parallel pilot experiments in macaques 
and marmosets to try to estimate those rates. However, 
obtaining translatable results for a single gene in one spe-
cies is no guarantee that other genes will yield favorable 
results in that species. Moreover, it is entirely possible 
that neither macaques nor marmosets will provide trans-
latable results for a given gene of interest, but that some 
other primate (or even non-primate) species will. The 
most reasonable strategy would be to hedge our bets, de-
voting some resources to marmosets, while maintaining 
a robust investment in macaques. One hopes, too, that we 
will ultimately be able to expand the range of primate and 
non-primate species to which we can apply gene editing 
and other advanced research techniques.

Practitioners of genetic modification, hoping for a rap-
id transition from mice to primates and wishing to regard 
marmosets as “the new mouse,” might find these pre-

scriptions unsatisfactory. But just as the mouse model, 
convenient as it is, has run afoul of the diversity of mam-
malian biology, so might the marmoset model run afoul 
of the diversity of primate biology. Be careful what you 
wish for.
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