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crop climate suitability mapping 
on the cloud: a geovisualization 
application for sustainable 
agriculture
Brad G. peter 1*, Joseph p. Messina 1, Zihan Lin2 & Sieglinde S. Snapp3

climate change, food security, and environmental sustainability are pressing issues faced by 

today’s global population. As production demands increase and climate threatens crop productivity, 

agricultural research develops innovative technologies to meet these challenges. Strategies 

include biodiverse cropping arrangements, new crop introductions, and genetic modification of 
crop varieties that are resilient to climatic and environmental stressors. Geography in particular is 

equipped to address a critical question in this pursuit—when and where can crop system innovations 

be introduced? this manuscript presents a case study of the geographic scaling potential utilizing 

common bean, delivers an open access Google earth engine geovisualization application for mapping 

the fundamental climate niche of any crop, and discusses food security and legume biodiversity in 

Sub-Saharan Africa. the application is temporally agile, allowing variable growing season selections 

and the production of ‘living maps’ that are continually producible as new data become available. 

this is an essential communication tool for the future, as practitioners can evaluate the potential 

geographic range for newly-developed, experimental, and underrepresented crop varieties for 

facilitating sustainable and innovative agroecological solutions.

A grand challenge of today is achieving food security in an era confronting global environmental and societal 
 change1,2. In recent decades, food shortage has remained a chronic issue in many Sub-Saharan African countries, 
in part due to insu�cient production resulting from climatic stressors, environmental degradation, and popula-
tion  growth3,4. Droughts, unpredictable rainfall patterns, and severe �oods have led to substantial �uctuations 
in agricultural  output5–7, notably where biophysical conditions are suboptimal or where social factors limit use 
of inputs to enhance  productivity8. As Lobell et al.9 observed across 1980–2008, declines in global production of 
maize and wheat can be attributed to shi�ing climate trends, potentially incurring substantial economic losses 
and disrupting farmer  livelihoods3. Unusually high temperatures have negatively impacted  yields10,11, facilitated 
food  spoilage12, and altered crop geographic niche and plant  biodiversity13. Moreover, agricultural systems are 
susceptible to compounding impacts from climate change, such as the change in geographic distributions of 
pests and diseases that damage crops and impact  yields14.

Agrotechnological advancements are occurring at a rapid rate to address these challenges and elucidating 
the spatial organization of crop suitability is critical for informing where solutions can be deployed that improve 
crop system  e�cacy1. Knowledge of where to implement, with reasonable probability of success, is at the founda-
tion of sustainable strategies for intensifying food  production15. In the geospatial sciences, there is an increasing 
abundance of climate and biophysical data, improved frequency of satellite image collection and delivery, and 
myriad computational tools capable of processing large volumes of geospatial  data16. �e new geographic infor-
mation science platforms and biogeographic crop suitability maps possible today o�er considerable value for 
enhancing the impact of agricultural improvement across the  world17. As climate patterns shi� and new cropping 
system strategies emerge, it is vital to ‘widen the approach’ by generating continuous geospatial knowledge and 
 products18. Given the concerns regarding future climate change impacts on global food security and the need to 
sustainably produce more  food19, where can alternative cropping systems be introduced?

open

1Department of Geography, University of Alabama, Tuscaloosa, AL 35487, USA. 2Department of Geography, 
Environment, and Spatial Sciences, Michigan State University, East Lansing, MI 48824, USA. 3Department of Plant, 
Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA. *email: bpeter@ua.edu

https://orcid.org/0000-0002-5724-4482
https://orcid.org/0000-0002-1978-0778
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-020-72384-x&domain=pdf


2

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15487  | https://doi.org/10.1038/s41598-020-72384-x

www.nature.com/scientificreports/

One challenge associated with scaling agricultural innovations is that biophysical constraints (e.g., climate and 
soil properties) are o�en neglected or misrepresented when targeting areas for technology implementation; in 
some cases, regional aggregations or the use of distant weather stations will inaccurately characterize areas that 
experience unique local  climates20. �ere are many reasons why crop introduction might fail to achieve long-term 
adoption or result in unsuccessful harvests, such as socioeconomics, governmental policy, demographics, and 
 infrastructure21–23. However, a climatic reason for crop failure may be predictable and avoidable based on geo-
spatial climate data alone. Biophysical suitability, knowledge of plant fundamental niche, and understanding of 
regional food cultures are necessary �rst conditions for adoption and upkeep of new or updated crop  varieties24. 
Fundamental niche is characterized by plant physiological responses to ecosystem constraints (e.g., temperature, 
precipitation, and soil status), whereas realized niche addresses species distribution based on  observation25.

Satellite image models are prominent tools for supplying spatially continuous weather and climate data, yet 
there is a lack of accessible and updatable geospatial products to support targeting of crop system innovations. 
Further, there are steep barriers to broader utilization of geospatial data such as costly so�ware and expert 
knowledge. �is makes it problematic for transdisciplinary research bridging geography and agronomy to access 
geovisualizations and spatial suitability products. At present, the most notable crop suitability maps are the Global 
Agro-Ecological Zones (GAEZ) products distributed by the Food and Agriculture Organization of the United 
Nations (FAO)26. While these products are immensely valuable, they are not produced at regular or frequent time 
intervals, and there are uncertainty issues embedded in the products that utilize future climate  predictions27. As 
global changes continue to occur, geospatial analytics and map outputs will need to be generated with greater 
frequency to produce dynamic, ‘living maps’28.

paradigm shift: crop niche mapping on the cloud. Remote sensing-based characterizations of crop 
suitability are regularly harnessed to visualize the spatial distribution of crop suitability and production poten-
tial. Conventionally, such mapping e�orts occur at singular time intervals, for speci�c crops, and use classi�ca-
tions driven by complex algorithms. Even the most widely-used land and crop suitability maps are subject to 
diminishing relevance over time, particularly in the face of rapid global change. Existing tools for crop suit-
ability mapping consist of tabulating where crops are currently produced or modeling where crops may be able 
to  grow29,30. �e simulation approach predicts crop growth and response to variable climate, soil quality, and 
management strategies using complex plant physiology algorithms. Each crop suitability model is developed for 
a di�erent purpose; for example, AquaCrop was designed to explore, analyze, and estimate the impact of water 
supply on crop  viability31 and DIVA-GIS was designed as an open access tool to map the geographic distribution 
of crop species and facilitate climate data  extraction32. Other complex models, such as DSSAT (Decision Support 
System for Agrotechnology Transfer)33 and APSIM (Agricultural Production Systems sIMulator)34, simulate 
crop yields and farm soil status based on parameters set by the user, embedded databases and functions (e.g., 
crop rotations and arrangements), and meteorological measurements (e.g., solar radiation, temperature, and 
rainfall). �ese models are typically desktop-based and operate client-side on a computer or lab workstation. 
Model simulations are important research tools; however, they require specialized training and expert knowl-
edge to produce relevant results.

