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ABSTRACT 14 

Breeding sorghum for drought adaptation is pivotal to secure crop production in drought-prone 15 
regions. Limited transpiration (LT) restricts water demand at high vapor pressure deficit, saving 16 
water for use in critical periods later in the growing season. Here we evaluated the hypothesis 17 
that LT would increase sorghum grain yield in the United States. We used a process-based crop 18 
model, APSIM, which simulates interactions of genotype, environment, and management (G × E 19 
× M). In this study, the G component includes the LT trait (GT) and maturity group (GM), the E 20 
component entails water deficit patterns, and the M component represents different planting 21 
dates. Simulations were conducted over 33 years (1986-2018) for representative locations across 22 
the US sorghum belt (Kansas, Texas, and Colorado) for three planting dates and maturity groups. 23 
The interaction of GT x E indicated a higher impact of LT sorghum on grain for LD, MD, and 24 
ED (8%), than on WW environments (4%). Thus significant impacts of LT can be achieved in 25 
western regions of the sorghum belt. Otherwise, the lack of interaction of GT × GM × M 26 
suggested that an LT sorghum would increase yield by around 8% across maturity groups and 27 
planting dates. Although the interaction GM × M revealed that specific combinations are better 28 
suited across geographical regions. Overall, the findings suggest that breeding for LT would 29 
increase sorghum yield in the drought-prone areas of the US without tradeoffs. 30 
 31 
Keywords: Stress tolerance, crop growth model, crop adaptation, plant breeding, limited 32 
transpiration, sorghum.  33 
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INTRODUCTION 34 

Droughts resulting from changes in precipitation patterns threaten crop production and food 35 
security in semiarid areas worldwide (Barbier, 2015). In the United States alone, crop yield loss 36 
due to droughts costs ~$9 billion per year (NOAA, 2020). In this respect, breeding for drought-37 
prone environments plays a pivotal role in maintaining crop production (Thornton et al., 2018). 38 
Nevertheless, developing crops with less water demand is challenging because drought 39 
adaptation traits are complex, difficult to identify, and often involve tradeoffs (Araus et al., 2012; 40 
Monneveux et al., 2012). Furthermore, testing the effect of these traits under water stress 41 
scenarios is limited since drought events vary over time and geographies (Pournasiri-Poshtiri et 42 
al., 2018; Tang and Piechota, 2009). Thus, plant breeding programs require complementary 43 
methods to test the effect of any hypothetical drought adaptation trait to design a breeding 44 
pipeline (Bernardo, 2020; Cooper et al., 2002; Cooper and Messina, 2022). 45 

Crop models have become standard tools to assess the impact of new technologies in 46 
agriculture and can support plant breeding (Challinor et al., 2018; van Ittersum et al., 2003). 47 
These models integrate ecophysiological knowledge to represent the plant-soil-atmosphere 48 
system and predict the crop response to soil properties, climatic conditions and crop management 49 
practices (Jones et al., 2003). Crop models equip breeding programs with the tools to develop 50 
and evaluate hypotheses regarding the performance of new cultivars (G) under environmental 51 
(E), and management scenarios (M) (Chenu et al., 2017; Messina et al., 2011). Several crop 52 
modeling studies have evaluated theoretical expressions of crop traits linked to cultivar-specific 53 
parameters for drought environment (Singh et al., 2014). The most common approach varies 54 
cultivar parameters (Messina et al., 2011; Singh et al., 2014) or implements new traits (Sinclair 55 
et al., 2005) to evaluate alternative ideotypes for constraint environments. This approach to crop 56 
improvement advantages investment of finite resources to defined targets for genetic gain in 57 
specific environments.  58 

Sorghum is one of the most drought-adapted crops in semiarid regions used for multiple 59 
purposes, including forage, fiber, and food (Doggett and Majisu, 1968; Smith and Frederiksen, 60 
2000). Most of the grain sorghum production worldwide (15%) is grown under rainfed 61 
environments in the sorghum belt of the United States that runs from South Dakota to South 62 
Texas (Laingen, 2015). Kansas, Texas, and Colorado lead grain sorghum production in the 63 
sorghum belt with 50%, 30%, and 6%, respectively (Laingen, 2015). Across this area, water 64 
limitation and high vapor pressure deficit (VPD) affect plant transpiration, making sorghum 65 
production vulnerable to droughts. Although sorghum harbors drought adaptation (Abdel-Ghany 66 
et al., 2020; Abreha et al., 2021), breeding for drought traits has received less attention. 67 
Therefore, the full potential of sorghum production under water-limited environments in the 68 
sorghum belt of the United States may not yet have been achieved. 69 

