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Abstract 

The accuracy of supervised classification is dependent to a large extent on the training data 

used. The aim is often to capture a large training set to fully describe the classes spectrally, 

commonly with the requirements of a conventional statistical classifier in-mind. However, it 

is not always necessary to provide a complete description of the classes, especially if using a 

support vector machine (SVM) as the classifier. A SVM seeks to fit an optimal hyperplane 

between the classes and uses only some of the training samples that lie at the edge of the class 

distributions in feature space (support vectors). This should allow the definition of the most 

informative training samples prior to the analysis. An approach to identify informative 

training samples was demonstrated for the classification of agricultural classes in south-

western part of Punjab state, India. A small, intelligently selected, training data set was 

acquired in the field with the aid of ancillary information. This data set contained the data 
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from training sites that were predicted before the classification to be amongst the most 

informative for a SVM classification. The intelligent training collection scheme yielded a 

classification of comparable accuracy, ~91%, to one derived using a larger training set 

acquired by a conventional approach. Moreover, from inspection of the training sets it was 

apparent that the intelligently defined training set contained a greater proportion of support 

vectors (0.70), useful training sites, than that acquired by the conventional approach (0.41). 

By focusing on the most informative training samples, the intelligent scheme required less 

investment in training than the conventional approach and its adoption would have reduced 

total financial outlay in classification production and evaluation by ~26%.  Additionally, the 

analysis highlighted the possibility to further reduce the training set size without any 

significant negative impact on classification accuracy.  

 

 

1 Introduction 

The availability of accurate and up-to-date land-cover maps is crucial for many applications. 

Compared to conventional methods of surveying, remote sensing can be an efficient and 

accurate tool for the provision of land cover information at frequent intervals over large areas. 

Despite the considerable potential of remote sensing as a source of land cover information 

many problems are encountered in its use, not least that the accuracy of the derived land cover 

information may often be viewed as being insufficient by the user community (Wilkinson, 

1996; Foody, 2002). There are many factors responsible for this situation including the nature 

of the classes being studied, properties of sensing system used to acquire the imagery and the 

techniques used to extract thematic information from the imagery, the classification 

techniques (Foody, 2002; Pal and Mather, 2003). 
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Supervised classification is widely used for the extraction of land cover information from 

remotely sensed data. Supervised classification comprises of three stages: training, allocation 

and testing. In the training stage, areas of known ground identity are typically identified on 

the image. The spectral response of the training areas may be used to generate descriptive 

statistics for the land cover classes to inform the second, class allocation, stage of the 

classification. Finally, the accuracy of the classification is evaluated in the testing stage, 

usually with a sample of cases not used in training the classifier. 

 

The value of the output generated by a supervised classification is typically a function of its 

accuracy. The accuracy of supervised classification is dependent on the first two stages of the 

classification over which the analyst has considerable control. Consequently, considerable 

effort has been directed at these stages often with the overall aim of increasing the accuracy of 

classification. Much research, has, for example, focused on the allocation stage, with 

particular regard to the classifiers used (Foody and Mathur, 2004a). Achieving an optimal 

classification is, however, a challenging and open problem (Ho et al., 1994).   

 

In addition to the classifier adopted, the accuracy of a supervised classification is dependent 

to a large extent on the quality of the training data used. Indeed the nature of the training stage 

can have a larger impact on classification accuracy than the classification technique used 

(Hixson et al., 1980; Campbell, 2002). This situation has prompted research on issues related 

with the design of the training stage of a supervised image classification. This research has 

addressed issues including those connected with the sampling design (Campbell, 2002; Chen 

and Stow, 2002), size of the training set (Congalton, 1991; Foody and Arora, 1997; Foody 
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and Mathur, 2004a), composition of the training set (Foody et al., 1995), spacing of training 

samples (Atkinson, 1991) and time of sampling with respect to that of image acquisition. 

However, most attention has focused on the size of training set, the number of samples for 

training the classifier. This issue has frequently attracted attention because of the costs in 

terms of time and finance involved in the acquisition of a large training set (Buchheim and 

Lillesand, 1989; Jackson and Landgrebe, 2001). 

 

The design of the training stage often appears to have been guided by a classical statistical 

view of the classification process. Statistical classifiers such as the widely used maximum 

likelihood classification are based on statistical descriptions of the classes generated from the 

training data. Such classifiers require a complete description of each class in feature space. 

