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Abstract. Medical image interpretation is a difficult problem for which
human interpreters, radiologists in this case, are normally better equipped
than computers. However, there are many clinical situations where radi-
ologist’s performance is suboptimal, yielding a need for exploitation of
computer-based interpretation for assistance. A typical example of such
a problem is the interpretation of mammograms for breast-cancer detec-
tion. For this paper, we investigated the use of Bayesian networks as a
knowledge-representation formalism, where the structure was drafted by
hand and the probabilistic parameters learnt from image data. Although
this method allowed for explicitly taking into account expert knowledge
from radiologists, the performance was suboptimal. We subsequently car-
ried out extensive experiments with Bayesian-network structure learning,
for critiquing the Bayesian network. Through these experiments we have
gained much insight into the problem of knowledge representation and
concluded that structure learning results can be conceptually clear and
of help in designing a Bayesian network for medical image interpretation.

1 Introduction

The past decade has seen a transition in radiology from film-based storage of
images to digitised, computer-based storage. The digitisation of medical im-
ages has offered a unique opportunity for adding computer-aided support to the
traditional, human interpretation of medical images by radiologists. Although
radiologists are well-trained for the task of image interpretation, there is room
for improvement as misinterpretation of medical images is far from rare. Com-
puters are successfully used in many areas of health care; however, it has been
hard to match, and certainly surpass, the capabilities of expert radiologists in
interpreting medical images. Medical images are noisy and patient specific, and,
thus, computers have difficulty in coping with them.

The research described in this paper focuses on one of such hard medical
image interpretation tasks: the interpretation of X-ray images of the breasts,
usually called mammograms, for breast-cancer detection. Although there has
been considerable progress in the last decade in computer-aided interpretation
of mammograms, most of the improvement have come from new pattern recog-
nition techniques which detect potentially suspicious breast regions. The proper
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interpretation of mammograms, however, requires an approach similar to the one
used by radiologists, who normally compare image parts and different images of
the breasts to each other, i.e., they interpret potentially suspicious regions of the
breasts in the context of all other available image information.

Bayesian networks have been used in our research as they permit integrat-
ing knowledge and information from different sources. In the early stages of our
research, we therefore decided to design a Bayesian network that incorporated
the most important image features of the two mammograms available for each
breast; construction of its graph structure was guided by expert knowledge.
This Bayesian network can, thus, be looked upon as a knowledge representa-
tion of mammogram interpretation: it offers a compact representation of how
the features extracted from an image are interpreted in terms of breast tissue
architecture and presence of masses (mammographic abnormality signs).

Extensive experimentation with the Bayesian network using image data, how-
ever, yielded disappointing results, which we did not fully understand. To gain
more insight into the structure of the Bayesian network, we subsequently carried
out work on learning Bayesian network structures, both restricted and unre-
stricted, from image data with the aim to improve the structure of the network.
In this paper we discuss at length how structure learning succeeded in achieving
this goal. The results can be seen as an application of learning for the purpose
of knowledge critiquing.

The structure of the paper is as follows. In the next section, the issue of
mammogram interpretation is reviewed. In Section [8] we briefly summarise the
principles underlying Bayesian network representation and learning, and present
the Bayesian network for mammogram interpretation. In Section M, the different
experimental methods and associated results are discussed. Lessons learnt are
given attention too in Section

2 Background

2.1 Mammographic Analysis

Mammography is the diagnostic procedure to detect breast cancer in the breasts
using low-dose X-rays. The resulting mammograms are made using different pro-
jections, also called views. The most common views of the breast are mediolateral
obligue (MLO) and craniocaudal (CC); see Figure [[I The MLO view is a 45°
angled side view, showing a part of the pectoral muscles. The CC view is an
projection of the breast from above with the nipple centered in the image.

Because a mammogram is a projection of the breast, its layers of breast tis-
sue are superimposed. The X-ray attenuation, which is due to absorption and
scattering of photons, describes the density of a region. This results in contrast,
or whiteness, of a region, on the mammogram. The darker areas of the breast
are non-dense and consist mainly of fatty tissue. The lighter areas are dense and
contain lobules, ducts, and possibly masses.