Limited transpiration (LT) is a hypothetical trait that restricts water demand in periods of 70 
high VPD which occurs around mid-day (Figure 1A and 1B). This mechanism shifts plant-water 71 
demand, conserving water in the soil profile during the vegetative stage and for use during grain 72 
filling (Figure 1) (Sinclair et al., 2005). Reducing transpiration (H2O) due to stomatal closure in 73 
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hours with high VPD would penalize carbon assimilation (CO2). Thus, causing grain yield 74 
reductions under well-watered conditions but increasing the grain yield and the effective use of 75 
water under moderate water-limited environments (Vadez et al., 2014). This hypothetical 76 
physiological mechanism of LT has been extended into process-based models where 77 
transpiration was restricted during high VPD hours (Messina et al., 2015; Sinclair et al., 2005; 78 
Truong et al., 2017). Crop model simulations under rainfed conditions for sorghum and other 79 
crops such as soybean, maize, lentil, chickpea, and wheat indicate a yield increase for a 80 
phenotype with LT trait in areas vulnerable to water scarcity (Collins et al., 2021; Sinclair et al., 81 
2017). For sorghum, reports indicated an increase in yield production from 6 to 10% for severe 82 
drought scenarios in Australia, semiarid regions of India, and the United States (Texas) (Kholová 83 
et al., 2014; Sinclair et al., 2005; Truong et al., 2017). 84 

Simulations for various crops (Collins et al., 2021; Guiguitant et al., 2017; Messina et al., 85 
2015) suggest that breeding for the LT trait can make a valuable economic contribution in 86 
rainfed regions. Yet, its impact on grain yield in sorghum-producing regions of the United States 87 
remains unknown. This study uses the APSIM-sorghum growth model to generate hypotheses of 88 
the potential benefits and tradeoffs of the LT trait in grain sorghum. Under drought scenarios, we 89 
expect an increase in grain yield in rainfed sorghum-producing regions for sorghum with the LT 90 
trait (Figure 1). Otherwise, no impacts or detrimental effects on grain yield are expected for non-91 
stress environments. Likewise, we expect these benefits across different combinations of genetic 92 
background and management practices. Results indicate that introgressing LT in grain sorghum 93 
would increase yield by more than 5% in water-limited scenarios but less than 5% in well-94 
watered settings. Additionally, the LT would benefit grain yield across all combinations of 95 
maturity groups and planting dates. 96 

MATERIALS AND METHODS 97 

Production system and study sites  98 
The simulation study was conducted for Kansas, Texas, and Colorado counties that have high 99 
sorghum production (Figure 2A) area and are located in contrasting gradients of precipitation 100 
and VPD (Table 1, Figure 2D). Across these locations annual precipitation and VPD are 101 
inversely associated (Figure 1B, 1C, and 1E) with declining precipitation and increasing VPD 102 
from east to west (https://prism.oregonstate.edu/). Annual precipitation shapes farmer crop 103 
management including maturity group adoption (Ciampitti et al., 2019; Roozeboom and Fjell, 104 
1998; Shroyer et al., 1998). Therefore, in these regions plant density of 17 plants m2 and 6 plants 105 
m2 are recommended for areas with annual precipitation around 800 mm and 350 mm, 106 
respectively (Shroyer et al., 1998). Similarly, full-season hybrids are planted in regions with high 107 
annual precipitation while short-season hybrids are grown in regions with low precipitation 108 
(Ciampitti et al., 2019; Roozeboom and Fjell, 1998) .  109 

APSIM-sorghum crop model 110 
APSIM-Sorghum (Hammer et al., 2019, 2010) is a crop model that integrates the intertwined 111 
interaction of G × E × M) to simulate plant development and growth on a daily basis (Holzworth 112 
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et al., 2014; Keating et al., 2003; Wang et al., 2002). The model requires the following input 113 
data: daily weather records, soil profile characteristics, crop management, and cultivar-specific 114 
parameters. Crop phenology development is estimated as the summation of thermal time for nine 115 
phases from germination to physiological maturity. Daily biomass is estimated as the minimum 116 
of biomass limited by solar radiation or water availability. The biomass limited by solar radiation 117 
is the product of radiation use efficiency (RUE, MJ m2), solar radiation (MJ m2), and the fraction 118 
of light intercepted. The biomass limited by water availability is the product of transpiration 119 
efficiency and soil water supply. The model estimates water, temperature, and nitrogen deficit 120 
factors which affect phenology and growth. To estimate the effect of LT on carbon assimilation 121 
in hours with high VPD, APSIM-sorghum downscales daily temperature and solar radiation to 122 
hourly time steps and estimates relative humidity (RH) on each hour (Parton and Logan, 1981). 123 
Temperature and RH are used to calculate VPD on each hour (Monteith and Unsworth, 2013; 124 
Murray, 1967), then the model estimates biomass as a function of hourly water supply and 125 
demand. Finally, the biomass accumulation is aggregated for each daily timestep. Note, the 126 
version of APSIM-sorghum used and LT modifications were made for research purposes and are 127 
not in the release version. 128 