Web-based GIS (geographic information science/systems) has the potential to transform the crop niche 
mapping paradigm, bringing series of static maps to a dynamic form complete with interactive geovisualizations 
and temporal  continuity35,36. Acquisition and preprocessing of large-scale time-series satellite imagery is o�en 
time-consuming and requires arduous data management, expensive computational hardware, so�ware licenses, 
and storage structures capable of processing and moving large volumes of data. Change detection over long time 
scales and vast spatial extents can require weeks of data organization and petabytes of storage space. As techno-
logical advancements re�ne the spatial and temporal resolution of global imagery, challenges associated with data 
storage and processing compound. Recently, however, cloud-based alternatives are o�ering increased e�ciency 
for large-scale geospatial computing. In December of 2010, Google launched Google Earth Engine (GEE) at the 
International Climate Change Conference in Cancún,  Mexico37. GEE is a web-based high-computational plat-
form that facilitates unprecedented planetary-scale satellite imagery access and geospatial  analytics38. Server-side 
data processing and imagery archival removes many of the data storage and geoprocessing hardware demands 
required for remote sensing and geographic information science/systems (GIS). �e emergence of GEE supports 
improved data accessibility, data processing e�ciency, and scalability of geographic  solutions38,39.

case study: legume biodiversity in Africa. At the continental scale, Africa contains many agroeco-
logical zones that can support a wide variety of  crops40; however, many ecosystem service-o�ering crops are 
underrepresented by global suitability modeling  studies41,42 and underutilized in existing agricultural  systems43. 
Promotion of biodiverse cropping systems that o�er multiple ecosystem services, such as those that leverage 
nitrogen �xation from legume integration (e.g., pigeonpea and maize intercropping), has gained traction in 
recent  years44–46, due in part to sustainability concerns associated with the continuous production of maize 
leading to widespread soil nutrient and organic matter  depletion47. However, Foyer et al.48 argue that human 
nutrition and agricultural sustainability have been negatively impacted by an overall lack of emphasis on legume 
integration in existing crop systems.

A prominent area of research for plant geneticists and crop breeders is the development of crop varieties that 
are resilient to abiotic stressors such as marginal temperature, rainfall, and soil nutrient  de�ciencies49. Drought-
tolerant varieties of pigeonpea, for example, contain traits that can be exploited to remain yield-stable during 
water scarce  periods50, and short-duration plant varieties can mature and produce harvestable grain during 
short unimodal  rains51. Cowpea is regarded as a stress-tolerant crop, with cultivars demonstrating resilience to 
dry and hot environments, such as those in the Sahel and Sub-Saharan Africa, as well as resistance to pests and 
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diseases by way of early  maturation52. Like cowpea, cultivars of common bean (Phaseolus vulgaris L.) contain 
traits that enable its production in marginal environments where biotic and abiotic stressors, such as drought, soil 
nitrogen de�ciency, pest infestations, and disease, can inhibit crop  productivity53,54. In addition, common bean is 
e�cient in its biological �xation of nitrogen, garnering appeal in regions experiencing soil nutrient  degradation53. 
Moreover, fast-maturing varieties are a high-protein source of nutrition during food scarce periods and mount-
ing evidence shows high uptake of common bean by smallholder farmers since the  2000s55. Problematically, 
however, projections of hotter temperatures threaten the geographic niche of common bean production across 
Sub-Saharan  Africa56, prompting rapid genetic research for temperature resilient breeds and highlighting a need 
for dynamic crop suitability map products.

Despite the deep history of legume production in Sub-Saharan Africa, the limited area under pulse produc-
tion does not coincide with the biophysically suitable niche for many legume  species55, due in part to colonial 
displacement of indigenous legume  crops57. �is increasingly narrow range of crop species grown is mirrored 
over much of the globe, which likely reduces farm resilience and food security during extreme climatic events, 
as plant biodiversity is an important bu�ering  mechanism6,58. Consequently, renewed attention has been given 
to legume diversi�cation on smallholder farms in Sub-Saharan Africa, not only for soil rehabilitation and farm 
resilience, but also as complementary nutrition in household  consumption59–61. Smallholder farmers depend 
on consistent production to sustain their livelihoods, both for household economics and subsistence, and it is 
necessary that crop varieties selected are appropriate for speci�c geographical limitations, input availability, and 
regional food  culture24,62. Considering the generational knowledge and ecological history of legume production 
in Sub-Saharan Africa, and the persistence of indigenous pulses such as cowpea (Vigna unguiculate L. Walp.), 
re-integration of many legume varieties poses promising long-term adoption outcomes in both the environmental 
and social  contexts63,64.

the ‘when’ and ‘where’ of crop suitability. �e research and application presented here was concep-
tualized a�er extensive interdisciplinary collaboration among geographers, plant and soil scientists, crop sys-
tem modelers, and climate scientists. �e paper focuses on an important question—When and where is crop 
niche?—and explores speci�cally (a) the geographic extent of climate suitability for common bean (Phaseolus 
vulgaris L.) across Southern and Southeastern Africa, as well as (b) a hypothetical scenario illustrating the geo-
graphic area that would shi� to a suitable status if a common bean variety was bred to withstand temperatures 
of 2 degrees Celsius higher. �is case study is concordant with ongoing research recognizing the utility of bean 
varieties with improved heat  tolerance65. A similar approach is documented in recent publications that explored 
legume crop options, suitability for development, and the current extent of legume  production44,55. As agro-
nomic and genetic development expand the geographic niche of certain crops, more e�orts of this kind will be 
required for the future of food security.

