
RESEARCH ARTICLE

Crop fertilization affects pollination service

provision – Common bean as a case study

Davi de L. Ramos1, Mercedes M. C. Bustamante1, Felipe D. da Silva e SilvaID
2,3, Luı́sa

G. CarvalheiroID
1,4*

1 Departamento de Ecologia, Universidade de Brası́lia (UnB)—Campus Universitário Darcy Ribeiro, Brası́lia,

D.F., Brazil, 2 Centro de Desenvolvimento Sustentável, Universidade de Brası́lia (UnB)–Campus

Universitário Darcy Ribeiro, Brası́lia, D.F., Brazil, 3 Instituto Federal de Mato Grosso (IFMT)—Av. Sen. Filinto
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Abstract

The demand for insect-pollinated crops is increasing. Conventional agricultural intensifica-

tion heavily relies on increased input of fertilizers, which can have negative effects on local

biodiversity. Such effects may be particularly accentuated in biodiversity hotspots that are

naturally nutrient-poor. Ecological intensification of farming, i.e. practices that increase pro-

duction through the increase of ecosystem services, emerges as an alternative to conven-

tional intensification. For example, practices that boost abundance and diversity of crop

pollinators can lead to substantial increases in cropland productivity. However, little is

known about the synergisms and trade-offs between fertilizer input and such ecological

intensification practices. Here we investigate interactive effects between fertilization prac-

tices and the provision of ecosystem services in a biodiversity hotspot where conventional

agriculture is rapidly expanding (Brazilian savannas). We focus on a highly nitrogen-

demanding crop species that benefits from pollinators (the common bean, Phaseolus vulga-

ris L.), for which nitrogen input greatly varies in the study region. Our findings show that posi-

tive effects of native pollinators on crop yield are most accentuated under low inputs of

nitrogen (e.g. equal to or below 72kg ha-1). This interactive effect could be due to changes

in flower visitor community composition or behaviour. Our study also suggests that land-

scape management practices that minimize isolation from patches of natural vegetation and

maximize its cover nearby (within 500 meters) of production areas can increase pollinator

and biocontrol agent abundance and richness. Overall, these results suggest that ecological

intensification is a valuable alternative for common bean production in Brazil, and potentially

other regions of the world. Land productivity can be enhanced if an adequate balance of

chemical inputs and landscape management is achieved.

Introduction

Increasing agricultural farmland productivity while minimizing environmental damage is

essential to reach sustainable development. On one hand, the increasing human population
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and growing demand for healthier diets has stimulated fruit and vegetable production, espe-

cially in regions of the world where food insecurity is greatest [1, 2]. On the other hand, there

is urgency to reduce environmental degradation and stop biodiversity loss [3]. Promoting eco-

logical intensification, whereby the productivity of agricultural land is increased through the

enhancement of ecosystem services [4], rather than by conventional agriculture intensification

(e.g. agrochemical use, cropland expansion), that are key drivers of environmental degradation

(see [5, 6]), is crucial.

Biotic crop pollination is an important ecosystem service [7, 8, 9], influencing both local

and global markets (e.g. [10, 11]). Farming practices aiming to increase the abundance and

diversity of crop pollinators (e.g. maintenance of nesting habitats and floral resources within

farmland, restricted use of pesticides) can benefit yield and quality of crops [9]. These practices

may also benefit other ecosystem services providers important for agriculture, such as natural

enemies that act as biocontrol agents [12]. Yet, few studies have evaluated synergisms and

trade-offs between conventional (e.g. fertilizer input) and ecological intensification practices.

Farming practices involving chemical fertilizer application (e.g. phosphorus, P, and nitro-

gen, N) are used worldwide, and benefit crop productivity [13]. However, in the hope to over-

come production deficits, farmers commonly apply fertilizer doses far above than

recommended dosage [13] (farmers personal communication). The presence of these nutrients

in excess, particularly nitrogen, can affect several reproductive traits of plants (e.g. quantity

and quality of flower resources, [14, 15]). Consequently, the physiology, behaviour, abundance

and diversity of flower visitors can be altered [15, 16]. Previous studies suggest that benefits

from pollinators are accentuated at lower N levels (e.g. in oilseed rape, [17]), but it is unclear

how generalized such effects are. Understanding interactive effects between fertilization prac-

tices and ecosystem services is essential to develop policies and management strategies that

harness the power of ecological processes and functions to benefit both biodiversity and crop

production.

