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Abstract: Background: Purple soil has a fragile structure and is highly vulnerable to soil erosion
and phosphorus (P) loss risks. Despite this, the region is endowed with abundant crop residue
resources. To ensure sustainable agricultural development in this area, we conducted a study to
investigate the impact of crop residue removal on soil aggregate structure, soil erosion, and the
risk of P loss. Methods: We conducted a three-year on-farm experiment and analyzed various soil
parameters. These parameters include mean weight diameter (MWD), geometric mean diameter
(GMD), soil aggregates with a diameter greater than 0.25 mm (R>0.25mm), saturated hydraulic con-
ductivity, soil erosion estimated by RUSLE 2, total soil phosphorus (TP) concentration, geometric
mean concentration of TP (GMC), and geometric mean concentration of TP adjusted for aggregate
size (GMCd). Results: Retaining all crop residue can significantly improve soil saturated hydraulic
conductivity, which was 2.56 times higher than the complete removal treatment. After three years of
experimentation, compared to four months, the 50% residue removal treatment increased the GMCd

by 32.7%, while the 0% removal treatment increased the GMCd by 16.6%. Both improvements were
higher than the complete removal treatment. Partial or complete removal of the crop residue can
reduce the soil aggregate stability and increase the risk of soil erosion and P loss. Conclusions: The
GMC and GMCd have the potential to serve as indicators for evaluating soil P loss risk. Removing
crop residues can cause the degradation of the structure of purple soil aggregates, thus resulting in
increased soil erosion and P loss. It is not recommended to remove crop residues in the purple soil
region to ensure sustainable agricultural development.

Keywords: purple soil; crop residue removal; soil erosion; phosphorus loss

1. Introduction

Sichuan province is a significant grain production base in southwestern China that
relies on its unique purple soil for the cultivation of its abundant agricultural products. The
purple soil is rich in mineral nutrients [1], but the local mountainous and hilly topography
and the scattered cultivated land on small steep slopes create poor aggregate structures and
erosion resistance of the purple soil [2,3]. The purple soil layer is only about 50 cm thick [4],
and the uneven rainfall in Sichuan mostly occurs during summer [5], thereby leadings to
soil colloidal particles easily dispersing and migrating [3].

The high crop yield in Sichuan generates a significant amount of by-products, includ-
ing straw, that has earned Sichuan the reputation of being a bioethanol base [6]. From 2007
to 2016, the annual average output of straw exceeded 15 million tons, which accounted for
about 12% of the national output [6]. However, crop residue is frequently removed from
farmland as a source of bioenergy, livestock feed, and other purposes, thereby resulting
in significant nutrients lost from farmland [7], which leads to artificial fertilizer overuse
and severe environmental impacts. Both crop residue removal and fertilizer overuse have
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caused soil degradation, including the loss of soil organic matter, low soil fertility, and inef-
ficient nutrient use, which lead to low yield and agricultural non-point source pollution [8].
The excessive removal of straw from farmland has greatly depleted soil nutrients and had
led to a reduction in the long-term production capacity of soil resources by disrupting the
ecosystem mass balance [9–11]. The residue removal above a certain threshold leads to a
decrease in soil quality [12], and the magnitude of this threshold is influenced by climate
and soil conditions, thereby making the effect of removal on soil productivity specific to
each site [13]. The achievement of sustainable agriculture in purple soil cultivated areas is
limited by crop residue removal, thereby making it necessary to explore the threshold for
crop residue removal in these regions.

Soil degradation is a critical issue that can result in reduced soil fertility, crop yields,
and nutrient storage capacity, which leads to increased nutrient loss from farmland and
the eutrophication of downstream water bodies [14] and poses a significant threat to
environmental water quality and security [15]. In an effort to compensate for nutrient loss,
local producers [7] apply more synthetic fertilizers, which results in a nutrient surplus,
particularly of phosphorus (P), in the soil [16], which increases the risk of soil P loss and
agricultural non-point source pollution [7,16,17], particularly in purple soil farmlands in
southwestern China. P can enter water bodies from farmlands through surface runoff and
soil erosion caused by rainfall and runoff [18]. The P loss from agricultural land with runoff
can be classified into two forms—dissolved phosphorus (DP) and sediment extractable
phosphorus (SEP)—with research indicating that the P loss in surface runoff in the form
of SEP accounts for 88.3% to 92.8% of the total phosphorus (TP) loss [19–23]. However,
previous studies using simulated rainfall experiments can convert some SEP into DP during
the sampling process in runoff [20,21,24,25]. Leaching experiments, which estimate the
effect of straw removal on soil P loss risk by measuring the P content of the leachate [26],
can minimize the dissolution of SEP during testing. In this study, we utilized the wet
sieve method and the leaching experiment to measure the dissolved and sedimented P,
respectively. Additionally, the RUSLE 2 model was employed to simulate soil erosion
and to evaluate the effect of different crop residue removal rates on the risk of purple soil
erosion.