Model inputs 129 

Daily weather data at each site, including precipitation (mm), solar radiation (MJ m-2 day-1), 130 
maximum (°C), and minimum temperature (°C), were obtained from NASA Prediction of 131 
Worldwide Energy Resources (POWER-https://power.larc.nasa.gov/) from 1986 to 2018. The 132 
spatial resolution of the data are 1.0° latitude by 1.0° longitude for solar radiation and 0.5° 133 
latitude by 0.5° longitude for the remaining variables. Soil profile information such as soil 134 
texture (%), bulk density (g ml-1), organic carbon (%), and pH was downloaded from the web 135 
soil survey (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). These data were used 136 
to estimate the saturation capacity (SAT), field capacity (DUL), and wilting point (LL15) for 137 
each layer of the soil profile using the SBuild application of the Decision Support System for 138 
Agrotechnology Transfer (DSSAT) program (Hoogenboom et al., 2019). Crop management 139 
practices such as planting depth, plant population and planting dates were obtained from 140 
experiments or variety trials (Larson et al., 2021; Pachta, 2007; Schnell et al., 2021). 141 

Model testing 142 
Model testing was conducted in two steps: model calibration and model evaluation (Wallach et 143 
al., 2014). In model calibration, specific parameters were iteratively adjusted to fit observations, 144 
while model evaluation estimated the accuracy of the model with independent data. For model 145 
testing we collected available information on field experiments for hybrid 87G57 from 1997 to 146 
2007 (Figure 1D, Table S1). Model calibration was conducted with a high quality experiment 147 
that accounts for information of crop management, phenology development, in-season biomass 148 
components, and initial soil water (Pachta, 2007). Information of this experiment including 149 
weather, soil and crop management was arranged into APSIM-Sorghum. First, a simulation was 150 
conducted for the hybrid 86G56 (no calibration), which was available in the library of the model. 151 
Next, cultivar parameters were modified, to eliminate the photoperiod sensitivity 152 
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(photoperiod_slope from 10 to 0), and to match the grain yield components by modifying the 153 
parameter relation between biomass accumulated from floral initiation to the start of grain 154 
(dm_per_seed from 0.00087 to 0.00099). There was no need to adjust parameters related to 155 
phenology development since the model was accurate in predicting flowering time for this 156 
experiment (observed: 52, and simulated: 53).  157 

Model evaluation was conducted with variety trial experiments conducted in Garden 158 
City, Colby, and Hays (Kansas). These experiments have information of planting date, plant 159 
density, flowering time, and grain yield. Environment (daily weather data, soil profile) and crop 160 
management practices for these simulations were arranged into APSIM-Sorghum. Each year the 161 
crop was simulated to be planted under optimal soil moisture (70% soil available water), and 162 
non-nitrogen limitations at plant density of 6–14 plants m-2. Grain yield was expressed assuming 163 
12.5% of moisture content. Model accuracy was analyzed using the root mean square error 164 
(RMSE), which indicates the distance from a perfect prediction (Wallach et al., 2014). 165 

Model application 166 
Parameters for hybrid 87G57 corresponded to a commercial short-season sorghum hybrid with 167 
15 leaves and a non-LT trait. The number of tillers was kept constant for all phenotypes. 168 
Parameters controlling growth and development, tt_endjuv_to_init, Tpla_prod_coef, and 169 
Tpla_inflection, were adjusted to simulate mid-season and late-season sorghum hybrids, each 170 
with 17 and 19 leaves, respectively. The number of tillers was kept constant (0.3) for all maturity 171 
groups. The model defines a phenotype with an LT trait by assigning the parameter limited 172 
maximum transpiration to any value from 0.2 to 0.9 mm h-1 (Table S1). Note a phenotype with a 173 
LT trait of 0.9 mm h-1 represents a genotype that restricts the transpiration by 10%. For 174 
simulations across all locations, the LT trait was imposed as 0.9 mm h-1. Simulations for 175 
sorghum with LT and non-LT traits started every year on the first of January with initial soil 176 
moisture of 60%. In these simulations, the crop was automatically planted at three time intervals, 177 
early-May, mid-May, and early-June, a row distance of 76 cm, planting depth of two cm, and 178 
fertilized to fully meet plant nitrogen demand. Simulations were conducted every year from 1986 179 
to 2018. We analyzed the grain yield, transpiration, and soil moisture for both sorghum 180 
phenotypes (non-LT and LT).  181 

We conducted a sensitivity analysis in a representative location to identify initial 182 
conditions' effect on grain yield changes resulting from the LT trait. Therefore, simulations 183 
started with initial soil moisture of 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% while 184 
maintaining the LT trait at 0.9 mm h-1. Otherwise, to determine yield gains resulting from 185 
hypothetical genetic variability, we created simulations and varied the LT parameter from 0.2 to 186 
0.9 mm h-1 while maintaining the initial soil moisture at 60%. As previously outlined, these 187 
simulations started each year on the first day of January under similar maturity groups and 188 
management practices. Absolute and relative change in harvested grain yield for the phenotype 189 
with LT trait was calculated for each simulation and averaged over environments. 190 
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Statistical analysis and interpretation 191 