This work aims to understand how management practices within farmland (nitrogen appli-

cation and maintenance of fragments of natural habitat) affect ecosystem service provision.

While the study focuses on flower visitors, among these, pests and two different types of eco-

system service providers were detected: species that act mainly as pollinators (hereafter ‘polli-

nators’), and species that act as predators and are recognized biocontrol agents of crop pests

(hereafter ‘biocontrol agents’). We use common bean (Phaseolus vulgaris L.) as a study system,

a crop of great importance for food security in Brazil and in many other regions of the world

[18, 19]. As this species is known to benefit from pollinators [20, 21], we expect that increases

in density and richness of pollinators and biocontrol agents enhance bean production, regard-

less of the origin of the species (i.e. native or exotic, here considered Apis mellifera) (hypothesis

1). In addition, as shown by Marini et al [17], we expect that pollinators’ benefits to crop yields

will increase as N fertilizer input reduces (hypothesis 2). Finally, as the supply of soil nutrients

can affect the flowering, floral resources, and consequently their attractiveness to floral visitors

[15, 16], we expect that the composition of ecosystem service provider communities (i.e. polli-

nators and biocontrol agents) will change with increasing N input, particularly near patches of

natural vegetation (hypothesis 3).

Materials and methods

This study was conducted in private property and we confirm that the owners of the land gave

permission to conduct the study on this site. No specific permissions were required for the

plant (crop) and insect collections, and the field studies did not involve endangered or pro-

tected species. The study area is embedded in the “Cerrado” biome (savannah), which is a

Nitrogen application affects pollination
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biodiversity hotspot [22] greatly affected by agrobusiness expansion [23], and where common

bean (Phaseolus vulgaris L.) is commonly grown (Table A and Figure A in S1 File). Soils in the

Cerrado are naturally poor in nutrients such as phosphorus and calcium [24]. The climate is

tropical (Köppen Aw), characterized by dry (May to September) and wet (October to April)

seasons.

Brazil is the largest producer and consumer of common bean in the world [25]. Farmers

artificially inoculate Rhizobium (personal communication), which reduces the need of inor-

ganic fertilizer [26] and apply inorganic and organic fertilizers which are frequently above the

recommended dosage (see Table A in S1 File). Although common bean can self-fertilize to

some extent [27], pollinators enhance yield and seed quality of this species (e.g. [20, 21]). This

crop is affected by several pests, (e.g. Bemisia tabaci, Hemiptera) [28] which can serve as larval

resources to flower visitor species (e.g. hoverflies).

Field surveys (November–January in 2015/2016 and 2016/2017) were focused on the culti-

var ‘BRS Estilo’ (commercial group ‘carioca’), which is widely used by farmers in the studied

region. Thirty-five sampling sites (27 in 2015/2016 and eight in 2016/2017, each 50x50m) were

selected throughout 11 extensive monoculture fields (between 36 and 236 hectares) belonging

to nine farmers. The minimum distance between each field was 1km. As for pollinators species

(including Apis mellifera) foraging activity is mostly done within a range of 1km from their

nesting/oviposition areas [29, 30], the minimum distance of 1 km ensures different pollinator

communities. We selected multiple sites within the fields (two to six sampling sites per field,

depending on the size of the field) in order to cover a gradient of distance to natural habitat

(18 to 1152 m) (see Table A in S1 File) and maintaining a minimum distance between sites of

300 meters, a distance at which accentuated changes in abundance and diversity of crop polli-

nators are expected (e.g. [31]). All sampling sites had similar plant density (ca.12 plants/m2)

and soil texture, colour, and chemical properties (see Table B and C in S1 File). All fields used

no-tillage, with intensive use of pesticides during plantation and during flowering period, and

the main rotation crops were corn (Zea mays) and soybean (Glycine max). Details on soil fertil-

ization input and cultivation systems were obtained directly from the farmers, who keep regu-

lar records of their activities (Table B in S1 File). Total input of applied fertilizers (N and P)

was calculated for each field based on the concentration of each of the nutrients in the elemen-

tal form applied (see details in [32, 33]). As P input was relatively similar across the sites, only

the N input (which varied from 36 to 130 kg / ha) was used in data analyses. Soil pH, water,

organic matter, were similar across sites (see Table C in S1 File).