�is paper moves beyond static mapping into a dynamic and continuously updatable form, and the geocom-
munications supplied herein contribute to the global body of knowledge geared toward narrowing the research-
implementation  gap66. To address stated geocommunication and accessibility goals, a crop climate-suitability 
application was developed using the GEE platform that spans space, time, and crops. Suitability visualization 
outputs are based on the fundamental climate niche and phenology of the crop selected; the maps can also be que-
ried for climate, soil quality, and terrain characteristics at any location. �e mapping interface is equipped with 
a graphical user display, allowing crop phenology selections, modi�able time period observations, and multiple 
geographic area delineations. Leveraging cloud-based technology can improve the accessibility of global climate 
information for crop niche mapping, granting more geographic decision power to agronomists, farmers, conser-
vationist stakeholders, and government policymakers to e�ectively scale agricultural improvement and ultimately 
illuminate what crops can grow where and when. Compared to existing crop suitability models and maps, the 
crop niche application presented here is cloud-based, quasi-global, geographically and temporally agile, and is 
accessible to a broad range of users. Geospatial datasets are stored server-side, removing the burden on users to 
acquire, �lter, and organize data for models with speci�c formatting requirements and steep barriers to entry.

Results
�e geovisualization application was developed as an accessible tool for delineating crop climate suitability and 
empowering practitioners and academics across disciplines to engage with geographic information. �e results 
�rst describe the application user interface, inputs, and outputs, and then demonstrate a use case by assessing the 
fundamental climate niche in Africa for common bean (i.e., the potential geographic range based on tempera-
ture and rainfall suitability). Maps are presented that elucidate how crop suitability can be spatially expanded 
through breeding a common bean variety that withstands hotter temperatures. Also highlighted is the temporal 
�exibility of the model application through (1) a panel comparison of common bean niche in Tanzania across 
moving 4-month interval growing seasons and (2) a juxtaposition of two individual years to show crop suitability 
during a year characterized by extreme climate (i.e., low rainfall and high temperatures) as compared to a year 
more indicative of a good production season (measured via NDVI).

�e process for map production involved temperature, precipitation, and NDVI data acquisition/aggrega-
tion for the date range and season range selections (aggregated by season �rst, then aggregated across selected 
years) and geographic delineation chosen, then suitability characterization based on the temperature and rainfall 
crop phenology parameters selected by the user. Data products, suitability characterization methods, and crop 
phenology parameters are detailed in the methods section.

crop niche web application interface. �e application is available online at https ://cropn iche.carto 
scien ce.com or https ://carto scien ce.users .earth engin e.app/view/crop-niche . �e crop climate-suitability appli-

https://cropniche.cartoscience.com
https://cropniche.cartoscience.com
https://cartoscience.users.earthengine.app/view/crop-niche
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cation has six user input �elds (Table 1). First, the user may select a boundary of interest, which includes three 
options—country selection, user-de�ned region, or quasi-global. �e user-de�ned region is a rectangular area 
using the centroid coordinates entered and a bu�er distance; this selection may be preferred if the user is inter-
ested only in a localized area and needs to minimize processing time. �e quasi-global boundary computes all 
available data, but is restricted by the extent of the CHIRPS precipitation data product, which covers the tropical 
range extending from 50°N to 50°S67. If the user-de�ned region or the quasi-global options are not checked, the 
application will default to the country selected from the dropdown widget. Note that larger extents will require 
more processing time; if prompted, wait for the browser to respond while data layers are loaded.

�e second and third input �elds are the temporal aggregations. �is section di�erentiates the application 
from many other crop niche mapping methods in that it can accommodate seasons that wrap over the new 
year. In the case of Malawi, the rainy season spans from November to  March68,69; if data from a single year are 
aggregated, the results would be based on two di�erent growing periods. Averaging temperatures across multiple 
growing seasons and multiple years may introduce marginal error; however, for rainfall amounts the problems 
may be substantially greater given that there are episodic droughts and �oods during some seasons. �is is where 
practitioners can use expert knowledge to customize season ranges to account for short- and long-duration crop 
varieties that are underrepresented by other crop mapping models.

At the time of manuscript construction, the available data date range is from 2000-02-18 to 2019-11-26 
(available data date range at the time of use is posted in the application interface). One of the novelties of using 
this platform is that the data availability end date continues to update as new data are collected and entered 
into GEE; new maps can be created at any time. If the season (selected in input 3) wraps over the new year, data 
will be accessed from the year following the end year selected here (e.g., if 2018 is the last year selected for a 
November to April season, 2018-11-01 to 2019-04-30 will be used). Note that longer time periods will require 
more processing time.

Input 4 allows the user to select a crop from a dropdown box that utilizes temperature and precipitation ranges 
from the FAO ECOCROP  database70. Available crops included here are barley, cassava, chickpea, common bean, 
cowpea, green peas, groundnut, lentils, maize, millet, pigeonpea, potato, quinoa, rice paddy, sorghum, soybean, 
sugarcane, sun�ower, sweet potato, tobacco, and wheat. Parameters used from this database are posted along-
side the outputs a�er processing is complete. If the checkbox in input 4 is selected, no climate parameters are 
required—input options 5 and 6 can be ignored and maps will be produced using the FAO ECOCROP database 
parameters. Optionally, the user may elect to enter custom climate parameters for any crop variety in inputs 5 
and 6; in this case, the dropdown in input 4 can be ignored and the checkbox should remain unchecked. Inputs 
5 and 6 are where practitioners can use expert knowledge to customize temperature and rainfall ranges for crop 
varieties that are underrepresented by other map models.

�ere are currently ten data layers of three types loaded to the display a�er user input options are selected 
(Table 1). �e �rst type is suitability characterization using the parsing approach discussed in the methods sec-
tion, which includes optimal, suitable, marginal, unsuitable, and pessimal  categories44; available data layers for 
display in this category include (i) temperature suitability, rainfall suitability, combined suitability (the minimum 
of the temperature and rainfall suitability layers), and combined suitability masked to the agricultural land-use 
extent. �e second data layer type is the boolean suitability category; these data layers are labeled as suitable or 
not suitable and have not undergone any additional characterization and are based solely on the input tempera-
ture and precipitation ranges. �e third type consists of summary climate and land data. Available data layers 
include average seasonal temperature, average seasonal rainfall amount, average seasonal NDVI, and agricultural 
land-use extent.

Climate, soil, and terrain information can also be queried per pixel. �e user can click the map to retrieve 
pixel scale average seasonal rainfall, average seasonal temperature, average seasonal NDVI, organic carbon, 
bulk density, pH in  H2O, soil water content at 33 kPa, sand/silt/clay fractions (averaged across 0–30 cm depths), 
biome and taxonomy classi�cations, elevation, and slope. Time-series charts are also produced at the regional 
scale and per pixel. Each data point in the charts is the average across the selected season (x-axis labels are the 
season start date) and can be expanded to export as a CSV or another �le type. �e application also returns the 
user-selected parameters and a list of each season used for data aggregation so that results can be interpreted 
accurately. To enhance usability, a simpli�ed version of the model for the GEE JavaScript interface is accessible 

Table 1.  Input options, output products, and features of the geocommunication application. �e application 
is available online at https ://cropn iche.carto scien ce.com or https ://carto scien ce.users .earth engin e.app/view/
crop-niche .