Factors affecting the impact of crop residue removal on soil P loss risk include soil
physical structure, chemical composition, treatment duration, and removal rate [27]. De-
spite previous studies examining soil aggregate structure and chemical components, little
research has been conducted on the elemental content of different-sized soil aggregates [28],
thereby making it difficult to determine an optimal removal rate strategy [29,30]. To accu-
rately assess P distribution and soil P loss risk, the distribution of TP in soil aggregates
must be considered, as TP distribution is non-uniform, and small aggregates are more
susceptible to erosion. When considering the different effects of the TP content of the
aggregates in different sizes on the risk of soil P loss, it is particularly important to combine
the expression of the size and the TP concentration of corresponding aggregates. In our
study, we calculated the geometric mean concentration (GMC) and geometric mean con-
centration modified by particle size diameter (GMCd) by integrating the size with the TP
concentration of the corresponding aggregates in the calculation. These two parameters
were used to investigate the impact of the crop residue removal rate on the risk of purple
soil P loss by observing TP distribution in aggregates.

This study aimed to investigate the impact of crop residue removal on the erodibility
and P loss risk in purple soil through an on-farm crop residue removal experiment in purple
soil areas. The objectives of this study were (1) to examine the effects of different crop
residue removal rates on soil aggregates stability, saturated hydraulic conductivity, and
soil erosion risk; (2) to measure the distribution of TP in the different sized aggregates of
purple soil under different residue removal conditions; and (3) to determine the maximum
residue removal rate for the study area.
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2. Materials and Methods
2.1. Study Area

In 2018, an on-farm field experiment was conducted in Xinyan Village, Qinglong
Town, Jianyang City, Chengdu City, Sichuan Province, China (30◦29′11′′ N, 104◦38′42′′ E).
The experimental site is located in the hilly region of the Sichuan Basin, with an altitude
of 430 m above sea level. The area has a subtropical monsoon climate with abundant
rainfall (1190 mm annually during the experiment) and high summer temperature (25 ◦C).
Figure 1 shows the monthly rainfall and average monthly temperature during the period
when the experiment was conducted. The soil is classified as a Regosol in the Food and
Agriculture Organization (FAO) Taxonomy [27], with a purple soil type. A soil sample was
collected in April 2018 before the experiment, and the initial soil texture and properties
were determined and are presented in Table 1.
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graph represents the monthly average rainfall, and the line graph represents the monthly average
temperature.

Table 1. The soil texture and basic properties of 0–10 cm soil samples.

Texture and Property Value Unit

Sand (20–2000 µm) 42 %
Silt (2–20 µm) 26 %
Clay (<2 µm) 32 %
Weight moisture content 18.65 %
Dry density 1.14 g cm−3

Total N 115 mg g−1

Total P 420 mg g−1

SOC 22.07 mg g−1

IC 29.11 mg g−1

2.2. Experments Setting

The experiment was conducted in a rotation of summer maize and winter canola on
a field with purple soil. Each experimental plot measured 5 × 5 m, and the experimental
design was a complete randomized block with 3 treatments and 4 replicates. The treatments
included crop residue removal at 3 rates (i.e., 0%, 50% and 100% of the total crop straw
in the field) after harvest. After each crop was harvested, the corresponding amount of
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straw was removed at the different removal rates, and the remaining straw was then evenly
distributed over the soil surface. Figure 2 shows the experimental field after straw removal
at different rates. The study commenced on 29 April 2018 and spanned three years, during
which six residue removal treatments were conducted, consisting of three canola straws
and three corn straws, as shown in Table 2.
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Figure 2. Effects of different crop residue removal rates on field conditions (photographed on
30 April 2020).

Table 2. Soil sampling and residue removal from 29 April 2018 to 8 May 2020.

Texture and Property Unit

29 April 2018 Initial soil sampling
15 May 2018 Canola residue removal
5 August 2018 Soil sampling
21 August 2018 Maize harvesting
28 August 2018 Maize residue removal
23 April 2019 Soil sampling and canola harvesting
11 May 2019 Canola residue removal
18 August 2019 Maize harvesting
27 August 2019 Maize residue removal
28 April 2020 Soil sampling
30 April 2020 Canola harvesting
1 May 2020 Canola residue removal
20 August 2019 Maize harvesting
23 August 2020 Maize residue removal
29 April 2021 Soil sampling and canola harvesting
8 May 2020 Canola residue removal

Crop residue removal was conducted following local agricultural management prac-
tices and the experimental design. After removal, moderate tillage was performed by
tumbling and loosening the top 0–10 cm of soil. Super phosphate was applied as the main
component of the phosphate fertilizer, accounting for more than 12% of P2O5

2−, at a rate
of 1500 kg ha−1 every year. Urea was applied as an N fertilizer at a rate of 825 kg ha−1

every year. For the summer maize, the phosphate fertilizer was applied twice at rates of
225 kg ha−1 (fourth week of May every year) and 525 kg ha−1 (third week of July every
year), and urea was applied once at a rate of 450 kg ha−1 (third week of July every year).
For the winter canola, phosphate fertilizer and urea were applied once at the rates of
750 kg ha−1 and 375 kg ha−1 (first week of December every year), respectively.