Using satellite images and a geographical information system (QGIS), two landscape met-

rics that are known to influence crop pollinators were calculated for each study site: distance

to natural habitat and vegetation cover (%). The predominant vegetation around the fields is

cerrado sensu stricto, characterized by predominance of herbaceous and shrub stratum. Mar-

gins of semi-natural areas with more than five meters width were considered in such calcula-

tions. Depending on their functional traits (e.g. foraging ability, sociality), pollinators may

respond to changes at different spatial scales [34]. Therefore, we calculated vegetation cover in

four circular areas around each sample site, with radii of 0.5, 1, 1.5 and 2 km (Table D in S1

File).

Flower visitation data

Following the methodology proposed by Vaissière et al. [35] in each sample site, we first quan-

tified the total number of flowers in anthesis and flower visitors along two parallel transects

(25x1m, each flower within transect was observed for ca. 30 seconds). Data were collected dur-

ing morning (09h00 to 12h30) and afternoon (12h30 to 16h00), maintaining a minimum time
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interval of three hours between surveys in a given site (so each site was sampled twice within a

single day of the peak of flowering). Environmental conditions were measured in all surveys

(temperature between 21 to 37˚C, humidity between 32 and 88%, all surveys occurred when

there was no precipitation). All insects that touched the reproductive organs of flowers were

considered “legitimate flower visitors”. Robbing events (i.e. perforation of the corolla to extract

nectar without having contact with the reproductive organs), were also recorded. Whenever

an insect was observed, a description of the visitor (Order, size and colour pattern) was also

recorded (morphospecies). Afterwards, insects were captured along the transect, and later

identified by taxonomists.

While the sampling method was developed specifically to detect pollinators, many species

that act as herbivores and seed predators during larval stages visit flowers in their adult stage

were detected. Although all these floral visitors may have contributed to pollination to some

extent, some have a different main function having negative (crop pests) or positive (biocon-

trol agents) additional effects. Consequently, in our specific study, flower visitors were divided

into three main functional groups based on species biology: pollinators, species that may act as

biocontrol agents and species that may act as crop pests (see Table E in S1 File). Pollinators

included all bees as well as one syrphid fly species (Palpada vinetorum Fabricius, 1798) that

does not act as predator during the larval stage [36]. In the group ‘potential biocontrol agents’,

we included wasps (Hymenoptera: Vespidae and Pompilidae) which typically predate larvae of

Lepidoptera and Coleoptera [37], and one Syrphidae morphospecies that belongs to a genus

that feeds on agricultural pests that affect common bean (Allograpta exotica cf.). Pests included

several Lepidoptera, Coleoptera and Hemiptera species which are known to attack common

bean or other crop species [28]. Pollinators were further divided into exotic (i.e. honeybee,

Apis mellifera) and native pollinators. Wild populations of honeybees occur in the study region

and none of the farmers involved in this study managed honeybees. However, given the vast

foraging range of this species, we were not able to identify the status of the populations (wild

or managed) from which honeybees detected visiting common bean in our study region came

from.

As the number of flowers observed varied among plots, and sampling effort is directly pro-

portional to total number of flowers observed, we calculated (i) flower visitor density and (ii)

species density, and used these variable in data analyses of productivity. To do that we divided

the total number of flower visitors for each group and species by the total number of flowers

observed. Only species that were not crop pests were considered in richness calculations. Rich-

ness estimations also considered any uncollected morphospecies, which description did not

match with the collected species.