Statistical analyses of model outputs were performed in the R statistical environment utilizing 192 
mixed linear models and the lmer library (Bates et al., 2015). The analysis quantified the size of 193 
fixed effects on grain yield. Factors with fixed effects were trait (GT), maturity group (GM), 194 
planting date (M), water stress environments (E), and their interaction while factors with random 195 
effects were years nested on each location. 196 

 197 

yield = GT + GM + M + E + GT × GM × M × E + (1|location/years)  198 

 199 

Tukey's test was performed when the F value was below an α < 0.05 significance threshold. In 200 
this study, the water stress environment (E) was determined for non-LT sorghum which resulted 201 
from seasonal trajectory of daily water stress simulated for each season. This time series 202 
information was analyzed via a hierarchical classification using the cluster (Maechler et al., 203 
2022) library and the clara (Clustering Large Applications clara) method (Kaufman and 204 
Rousseeuw, 1990). The number of clusters was determined via the silhouette method 205 
(Kassambara, 2017), a measure of similarity for each data point relative to the assigned cluster 206 
and other clusters. The final water stress patterns resulted as the median of water stress on each 207 
cluster. 208 

RESULTS 209 

Accuracy of model for grain yield prediction 210 
To determine the model accuracy for flowering time and grain yield, we compared the observed 211 
data versus the information simulated by the model. For a growing season with hybrid 87G67 in 212 
Manhattan, Kansas (Figure 3A, 3B, 3C, and 3D), the model reproduced the trajectory of dry 213 
weight for total biomass, stem, and panicle with an RMSE of 1.1, 0.4, and 0.7 Mg ha-1, 214 
respectively. However, a substantial underestimation occurred for dry leaf weight. In this 215 
experiment, the observed grain yield was 4.8 Mg ha-1, and the results after calibration were 5.4 216 
Mg ha-1. For experiments in Kansas from 1997 to 2007 in Garden City, Hays, Colby, and 217 
Manhattan, the model showed satisfactory predictions for days to anthesis with an RMSE of 5 218 
days (Figure 3E) and grain yield with an RMSE of 2 Mg ha-1 (Figure 3F). Despite the lack of 219 
experimental field data for model testing in Texas and Colorado, a comparison of statistical (2.2 220 
to 6.6 Mg ha-1) versus simulated grain yield (1.5 to 6 Mg ha-1) resulted in a RMSE of 1.1 Mg ha-1 221 
(Figure 3G). 222 

Variation of grain yield across GM × M scenarios in the absence of LT 223 
To determine the best GM and M combination for grain yield in precipitation gradients, we 224 
conducted simulations for short-, medium- and full-season sorghums planted in early May (May 225 
01), mid May (May 15) and early June (June 15). Note, around 3% of the simulations were 226 
removed for the analysis because they did not complete the vegetative stage (hereafter referred to 227 
as "failed seasons") and the yield was close to zero. This occurred under extreme drought events 228 
(Rippey, 2015). For instance, in Colorado in 2012, the annual precipitation was less than 207 229 
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mm, and the rainfall during the simulated growing period was less than 130 mm. The number of 230 
failed seasons for full-season sorghum either planted early or late was higher in Colorado 231 
suggesting that short season varieties outperform any maturity group under low rainfall, while 232 
the frequency of failed seasons in Texas was higher in early planting dates (Figure S2). 233 

Grain yield for simulated sorghum with a non-LT trait for different maturity groups and 234 
planting dates in Kansas, Texas, and Colorado, are indicated in Figure 4. An average across GM 235 
and M indicated that grain yield varied from 1.7 to 6.5 Mg ha-1 (Figure 4A), with higher and 236 
lower yields in eastern and western regions, respectively. Interannual variability for grain yield 237 
ranged from 30 to 50% (Figure 4A). The model predicted higher yields in Colorado and Kansas 238 
when all maturity groups were planted in early May, followed by planting dates in mid-May and 239 
early June. In most Texas locations, the model predicted a higher yield for planting dates in early 240 
June (Figure 4B). The seasonal rainfall during each simulated season influenced the performance 241 
of different maturity groups for grain yield (Figure S1A). On planting dates in June, 242 
discrepancies among maturity groups occurred under high precipitation; nevertheless, as the 243 
amount of rainfall during the growing season decreases, these differences become negligible (< 244 
1%; Figure S1B). By contrast, differences in maturity groups for grain yield across precipitation 245 
gradients in early May are insignificant (p > 0.05) (Figure S1B). 246 