User input Geospatial data layers Queried information

Data bounds
(1) Country, user-de�ned region (decimal degrees centroid 
and bu�er distance), or quasi-global (tropics, 50°N–50°S)
Temporal aggregations
(2) Range of years (yyyy) and (3) crop growth season dura-
tion in months/days (MM-dd)
Crop phenological requirements
(4) FAO ECOCROP parameters or (5) user-de�ned rainfall 
ranges during growth season and (6) temperature ranges 
during growth season

Suitability characterization
(1) Temperature, rainfall, combined, and combined masked 
to agriculture
Boolean suitability
(2) Combined, temperature, and rainfall
Climate and land data
(3) Average seasonal temperature, average seasonal rainfall 
amount, average seasonal NDVI, and agricultural land-use

Soil and terrain
Average seasonal rainfall, average temperature, average 
NDVI, organic carbon, bulk density, pH in  H2O, soil water 
content at 33 kPa, sand/silt/clay fractions, biome and 
taxonomy classi�cations, elevation, and slope
Time-series charts
Both pixel and regional temperature, rainfall, and NDVI 
trends
Data extraction
Time-series seasonal temperature, rainfall, and NDVI at the 
pixel and regional levels

https://cropniche.cartoscience.com
https://cartoscience.users.earthengine.app/view/crop-niche
https://cartoscience.users.earthengine.app/view/crop-niche
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via Harvard Dataverse (https ://doi.org/10.7910/DVN/UFC6B 5); this version performs the same computations, 
but gives experienced GEE users more control over the process and allows for map output  exporting71.

fundamental climate niche of common bean. We explore here the potential for crop varieties to 
scale across continents. A case study is presented on the geographic potential for common bean to be grown 
under current crop species phenological requirements. �e suitable baseline parameters for common bean used 
here are from Beebe et al.72, including the temperature range of 13.6–25.6 °C and 200–710 mm of rainfall. A 
quasi-global map of common bean suitability is presented in Fig. 1. Suitability maps were also produced for 
select countries in Sub-Saharan Africa using the same parameterization—South Africa, Tanzania, Mozambique, 
Zambia, Madagascar, Botswana, Kenya, Zimbabwe, Uganda, Malawi, Lesotho, Burundi, Rwanda, and Swaziland 
(Fig. 2).

It is important to note that these results can be adjusted and updated in real time, based on the growing 
season selected and the number of years used to aggregate data and typify the climate. An underlying e�ect to 
acknowledge here is the modi�able temporal unit problem (MTUP), a term used to acknowledge data aggrega-
tion di�erences resulting from variations in selected temporal range, temporal resolution, and/or the particular 
period or point in time  observed73. To address MTUP, Fig. 1 also depicts the number of 4-month intervals that 
exhibit common bean suitability (i.e., January–April, February–May, March–June, and so on). Here tempera-
ture and precipitation are aggregated by the month range selected, then averaged across the complete temporal 
range before parsing into suitability categories. By evaluating each interval, areas that are either never suitable 
or sometimes suitable for common bean production can be determined (Fig. 1). �is method can be used as a 
universal de�nition of suitability; however, it is still necessary to test speci�c month ranges to evaluate when 
crop production can occur. Similarly, it is critical to evaluate crop suitability during individual years to better 
understand whether or not a plant can withstand temperatures and rainfall amounts during extreme years (e.g., 
droughts and unusually high temperatures). Considering that climate varies by region, plant requirements vary 
by crop, and the optimal scale of analysis can vary depending on the research goal, the application presented was 
designed with temporal �exibility so that expert knowledge can be used to de�ne time ranges for observation.

�ere is a substantial di�erence in common bean suitability across the Southern and Southeastern countries 
of Africa during the December to March production season. As stated above, MTUP plays a major role in these 
results. During this particular season, Lesotho, Rwanda, and Burundi exhibit pervasive common bean suitability, 
with 93–99% of agricultural land climatically �t for its cultivation. Larger countries such as South Africa and 
Tanzania show partial suitability; however other geographic areas may be suitable during other times of the 
year (Fig. 3).

Malawi and Mozambique occupy a similar agroclimatological zone and both countries show overall low 
suitability during these months. Given the latitudinal rainfall patterns in Sub-Saharan Africa, another range 
of months is likely more appropriate for Malawi and Mozambique. Considering that common bean is grown 
widely in Malawi, we tested suitability during a January to April production season and found that the suitable 
niche expanded from 6 to 59%. �is is also observed in Tanzania, where the suitable area expands from 50.4% 
during the January–April season to 66.8% during the February–May Season (Fig. 5, Table 3), providing further 
evidence against a one-size-�ts-all approach to crop suitability assessments. �is demonstrates that MTUP is 
critically important to consider when testing for crop suitability.

Suitability was tested in Tanzania for two scenarios—(1) current temperature and precipitation require-
ments for common bean (referred to herein as the baseline) and (2) a simulated heat tolerant variety with the 
maximum temperature raised by 2 °C. �e growing season, precipitation range, and minimum temperature were 
held constant. Under the current baseline requirements, 39% of agricultural land in Tanzania meets temperature 
and rainfall requirements for common bean production; however, if a common bean variety could withstand 
temperatures of 2 °C higher, 22% more agricultural land could be accessed for its cultivation (Fig. 4). In this 
scenario 61% of Tanzania is suitable for common bean production and 39% is not suitable.

We illustrate the temporal capabilities of the application (and management of MTUP) through common bean 
suitability maps constructed for Tanzania along 4-month moving window intervals (Fig. 5). Suitability category 
land area proportions are tabulated in Table 2. Using these parameters, January–April (50.4% suitable land area), 
February–May (66.8% suitable land area), and March–June (79.1% suitable land area) show the greatest potential 
for common bean cultivation. Conversely, June–September is the least suitable period, with only 3.3% of the 
land area suitable for common bean cultivation; suitable areas are located primarily along the oceanic coast and 
near Lake Victoria. �is monthly moving window approach may also be used to elucidate areas that are never 
suitable, as well as areas that are suitable for multiple monthly range periods. In this particular case, 8.7% of 
agricultural land in Tanzania is never suitable for common bean production; conversely, 91.3% is suitable for at 
least one of the monthly range periods. Overall, 21.2% of agricultural land in Tanzania is suitable for at least 6 of 
the monthly growing period windows; 48.3% is suitable for at least 4 of the monthly growing period windows.