Production data

Production data were collected ca. 90 days after the date of planting, during the fruiting period,

on the exact same place where flower visitation surveys were done. On each sampling site, 15

crop plants were randomly selected. For each individual selected, all pods produced (including

thin pods with no beans, due to lack of ovule fertilization, or with aborted beans) were col-

lected and stored in paper bags. The number of mature beans (> 3mm, following national

marketing definition for common bean [38], all other beans were considered aborted) were

counted and placed in a 65˚C oven until they reached humidity below 14% [39]. Afterwards,

the beans were weighed. Overall productivity (yield) depends on number of flowers produced

per area unit, and on the number of ovules fertilized per flower. Only the last is influenced by

pollinators, and the first is highly dependent on soil fertilization [16]. As this work aimed to

evaluate the effect of pollination services, we considered two production metrics: productivity

Nitrogen application affects pollination
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per flower and overall land productivity (yield). As the first metric is independent of the total

number of flowers, it better represents the effect of pollination. Number of flowers observed

during flower surveys were done is not necessarily correlated with the total number of flowers

produced over time in that plot. Therefore, we considered the number of pods (including

those undeveloped) to be the best proxy of the number of flowers produced throughout the

flowering season. Productivity per flower was, hence, calculated by dividing the total bean

weight per plant by the total number of pods. Overall land productivity was calculated by mul-

tiplying the average bean weight per plant by the average number of plants per square meter in

our study fields (see above) and converted to kg per ha. Overall production deficit was calcu-

lated as the ratio between the productivity per flower (of each sampling site) and the maximum

value of productivity obtained in the study region, as calculated by Garibaldi et al. [9].

Statistical analyses

Linear mixed-effects models (LMM) were used to evaluate the influence of the density of the

different insect groups (i.e. native and exotic pollinators, biocontrol agents and pests) and

overall richness (here, species density) on bean productivity. To account for the spatial and

temporal aggregation of sampling points data, ‘field’ within ‘farmer’ and ‘year’ were included

as random variables. We ran the analyses for the two productivity variables: productivity per

flower and overall land productivity. Model assumptions were checked and to account for the

typical sigmoidal behaviour of production (i.e. have established maximum and minimum val-

ues), and adapted logi transofrmation was applied to normalize residuals, using the maximum

value of productivity detected in field (rounded up) as the top asymptote.

To test if higher richness and density of ecosystem service providers (pollinators and bio-

control agents) increased bean productivity and if the effect of density of pollinators was

boosted by richness (hypothesis 1), density of native, exotic (i.e. Apis mellifera) pollinators,

biocontrol agents and visitor richness were included as fixed terms. In addition, two-way inter-

action between density of pollinators and richness was also included as fixed terms. To test if

pollinator benefits to crop yield increase as N fertilizer input reduces (hypothesis 2), interac-

tions between pollinator density (native and exotic) and N input were also considered. To

identify the terms that most contributed to explain bean productivity, a model selection proce-

dure was applied, based on the Akaike Information Criteria corrected for small sample size

(AICc) [40]. Whenever several models had equally good predictive power (i.e. several models

with ΔAIC below 2), we applied model averaging. Only models with ΔAICc lower than 2 were

considered in the calculation of the average estimates, and whenever a variable was not

included in a model we assumed an estimate equal to zero.

To check if sites with extreme values of N input (with high and lower N input) were driving

the results on the effects of N input on bean production, we ran additional models after removing

extreme values (sampling points with 36 or 130 kg N/ha). This sensitivity test also allowed the

detection of thresholds above which the effect of nitrogen is no longer observed in this region.