Effect of LT on the best combination of maturity group and planting date across sites 247 
Due to G × M × E interactions, the effect of non-LT vs. LT trait (GT) may depend on agronomic 248 
options, such as maturity group (GM) of the hybrid and planting date (M). To identify the best 249 
combination (GM × M) at each site (E), we obtained the maximum yield for LT sorghum. The 250 
model indicated similar combinations for non-LT and LT sorghums (Figure 4C–D). In Colorado 251 
and Kansas, higher yields resulted when seasons for all maturity groups started on the first of 252 
May. In Colorado, short-season sorghum performed better in northern regions, while medium-253 
season sorghum in southern regions. Full-season sorghum yielded higher across Kansas, except 254 
in Colby, where medium-season sorghum outperformed any other combination. In Texas, the 255 
model indicated full-season sorghum planted on the first of June as the best combination, with 256 
some exceptions in the northern regions (i.e. Hansford). Overall, sorghum with LT across all 257 
locations is expected to increase grain yields from 0 to 15% (Figure 4E). Note, the relative 258 
change is lower than 3% in regions with high precipitation and this change increases as declining 259 
precipitation amplifies water deficit scenarios in western regions of the study site. 260 

Water deficit environments are more recurrent in the West 261 
To evaluate the value of LT in target population environments, we determined water stress 262 
patterns by clustering simulated time series information on water supply and demand (waterSD). 263 
The classification indicated four water deficit environments: well-watered or light stress at grain 264 
filling (WW), late drought (LD), mid-season drought (MD), and early drought (ED) (Figure 5A). 265 
WW and LD predominated in eastern regions of Kansas and Texas, while MD and ED 266 
predominated in eastern Colorado and western Texas (Figure 5B). The analysis revealed a strong 267 
correlation between seasonal precipitation and water deficit patterns; although it was non-268 
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significant (r = 0.9, p < 0.06). On average, WW, LD, MD, and ED, showed seasonal 269 
precipitation of 400 mm, 300 mm, 244 mm, and 230 mm, respectively.  270 

The effects of L GT × GM × M × E 271 
To determine significant interaction of GT × GM × M × E, we used a mixed model to compare 272 
variances across the mean (Table S3). We conducted this analysis for dependent variables at the 273 
end of the growing season (grain yield, transpiration and water productivity) and flowering time 274 
(biomass, transpiration, and soil water content). All individual fixed effects (GT, GM , E, and M) 275 
had high significance (p < 1×10-4, Table S3), and a post hoc analysis suggested that factors on 276 
each fixed effect belonged to different groups (Table S3). For instance, sorghum's LT trait 277 
increased grain yield by 5%. Full-season sorghum yielded 21% and 10% higher than early and 278 
mid-season sorghum. WW favored grain production; while lower yields correspond to ED. 279 
Likewise, earlier planting dates outperformed sorghum planted either in mid-May or early-June. 280 

All dependent variables exhibited high significance (p < 1×10-5) in two-way interaction 281 
for three combinations: GT × E, E × M, and GM × E (Table S3). The significant interaction for GT 282 
× E, and the pairwise comparison for grain yield (Figure 5C), water productivity (Figure 5D), 283 
biomass at flowering (Figure 5C), and soil moisture at flowering (Figure 5H) indicated that the 284 
LT trait outperformed the non-LT trait in all environments. Note, grain yield for a LT sorghum in 285 
a WW environment was lower (4%) than in LD, MD, and ED environments (8%). However, the 286 
pairwise comparison for total transpiration and transpiration at flowering confirmed the 287 
significance for the interaction GT × E. For instance, the non-LT trait exhibited higher total 288 
transpiration in WW, while the LT trait improved it in MD and ED (Figure 5C). At flowering 289 
time, LT increased transpiration in WW, LD, and MD, but both traits exhibited similar 290 
transpiration in ED (Figure 5C). Only for biomass at flowering time and water productivity the 291 
interaction GT × M had high significance. 292 

Transpiration at flowering exhibited a three-way interaction for GT × GM × E (p < 0.01). 293 
The pairwise comparison indicated a lack of differences between LT and non-LT genotypes for 294 
each maturity group in WW (Figure S4A, S4B, and S4C). By contrast, the LT trait increased 295 
transpiration in WW, LD, and MD for each maturity group (Figure S4A, S4B, and S4C). Grain 296 
yield, transpiration, and soil water at flowering time and biomass at the flowering time exhibited 297 
the following three interactions as significant: GM × E × M (p < 0.02). Pairwise comparisons 298 
among these interactions revealed differences for each maturity group and planting dates in 299 
environments WW and LD, but these differences become smaller in MD and ED (Figure S4A, 300 
S4B, and S4C). In these environments, for all maturity groups, grain yield for planting dates in 301 
early May and mid-May were similar, but these differed (p < 0.01) from the early June planting. 302 

Sensitivity of initial soil moisture on LT and variability of LT in different environments 303 
To test the effect of initial water content on the LT trait, we designed simulations and created 304 
eight scenarios of initial soil moisture (from 20% to 90%) while maintaining the LT parameter at 305 
0.9 mm h-1. We conducted these simulations in Hays (Kansas), which presented the four 306 
environment classes identified in this study (Figure 2D and 5B). Nevertheless, regardless of the 307 
initial water content scenario, the model pointed out a yield increase for sorghum with LT, which 308 
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is more pronounced under low soil moisture (i.e. 20% and 30%). Overall, model predictions 309 
indicated that initial soil moisture changes do not affect LT's positive effect, although the 310 
uncertainty of these changes increased under low soil moisture (Figure 6A). 311 