Hallmarks of pulse crops such as common bean, cowpea, and pigeonpea are unique traits that make them 
resilient to marginal environments (i.e., stress imposed by periodic droughts, elevated temperatures, and poor 
soil quality). �us far in the manuscript, results have been presented that identify crop suitability based on 
decadal climate characterizations. In this case, climate extremes may be so�ened; however, one of the novel 
insights a�orded by this application comes from complete control over the temporal units used for aggrega-
tion. An example of this �exibility is outlined in Fig. 6, where �rst a decade of climate data (December–March 
of 2009–2016) were queried to retrieve time-series charts of temperature, rainfall, and NDVI. �ese data are 
presented in the application UI and are also available for download as CSVs. A marked low point in NDVI is 
observed in 2016 and a high point is observed in 2009. �e low point in 2016 corresponds with particularly low 
rainfall and high temperatures; 2009 corresponds with lower temperatures and a moderate amount of rainfall. 

https://doi.org/10.7910/DVN/UFC6B5
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Figure 1.  Quasi-global map of common bean suitability. Temporal range: 2009–2018; precipitation range: 
200–710 mm; temperature range: 13.6–25.6 °C. Top—Single 4-month interval (December–March). Middle—
Number of 4-month intervals that exhibit common bean suitability. �e month intervals of October–January, 
November–February, and December–March use 2008–2017, whereas the remaining month ranges use 2009–
2018. �is decision was made so that the moving interval windows would be sequential. Bottom—Areas that are 
either never suitable or sometimes suitable (at least 1 of the 4-month intervals) for common bean production. 
Imagery processed using  GEE38 and �gure prepared using  ArcGIS96. Data sources: CHIRPS  precipitation67 and 
NASA MODIS  LST85.
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Crop suitability was mapped for these two years individually and juxtaposed in Fig. 6. �e purpose of the 2016 
map in particular is to highlight the potential geographic niche of common bean during a year that experienced 
climate extremes. It can be seen that more of the country falls into a not suitable status (i.e., marginal, unsuit-
able, or pessimal) as compared to 2009; however, 27.6% of agricultural land across Tanzania remained suitable 
for common bean during this particularly marginal production year. In contrast, 45.7% of agricultural land in 
Tanzania was suitable for common bean production during 2009.

Figure 2.  Map of common bean suitability in Southeastern and Southern Africa. Growing season months: 
December–March; temporal range: 2009–2018; precipitation range: 200–710 mm; temperature range: 
13.6–25.6 °C. Imagery processed using  GEE38 and �gure prepared using  ArcGIS96. Data sources: CHIRPS 
 precipitation67 and NASA MODIS  LST85.
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Discussion and conclusions
In this paper, we introduced a novel tool that addresses the ‘when’ and ‘where’ of crop climate-suitability, to 
facilitate practitioners’ access to geospatial patterns and trends. Limitations of conventional crop technology 
scaling has been singled out as a key challenge in achieving sustainable development goals and a solution is 
o�ered here for identifying where innovative technologies might be suitably deployed. �e application presented 

Figure 3.  Suitable and not suitable agricultural land area proportions by Southeastern African countries. 
Growing season months: December–March; temporal range: 2009–2018; precipitation range: 200–710 mm; 
temperature range: 13.6–25.6 °C. Refer to Fig. 2. *Tanzania includes the hypothetical temperature scenario. 
Refer to Fig. 4. Under the baseline suitability scenario, 61% of Tanzanian agricultural land is not suitable for 
common bean production according to the parameters selected.

Figure 4.  Map illustrating hypothetical suitable area gains from a common bean cultivar that can withstand 
2 °C higher in Tanzania. Growing season months: December–March; temporal range: 2009–2018; precipitation 
range: 200–710 mm; baseline temperature range: 13.6–25.6 °C; temperature range for the hypothetical scenario: 
13.6–27.6 °C. *Marginal–Pessimal area proportion tabulated in the �gure is for the 13.6–27.6 °C temperature 
scenario. Imagery processed using  GEE38 and �gure prepared using  ArcGIS96. Data sources: CHIRPS 
 precipitation67 and NASA MODIS  LST85.
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Figure 5.  Panel of common bean niche in Tanzania across multiple temporal periods at 4-month intervals. 
Temporal range: 2009–2018; precipitation range: 200–710 mm; temperature range: 13.6–25.6 °C. Note that there 
is a slight di�erence in the temporal periods used for these maps as compared to Figs. 1–4. October–January, 
November–February, and December–March use 2008–2017, whereas the remaining month ranges use 2009–
2018. �is decision was made so that the moving interval windows would be sequential. Imagery processed 
using  GEE38 and �gure prepared using  ArcGIS96. Data sources: CHIRPS  precipitation67 and NASA MODIS 
 LST85.

Table 2.  Suitability category proportions on agricultural land corresponding to Fig. 5. Subscript S = suitable 
(optimal and suitable) and subscript N = not suitable (marginal, unsuitable, and pessimal). Each column 
represents a month range interval labeled with numerical headers (1 = January and 12 = December).

Land area proportion (%) by moving month range intervals*

10–1 11–2 12–3 1–4 2–5 3–6 4–7 5–8 6–9 7–10 8–11 9–12

Optimal 3.3 3.4 3.7 5.7 13.8 14.9 6.2 1.0  < 0.1 0.1 0.5 1.4

Suitable 18.7 29.1 36.6 44.7 53.0 64.2 44.0 9.7 3.3 5.3 6.9 14.4

TotalS 22.0 32.5 40.3 50.4 66.8 79.1 50.2 10.7 3.3 5.4 7.4 15.8

Marginal 45.9 44.2 41.6 34.5 26.4 18.9 43.7 31.0 13.5 21.9 43.0 43.2

Unsuitable 28.6 22.0 16.3 11.0 5.2 1.4 5.8 58.3 83.2 72.5 47.9 36.9

Pessimal 3.4 1.3 1.8 4.1 1.6 0.6 0.3 0  < 0.1 0.2 1.6 4.1

TotalN 77.9 67.5 59.7 49.6 33.2 20.9 49.8 89.3 96.7 94.6 92.5 84.2
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demonstrates how practitioners can access geospatial data to generate map products and geovisualizations that 
investigate crop suitability with agile date and crop phenology parameters. Further, sustainable development 
practitioners can use this model to elucidate scalability and suitability of future crop varieties that are genetically 
engineered to tolerate marginal environments. Furthermore, this application manages MTUP by giving complete 
control to the user to decide how seasons are de�ned and which years to assess.