To test if the community composition (abundance of each group and overall richness) of

ecosystem service providers and probability of pest occurrence changes with increasing N

input, particularly near patches of natural vegetation (hypothesis 3), we used Generalized Lin-

ear Mixed Models (GLMM, negative binomial distribution), considering the same random

variables mentioned above. First, for each group of ecosystem service providers, we selected

the most suitable spatial scale by comparing the AICc values of models with each vegetation

cover variable. We then ran another GLMM including the selected vegetation cover variable,

distance to natural habitat, the total input of nitrogen and two-way interaction between N

input and vegetation cover. To check if landscape management practices that potentially

Nitrogen application affects pollination
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benefit ecosystem service providers also had an effect on crop pests, we repeated a similar pro-

cedure using pest densities as the response variable. As density of pests (that forage on flowers)

was extremely low, we analyzed this data as presence-absence, using a logistic regression (bino-

mial distribution). All model selection procedures focused on the variables of community

composition and also included climatic data (temperature, humidity, and wind speed at the

time of the survey) and observation time as covariates. All statistical analyses were performed

using R version 3.3.1 using the R packages “lme4” and “MuMIn” [40,41].

Results

Productivity per flower and overall land productivity varied greatly between plots with deficit

(i.e. relative difference between productivity in a given point and the maximum value of pro-

ductivity obtained in the study region) up to 85% and 92% respectively (Table A in S1 File).

During this study, 283 flower visitors were recorded, belonging to 5 orders and 33 species or

morphospecies (see Table E in S1 File). Of those, 30.8% were native pollinators, 32.5% were

the exotic honeybee (Apis mellifera), 31% were potential biocontrol agents and 5.6% were

pests. Among the native pollinators, visitors known to be effective pollinators of common

bean crops (e.g. bumblebees and carpenter bees, see [21, 42]) were detected. Although exotic

honeybees acted sometimes as legitimate pollinators, in most visitation events (75%) they

acted as nectar robbers. One species of Syrphidae (Allograpta exotica cf.) represented 90.8% of

the insects within the biocontrol agent group. Among pests, a well-known pest in bean fields

as well as other crops (Helicoverpa zea, Lepidoptera) was the most abundant (25%).

Effect of ecosystem service providers and N input on bean production

Flower visitors and N input influenced both metrics of bean productivity, these effects being

more accentuated for productivity per flower (Table 1).

Table 1. Effect of ecosystem services providers (pollinators and biocontrol agents) and nitrogen application on productivity per flower (g) and overall land produc-

tivity (kg ha-1) of common bean (P. vulgaris) farms.

Response variable (Y) Explanatory terms Weight AICc ΔAICc

Productivity per flower DN DE N DN�N

Model1 - - X - 0.269 63.9 0.00

Model2 - X X - 0.134 65.3 1.39

Model3 X - - 0.113 65.7 1.74

Model4 X - X X 0.111 65.7 1.78

Average model: log(Y/(2-Y))=-1.32+(638.5-6.8�N)�DN+0.016�N-45.1�DE

Overall land productivity DN DE N DN�N

Model 1 - - - - 0.287 110.3 0.00

Model 2 X - - 0.135 111.8 1.51

Model 3 - X - - 0.124 112.0 1.68

Average model: log(Y/(5300-Y))= -014 + 54.25�DN –86.2�DE

Models were selected based on the Akaike information criterion corrected to small sample size (AICc), and all models with a variation of AICc (ΔAICc) lower than 2

units were considered in the average model, the contribution being proportional to the model weight. As productivity models typically follow a sigmoid relationship (i.e.

have established maximum and minimum values) we applied a logit transformation, using the maximum value of productivity per flower rounded to units (2 g) and

productivity per ha rounded to hundreds (5300 kg.ha-1) as the top asymptote.

DN = Density of native pollinators

DE = Density of exotic pollinators (A. mellifera)

N = Nitrogen input

X = terms that were included in the models (Gaussian distribution for productivity per flower, and log transformed for overall land productivity to normalize residuals)

� = two-way interaction between explanatory variables or multiplication in the equation

https://doi.org/10.1371/journal.pone.0204460.t001
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The positive effect of native pollinators on productivity was independent of flower visitor

richness and no effect of biocontrol agents was detected, partly rejecting hypothesis 1. Con-

trary to our initial expectations, the density of exotic pollinators (i.e. A. mellifera) had a nega-

tive effect on productivity (Fig 1, Table 1).

In agreement with hypothesis 2, pollinator benefit to productivity was greater when lower

levels of N were applied, the effect being even negative at very high levels of N input (Fig 2).