2.3. Soil Sampling

A total of 3 kg of soil was randomly sampled from a depth of 0 to 10 cm in each
research plot. To ensure homogeneity, each soil sample was thoroughly mixed before being
allowed to dry naturally. Once dried, any crop residues or other debris were removed from
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each individual soil sample. The sampling time for each plot is listed in Table 2, and the
resulting soil samples were available for physical and chemical property testing.

2.4. Soil Physical Properties
2.4.1. Aggregate Indices Calculation

The fully self-mixed soil samples were passed through a 5–10 mm dry sieve, weighed
to 50 g, and, then, the aggregate particle size classification was performed by the wet sieve
method. The samples were placed flat on the top layer of the aggregate analyzer sieve. The
apertures of the sieves are 5 mm, 2 mm, 1 mm, 0.5 mm and 0.25 mm from top to bottom. The
soil samples were fully soaked in water by raising the water level high enough to touch the
soil particles through capillary action. The stack of sieves was then moved up and down
for ten minutes in water to separate the soil aggregates based on size. After wet sieving,
soil samples were sorted and collected according to aperture size. Soil aggregates were
divided into six categories based on their size ranges: 5–10 mm, 2–5 mm, 1–2 mm, 0.5–1 mm,
0.25–0.5 mm, and less than 0.25 mm. We calculated the mean weight diameter (MWD),
geometric mean diameter (GMD), and aggregates with a diameter greater than 0.25 mm
(R>0.25mm) as follows.

MWD =
n

∑
i=1

dimi/
n

∑
i=1

mi (1)

GMD = Exp

[
n

∑
i=1

milndi/
n

∑
i=1

mi

]
(2)

R>0.25mm =
M>0.25mm

MT
(3)

where di indicates the average diameter of aggregates in each size, and mi represents the
proportion of soil aggregate weight in the corresponding size. M>0.25mm refers to the mass
of aggregates with a diameter greater than 0.25 mm, and MT is the mass of the sample [28].

2.4.2. Saturated Hydraulic Conductivity

Saturated hydraulic conductivity (k f ) characterizes the infiltration capacity of the soil.
In this study, the saturated infiltration coefficient was measured by a Hood Infiltrometer IL-
2700 (HI; Umwelt Geräte Technik, GmbH., Shanghai, China www.ugt-online.de (accessed
on 25 December 2018)). The instrument works by applying negative pressure over the
infiltration zone and injecting water into the infiltrator to bring it to balance within 2–3 h.
The stable infiltration rate of the soil surface at different pressures is measured to derive
the k f . The calculation is as follows [31]:

ku = k f ·e(α·h) (4)

Q = π·a2·ku·[1 + 4/(π·α·a)] (5)

where ku is the unsaturated permeability coefficient, e is the natural constant, α is the
Gardner coefficient, Q is the steady-state flow rate, and a is the radius of the infiltration
hood.

2.5. Soil Loss Simulation

The average annual soil erosion modulus, denoted by A (t ha−1a−1), is a measure of
the degree of soil erosion and represents the amount of soil erosion per unit area and unit
time [32], In this study, we calculated A using the Revised Universal Soil Loss Equation (2)
(RUSLE2), which is described by the following equation [33,34].

A = R·K·L·S·C·P (6)

where R is the rainfall erosivity factor in (MJ mm hm−2 h−1 a−1); R is the soil erodibility
factor in (t hm2 h hm−2 h−1 a−1); LS is the slope length factor (dimensionless); C is the veg-

www.ugt-online.de
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etation cover and management factor (dimensionless); P is the soil and water conservation
measure factor (dimensionless).

The rainfall erosivity factor, R, represents the potential impact of rainfall and surface
runoff on soil erosion. Typically, R is determined based on the daily rainfall in the local
area and is calculated using the following equations [35].

R =
24

∑
m=1

Rm (7)

Rm = α
k

∑
j=1

Pβ
j (8)

α = 21.586β−7.1891 (9)

β = 0.8363
18.177

Pd12
+

24.455
Py12

(10)

where Rm is the rainfall erosivity (MJ mm hm−2 h−1 a−1) in the m-th semimonthly period, k
is the number of days in the semimonthly period, Pj is the erosive daily rainfall (mm) on the
j-th day in the semimonthly period, α and β are model parameters, Pd12 is the average daily
rainfall (mm) of 12 mm and above, Py12 is the average daily rainfall (mm) for daily rainfall
of 12 mm and above annual average rainfall (mm). Our average annual rainfall erosion
force R was calculated to be 7936.0 MJ mm hm−2 h−1 a−1 in the experimental period.