The interpretation of mammograms by radiologists produces regions of inter-
est, or regions for short. A region is also referred to as a lesion or an abnormality.
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Fig. 1. Right and left breasts in (a) MLO view and (b) CC view

2.2 Feature Extraction and Computer-Aided Detection

Studies have shown that radiologists fail to identify a significant number of
cases with breast cancer, i.e., false negatives, due to misinterpretation. The rea-
sons for these misses are unclear [3]. Audits have shown that abnormalities that
are clearly visible in retrospect must have been overlooked or its signs were
misinterpreted.

To increase the detection rate, computer-aided detection (CAD) systems are
being developed. These systems use pattern recognition techniques to extract fea-
tures in a mammogram, which are subsequently used to identify regions that are
possibly suspicious. With such markings, the CAD system can assist the radiolo-
gist while analysing mammograms with the detection of breast abnormalities.

The CAD system [3] we have used employs four steps to classify regions:
(1) mammogram segmentation into breast tissue, background, and the pectoral
muscles; (2) initial detection of suspicious pixel-based locations; (3) extraction of
regions and region-based features, and (4) classification of the extracted regions
as cancerous or normal using a neural network classifier. Note that in practice
most patients with breast cancer have one or two cancerous regions at most. The
CAD system, however, often finds more, which then are false positives. There
reason for these false positives is that the CAD system uses local information
only to determine whether a region is suspicious. Complementary information
from the other view, or previous mammograms, would allow concluding whether
a positive region is true or false positive, and this is the way radiologists work.

The region features used in this study can be categorised into two groups:

A. Observed features extracted from the image in step (3) mentioned above:

The relative location of the region (LocX and LocY);

The shortest distance of the region to the skin (d2skin);

Contrast;

— The presence of radiodensity similar to that of adjacent tissue (IsoDens);
— Spiculation, indicating whether the region margin has a spiky pattern;

— The presence of a circumscribed lesion (FocalMass);

— Linear texture (LinTex), which is typical for normal breast tissue;

— Size of the region (RegSize).
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B. Calculated features, computed from classifiers based on pixel- or region-based
features:

— The malignancy pixel-based likelihood (MassLik);
— The false-positive level of a region (FPLevel), indicating the average number
of normal regions in an image with the same or higher likelihood scores.

3 Bayesian Network Principles

3.1 Bayesian Networks for Knowledge Representation

Consider a finite set of random variables X, where each variable X; in X takes on
values from a finite domain dom(X;) and let P be a joint probability distribution
of X. A Bayesian network B = (G, P), BN for short, is a probabilistic graphical
model that represents conditional independence assumptions in the form of an
acyclic directed graph, ADG for short, Gj; it is assumed that those conditional
independences are obeyed by the associated joint probability distribution P, and
P is then called Markov over G [9]. The graph G = (V, A) is represented by a
set of nodes V corresponding one to one to the random variables in X and a
set of arcs A C (V x V) corresponding to direct causal relationships between
the variables. Independence information is modelled in an ADG by blockage of
paths between nodes in the graph by other nodes. BNs have the virtue that they
can be both manually constructed and learnt from data. Manual construction is
usually guided by interpreting arcs in Bayesian networks as causal relationships.

Initially in the research we constructed a Bayesian network based on available
domain knowledge, shown in Figure [ [4]. The BN incorporates the features de-
scribed above and it is capable of interpreting MLO and CC features at the same
time, allowing the integration of information from two views. The simultaneous
interpretation of the MLO and CC features is modelled by the corresponding
hidden variables (in light grey in the figure), which are not directly observed or
measured in the CAD system, but represent the way radiologists would evaluate
the mammographic characteristics of a finding. The variable Finding represents
the conclusion whether or not there is cancer in the breast, i.e., whether or not
two linked regions in MLO and CC views represent a lesion. Central to the BN
model are also the hidden variables AbDensity and AbStruct, indicating the pres-
ence of abnormal density and structure and they have two states: “present” and
“absent”. Furthermore, since the two calculated features MassLik and FPLevel
are extra overall indicative measures for suspicious regions, we use them as con-
ditional variables to determine a priori the probability of having a finding, mod-
elled by their incoming arcs to the variable Finding. On the other hand, every
observed feature partially characteristizes a finding and this is represented by
the causal arcs outgoing from Finding.