To test the hypothetical genetic variability of LT on grain yield, we created simulations 312 
for LT sorghum with a limited maximum transpiration rate from 0.2 mm h-1 to 0.9 mm h-1, while 313 
maintaining the initial soil moisture at 60%. We conducted these simulations in a central site of 314 
the sorghum belt in Kansas (Hays), representing the four water deficit patterns identified in this 315 
study. Model predictions indicated that grain yield increases in all environments when LT is 316 
lower than 0.9 mm h-1 (Figure 6B), with a greater benefit under drought scenarios. For instance, 317 
on average, an LT sorghum with a limited maximum transpiration rate of 0.2 mm h-1 increased 318 
the grain yield by 15%, 45%, 70%, and 74% in WW, LD, MD, and ED, respectively. By 319 
contrast, an LT sorghum with 0.8 mm h-1 increased the grain yield by 7%, 8%, 10%, and 11% in 320 
WW, LD, MD, and ED, respectively. Note that the uncertainty of predictions, represented by the 321 
standard deviation, became larger at LT lower than 0.9 mm h-1. In LD, the model predicted a 322 
yield increase between 25 to 79% for sorghum with an LT of 0.2 mm h-1. Otherwise, this 323 
increase ranged from 6 to 16% for sorghum with an LT of 0.8 mm h-1 324 

DISCUSSION 325 

LT for the US sorghum belt: Is it worth pursuing? 326 
The decision to include a trait within a breeding program clearly depends on the impact of this 327 
trait on final grain yield. Breeding programs require that a candidate trait can contribute at least a 328 
5% yield increase to be included in a breeding portfolio. Findings of this study revealed the LT 329 
trait can potentially increase grain yield from 3% to 13% in the sorghum belt in the United States 330 
(Figure 4E). Therefore, LT is a candidate trait for developing hybrids with improved water-331 
resiliency for western regions of the sorghum belt (Figure 5B). 332 

Although our simulation does not present a full geospatial analysis (Messina et al., 2015), 333 
our study shows results for contrasting sites across gradients of VPD and precipitation. Site-334 
specific simulations allowed for handling detailed information on additional variables (Collins et 335 
al., 2021) in any growing period, such as soil moisture, transpiration, and biomass (Figure 5C). 336 
Otherwise, grid geospatial simulation studies rarely provide information other than yield 337 
(Guiguitant et al., 2017; Messina et al., 2015). Despite our study disregarded spatial variability 338 
on initial soil moisture, the model reproduced the observed yield (RMSE 1.1 Mg ha-1, Figure ). 339 
Likewise, a sensitivity analysis revealed that the initial water conditions do not affect the positive 340 
impact on LT (Figure 6A). 341 

Current climate variability (33 years) highlights the crop vulnerability (Figure 4A) in 342 
western regions characterized by the high frequency of water deficit scenarios (Figure 5B) and 343 
where the impact of LT sorghum is more significant (Figure 4G and Figure 5). Climate change 344 
scenarios, disregarded in our simulations, project a VPD increase by the end of the century 345 
(Yuan et al., 2019). Under high VPD, LT hypothetically leads to stomatal closure (Sinclair et al., 346 
2005); similarly, rising levels of CO2 cause stomatal closure in C3 and C4 crops (Allen et al., 347 
2011). However, it is unknown whether the impact of CO2 and LT would have a synergistic 348 
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effect or if the stomatal response to CO2 would prevail over LT. Simulations under future 349 
scenarios would be needed to elucidate these effects. Although, a simulation study hypothesized 350 
that CO2 and LT can compensate for detrimental impacts of climate change in the wheat belt of 351 
Australia (Collins et al., 2021). 352 