Soil erodibility factor K characterizes comprehensive representation of the soil’s ability
to resist erosion. In this study, the soil erodibility factor K was calculated by Shirazi’s
equation as follows [36]:

K = 7.594(0.0034 + 0.0405e−0.5( log(GMD)+1.659
0.7101 )

2

) (11)

where GMD is the geometric mean particle size of the soil.
The cultivated land in the Sichuan hilly region typically has a slope ranging from 0 to

15◦. To simulate soil erosion, we selected five slopes (0◦, 2.5◦, 5◦, 10◦, and 15◦). The slope
length was set to 5 m i to maintain consistency with the experimental plot size. The LS
factor is calculated as follows [37–39]:

L =

(
λ

22.13

)m
(12)

S =


10.8sinθ + 0.03, θ < 5◦

16.8sinθ − 0.5, 5◦ ≤ θ < 10◦

21.91sinθ − 0.96, θ ≥ 10◦
(13)

where λ is the slope length, m is the slope length factor index, and m values are shown in
Table 3, and θ is the slope degree.

Table 3. The values of slope length factor index m.

θ m

θ ≤ 0.5◦ 0.2
0.5◦ < θ ≤ 1.5◦ 0.3
1.5◦ < θ ≤ 2.5◦ 0.4

θ > 2.5◦ 0.5

The C and P factors indicate the influence of mulch management, as well as soil and
water conservation practices, on soil erosion. To estimate these factors, a summer maize–
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winter canola rotation system was established, with field crop yields for each period and
the conversion of maize stover additions at each removal rate. The rotation patterns were
then imported into the management submodule of the RUSLE 2 (version 2.6.1.9) model to
calculate the C and P factors during the rotation [40].

2.6. Soil Total Phosphorus
2.6.1. TP in the Soil

The soil samples were air-dried, mixed thoroughly, and ground to pass through a 0.149 mm
sieve. The TP was determined using the Alkali Fusion–Mo–Sb Anti-spectrophotometric
Method [27]. First, the sample was weighed and placed in a nickel crucible, wetted with a
few drops of anhydrous ethanol, and, then, sodium hydroxide was added and the sample
was laid flat on the surface of the sample. The crucible was then heated in a muffle furnace,
and, after it cooled to room temperature, the contents were washed with 3 mol L−1 sulfuric
acid and pure water before being transferred to a centrifuge tube for centrifugation. The
supernatant was collected, and the pH was adjusted before adding the color developer. The
absorbance was measured at 700 nm with pure water as the reference, and the TP content
of the soil sample was obtained by calculation using the following equation.

ω =
[(A− A0)− a]×V1

b×m×ωdm ×V2
(14)

where A is the absorbance value of the sample, A0 is the absorbance value of the blank test,
a is the intercept of the calibration curve, V1 is the constant volume of the sample (mL), b is
the slope of the calibration curve, m is the mass of the sample (g), ωdm is the dry matter
mass fraction of the soil sample, and V2 is the volume of the test material (mL).

2.6.2. TP in the Aggregates

The soil TP content is influenced by the P content in aggregates of different sizes, and
changes in P content in different-sized aggregates can have an impact on the TP content of
the soil. Therefore, the soil TP content can be calculated using the flowing equation.

CTPsoil =
n

∑
i=1

CiTP ×mi (15)

where CiTP is the TP concentration (mg g−1) of corresponding aggregates, and mi is the
total mass percentage of corresponding aggregates (g).

In Equation (15), the variable mi is utilized as a weight to calculate the weighted
average of the aggregates’ TP concentration in order to obtain the CTPsoil , which represents
a mass average value. In the same way, we used mi as a weight to calculate the geometric
weighted average of the aggregates’ TP concentration in order to obtain the geometric
mean concentration (GMCTPsoil ), which was calculated as follows:

GMCTPsoil = EXP
(

∑n
i=1 milnCiTP

∑n
i=1 mi

)
(16)

Based on the Equation (16), we used the particle size diameter of the corresponding
aggregates to adjust the weights mi (while keeping the sum of concentration weights
constant) to obtain the geometric mean concentration adjusted by the particle size diameter
of the aggregates (GMCTPsoil ), which was calculated as follows:

GMCdTPsoil
= EXP

(
∑n

i=1 mi × di × lnCiTP

∑n
i=1 mi × di

)
(17)

where di indicates the average diameter of aggregates in each size, and mi represents the
proportion of soil aggregate weight in the corresponding size.
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2.7. Leaching Experiment