3.2 Structure Learning

Structure learning is basically finding the Bayesian network graph, or structure
as is often said, that fits the data best. The number of acyclic directed graphs
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Fig. 2. Feature-based BN model for the interpretation of mammograms; indicated is
that each feature node is linked to a corresponding CC and MLO feature [4]

is, however, more than exponential in the number vertices of the graph [I1].
Exhaustively search for the best graph is, therefore, infeasible for most problems.
However, for this problem, which concerns 11 variables, we are on the edge of
what is still possible. Removing only 2 variables would make it feasible to carry
out exhaustive search, although such would, of course, be very time consuming.

Structure learning is an optimisation problem, where a score measure is used
to judge the fitness of the model, and a search method allows exploring the
search space of acyclic directed graphs. The score measure always includes some
measure of the likelihood of the data given the graph and its probabilistic pa-
rameters, Pr(D | G, P), where D are the data, or the marginalised likelihood
Pr(D | G), where the parameters are marginalised out. In addition, they typ-
ically include the possibility to include a prior on the structure, Pr(G), and a
penalty for unwanted complexity of graph structure. The two score measures
used in this research are the Bayesian score, which is based on marginalised
likelihood, and the Bayesian Information Criterion (BIC), which is likelihood
based [6]. These measures take into account that graphs, though different in
structure, may encode the same conditional independence assumptions, i.e., are
Markov equivalent as is said [5].

As was argued above, use of exhaustive search is uncommon; more common
is the use of greedy search, which searches the space of ADGs, or the space of
equivalent classes of structures, called essential graphs (EG), i.e., greedy search
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in EG space. One of the first, and still popular, structure learning methods is
the K2 algorithm introduced in [2]. It is a special case of a greedy ADG search
algorithm; it minimises the search space by having an initial order on the nodes
and by restricting the number of parents a node can have.

In addition to structure learning, we also explored three simpler BN structures
for comparison: a fully disconnected graph (all variables are independent), naive
Bayes (NB), and tree-augmented network (TAN). In this order, the network
structures are expected to give an increasingly better fitting model, although
not as good as the BNs obtained through structure learning.

4 Structure Learning from Mammographic Data

Here, we describe the following set of experiments with actual mammographic
data in order to explore various knowledge representation schemes: (i) learning
different structures based on a hand-constructed expert sub-model, (ii) compar-
ing the structures learnt based on the observed and calculated features, (iii) mod-
ifying the greedy search algorithm for mammographic structure learning, and (iv)
studying the robustness of the structures learnt based on different data subsets.

4.1 Data and Experimental Set-Up

The image dataset used here was obtained from the Dutch breast cancer screen-
ing programme and contained data of 1063 cases, of which 383 were cancerous
as confirmed by pathological reports. For each case, both the CC and MLO
views were present. For each mammogram, the 5 most suspicious regions were
selected. In the experiments, structures were learnt using separately the CC data
and MLO data. The dataset is divided into a training set, used for learning the
models, and a test set, used for scoring the models afterwards. These sets have
an equal distribution of cancerous regions. The experiments described in this
section were performed using the Bayes Net Toolboxes (BNT) [8], [7].