Navigating G × E × M for deployment of LT 353 
The LT trait is expected to restrict water transpiration under good soil moisture and high VPD 354 
(Sinclair et al., 2005). Therefore, this trait is undesirable for WW conditions because depriving 355 
transpiration would penalize carbon fixation and final grain yield (Vadez et al., 2014). 356 
Unexpectedly, in our study, simulation studies indicated that an LT sorghum can contribute to an 357 
increase in grain yield of 4% for WW environments (Table S3, Figure 5C). Under WW 358 
environments, predictions for wheat with the APSIM model indicated a yield increase of 0.2% 359 
(Collins et al., 2021), while predictions for maize with a simple model indicated a yield decline 360 
of -3% in the USA (mesna). Yield gains for WW environments in our study can be due to 361 
differences in the model structure. In LD environments, sorghum grain yield increased by around 362 
9 % (Figure 5C, Table S3), which is slightly higher than predictions for wheat (2 to 7 %, Collins 363 
et al., 2021) and within the range of 0 to 24% reported for maize (Messina et al., 2015). Our 364 
results for MD (10%) and ED (9%) align with the reported yield increase for wheat which ranged 365 
between 3 to 13% (Collins et al., 2021). From a breeding perspective, LT sorghum would have a 366 
more significant impact on water stress scenarios of the sorghum belt. It is essential to identify 367 
the best combination of GT × GM × M in sorghum since it is planted late and across precipitation 368 
gradients (Ciampitti et al., 2019; Roozeboom and Fjell, 1998; Shroyer et al., 1998). Overall, LT 369 
sorghum increased grain yield across planting dates and maturity groups by 8%. Although 370 
specific combinations of GM × M (Table S3) can maximize crop yield either for a non-LT 371 
(Figure 4C) or LT sorghum (Figure 4D).  372 
 Variety trials or multi-environment experiments have shown that, unlike full-season 373 
varieties, medium- and short-season varieties can complete their growing cycle in regions with 374 
low precipitation (Larson et al., 2021; Schnell et al., 2021) and limited growing degree days 375 
(GDD) at higher latitudes (Kukal and Irmak, 2018). This strategy has led to the selection of 376 
maturity groups that match precipitation and GDD gradients in the sorghum belt (Figures 4C and 377 
4D). Since the impact of LT sorghum is more relevant in western regions (Figure 4E), this study 378 
suggests introgressing this trait in medium- and short-season hybrids rather than in full-season 379 
hybrids (Figure 4D, Figure 5B). Management practices need to be considered to enhance the 380 
performance of LT sorghum. Shifting planting dates can change the frequency of water deficit 381 
environments (Chenu et al., 2011) (Figure 3S) by increasing grain yield in early planting dates, 382 
especially in Kansas (Figure 4B). Higher yields in early spring resulted from the synchronization 383 
of planting dates with the onset of precipitation, which increased the frequency of WW 384 
environments (Figure S3). Likewise, simulation and field studies demonstrated yield gains of up 385 
to 11% in seasons with higher water availability (Carcedo et al., 2021; Francis et al., 1986; 386 
Zander et al., 2021) 387 
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 Genetic pyramiding for drought adapted phenotypes can be explored via crop modeling 388 
(Cooper et al., 2002). A simulation study in sorghum revealed that LT is more effective than 389 
stay-green in water scarcity scenarios (Kholová et al., 2014). Higher yields in early spring 390 
suggests (Figure 4B and Figure S4D-F) a plausible interaction between early chilling tolerance 391 
and LT trait. LT increases canopy temperature (Belko et al., 2013), and temperatures beyond 38 392 
°C can penalize carbon assimilation and plant growth (Singh et al., 2015). Then, integrating field 393 
experimentation and crop modeling for ideotyping LT with additional adaptation traits can 394 
support breeding programs when developing a trait technology for water-limited scenarios. 395 

Next steps for water-optimized sorghum 396 
This simulation study has shown that LT trait can increase water productivity and benefit 397 
farmers' economies in the sorghum belt. Nevertheless, LT is a hypothetical trait, implemented in 398 
crop models (Bates et al., 2015; Messina et al., 2015; Sinclair et al., 2017; Truong et al., 2017), 399 
and whose genetic variation is reported and limited to controlled environments (Collins et al., 400 
2021; Devi and Reddy, 2018; Gholipoor et al., 2010; Medina et al., 2019; Vadez et al., 2015). 401 
Although variation for LT was reported in controlled environments, the repeatability of this trait 402 
has yet to be shown in sorghum-producing regions. Hence, including the LT trait in a sorghum 403 
breeding program requires validating this trait under field conditions and testing the effectiveness 404 
of phenomic approaches to discriminate this trait in large populations. Potential donors would 405 
make feasible developing bi-parental populations to determine quantitative trait loci (QTLs) 406 
controlling the phenotypic expression of this trait. Further isolating these QTL can assist in 407 
dissecting the underlying physiological and molecular mechanisms of limited transpiration, 408 
which remain enigmatic.  409 
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FIGURES AND TABLES 639 

 640 
Table 1. Characteristics for the study locations across the US sorghum belt. 641 
State 

  

County 

  

VPD 

(KPa) 

Prec. 

(mm) 

Planted area 

(ha) 

Soil texture 

  

Soil depth 

(cm) 

Plant 
density 

(Plants m-2) 
CO Bent 3.2 356 318 Sandy loam 150 6 
 Lincoln 2.7 377 1129 Loam 200 6 
 Logan 2.7 426 2488 Sandy Loam 150 6 
 Phillips 2.6 460 1708 Complex 150 6 
 Prowers 3.1 407 1768 Silty loam 200 6 
KS Clay 2.5 784 8249 Silty clay loam 200 14 
 Gray 2.9 527 3509 Loam 200 8 