To conduct the leaching experiment, a PVC cylinder with an inner diameter of 5 cm
and a height of 15 cm was used as a column. The bottom of the column was covered with
a permeable stone layer to prevent soil washout and blockage of the outlet, followed by
a 5 cm layer of quartz sand. The soil samples were then added uniformly to the column
to a height of 10 cm and covered with another permeable stone layer to ensure a steady
and uniform water flow. After adding 34.2 mg of pure potassium dihydrogen phosphate to
the top of the soil column, the outlet at the bottom of the sealed soil column was closed.
Pure water was passed through the top of the soil column until it was saturated to ensure
that the soil column was soaked in pure water for 24 h. This ensured that the initial total
phosphorus concentration in the soil sample was consistent. In our leaching experiments,
the soil columns were soaked before the start of leaching in order to simulate the state of
the cultivated land just after the application of fertilizer. In addition, this made it possible
to ensure a uniform phosphorus concentration at the start of leaching among soil columns.
At this time, merely testing the TP concentration in the leaching solution can indicate
the impact of different straw removal rates on the risk of phosphorus loss in purple soil.
Then, the column was continuously leached for 24 h with pure water at a flow rate of
0.42 mL min−1, and the leachate was collected for TP concentration measurement using the
Alkali Fusion–Mo–Sb Anti-spectrophotometric Method.

2.8. Statistical Analysis

The experimental data were tested for normality using SPSS (version 26). One-way
analysis of variance (ANOVA) was used to determine statistical differences among treat-
ments for soil aggregate fractions, saturated hydraulic conductivity, soil TP, and P content
in each soil aggregate fraction. The differences were compared by least significant difference
(LSD), and p < 0.05 was considered statistically significant.

3. Results
3.1. Water Stability of Soil Aggregates
3.1.1. Parameters of Wet Sieving

Figure 3 presents the MWD, GMD, and R>0.25mm of each treatment over time. The
MWD of different treatments ranged from 1.095 to 2.138 mm. In September 2018 and
April 2020, the MWD under the treatment with 0% residue removal was significantly
higher than the other two groups. However, there was no significant difference among
the treatment groups in April 2019 and April 2021. Meanwhile, the maximum MWD
value of all treatment groups appeared in 2019. Among the treatments, the average MWD
decreased with increasing removal rate (1.809, 1.571, and 1.502 mm, respectively). The
changing patterns of the MWD over time were not obvious in each treatment group.

The difference in the GMD between treatments was consistent with that of the MWD.
In September 2018 and April 2020, the GMD under the treatment of 0% residue removal
was significantly higher than that of the 50% and 100% removal treatments. Similarly,
no significant difference was found in the GMD among the treatment groups at other
sampling times. The maximum GMD values for the 50% and 100% removal treatments
appeared one year after the experiment started, but the maximum GMD value for the 0%
removal treatment appeared two years after the experiment started.

The mass proportion of soil aggregates with diameters > 0.25 mm (R>0.25mm) in dif-
ferent treatments ranged from 46.30% to 71.92%. In April 2020, the treatment with 0%
residue removal significantly increased the proportion of particles with diameters greater
than 0.25 mm (R>0.25mm) compared to the other treatments. However, no clear effect of
removal rate on the R>0.25mm was observed at other time points. During the experiment,
the treatment with 0% removal rate resulted in an increase and then a decrease in the
proportion of particles with a R>0.25mm, while the effects of the other two treatments on the
R>0.25mm were not significant.
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Figure 3. Effects of crop residue removal rates on soil aggregate characteristics. The bars show the
distribution of soil aggregates by size, mean weight diameter (MWD), geometric mean diameter
(GMD), and percentage of aggregates larger than 0.25 mm (R>0.25mm). The lowercase letters indicate
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no significant differences. The numbers 0%, 50%, and 100% represent the crop residue removal rates
for each treatment.

3.1.2. Mass Distribution of Soil Aggregates

Table 4 presents the mass proportion of soil aggregate in different sizes. After 4 months
of experiments, compared with other treatments, the percentage of 2–5 mm aggregates was
significantly increased with the full crop residue retention. After one year of experiments,
the proportion of 1–2 mm aggregates in the complete residue removed treatment was
significantly higher than the other two treatments. After two years of experiments, the pro-
portion of 0.25–0.5 mm aggregates was significantly reduced in the 100% removal treatment,
while the proportion of <0.25 mm aggregates was significantly reduced in the 0% removal
treatment. However, after three years of experiment, no significant differences were found
in the distribution of different aggregates among the different residue removal treatments.
The response of different aggregates sizes to treatments and the mass percentages of the
aggregates with the same sizes did not differ consistently across years.

Table 4. Mass percentages of aggregates in different sizes during August 2018 to April 2021.

Time Removal
Soil Aggregate Soil Particle Size

>5 mm 2–5 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm <0.25 mm

August 2018
100% 6.27 14.09 b 8.54 12.75 12.69 45.67
50% 7.59 14.07 b 7.60 10.80 12.47 47.47
0% 11.47 19.84 a 10.18 11.73 11.13 35.65
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Table 4. Cont.