Most structure learning implementations work with discrete values for the
variables. The features in the dataset were real-valued, so we discretised them
using a histogram algorithm built in [7], which finds an optimal number of bins
according to a cost function based on Akaike’s criterion [I]. Since for some of the
variables, the obtained number of bins was too high (up to 33), we conducted
additional structure testing experiments with the resulting discretised data in
order to obtain reasonable discrete ranges. To see the influence of discretisation,
we learnt TAN and GS structures and estimated the probability distributions
based on various datasets for which the maximum number of bins was varied from
2 to 20. For every learnt structure, we computed the Bayesian score as a measure
for fitting the data and the area under the receiver operating characterictic
curve (AUC) as a measure for classification performance. The results indicated
that the data fitting and accuracy capabilities of the structures learnt worsen,
especially when the number of bins per variable was larger than 10. Considering
the most optimal results obtained from both TAN and GS algorithms, we have
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restricted the final number of values between 2 and 7. We want to emphasise
that discretisation algorithms were not the main topic of the reported research,
which is why we do not go into detail (cf. [I0] for more detail); discretisation
was rather used as a preprocessing step to facilitate structure learning.

For the K2 algorithm, the node ordering was derived from the expert model
and other orderings were studied using the BIC score. For the greedy search
algorithm an empty network was used as an initial structure.

4.2 Results

Learning structures based on an expert model. A sub-model containing
5 MLO variables was selected from the expert model (cf. Figure, so that it
was possible to perform exhaustive search. The Bayesian score of this sub-model
is —48332. The fitness of the models learnt was compared to the two reference
models—fully disconnected and naive Bayes—which do not consider any of the
knowledge incorporated in the expert model. Next we present the structures
learnt by various algorithms using the 5 variables from the expert sub-model.

The TAN algorithm learnt the structures using the fixed class node Finding.
All possible TAN structures were learnt and one of them using FPLevel as an
ancestor to the remaining variables is shown in Figure with a Bayesian
score of —44915.

For the K2 algortihm all possible node orderings were investigated. The model
with the highest score is shown in Figure For the initial structure of the
greedy search algorithm (GS), different network structures have been used: (i)
a fully disconnected structure, (ii) naive Bayes, and (iii) a structure learnt us-
ing K2. They all resulted in a network structure equivalent to the structure
learnt by K2. Finally, we learnt the optimal network structure using exhaus-
tive search. All possible network structures with 5 variables (29281) were scored
and the best performing model found with exhaustive search is chosen, which
is the same model found using K2 and GS. The Bayesian score for this model
is —43941. These results imply that K2, GS, and exhaustive search algorithms
have found the structure that fits better to the data than the TAN algorithm.
Since the search space of all possible ADGs is relatively small and the model is
very restricted, this is not surprising.

The reference models—fully disconnected and naive Bayes—yielded Bayesian
scores of —49006 and —48077, respectively, indicating a fit to the data worse
than for the structure-learnt models.

When considering the resulting structures in comparison to the expert model
in Figure it can be observed that in the model learnt by K2, GS and
exhaustive search Finding is conditioned on MassLik and FPLevel, as in the expert
model, but the location variables LocX and d2skin are not conditioned on Finding
and they have a direct causal relationship with the two calculated features. For
the TAN model, fixing the class node to be Finding results in a structure where
all the remaining features were conditioned on this node.



Critiquing Knowledge Representation in Medical Image Interpretation 63

Finding d2skin

FPLevel FPLevel FPLevel
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Fig. 3. Structures based on (a) expert sub-model, learnt by (b) TAN, and (c) K2, GS
and exhaustive search

Table 1. Bayesian scores (x10%) using all and observed variables

All variables Observed variables

CcC MLO CC MLO
NB -9.9787 -10.1710 -8.0157 -8.1824
TAN -9.5442 -9.7866 -7.7521 -7.9304
K2 -9.4059 -9.6489 -7.5682 -7.7859
GS  -9.3385 -9.6023 -7.5612 -7.7728

Method

Influence of calculated features. In this experiment we investigated the influ-
ence of the calculated features, MassLik and FPLevel, on the network structures
when learning models from data. Models were learnt using all 11 variables (ob-
served and calculated) and using only observed variables. The results are shown
in Table[l The best performing algorithm is GS whose resulting structures from
both the observed and calculated features are shown in Figure [l

A closer look at the structures learnt revealed that Finding is conditioned
only on FPLevel and does not have any children. This means that Finding is
conditionally independent of the remaining features given the false-positive level
of the region. Hence, the entire structure could be replaced by the very simple
model: FPLevel — Finding when the false-positive level is known. This is not a
surprising result as FPLevel is the outcome of the neural network classifier of the
CAD system to predict the likelihood for cancer and one would expect a strong
dependence with Finding.