When using N input levels recommended for common bean plantations (in rotation with soya)

in Cerrado (60 kg ha-1), and when no exotic pollinator is present, productivity per flower

obtained in areas with high pollinator densities (0.0165 per flower) more than doubled (143%

increase) in comparison with areas with no pollinators (0.82 vs 2.01 g per flower, see equations

in Table 1). The effect of native pollinators on overall productivity was similar (i.e. 2464.8 kg.ha-1

with no native pollinators vs 5299.1 kg.ha-1, if pollinator density was kept high throughout the

field) but no interactive effect with N application was detected. No positive effect of N was

detected on overall productivity nor on number of flowers produced, instead a negative effect

was detected fro flower productivity (Figure B in S1 File). Also, the positive effect of this nutrient

on productivity per flower (Table 1) was no longer detected above 72 kg/ha (Table F in S1 File).
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Fig 1. Effect of the density of exotic pollinators (i.e. Apis mellifera) on common bean productivity. Points represent partial residuals (i.e. variability not explained

by the other variables included in the model). Model estimates are based on Model 2 from Table 1. Shaded area represents 95% confidence interval.

https://doi.org/10.1371/journal.pone.0204460.g001
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Influence of fertilization practices and landscape characteristics on flower

visitors

Climate effects on flower visitors were diverse and were taken into account when assessing the

effect of nitrogen and landscape (Table G in S1 File). Farms with higher nitrogen input had

more visitation by the exotic Apis mellifera (which negatively affects production, see above),

lower abundance of biocontrol agents, and lower richness of ecosystem providers and lower

probability of pest occurrence (Fig 3). No overall effect on the abundance of native pollinators

was detected. For information on species level responses to N input, see Figure C in S1 File.

Number of flowers observed in surveys was positively correlated with the abundance of A. mel-
lifera, biocontrol agents, pest occurrence, and overall richness.

As for landscape effects, the majority of the responsible variables (biocontrol agents, exotic

pollinators, overall richness and pests) were most responsive to changes in vegetation cover at

finer scales (500 meters, included in subsequent analyses), while native pollinators were most

responsive at larger scales (2000 meters) (see Table D in S1 File). Native pollinator abundance

was higher close to the margins with natural habitat, independently of the amount of natural

habitat (Fig 3) available in the landscape (i.e. no interaction between cover and distance was

detected). While landscapes with greater vegetation cover had fewer native pollinators, they

also had more visitor species and higher abundance of biocontrol agents (Fig 3). When nitro-

gen input was low, the abundance of exotic honeybees declined with vegetation cover, and

when N input was high the species abundance increased with vegetation cover.

Discussion

Investment in ecological intensification, i.e. improving agricultural production via intensifica-

tion of ecosystem service provision while minimizing the negative effects to biodiversity, is

essential to achieve sustainable development. Our findings suggest that the density of ecosys-

tem service providers (crop pollinators and other flower visitors that may also act as biocontrol

agents) can be regulated not only by landscape but also by local (i.e. fertilization) management

practices adopted by landowners. Below, we discuss the implications of our findings for agri-

cultural production and biodiversity conservation.
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Fig 2. Estimated effect of density of native pollinators on common bean productivity under different levels of nitrogen (N) input. (N) Nitrogen application (varied
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Effect of ecosystem service providers and N input on bean production

Despite farmers in our study region heavily investing on conventional intensification (chemi-

cal inputs and large extensions of monoculture), we detected important benefits of native polli-

nators on productivity (more than doubled, see Table 1). The strong variation in flower

production, here detected will also affect productivity. Therefore, it is essential to maintain

both flower production and pollinator density high to achieve optimal results in overall yield.