Time Removal
Soil Aggregate Soil Particle Size

>5 mm 2–5 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm <0.25 mm

April 2019
100% 10.97 19.05 12.23 a 16.93 12.74 28.08
50% 15.25 18.65 10.22 b 14.23 12.03 29.63
0% 17.99 19.33 11.35 b 14.03 10.25 27.05

April 2020
100% 3.39 11.77 6.65 13.68 10.82 b 53.70 a
50% 4.55 11.24 5.85 10.15 16.03 a 52.20 a
0% 4.32 12.61 10.52 18.31 15.54 a 38.70 b

April 2021
100% 11.18 16.27 8.71 13.81 14.20 35.83
50% 10.09 16.14 9.21 13.53 13.09 37.95
0% 11.46 16.54 9.50 13.15 12.15 37.21

The lowercase letters above the bars indicate significant differences among treatments at the same sampling
period.

3.1.3. Saturated Hydraulic Conductivity

The effect of different straw removal rate treatments on the saturated hydraulic conduc-
tivity of the soil was measured after one year since the experiment initiated, and the results
are presented in Figure 4. The greatest coefficient k f of 79.44 mm min−1 was measured in
the 100% removal treatment, whereas the lowest soil saturated infiltration coefficient of
7.32 mm min−1 was recorded in the complete removal treatment. The coefficient k f of the
soil without straw removal (0% straw removal treatment) was significantly higher than the
other two treatments, and it even reached 2.56 times higher than that of the soil subjected
to full residue removal (100% straw removal treatment).
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3.2. RUSLE 2

Figure 5 depicts the impact of three different crop residue removal rates on the soil
erosion modulus A at various land slope conditions. The retention of straw on farmland as
a low-cost agronomic technique effectively improves soil’s resistance to erosion. However,
cropland with steep slopes is always at a high risk of erosion, regardless of straw retention.
At 0◦ slope, partial or complete straw retention resulted in relatively low soil loss. At a
2.5◦ slope, the soil loss remained low under different residue removal rates, with the 0%
removal treatment resulting in only 12.00 t ha−1 a−1 of soil loss. However, at a 5◦ slope,
complete straw removal resulted in soil losses of over 150 t ha−1 a−1. As the cultivated land
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slope increased to 10◦, soil losses significantly increased for all treatments, with increases
of 124.1%, 129.3%, and 129.6% compared to the 5◦ slope for the 100%, 50%, and 0% removal
treatments, respectively. At a slope of 15◦, except for the 0% removal treatment, the soil
loss for the other two treatments exceeded 200 t ha−1 a−1. The effect of lower crop residue
removal rates on soil erosion loss gradually decreased with an increase in slope. The soil
loss for the complete removal treatment was 33.2 times higher at a 15◦ slope than at a 0◦

slope; the 50% removal treatment was 107.5 times higher at a 15◦ slope than at a 0◦ slope;
and the 0% removal treatment was 245.5 times higher at a 15◦ slope than at a 0◦ slope.
Overall, straw retention was effective in reducing the risk of soil erosion.
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3.3. TP Content
3.3.1. Soil TP Concentration

Figure 6 shows the result of the soil TP concentrations under different crop residue
removal rates over the years. The results indicate that overall, straw removal did not
significantly affect the soil TP concentration over the course of the experiment, except in
2019. Soil TP concentrations for the 100%, 50%, and 0% straw removal rate treatments were
0.615–1.005 g kg−1, 0.695–1.232 g kg−1, and 0.517–1.000 g kg−1 respectively, in different
durations of treatment. The soil TP concentration of 1.232 g kg−1 was highest in the 50%
straw removal rate treatment in 2019. In comparison to the 2018 soil TP concentrations,
only the 100% straw removal rate treatment soil TP concentration changed significantly
(increased) in 2021. Compared with the 100% straw removal rate treatment, the 50% straw
removal rate treatment increased soil TP concentration in 2019 by 35.6%.
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difference. The treatments are 0%, 50%, and 100% crop residue removal rates.