Figure 6.  Crop suitability during climate extremes. Growing season months: December–March; temporal units: 
2009 and 2016; precipitation range: 200–710 mm; temperature range: 13.6–25.6 °C. Imagery processed using 
 GEE38 and �gure prepared using  ArcGIS96. Data sources: CHIRPS  precipitation67, NASA MODIS  LST85, and 
NASA MODIS  NDVI86.

Table 3.  List of data products and acronyms. ASI (Agenzia Spaziale Italiana—Italian Space Agency), CHIRPS 
(Climate Hazards Group InfraRed Precipitation with Station data), DLR (Deutsches Zentrum für Lu�- und 
Raumfahrt—German Aerospace Center), ESA (European Space Agency), GFSAD (Global Food-Support 
Analysis Data), MODIS (Moderate Resolution Imaging Spectroradiometer), NASA (National Aeronautics and 
Space Administration), NGA (National Geospatial Intelligence Agency), SRTM (Shuttle Radar Topography 
Mission), UCLouvain (Université catholique de Louvain), UCSB (University of California, Santa Barbara), 
USGS (United States Geological Survey). *OpenGeoHub/LandGIS soil properties include organic carbon, 
bulk density, pH in H2O, soil water content, sand/silt/clay fraction, and biome/taxonomy groupings—current 
products utilize data ranging from January 1, 1950 to January 1, 2018.

Data Source Product Temporal range Temporal resolution Spatial resolution

Rainfall
UCSB Climate Hazards 
Group

CHIRPS Pentad 1981–01-01 to present 5-day  ~ 5.5-km

Temperature NASA MODIS MOD11A2 v006 2000–02-18 to present 8-day 1-km

NDVI NASA MODIS MOD13Q1 v006 2000–02-18 to present 16-day 250-m

Agricultural land-use

NASA MODIS
MCD12Q1 v051
MCD12Q1 v006

2000–2013
2000–2018

Annual 500-m

ESA/UCLouvain GlobCover 2009 2009 Annual 300-m

NASA/USGS GFSAD1000 2000 – 1-km

Soil properties*
OpenGeoHub/Land-
GIS

OpenLandMap * – 250-m

Elevation and slope
NASA/NGA/ DLR/
DET/ASI

SRTM 2000 – 30-m
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Until recently, targeting deployment of natural solutions has been addressed primarily through assessing 
current cropping patterns, desktop computer-based simulations, or based on anecdotal evidence rather than 
direct  measurements29. �ese practices may be indicative of what grows where, or what theoretically could be 
grown, but they preclude interactive geovisualizations and spatiotemporal continuity. In contrast, the web-based 
GIS presented here supports interactive mapping and user parameterization of suitability that can be queried 
for information, within an internet browser, to help guide decision making and technology development. Our 
product uses an approach popularized by digital media, whereas until now academic journals have been the 
dominant platform for communication in geospatial science. �is has meant that a large proportion of map-based 
geographic science has been delivered at the scale of a printable page, at irregular intervals, and o�en behind pay-
wall, which has severely limited access in the Global South and those without a�liation to research  institutions74. 
Even with access to published map products there are issues with communicating �ne spatial resolution imagery, 
as scaling a �gure down for print on standard letter-size paper can result in data loss from resampling.

With advancements in cloud-computing and server-side geoprocessing, data can be retrieved and analyzed 
at unprecedented scales and speeds. One stark advantage here is that with web-based GIS geocommunication 
tools, stakeholders can pan, zoom, and query information as they need. �e biogeographic crop niche approach 
presented here is an example of the type of evidence-based products that can now be accessed through web-based 
GIS tools to guide policy and target implementations. �e bean cultivar niche products for Africa shown here 
illustrate the importance of local speci�city, along with the ability to query and alter the geovisualization. It shows 
the utility of these web-based products in supporting stakeholders’ interactive ability to query performance for 
altered crop genetics and climate conditions.

�is model considers seasonal rainfall totals and does not yet account for crop water requirements at critical 
points during the crop growth cycle. Future heuristics of the kind embedded here will bene�t from integration 
of crop system models that tie daily rainfall and temperature to speci�c crop timing requirements. At present, 
some of the hurdles in this area include (1) remotely-sensed climate data at the daily time scale not a�ected by 
cloud interference, (2) limited global soil information, and (3) cyberinfrastructure requirements to make such 
an application open access. Research in this domain will progress as interdisciplinary collaborations emerge 
among remote sensing-specialized geographers and agroecologists partnering with so�ware engineers and user 
experience designers. Further veri�cation of relationships between crop suitability models and �eld experimenta-
tion will strengthen this application and it should be acknowledged that it is challenging to disentangle climate 
suitability, as many factors in�uence yields across geographic regions. Like many crop suitability models, the 
one presented here relies on the accuracy of the temperature and rainfall estimates used as inputs, as well as 
accuracy of the �eld-based and laboratory testing used to measure optimal climate requirements for individual 
crop varieties.

Spatially continuous soils data that are accurate at local scales is an area of ongoing research and should be 
prioritized. At present, soil information in the crop niche application presented here is limited to query only, 
primarily due to the scant database resources available that quantify optimum soil nutrient ranges unique to 
each crop, as well as accuracy challenges in areas of limited sampling; however, a future iteration of this model 
will bene�t from terrain and soil information to further contextualize environmental suitability across spatial 
and temporal scales.

Geographic tools for transdisciplinary agronomy. Sustainable development requires access to scien-
ti�c knowledge, yet access to, and utilization of, publicly available open data has only begun to be explored and 
its impact remains  contested75. An accessible evidence base that can be interactively visualized can provide a crit-
ical input to support local food security solutions. Educators and community development actors in particular 
lack access to such tools, which could be key to timely climate change adaptation and sustainable  development76. 
Transdisciplinary teams and community partners require information that can e�ectively address the highly 
speci�c edaphic properties and climate of their locality. Local, regional, and broader scale e�orts could all ben-
e�t from continuously updatable geospatial data, quantitative metrics, and map products regarding biophysical 
niche, agricultural productivity, and food security.