For this, a large training set is often required. Additionally, the acquisition of training data 

from a wide range of geographical locations is encouraged to help capture and represent the 

full spectral variability of the classes. 

 

There are many recommendations made about to the size of the training set required for an 

analysis typically based on the classical statistical view of the classification process. For 

example, the literature often suggests that the size of the training set required is a function of 

the number of spectral wavebands used and suggest a sample comprising at least 30 times the 

number of discriminatory wavebands used in the analysis (Mather, 2004). In general, studies 

have shown that classification accuracy tends to be positively related to training set size (Pal 

and Mather, 2003; Zhuang et al., 1994; Foody et al., 1995; Arora and Foody, 1997; Foody 

and Mathur, 2004a). Conventional training data acquisition schemes, therefore, aim to capture 

a large training set spread all over the study area. However, such recommendations are 
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general and are often made without any regard to the study area, the complexity of the classes 

therein or the classifier to be used and the aim of the analysis (Foody et al., 2006).. 

 

Different classifiers applied to the same data set often produce dissimilar allocations even if 

using the same training data (Huang et al., 2002; Foody and Mathur, 2004a). This can be 

attributed to the way the classifiers use the training data and how they partition the feature 

space. For example, a parametric classifier such as the maximum likelihood classification is 

based on an assumed model and, therefore, often requires a large training sample to ensure 

that the statistical parameters are able to completely describe the classes. However, non-

parametric classifiers such as decision trees and neural networks are not based on any 

parametric model but use the training data directly for training. Foody (1999) has shown that 

with a multi-layer perceptron neural network, the training samples that lie at the edge of class 

distribution and between the distributions of two or more classes in feature space are the most 

informative for an accurate classification. This indicates that some training samples are more 

useful than others for this type of classifier. Variation in training sample importance may 

allow a classification to be undertaken with a small sample without negative impact on 

classification accuracy if the most useful training samples are used (Foody and Mathur, 

2004b). Given that an objective in classification is often to achieve a high accuracy with, if 

possible, a small number of training samples in order to make the classification process as 

useful and economical as possible the ability to identify the most useful training sites would, 

therefore, be advantageous. The desire is, therefore, to find an approach to classification that 

allows accurate classification from small training sets. One attractive classifier for this 

application is a support vector machine (SVM). 
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SVM classifications may be more accurate than widely used alternatives such as classification 

by maximum likelihood, decision tree and neural network (Huang et al., 2002; Foody and 

Mathur, 2004a; Melgani and Bruzzone, 2004). Typically, the SVM classification aims to fit 

an optimal separating hyperplane (OSH) between classes by focusing on the training samples 

that lie at the edge of the class distributions, the support vectors. The OSH is a hyperplane 

oriented in space such that it is placed at maximum distance between the two classes. It is 

because of this orientation that SVM is expected to generalise more accurately on unseen 

cases as compared to classifiers that aim to minimise the training error such as neural 

networks. As with a neural network, each training sample is not of equal value and those lying 

near the hyperplanes are most informative for SVM classification (Foody and Mathur, 

2004b). Thus with a SVM, the desire need not be to obtain as large a training sample as 

possible but one that contains the most useful training cases. With SVM classification, only 

some of the training samples that lie at the edge of the class distributions in feature space 

(support vectors) are needed in the establishment of the decision surface. Training data other 

than support vectors can effectively be discarded without compromising the accuracy of the 

classification. Thus, the accuracy of a SVM classification depends not so much on the size of 

input training data but more on the location of training data in the feature space. Moreover, 

since the computation of decision surface is not dependent on the dimensionality of the data, 

SVM can accurately classify data in high dimensional space with a limited number of training 

data and overcome the problem of Hughes phenomenon (Pal and Mather, 2004). 

Consequently, it may also be unnecessary to undertake a feature-reduction analysis (Melgani 

and Bruzzone, 2004), although this sometimes can be useful (Neumann et al., 2005). 

 

The ability to use small training sets that provides appropriate support vectors has important 

features, notably potential for savings in training data acquisition. To realise the potential to 
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acquire a small training set that would provide appropriate support vectors directly from field 

work requires a means of identifying the useful training sites in advance of the class 

allocation stage of the classification (Foody and Mathur, 2004b). One of the approaches to 

identify training data that would provide potential support vectors is to identify extremities of 

the class spectral responses with the aid of knowledge on the variables controlling the spectral 

responses. The principles of this intelligent approach to training have been identified (Foody 

and Mathur, 2004b) but here they are applied to a real operational application scenario. 