3.3.2. TP Content Percentage of Aggregates

Figure 7 presents the soil TP content percentages in different aggregate size fractions
of each treatment over time. Not removing crop residue can lead to a greater enrichment
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of P in larger aggregates. The highest soil TP content percentage of aggregates < 0.25 mm
in size was observed in three treatments at all four sampling periods, while no significant
differences were found among the treatments at each sampling period. After four months
of experimentation (August 2018), the treatment with 0% straw removal resulted in a
significantly higher percentage of TP content in the 2–5 mm aggregates compared to the
other two treatments. Removing 100% of the straw compared to retaining it significantly
increased the percentage of TP content in smaller aggregates (0.5–1 mm and 0.25–0.5 mm).
After one year of experimentation (April 2019), different residue removal rates mainly
affected the TP content percentage in the 0.25–1 mm aggregates. However, unlike the
observation results in September 2018, complete straw removal did not result in a higher
enrichment of P in the 0.25–0.5 mm aggregates. The 0% removal treatment resulted in
a significantly higher percentage of TP content in the 0.5–1 mm aggregates compared to
the other treatments. In contrast, the 50% removal treatment resulted in a significantly
higher percentage of TP content in the 0.25–0.5 mm aggregates compared to the other
treatments. Conversely, the 100% straw removal rate treatment resulted in a significantly
higher percentage of TP content in the medium-sized aggregates (1–2 mm) compared
to the treatment with retained straw. After two years of experimentation (April 2020),
the 0% straw removal rate treatment resulted in a significantly higher percentage of TP
content in the 1–2 mm aggregates compared to the other treatments. After three years of
experimentation (April 2021), similar to the results in August 2018, retaining all the straw
helped distribute more P to larger aggregates (2–5 mm), with the 0% straw removal rate
treatment being significantly higher than the complete removal rate treatment by 28.43%.
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3.4. GMC and GMCd

The Figure 8 shows the GMC and GMCd values for each treatment during the entire
experiment. The GMC values for the 100% and 0% residue removal treatments both
exhibited a trend of first decreasing and then increasing, with the minimum values for
both treatments occurring after one year (0.731 g kg−1) and two years (0.613 g kg−1) of the
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experiment, respectively. In contrast to the other two treatments, the trend for the GMC
value for the 50% straw removal treatment was first increasing and then decreasing, with
the maximum value occurring after one year of the experiment (0.985 g kg−1). In April
2019, the GMC value for the 50% straw removal treatment was significantly higher than
that for the 100% and 0% straw removal treatments (by 25.7% and 23.1%, respectively).
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After four months of the experiment, there was a significant difference in GMCd
values among the three treatments, with the order of GMCd values from high to low being
0%, 100%, and 50% removal treatments, respectively. However, in subsequent sampling
periods, there was no significant difference in GMCd among treatments with different
residue removal rates. Compared with the complete removal treatment, the 50% and 0%
removal treatments showed a larger increase in GMCd (compared with the data from
August 2018) in April 2021, with increases of 14.3%, 32.7%, and 16.6% for the 100%, 50%,
and 0% residue removal treatments, respectively.

3.5. TP Concentration of Leaching Liquid

Figure 9 shows the changes in the TP concentration of leachate from different treat-
ments during the leaching experiment. The TP concentration in the leachate from the 50%
and 0% straw removal treatments was consistently lower than that from the complete straw
removal treatment. Furthermore, the TP concentration in the leachate increased with an
increase in straw removal rate, but the trends in the changes in TP concentration in the
leachate for the three treatments were different. The TP concentration in the leachate for
the 0% removal treatment gradually increased, the rate of increase in the TP concentration
in the leachate for the 50% removal treatment was lower than that for the 0% removal
treatment, and the TP concentration in the leachate from the 100% straw removal treatment
showed a trend of initially increasing and then decreasing. Compared with the other two
treatments, long-term and continuous full crop residue retention in the field led to a gradual
weakening in the degree of reduction in the TP concentration in the leachate.
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4. Discussion
4.1. Impact of Crop Residue on Soil Aggregate Distribution and Stability

Soil aggregate composition is influenced by a variety of factors [41], including dy-
namic interactions between the organic matter contained in the soil and its various mineral
components. Key indicators of soil aggregate particle size distribution include the R>0.25mm,
MWD, and GMD, with higher values typically indicating a lower potential for soil ero-
sion. Purple soils are characterized by low organic matter content and poor soil structure,
which increase the risk of soil erosion [42]. Our study revealed that the retention of all
crop residue in the field led to an improvement in soil aggregate stability, along with an
increase in the proportion of larger aggregates, which is in line with the findings reported
by Zhang et al. [43]. The incorporation of crop straw into the soil was observed to promote
the aggregation of soil particles, thereby resulting in the formation of more stable aggre-
gates. This enhancement in aggregate stability was attributed as the primary factor for the
observed increase in the proportion of larger aggregates. However, we did not consistently
observe the same results over the course of the three-year study, and we attribute this to the
disruption of soil aggregate structure due to the short period between soil sampling and
tillage. As shown in Table 2, soil sampling was conducted on the same day as crop harvest
in both April 2019 and April 2021. However, it should be noted that soil sampling after
crop harvest is likely to have a significant impact on the distribution of topsoil [44], which
may have contributed to the inconsistency in aggregate stability observed in our study.

Soil saturation permeability is a measure of the ease with which water can penetrate
the soil. A lower permeability coefficient indicates higher surface runoff and stronger
erosive effects on the soil [45]. In our study, we observed that the infiltration coefficient
of the soil with 0% crop residue removal treatment was significantly higher than that
of the soils where partial or all residue was removed. This is consistent with Ibrahim,
Vahyala E et al. [46], who suggest that retaining crop residue can improve soil permeability,
reduce surface runoff, and decrease the risk of soil erosion. Based on our findings, we
recommend that crop residue removal operations in purple soil regions should not remove
crop residue in order to maintain soil aggregate stability.