Another observation is that the features LocX, LocY and d2skin, describing
the location of the region in the breast, are related in all learnt models. In some
models, especially those learnt using CC data, these variables are independent
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Fig. 4. ADG structures learnt by the GS algorithm with the observed and calculated
features

of the other variables. It was also expected that the structures learnt would
reveal causal relationships between Spiculation and LinTex as these features are
relatively complementary to each other: if linear texture is present, the region
is not spiculated and vice versa. However, in only 25% of the learnt models this
relation was present.

Modifying greedy search. In the previous experiments we observed that in
all cases where MassLik and FPLevel variables are present, Finding becomes con-
ditioned on FPLevel. Here we learnt structures using greedy search based on
data without including FPLevel and MassLik in the learning process, but only in
the scoring step of the algorithm. The greedy search algorithm started with a
initial network structure G, which consisted of the nodes Finding, LocX, LocY,
d2skin, Contrast, Isodense, Spiculation, FocalMass, LinTexN, and RegSize without
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MassLik FPLevel

Finding

MassLik FPLevel @

FocalMass

(a) MLO (b) CC

Fig. 5. ADG structures learnt by the modified GS algorithm

arcs. For each step, it defined a set of neighborhood graphs NG. A copy of this
set NG’ is made and each DAG in NG’ is modified by adding FPLevel and
MassLik as conditions on Finding: FPLevel — Finding < MassLik. For each mod-
ified DAG, the score is computed. The (modified) graph with the highest score
was selected and its (unmodified) original version was used for the next iteration.
The search was stopped when there was no neighborhood network graph with
a higher score than the current structure. For the CC data the Bayesian score
was —9.5461 (x10*), whereas for the MLO data the Bayesian score was —9.7830
(x10%). The final networks are depicted in Figure Bl

For the three location variables we observed again a strong causal relationship,
discovered for both views and for CC they were independent from the remaining
features. The relationship IsoDens — FocalMass persisted in both view struc-
tures, indicating that the presence of focal mass is dependent on the presence of
isodensity. Furthermore, Spiculation and Contrast appeared to be conditionally
independent given RegSize for both view structures as indicated by the paths
between these variables. This is an interesting result revealing that knowledge
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FPLevel
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d2skin FocalMass FPLevel
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Fig. 6. ADG structures learnt by the modified GS algorithm by adding the calculated
features after learning

about the size of a region would determine the region spiculation and contrast
features. We also note that for the MLO view the calculated features are the
only determinants whether or not a finding is present, whereas the remaining
features are independent of this node.

Comparable results were obtained using a modification of the greedy search
algorithm by not including MassLik and FPLevel in the learning process but
adding them only afterwards to the learnt structure; see Figure[@l The resulting
structure for MLO, with a Bayesian score of —9.5819 (x10%), differed from the
one in Figure Bla) by having the additional arc RegSize — Finding. For CC the
structure included, in comparison with the one in Figure Bl(b), the arc Contrast
— Finding and excluded the arc Finding — IsoDens, and its Bayesian score is
—9.9670 (x10%). These results demonstrated that using MassLik and FPLevel in
the learning or scoring step of the structure building process make them the only
causes of Finding, confirming the strong impact of the calculated features.