 

This paper aims to evaluate a procedure devised to intelligently capture a small training set 

that would provide appropriate support vectors for a SVM classification directly from the 

field on the basis of ancillary information. This approach is applied to an operational 

agricultural application scenario in which an aim is to accurately classify crops to aid 

production management.  

 

  

2  SVM classification 

SVM were originally designed for binary classification. The basis of classification by a SVM 

is illustrated in Figure 1. A large number of candidate classifiers can separate the two classes 

shown in Figure 1 but there is only one that provides the maximum margin between the two 

classes and is termed the optimal separating hyperplane (OSH). Because of its definition, this 

classifier is expected to generalise accurately on unseen cases as compared to other classifiers. 

  

A detailed mathematical explanation of SVM can be found in Vapnik (1995). Here only some 

of the main features are discussed. The OSH can be formulated by focusing on the training 

samples that lie at the edge of the class distribution in feature space. These training cases are 
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the support vectors which are fundamental to classification by a SVM. The OSH can be 

defined as f(x) = w.x + b, where the parameter w determines the orientation of the hyperplane 

in space and b defines the bias, the distance of the hyperplane from the origin (Figure 2). 

When it is not possible to define the hyperplane by linear equations, the data may be mapped 

into a high dimensional space through some non-linear mapping which has the effect of 

spreading the distribution of the data points in a way that facilitates the fitting of a linear 

hyperplane. With this, the classification decision function becomes  
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where αi, i=1,…, r are lagrange multipliers and k(x,xi) is a kernel function. The magnitude of 

αi is determined by the parameter C and lies on a scale of 0-C (Belousov et al., 2002). Further 

details on SVM classification for both the linearly separable and linearly non-separable 

situations is given in the literature (e.g. Huang et al., 2002; Melgani and Bruzzone, 2004). 

 

The support vectors are those training samples
ix , for which 0i . Training cases other than 

support vectors (αi =0) do not contribute in the formulation of the classifier (equation 1) and, 

are, therefore irrelevant. Such training cases may be removed from the training set without 

compromising the accuracy of the classification. Thus, it is possible to derive an accurate 

classification from a SVM trained with only a small training set. 

 

Although initially designed for binary classification, the basic SVM approach can be extended 

for the multi-class classification task that is common in remote sensing applications. The two 

main approaches to multi-class classifications in SVMs are the one-against-all and one-
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against-one strategies (Huang et al., 2002; Gualtieri and Cromp, 1998). These approaches 

split the multi-class problem to a set of binary problems, enabling the basic binary approach 

of SVM to be utilised to yield a multi-class classification. A more appropriate approach for 

multi-class classification, that is also less computationally demanding, may be to consider all 

classes at one time, yielding a multi-class SVM (Hsu and Lin, 2002).  One means to achieve 

this, which is similar in basis to the ‘one-against-all’ approach, is by solving a single 

optimisation problem. The work described hereafter is focused around one such multi-class 

SVM.  

 

 

3 Data and methods  

The study area comprised of south-western part of Punjab state of India. Indian Remote 

Sensing Satellite (IRS-1D) data with a spatial resolution of approximately 24 m acquired by 

LISS-III sensor, on 22
nd

 September were used. The remotely sensed data were acquired in red 

(0.62-0.68 m), near-infrared (0.77-0.86 m) and middle-infrared (1.55-1.75 m) wavebands. 

The ground data on class membership were collected by visiting the field immediately prior to 

image acquisition during the period 15
th

 to 21
st 

September, 2003. Attention focused on the 

dominant agricultural and non-agricultural classes in the study area. The agricultural classes 

were cotton, basmati rice and a local variety of rice while the non-agricultural classes were 

built-up land and sand.  

 

Two sets of ground data were acquired. One set was acquired following a conventional 

approach adopted in operational applications while the other was an intelligent scheme 

designed to select the most useful training data for a SVM classification. Throughout, 
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emphasis was on the acquisition of information on crops.  