The negative effect of the exotic honeybee on production is likely related to the fact that this

species frequently acts as a nectar robber. Such behaviour may decrease flowers attractiveness

to legitimate pollinators and even damage reproductive parts of the flower [43], consequently,

having a negative effect on common bean production. However, the negative effect of honey-

bee abundance on native pollinator abundance here detected was not significant (see Fig D in

S1 File). Overall, our results indicate that there is potential for improving crop yields through

ecological intensification. While common bean was described by Klein et al. [7] as having little

dependence on pollinators (i.e. 0–10%), that classification was based on information on a

diverse group of species within the genus Phaseolus. At the time of Klein’s publication few

studies on pollination efficiency of common bean existed, but those mentioning Phaseolus vul-
garis highlight the potential importance of flower visitors for pollination [20, 44, 45], and one

detected benefits from pollinators of 13–35% [20].

More recent studies working with different cultivars of common bean also detected impor-

tant benefits in yield from pollinators in Cameroon [21] (production of fully developed beans

more than double) and Kenya [42]. Thus, future studies should consider common bean as a

crop with, at least, medium level of dependence on pollinators (i.e. 10–40%). The fact that, in

our study, pollinator’s positive effects were most accentuated under lower N input and even

became negative above 100 kg ha-1 (Fig 2) suggests an alteration of the plant’s investment

strategy (reproductive versus vegetative development) under high N availability [46]. Indeed,

in our study system nitrogen input had negative effect on overall flower production (see

Figure B in S1 File). Increased N availability may have also changed the quality of resources

(e.g. due to changes in essential amino acid, alkaloids, or flower shape) [14]. Such changes

could alter flower’s attractiveness to the different flower visitor species affecting pollination

effectiveness. For example, in our study, we detected a positive effect of nitrogen input on hon-

eybee abundance (Fig 3) that as discussed above has a negative effect on common bean pro-

duction. Further surveys and more detailed analyses would be required to evaluate changes in

the behaviour of this species (legitimate visitor vs. robber) and on the visitation rates and

behaviour of other species of visitors.

The interactive effect between pollinator density and N availability here detected corrobo-

rates with the findings of a previous study [17], which found a tendency for greater benefit

from pollination under low N availability in canola. However, in their study, the extreme

reduction in nitrogen availability used (150 vs. 0 kg ha-1) may have limited pollinator benefits.

Fruit formation requires a high level of nutrients and many studies (including our own) show

that below certain levels of N, production is constrained (see Fig 2). The positive effect of nitro-

gen input on productivity could be partially due to a positive effect on flower production (and

consequently, on number of pods). However, the effect of this nutrient on flower production

was slightly negative in our work (see Figure B in S1 File). The positive effect is hence more

likely explained by the high requirement on nutrients for fruit production of our study species.

This demand might be higher when cross pollination mediated by insects occurs, since beans

native pollinators the vegetation cover scale used was 2000 meters. For the remaining variables, the vegetation cover scale used was 500 meters (see details

of vegetation cover scale selection in Table D in S1 File). Shaded area represents 95% confidence interval.

https://doi.org/10.1371/journal.pone.0204460.g003

Nitrogen application affects pollination

PLOS ONE | https://doi.org/10.1371/journal.pone.0204460 November 2, 2018 10 / 16

https://doi.org/10.1371/journal.pone.0204460.g003
https://doi.org/10.1371/journal.pone.0204460


produced might have greater nutritious content (see [47] for an example with almond species).

However, the fact that no positive effect of N input was detected in the sensitivity tests run

only with points with N input higher than 72 kg/ha suggest that farmers are using unnecessar-

ily high levels of nitrogen that do not benefit fruit formation, and reduce the effectiveness of

pollinators. Indeed, given that all but one of our study fields had planted soya (and on the field

with no soya, another nitrogen fixing plant was planted, Crotelaria sp.) in the last 2 years (see

Table B in S1 File), the recommended dosage for common bean plantations in Cerrado is ca.

60 kg ha-1 of nitrogen [33].