In this case example, the country context matters in terms of where an improved bean cultivar with heat toler-
ance could be introduced. �is varies with locality, as can be shown for a range of time and space scenarios using 
this geographic tool. In some countries, a genetic alteration in common bean heat tolerance makes no discernable 
di�erence in the suitability niche. In the hot dry environments of Tanzania, a heat tolerant bean cultivar could 
substantially expand the crop production niche. In support of climate change adaptation and development goals, 
earlier research has highlighted that heat tolerance in common bean could expand the niche for this important 
crop in East Africa, though the impact of this map product was limited due to its static nature and resolution 
issues typical of journal  publications55. �is lack of accessibility to policy makers and other stakeholders is wide-
spread, as shown by earlier research on the soybean adoption niche in  Africa77, chickpea adoption and yield gaps 
in  India78, and our own earlier research on African pigeonpea and sorghum suitability  niches44.

Crop system biodiversity has been regarded as a prominent mechanism for enhancing farm resilience to 
environmental stressors and variable  climate6,58. �ough common bean was the focus here, other legumes and 
grains can be similarly evaluated. A future implementation of this tool could include multiple crop evaluations 
to determine where suitability converges (e.g., maize, pigeonpea, and sorghum systems that generate calories 
and protein for intake, enrich soils via nitrogen �xation and root biomass, and prevent soil nutrient loss from 
erosion). Of course, there are many factors to consider when proposing new crop introductions or reintegration; 
however, climate suitability is a fundamental necessity for crop  production24. In addition, soil properties, eco-
nomic infrastructure, and farmer preference require attention. In Malawi, for example, pigeonpea uptake varies 
regionally, owing in part to existing market infrastructure in the southern districts that enable  pro�tability79, as 
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well as an established food culture that incorporates pigeonpea in household  consumption80. For these reasons, 
e�ective crop system biodiversity will bene�t from interdisciplinary research that engages key stakeholders and 
includes participatory research with  farmers59. Furthermore, it is recommended that suitability tools such as the 
kind supplied here are not used as a sole resource for top-down regulation that could further biodiversity  loss81.

Successful adoption of new technologies and large-scale agricultural adaptation will bene�t from geovisualiza-
tions of crop suitability niches. �is is o�en a knowledge gap faced even by holistic approaches where multiple 
disciplines and stakeholders converge to address food security challenges. We contribute this product generation 
for biogeographic crop suitability niche as real-time information that can be queried, panned, and simulations 
run with di�erent climatic parameters. Practitioners and stakeholders in sustainable development can use this as 
input alongside an understanding of the social dimensions, e.g., labor requirements, market structures, gendered 
responsibilities, infrastructure, and economy, as all are critical for alleviating food insecurity and designing 
systems that are sustainable across multiple  domains21.

Methods
Leveraging big data for crop climate-suitability characterization. GEE was the GIS platform 
selected for this application because it is open access, contains a large repository of global geospatial remote 
sensing data, and supports the ingestion of new and improved data into existing models at regular temporal 
intervals. �us far, GEE has been tapped successfully for a wide range of applications across many disciplines, 
including water cycle process modeling, global vegetation and agriculture monitoring, and ecological niche 
mapping for a variety of plant and animal life, some of which are featured on the GEE website (see: https ://
earth engin e.googl e.com/case_studi es/). Recent studies utilizing GEE have also mapped global surface water and 
evaluated decadal landscape  changes82,83, and Allen et al.84 devised a remote sensing-derived model to map land 
surface evapotranspiration (EEFlux).

All data used in this application are hosted by GEE (Table 3). Data products used (summarized in detail 
in following sections) included UCSB Climate Hazards Group precipitation (CHIRPS)67, NASA MODIS tem-
perature (MOD11A2)85, NASA MODIS vegetation indices (MOD13Q1)86, NASA MODIS land-cover type 
(MCD12Q1)87, 88, NASA/USGS cropland extent (GFSAD)89, ESA land-cover type (GlobCover)90, OpenGeo-
Hub/LandGIS soil  properties91, and NASA/NGA/DLR/DET/ASI elevation (SRTM)92. OpenGeoHub/LandGIS 
soil properties include organic carbon, bulk density, pH in H2O, soil water content, sand/silt/clay fraction, and 
biome/taxonomy groupings.

�e work�ow involves (1) acquiring temperature, precipitation, and NDVI for the date range and season 
range selected, (2) parsing temperature and rainfall into suitability classi�cations based on user-selected crop 
phenology parameters, (3) temperature, precipitation, and NDVI time-series charts at the pixel and regional 
level, and (4) optional agricultural land masking and querying of each data product at the pixel level (Fig. 7).

Figure 7.  Work�ow diagram. Asterisk indicates data products that are included as map outputs.

https://earthengine.google.com/case_studies/
https://earthengine.google.com/case_studies/
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Data products: temperature, precipitation, soil, terrain, and land-use/land-cover. �e precipi-
tation data product used here is the Climate Hazards Group InfraRed Precipitation with Station data version 2.0 
(CHIRPS) from the University of California Santa Barbara Climate Hazards Group (UCSB-CHG). CHIRPS is 
a quasi-global precipitation model that pairs 0.05-degree spatial resolution remote sensing imagery with in situ 
weather station  data67. �e latitudinal extent of CHIRPS is between 50°N and 50°S, and is supplied through GEE 
at a spatial resolution of approximately 5.5 km. CHIRPS is delivered at two temporal resolutions through GEE—
daily and pentad; the pentad temporal resolution was selected here to minimize processing times for global-scale 
analysis; however, a daily temporal resolution can be selected with minimal modi�cation to the code. Seasonal 
total rainfall is calculated using input month range selections, as well as the average seasonal rainfall across the 
complete temporal range.

Temperature estimates were retrieved from the MODIS Terra Land Surface Temperature (LST) product 
(MOD11A2 V006)85. An 8-day temporal resolution was selected here to minimize processing time for global-
scale analysis. �e temporal resolution of MODIS LST can be changed with minimal modi�cations to the code; 
however, there is a substantial amount of cloud cover over some regions during their respective growing sea-
sons in the daily product, making it potentially only marginally more accurate. Day and night temperatures 
are averaged over the growing season date range selected by the user. Average seasonal rainfall amounts and 
average seasonal temperature across the selected date ranges and temporal period are mapped as outputs in the 
application. NDVI data were retrieved from the MODIS Terra Vegetation Indices product (MOD13Q1 V006)86.