 

A range of conventional approaches to training data acquisition can be identified, differing 

mainly in the detailed nature of the sampling design used. The scheme adopted here was 

based on a stratified random, by class, sampling design similar to that used operationally for 

mapping in this region within the Crop Acreage and Production Estimation (CAPE) project  

(Yadav et al., 1995). This approach helps ensure that even relatively rare classes, such as sand 

and basmati rice within the study area, are adequately sampled. The sampling process was 

based on a grid of 500 x 500 m size overlaid upon a map of the study area. The function of the 

grid was to ensure that the training data were acquired over a large geographical area, a 

feature often perceived as being desirable as it helps ensure class variability is captured. Grid 

cells were selected at random and visited on the ground in order to locate homogeneous sites 

for training purposes. From each selected grid cell, one pixel was selected from the 

homogeneous sites of the classes visited. In total, 180 cells were selected for each of the five 

classes under study. For each class, the 180 pixels acquired by this approach were divided 

randomly into training and testing sets. The training set, therefore, comprised 90 pixels of 

each class and a total of 450 pixels (Figure 3). Note that the basis of selecting 90 pixels per-

class for training set was the widely promoted recommendation that a training set should 

comprise at least 30 times the number of discriminatory wavebands to be used in the 

classification analysis. The derived training set should have captured the spectral variability 

of the classes and provide a full characterisation of the classes. 

 

It is not, however, always necessary to have training statistics that provide a complete and 

representative description of the classes, especially if using a classifier such as a SVM. For 
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classification by a SVM, only the training samples that are support vectors, which lie on part 

of edge of the class distribution in feature space, are required; all other training samples 

provide no contribution to the classification analysis and can be discarded without impacting 

on the accuracy of the classification. To capture border training data that would act as support 

vectors it would be expected that attention should focus on the extremities of the class 

spectral responses. With the intelligent training scheme, training data were, therefore, 

acquired from sites with relatively extreme spectral responses (potential border training 

samples) that should provide appropriate support vectors. This approach was adopted for the  

agricultural classes. The approach requires a basic understanding the variables affecting the 

spectral response of a crop (Foody and Mathur, 2004b). It is expected that these include 

factors related with the growth stage of the crop, the soil background and the water status of 

the training sites. For instance, a healthy crop generally has very high near-infrared 

reflectance and very low red reflectance, while a matured crop on the other hand has 

comparatively low near infrared reflectance and a high red reflectance (Curran, 1980). The 

differences between the growth stages are also clearly detectable in the field (Figure 4) 

making it possible to identify candidate support vectors during the pre-classification 

fieldwork. Similarly, variations in moisture content resulting from differences in crop 

maturity or due to proximity to a water body such as a canal from which water may seep 

influences the spectral response. Additionally variables such as soil type also influence the 

spectral response of the crops, especially if canopy cover is incomplete and the soil exposed 

to the sky although an indirect effect through plant growth and condition is also important 

(Curran, 1980). On the basis of this type of knowledge on the various factors believed to 

influence the spectral response of the crops, one may be able to predict sites that may furnish 

appropriate support vectors. That is, one may predict the most informative training sites for 

the classification. Fieldwork was aided by knowledge gained about waterlogged areas from 
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local newspaper reports and valuable information about spatial distribution of crops with 

regard to their type and stage of /maturity from discussion with local agricultural departments 

within the study area and farmers at the field level. So, the intelligent selection of training 

cases of the crops was directed by information on soil background properties, water status and 

crop growth stage. The effect of each variable on the spectral response may vary between the 

crops. For example, at the time of data acquisition an incomplete canopy was observed for 

just the cotton limiting the direct effect of variation in soil background to this crop only. 

Similarly, the only crop exhibiting marked variation in growth stage was the local rice crop 

that occurred at stages varying from young and healthy through to a very matured condition 

(Figure 5). Variation in water condition was linked to seepage from water bodies and specific 

watering activities and could affect all of the crops located in close proximity to the water 

network. In total, 80 training cases were identified in the field for use in the intelligently 

defined training set. These cases comprised 30 cases each of cotton and local rice and 20 

cases of basmati rice. These sample sizes were arbitrarily selected but are considerably 

smaller than the 90 cases per-class acquired with the conventional scheme for training data 

acquisition. 

 

The location of the non-agricultural classes, built-up and sand, in feature space indicated that 

spectral confusion between them and the agricultural classes was unlikely. Since interest was 

focused mainly on the crops, from which the non-agricultural classes were distinctive, a 

sample of 25 cases of built up and sand were acquired for use in the intelligently defined 

sample. This number of cases was arbitrarily defined but is, again, considerably smaller than 

the 90 cases of the classes contained in the conventionally defined training set.  
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The training sets derived from the conventional and intelligent data acquisition schemes were 

used to drive SVM classifications. The multi-class SVM approach to classification with a 

Gaussian kernel was used in all analyses. The parameters of the SVM were optimised for each 

analysis using a five-fold cross-validation approach. With the conventionally defined training 

set, the parameters C and γ, which controls the width of the kernel, were set at 0.25 and 0.005 

respectively. With the intelligently defined training set the C and γ parameters were set at 1.0 

and 0.000625 respectively.  