As for biocontrol agents, the most plausible reason for the lack of effect on bean productiv-

ity is the intensive use of pesticides. Such practices are probably regulating the abundance of

pests, which was low in our field sites (2.8% of beans damaged). Further studies are needed to

test whether this group of species would effectively maintain common bean crops pests at low

abundance if pesticides were applied in lower levels. In other crop systems, pollinator richness

improves the benefits of pollinator density (e.g. [48, 49]). The lack of positive effects of richness

on productivity in our study system could be because such effect may be diluted in situations

of low abundance of species [50], which limits the ability to detect synergistic positive effects

between the two variables. Indeed, when comparing with P. vulgaris fields of small scale farm-

ers in Africa [21, 42], the mean flower visitation rates detected in our study were very low

(0.004 vs. ca 0.151 visits/flower). Although the flower visitors’ assemblages and sampling

efforts of the two study regions likely differ, this striking difference is most likely due to the

negative pressure resulting from the strong agricultural intensification in our study area (i.e.

large monoculture areas with high chemical input of insecticides, including neonicotinoids,

organophosphates, pyrethroids, acetates and carbonates, farmers’ personal communication).

Influence of landscape characteristics and fertilization practices on flower

visitors

The positive effect of vegetation cover within 500m radius on biocontrol agents and richness

here detected suggests that small fragments of vegetation, adjacent to crop fields are essential

to sustain the populations of these species. Such fragments are likely important nesting area

for the bees and wasps detected in our study (see [51, 52]). For insects whose larvae can

develop within crop fields (e.g. hoverflies), such patches can also be important alternative floral

resources when common bean (and other crops) are absent from the landscape [53]. However,

when common bean is flowering, those hoverflies depend less on native resources and more

on availability of larval resources, possibly preferring to forage further away from natural habi-

tat where they might be more protected from competition with other flower visitors and other

pest natural enemies (e.g. wasps). This may explain the positive relationship between the den-

sity of biocontrol agents (a group dominated by one morphospecies of hoverfly, that is likely

exotic, Allograpta exotica cf.) and distance to natural habitat (see also [54,55]. The positive

effects of vegetation cover (2000km radius) on native pollinators could be due to a dilution

effect, and reinforce the idea that conservation and restoration of natural habitats in the imme-

diate surroundings of agricultural fields is important for ecological intensification of farming.

The creation of hedgerows and flower strips may also bring important benefits facilitating

movement of native pollinators [56, 57], and biocontrol agents (e.g. [58]).

Despite the variability of fertilizers application methods between farms, we detected a sig-

nificant effect of nitrogen on visitor abundance and overall diversity of ecosystem providers.

Nitrogen availability can alter amino acid content in pollen and nectar [14, 59], which can

affect visitation of species that are attracted by flowers with specific amino acids contents (e.g.

of proline, glycine, see [60, 61]). The fact that, in our study, different groups of visitors were
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affected differently by N availability (e.g. honeybee were positively affected, biocontrol agents

negatively affected) suggests different preferences in terms of nectar or pollen quality. Indeed,

Petanidou et al. [62] found that different species of flower visitors are differently affected by

changes in amino acid content. Further studies evaluating the chemical composition of floral

resources of common bean’ flowers would help to clarify their role as regulators of the effect of

nitrogen on the attractiveness to the different bee species.

Conclusions

Our findings suggest that ecological intensification is a promising pathway for one of the most

important global crops, the common bean. Managing vegetation cover to increase the number

of native pollinators in farms has the potential to increase production in this crop. However,

this benefit is lost under high fertilizer application.

As benefits of nitrogen input not related with pollination also fade above certain threshold

values (60 to 72 kg/ha in our study region), strategies that involve lower fertilizer dosage should

be considered in addition to those already known to benefit crop pollinators (adequate use of

pesticides, maintain flower diversity and nesting sites within farmland). These strategies have

the potential to improve yield while reducing management costs and are particularly relevant in

region, as the Brazilian savannas, which are very biodiversity rich and have naturally nutrient

poor soils [63]. Current environmental laws for private properties in Brazil prioritize vegetation

in proximity to water sources [64], a crucial ecosystem service for human wellbeing. In other

countries, water and soil conservation, as well as mitigation of natural disasters are the main

human-focused motivations considered in environmental laws [65]. Given the importance of

agriculture for economy and food security pollinator conservation practices related with agri-

cultural management should integrate future environmental policies. Further studies involving

evaluations of quality of bean, and detailed economic evaluations of changes in management

would be important to further motivate investment in ecological intensification practices.
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