An area of advancement in modern precision agriculture is the re�nement of soil sensing at local  scales93. 
Agricultural land suitability has conventionally relied on regional-scale soil classi�cations; however, cost e�ective 
soil data collection devices have enabled farmers and researchers to measure soil characteristics such as salin-
ity, organic carbon, moisture, and texture at the individual plant scale. Moreover, collective e�orts (including 
citizen science), such as OpenGeoHub LandGIS (https ://openg eohub .org/)91 and  LandPKS94, have designed 
platforms that enable users to contribute detailed �eld soil sampling. �e recently available OpenLandMap soils 
products are unique in that machine learning algorithms enable regular improvement as more �eld samples are 
collected. �e OpenLandMap processes and accuracy metrics are detailed by Hengl and  MacMillan91, which is 
available online at https ://soilm apper .org/. Soils data retrievable in this application from OpenGeoHub LandGIS 
are organic carbon, bulk density, pH in  H2O, soil water content, sand/silt/clay fractions, and biome/taxonomy 
categories. Elevation and slope data are retrieved from the USGS Shuttle Radar Topography Mission (SRTM)92.

Agricultural land is delineated here using GlobCover 2009 (S1)90, MODIS Land Cover Type (MCD12Q1 
V051 (S2) and V006 (S3))87,88, and the GFSAD1000 Cropland Extent (S4)89 products; S1–4 are referenced as 
subscripts later in this paragraph. All four land-cover products were combined to minimize errors of omission. 
For MCD12Q1 time-series LULC, the mode was used. If the land is classi�ed as agriculture (or partially agricul-
ture) in any system, it is demarcated as agricultural land. �is approach was selected to maximize the amount of 
agricultural land identi�ed, rather than excluding or underestimating agricultural lands. One limitation of this 
approach is that agricultural lands may be overestimated and subject to errors of commission in some regions; 
however, using any single classi�cation system is also a�ected by the same under or overestimation problems. 
�e procedure for this classi�cation is as follows, where 0 is non-agriculture and 1 is agriculture and the sub-
script is the classi�cation system: [0,  1]S1 + [0,  1]S2 + [0,  1]S3 + [0,  1]S4 = [0, 1, 2, 3, 4], then [0, 1, 2, 3, 4] → [0, 1, 1, 
1, 1] → [0, 1]. �e agricultural land-cover dataset produced is used as an optional mask in the application. Note 
that MCD12Q1 V051 is now considered superseded by MCD12Q1 V006 and was removed from the GEE cata-
log during the revision stage of this manuscript. �e application continues to function using only V006 of the 
MCD12Q1 data product and the model is conceptually unchanged.

common bean phenological requirements. Common bean is one of the most widely cultivated legume 
crops across the globe and is noted for its biological �xation of  nitrogen53. It has been genetically modi�ed as 
an early-maturing crop that is resilient to abiotic stressors such as drought, high altitudes, disease, and nitrogen 
 de�ciency54. Parameterization for the fundamental climate niche of common bean used here was gathered from 
Beebe et al.72, where suitable temperature and precipitation ranges during a growing season are 13.6–25.6 °C 
and 200–710 mm, respectively. A hypothetical scenario was also tested for Tanzania to elucidate where a com-
mon bean variety genetically engineered to withstand hotter temperatures could feasibly grow. �e hypothetical 
scenario extends the maximum temperature to 27.6 °C. Common bean was used as a case study here; however, 
Pironon et al.95 have shown adaptive strategies exist for integrating many legume and grain crops (e.g., pigeonpea 
and sorghum) in Sub-Saharan African agriculture.

A growing season of December–March was used here, which coincides with the rainfall and production trends 
in Southeastern  Africa68,69—a decade of crop production seasons was used to typify the climate. Data used range 
from 2009-12-01 to 2019-03-31 (April–November months excluded). To clarify, the following seasons were used: 
[2009-12-01 to 2010-03-31], [2010-12-01 to 2011-03-31], [2011-12-01 to 2012-03-31], [2012-12-01 to 2013-
03-31], [2013-12-01 to 2014-03-31], [2014-12-01 to 2015-03-31], [2015-12-01 to 2016-03-31], [2016-12-01 to 
2017-03-31], [2017-12-01 to 2018-03-31], and [2018-12-01 to 2019-03-31]. Climate data are �rst aggregated by 
season, then aggregated across the temporal range before parsing suitability classi�cations. �e same protocol 
and parameters that were used to map the suitable area in Tanzania were also used to map the suitable area 
across all of Southeastern Africa; countries include South Africa, Tanzania, Mozambique, Zambia, Madagascar, 
Botswana, Kenya, Zimbabwe, Uganda, Malawi, Lesotho, Burundi, Rwanda, and Swaziland.

Parsing suitability classifications. �ere are two overarching suitability classi�cations—suitable or not 
suitable. A range-based approach was used to parse crop suitability into �ve categories: optimal, suitable, mar-
ginal, unsuitable, and  pessimal44; the binary suitable and not suitable categories are also supplied in the appli-

https://opengeohub.org/)91
https://soilmapper.org/
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cation. Optimal and suitable sub-categories fall under suitable (S) and the marginal, unsuitable, and pessimal 
categories fall under not suitable (N). �e inputs entered by the user are the suitable min and max represented 
by the blue dots in Fig. 8. To generate the �ve classes, a range modi�er value (m) was computed by dividing the 
range of the input min and max by 4. �e modi�er is used to extrapolate the range outward toward marginal, 
unsuitable, and pessimal, and interpolate inward toward  optimal44. While suitability thresholds will vary by crop, 
this method o�ers a generalizable approach to visualizing crop suitability beyond binary categories. Suitability 
ranges are de�ned by the following formulae and represented graphically in Fig. 8:

Suitability characterizations were �rst generated for temperature and precipitation individually before being 
combined. A�er temperature and precipitation suitability characterizations are produced, they are compared 
using a minimum argument so that the combined suitability classi�cation is the minimum of either product: 
e.g., min([2, 1, 4, 3,  5]T, [5, 1, 4, 2,  5]P) = [2, 1, 4, 2,  5]C, where T = temperature, P = precipitation, C = combined, 
1 = pessimal, 2 = unsuitable, 3 = marginal, 4 = suitable, and 5 = optimal.

code availability
Code associated with this manuscript can be accessed via Harvard Dataverse at https ://doi.org/10.7910/DVN/
UFC6B 5. Application development and data sharing was made possible by partnership with the Feed the Future 
Innovation Lab for Collaborative Research on Sustainable Intensi�cation (https ://www.k-state .edu/siil/); grant 
details are listed in the acknowledgements.
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m = (max−min)/4

optimal = {x ∈ R|min + m < x < max− m}

suitable = {x ∈ R|min < x < min + mORmax − m < x < max}

marginal = {x ∈ R|min− m < x < min OR max < x < max + m}

unsuitable = {x ∈ R|min− 2m < x < min− mORmax + m < x < max + 2m}
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