 

The accuracy of each classification was assessed using the same testing set. Confusion 

matrices were constructed for each classification to summarize the allocations made and the 

accuracy, expressed in terms of the percentage of cases correctly allocated, of each 

classification determined. Since each accuracy statement derived provides only an estimate of 

classification accuracy, it is inappropriate to simply compare the magnitude of the estimates 

directly in order to determine if the classifications differed in accuracy. Instead, the 

classification accuracy statements derived from the analyses using the training sets acquired 

by the conventional and intelligent training data collection schemes were compared in a 

rigorous fashion that accommodated for the related nature of the samples using a McNemar 

test (Foody, 2004). This test that is based on confusion matrices that are 2x2 in dimension and 

show the level of inter-classifier agreement in correct and incorrect allocations. The M
c
Nemar 

test is based upon the standardised normal test statistic, 
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       (2) 

 

in which fij indicates the frequency of allocations lying in element i,j of the 2x2 confusion 

matrix. The test is, therefore, focused on the cases correctly classified by one classifier but 
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mis-classified by the other. With this test, two classifications may be considered to be of 

different accuracy at the 95% level of confidence if Z>1.96. Thus, if the conventional and 

intelligent training data acquisition schemes yielded classifications that were not significantly 

different, Z <1.96. 

 

 

 

4 Results and discussion 

The conventionally defined training set was used to derive a classification with an accuracy of 

92.00% (Table 1). This result highlights that SVM may be used to derive very accurate 

classifications. The considerably smaller, intelligently defined, training set was, however, 

used to derive a classification with an accuracy of 90.66%, only marginally, and 

insignificantly (Z=1.50), less accurate than that derived from the conventional approach 

(Table 2). By focusing the training data acquisition process on the sites believed to have a 

high expectation of forming support vectors it was, therefore, essentially possible to use a 

small training set without any significant negative impact on classification accuracy. The 

1.34% decrease in accuracy was achieved with a decrease in training set size from 450 (90 of 

each class) to 130 pixels (80 from the agricultural and 50 from the non-agricultural classes). 

Moreover, the reduction in training set size offers savings to the analyst. Savings in the time 

needed to acquire the training set as well as in costs of transportation and support of the team 

of fieldworkers would all be expected to result from a decrease in training set size. As a guide 

to the size of the savings achievable, the conventional training data acquisition scheme 

followed required a total journey of ~ 1700 km by the fieldworkers but only ~1040 km was 

required for the acquisition of the intelligently defined training set. The adoption of the 

intelligent training scheme would, therefore, have reduced the distance to be travelled by 
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38.8% and would be associated with large savings in fuel and vehicle use. These travel cost 

and associated savings contributed to an estimated ~26% financial saving on the total cost of 

producing and evaluating the crop classification through the adoption of the intelligent rather 

than conventional training data collection scheme (Mathur, 2005). 

 

Attention in defining the intelligent training set was focused mainly on the identification of 

the most useful training sites for the discrimination of the three agricultural crop classes. It 

was evident that 70% of the intelligently defined training samples were support vectors. 

Within the conventionally defined training set the proportion of support vectors was lower, 

with only 41.5% of the crop training samples being support vectors (Table 3). The fieldwork, 

therefore, appeared to direct the training data acquisition process to the most informative 

locations. Moreover, from inspection of the support vectors and relation to ancillary 

knowledge it may be possible to further refine the process. For example, inspection of the α  

values for the support vectors determined for the cotton crop showed that these had 

predominately come from waterlogged areas. This is unsurprising as waterlogging will reduce 

the reflectance of the crop and so such sites would be expected to have a reflectance closer to 

the local rice crop, the spectrally closest class, than cotton on dry soil (Figure 3). Indeed the 

only support vector for the cotton crop located on dry soil had the lowest α  value, 0.6051, 

while all others had the maximum value of 1.0 and so actually contributed very little to the 

analysis. Dropping this one training case from the data set had no impact on the class 

allocations as exactly the same classification of the testing set was derived. Thus in future, it 

may be possible to extract training sites for cotton simply from waterlogged regions and 

ignore the impact of other variables. It would also be possible to intelligently select training 

samples from the non-agricultural classes. This would further reduce the training set size and 

cost of training data acquisition without loss of classification accuracy. 
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5 Conclusions  

The desire in training a supervised classifier has often been to derive an accurate and 

complete description of the spectral response of all the classes in the study area. To achieve a 

complete description of each class in feature space, a large training set is typically required. 