Comparing structures learnt from different datasets. Given the limited
sample of data and the split of training and testing data, we next explore to what
extent the structures learnt from various data subsets differ. We perform TAN
structure learning from non-overlapping subsets of the MLO data with 3 different
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Fig. 7. TAN structures learnt from MLO view data with different sizes of data subsets:
(a) two structures based on the two subsets (~ 10500 observations per set) obtained
from the split of the whole data, (b) three structures based on four subsets containing
~ 2600 observations per set and (c) three structures based on three subsets containing
~ 650 observations per set. The differences in the structures are shown with the dotted
and dashed lines: arcs (addition) and crosses (deletion).

sizes: 2 sets each containing 50% of the whole data (~ 10500 observations), 4
sets with 12% of the data (~ 2600 observations) and 8 sets with 3% of the data
(~ 650 observations). The region data for a particular case was contained in only
one subset and the proportion of cancerous and normal cases in the subsets was
the same as in the whole dataset. We naturally expect that the larger the data
samples the more robust and similar the structures learnt from them would be
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in comparison with smaller datasets where the data variations are to be larger.
The results, presented in Figure[7 are in line with our hypothesis.

Figure [[(a) depicts the two structures learnt from the two halves of the orig-
inal data and we observe differences in the incoming arcs to only two nodes:
FocalMass and d2skin. Figure [[{b) depicts the three structures based on 4 sub-
sets of the data with 12% of the observations. Note that for two of these subsets
the structures learnt were identical but for the others more changes in the causal
relationships are observed (indicated by the dotted and dashed arcs) than us-
ing half of the data. Finally using 8 random samples containing 3% of the data
yielded structures with less robust causal relationships; Figure [[l(c) depicts the
three structures with the largest differences among them. Only for two of all 8
data samples the same structures were learnt.

It is also interesting to study the causal relationships learnt from the sam-
ples with different sizes. One strong direct dependence persistent among the
structures, also discovered by the GS algorithm in both views as shown in Fig-
ures [B] and [6] is between the region size, spiculation and contrast feature. On
the one hand, this general feature dependence revealed by the data is also par-
tially represented in the expert causal model via the unknown hidden variables
AbStruct and AbDensity. On the other hand, the structures learnt indicate di-
rect dependence relationships between these variables, not explicitly captured in
the manually constructed model. Similarly the causal dependences between the
location features appeared very strong in data as indicated by the similar sub-
structures learnt from different structure learning algorithms and data subsets.
Furthermore, the substructure FPLevel « MassLik—Contrast also shows that the
region contrast in conditionally independent of the region likelihood for cancer
given its pixel-based likelihood.

These results overall indicate that the expert model represents the main rela-
tionships between the mammographic features as guided by the domain knowl-
edge but it also lacks certain direct dependences, which is to affect the knowledge
representation and the model’s performance.

5 Discussion and Conclusions

Although comparisons between manually constructed and learnt BNs are stan-
dard practice, in particular in studies where the performances of structure-
learning algorithms are compared, the purpose of the present research was dif-
ferent, namely to see whether structure learning could be effectively used as a
source for critiquing a manually constructed BN. Thus, here learning methods
were used as a means to complement knowledge representation by hand. Such
an approach may not always be useful, for example in cases where there is an
easy conceptualisation of the problem domain available, or when data are not
available. In addition, often representations obtained by machine learning are
hard to understand, and structure learning of Bayesian networks is no exception
to this general rule. However, this makes the combination of techniques from
manual and automatic construction of Bayesian networks even more interesting.
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In this research we dealt with a problem domain that is very hard from a con-
ceptual point of view: the interpretation of medical images. Whereas in other
domains it might be easier to construct manual models using knowledge engi-
neering methods, in the domain of image interpretation it is not unlikely that
mistakes are made in the conceptualisation. We carried out this study to find
out whether structure learning could be of any help in this case, and a positive
answer would only be arrived at if the results obtained had a clear meaning.

The results we achieved clearly show that structure learning results can be
conceptually clear and of help in designing a Bayesian network for image in-
terpretation. First, local interactions between variables in the structures learnt
were revealed, where some of them were expected based on the domain knowl-
edge, whereas others were novel and not obvious a priori. Second, the results also
indicate that manual construction based on expert knowledge is a good start to
build a Bayesian network for medical image interpretation, guiding us in the
selection of the important factors playing a role in the domain and providing a
good basis for comparison with the structures learnt. Finally, we observed that
the inclusion of calculated features diminished the explanatory power of the re-
maining features and obscured their meaning in the problem of mammogram
interpretation.
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