 Morris 2.3 898 2316 Complex 116 14 

 Morton 3.2 442 1455 Silty loam 200 6 

 Russell 2.7 666 16205 Silty clay loam 200 8 

 Colby* 2.6 520 1708 Silty clay loam 200 6 
 Garden City* 3.2 480 1455 Silty clay 200 6 
 Hays* 2.7 680 16205 Silty clay loam 200 8 
 Manhattan* 2.5 900 8249 Clay 200 14 
TX Andrews 3.7 380 401 Sandy loam 150 6 
 Coleman 3.3 694 847 Clay 200 8 
 Hansford 3.3 505 5140 Clay loam 200 6 
 Jim Wells 3.1 663 12559 Clay 180 6 
 Refugio 2.4 927 10517 Clay 200 14 
 Terry 3.5 482 2730 Loamy sand 150 6 
 Milam 2.8 913 2498 Complex 200 14 

*Model evaluation sites. 642 
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Figure 1. Hypothetical effect of LT trait in grain sorghum under rainfed conditions. (A) 
Hourly trajectory of VPD during four days with contrasting, (B) Hourly trajectory of 
transpiration for sorghum with non-LT and LT traits (GT). The dashed gray line indicates the 
threshold of VPD at which genotypes express differences in transpiration VPD response. (C) 
Cumulative transpiration during the growing season, and (D) trajectory of grain yield during the 
growing season. 
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Figure 2. Study system to evaluate the impact of the limited transpiration (LT) trait. (A) 
Geographic distribution of grain sorghum production area (ha-1) in the United States in 2019. (B) 
Annual precipitation (mm) in sorghum producing areas. (C) Mean of the monthly maximum 
vapor pressure deficit (VPD, kPa) from May to August in sorghum producing areas. (D) 
Distribution of grain sorghum in Colorado, Kansas, and Texas and sites for model evaluation and 
simulation sites. (E) Mean VPD and annual precipitation in sorghum producing regions. 
Sorghum production areas were obtained from the National Agricultural Statistical Service 
(NASS, https://www.nass.usda.gov/). Precipitation and vapor pressure deficit information for 
sorghum-producing areas were acquired from the PRISM Climate Group 
(https://prism.oregonstate.edu/). 
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Figure 3. Model testing for APSIM-Sorghum in the study system. (A) Observed versus 
simulated in-season dry biomass for hybrid 87G67 in Manhattan, Kansas (2007). (B) Observed 
versus simulated in-season stem dry weight for hybrid 87G67 in Manhattan, Kansas (2007). (C) 
Observed versus simulated in-season leaf dry weight for hybrid 87G67 in Manhattan, Kansas 
(2007). (D) Observed versus simulated in-season panicle dry weight for hybrid 87G67 in 
Manhattan, Kansas (2007). (E) Observed versus simulated days to anthesis for hybrid 87G67 
under rainfed conditions for experiments in Garden City, Colby, Hays, and Manhattan (Kansas). 
(F) Observed versus simulated dry grain yield for hybrid 87G67 under rainfed conditions across 
the Kansas precipitation gradient (Garden City, Colby, Hays, and Manhattan). Each point 
(Figures E and F) represents results for single seasons between 1997 to 2007. Information of (G) 
Observed versus simulated grain yield for Kansas, Colorado, and Texas study sites (indicated in 
Figure 4D). The y axis represents the mean of simulated yields over 33 years (1986-2018), three 
planting dates, and three maturity groups. The x axis represents the mean of observed data over 
21 years (2010 to 2021). Observed sorghum grain yield (Figure G) was obtained from the 
National Agricultural Statistical Service (NASS, https://www.nass.usda.gov/). 
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Figure 4. Maturity (GM) × planting date (M) combinations to achieve maximum yield for 
non-LT versus LT sorghum. (A) Average grain yield and interannual variability. (B) Average 
grain under different planting dates and maturity groups. Each point represents the mean of 33 
years (1986-2018), the annual variability (coefficient of variability) is the quotient of the 
standard deviation and mean. Best GM × M combination for a sorghum with (A) non-LT and (B) 
LT trait. Relative increase in grain yield for a sorghum with LT trait. 
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Figure 5. Simulated effects of LT (GT) across the US sorghum belt. (A) Water stress 
environment identified via water supply and demand (WaterSD) at each site. (B) Frequency of 
water stress environments in Kansas, Texas and Colorado. (C) Distribution of simulated grain 
yield, transpiration, water productivity, biomass and soil extractable water for a phenotype with a 
non-LT (darkgray) and LT trait (green) in water stress environments. Each distribution 
represents simulations for all maturity groups (GM), and planting dates (M) in all sites over 33 
years. Letters indicate significant differences (α < 0.05) of all pairwise comparisons using the 
Tukey HSD test. 
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Figure 6. Sensitivity of a sorghum with LT trait to variation of initial conditions and 
genetic variability. (A) Relative change in grain yield under thresholds of initial soil moisture. 
The limited maximum transpiration was 0.9 mm h-1. (B) Relative change in grain yield under 
thresholds of limited maximum transpiration. Initial soil moisture was 60%. The analysis was 
conducted for a representative location (Hays, Kansas; 1986-2018) at the center of the sorghum 
belt which presented all four water stress environments. Vertical lines represent the standard 
deviation of each environment. 
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