Although this may be appropriate for some classifications it is not always necessary to have 

training statistics that provides a complete and representative description of the classes, 

especially if using non-parametric classifier such as a SVM. For SVM classification, training 

samples are not equally important with those lying near the edge of the class distributions in 

feature space and facing the distributions of other classes in feature space, the support vectors, 

most important in the fitting of the decision boundaries between the classes. Thus, if there is 

some ancillary information that can be used to identify/locate training sites to regions from 

which the most informative training samples, the support vectors, can be derived, it may be 

possible to acquire a small intelligently selected training set that can be used to accurately 

classify the data. The study showed ancillary information on crop status and the background 

properties of training sites (soil type and water content) can be employed as part of the 

training data acquisition process in order to identify the most informative training samples, 

the support vectors. Relative to the use of a conventional scheme, the accuracy of the 

resulting classification was 1.34% less accurate at 90.66% but involved substantially less 

effort and could be acquired at less expense. 

 

The reason that the intelligent scheme maintained accuracy was because it focused attention 

in the most informative training samples. Note, for example, that the training set defined 

intelligently contained a considerably larger proportion support vectors than that acquired by 
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the conventional method. Moreover, analysis of the contribution made by each training 

sample to the classification showed that the intelligent training data acquisition scheme could 

be further refined. For example, inspection of the α values for the training cases highlighted 

that the most informative training samples for the cotton class were located near water bodies. 

Future classifications could, therefore, direct training data acquisition activities for the cotton 

crop to regions near water bodies and ignore other factors that influence the spectral response.  
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Table 1. Error matrix for the classification derived using training data acquired under the 

conventional scheme 

 

 

 

 

Actual class Predicted class  

 B S C RB RL Total  

Built-up (B) 89 1 0 0 0 90 

Sand (S) 15 75 0 0 0 90 

Cotton (C) 0 0 88 0 2 90 

Rice Basmati (RB) 0 0 0 82 8 90 

Rice Local (RL) 0 0 3 7 80 90 

Total 104 76 91 89 92 450 
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Table 2. Error matrix for the classification derived using training data acquired under the 

intelligent scheme. 

 

 

 

Actual class Predicted class  

 B S C RB RL Total  

Built-up (B) 88 2 0 0 0 90 

Sand (S) 18 72 0 0 0 90 

Cotton (C) 0 0 88 0 2 90 

Rice Basmati (RB) 0 0 0 78 12 90 

Rice Local (RL) 0 0 4 4 82 90 

Total 106 74 92 82 96 450 
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Table 3. Number of support vectors for each of the agricultural classes in the two training 

sets. Note the conventional and intelligent training sets contained 270 and 80 agricultural 

training samples in total. 

 

 

 

             Training set 

Class               Conventional             Intelligent   

Cotton    28   11 

Basmati rice   38   18   

Local rice   46   27 

Total (as % of set size) 112 (41.4%)   56 (70.0%)   
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Figure captions 

Figure 1. The optimal separating hyperplane. A number of classifiers, represented by lines, 

can separate the two classes in the two-dimensional feature space illustrated. There 

is, however, only one optimal classifier, represented by the dark black line, that is 

expected to generalize well in comparison to other classifiers. 

 

Figure 2. Fundamentals of SVM classification. The two classes are separated by a margin of 

(d1+d2) by two hyperplanes Q1 and Q2 with the optimal separating hyperplane (H) 

lying in between. The support vectors of the two classes are shown encircled on 

planes Q1 and Q2. 

 

Figure 3. Distribution of the training data for the five classes in feature space. 

 

Figure 4. Variation in crop properties evident in the field that may aid the selection of support 

vectors prior to the classification. Note the difference between the relatively young 

(foreground) and mature (background) local rice crops. 

  

Figure 5. Examples of the local rice crop illustrating the variations in growth stage and 

environmental conditions near the time of image data acquisition. (a) young healthy 

crop. (b) mature crop, (c) very matured crop, (d) very matured crop near a canal, (e) 

crop grown on saline land and (f) vertical view highlighting the limited exposure of 

the soil to sky. 
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Figure 5 

 