4.2. Impact of Crop Residue on Soil Erosion

Soil erosion has been a major threat to agricultural productivity [47]. Our experimental
findings (Figure 5 simulation of soil erosion modulus A) demonstrate a significant increase
in soil erosion with increasing crop residue removal rates. Crop straw covering the soil
surface directly reduces the impact of raindrops on the soil and decreases water flow by
increasing the roughness of the soil surface. Thus, residue removal leads to more significant
soil erosion due to the impact of raindrops on the soil and increased surface runoff [48].
Notably, although retaining straw in the field helps to reduce soil erosion, steep-sloped
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farmland (with slopes over 2.5◦) still poses a high risk for sustainable agriculture, even
with crop residue retention.

Purple soils in the southwestern hilly region of China are characterized by high
weathering and low water and fertilizer retention capacity. In terms of erosion, these soils
are ranked just below yellow soils among agricultural production soils, and returning straw
to the soil is considered an effective management measure for reducing soil erosion [49].
Studies [27] indicated that annual topsoil erosion should not exceed 11.04 t ha−1 a−1 to
maintain safe agricultural production. Based on the results of the RUSLE 2 simulation,
it was found that the soil erosion of 50% and 0% straw removal treatments only met the
minimum criteria for maintaining the productivity and fertility of purple soils at a slope of
0◦. Moreover, the effect of retaining residue on mitigating soil erosion risk was weaker on
sloping arable land than on less sloping arable land. Previous studies [27,50] on purple soil
erosion also indicated that purple soil had lower erosion resistance than other soils, and
even a slight slope would greatly increase the erosion risk. The RUSLE 2 model simulation
results showed that purple soils have a higher erosion risk and that an increase in soil loss
would also result in an increase in P loss with the soil. Therefore, to achieve sustainable
agricultural development and reduce non-point source pollution in purple soil cultivated
land, it is recommended not to remove crop residues in purple soil regions, and land
leveling should be carried out simultaneously.

4.3. Impact of Straw on TP of Aggregates

When simulating P loss through leaching experiments, we found a significant decrease
in TP concentration in the leachate when crop residue was retained compared to its complete
removal. However, regardless of the straw removal rate, the TP concentration in the leachate
was lower than 5 mg L−1, thus indicating a low risk of loss. This finding is consistent with
the results reported by Liu Jin et al. [51], wherein different cover management can have an
impact on the risk of phosphorus loss, but the TP concentration in the leaching solution
remains at a low level. Although retaining crop residues for an extended period does not
result in a continued reduction in the loss of soluble P, the risk of dissolved P loss remains
lower compared to the treatment where all residues are removed.

Aggregates serve as the fundamental building blocks of soil structure and play a
pivotal role in the storage and stabilization of soil P [52]. Klopp Hans W et al. [53] found
that straw takes a very long time to mineralize and does not release P well to replenish
the soil. Furthermore, studies have demonstrated that the binding of P to crop residue
diminishes the anchoring of P in the soil [51]. In our experiment, no clear pattern of change
in soil P was observed under different crop residue removal treatments. When the influence
of straw removal on soil P loss risk could not be directly obtained from soil TP concentration
and TP distribution in aggregates, we proposed two parameters, the GMC and GMCd, to
represent the distribution of TP in aggregates and to assess whether P was more enriched
in larger aggregates. We believed that a greater enrichment of P in larger aggregates, as
compared to smaller aggregates, could effectively mitigate the risk of soil P loss. There is
no universal theory that can fully explain the sequence of erosion of soil particles based on
their size. However, it is generally observed that smaller particles are more susceptible to
erosion than larger ones. Therefore, in order to more accurately reflect the distribution of P
in soil particles, we adjusted the geometric mean concentration of the TP by incorporating
the mass of aggregates. The calculation method is as follows:

GMC = ∑n
1 mi

√
n

∏
1

Ci
mi (18)

This formula can be simplified as Equation (16). We adjusted the GMC using aggregate
size and introduced the parameter di/d0 inside the GMCd to account for the weight of the
TP in different aggregates. The calculation is derived as follows:
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GMCd = ∑n
1

di
d0
∗mi

√
n

∏
1

Ci

di
d0
∗mi (19)

where di is the particle size of the corresponding aggregate, and d0 represents a value of the
average particle size, which can be combined with di in the form of di/d0 as a dimensionless
constant value for calculation. This equation can be simplified as Equation (17) (di can be
dispensed with in the final expression and does not need to be calculated).

The preceding paragraphs describe the derivation process of GMC and GMCd. In
contrast to the traditional method of expressing TP concentration, we included the distribu-
tion of P in soil aggregates of different particle sizes and adjusted the soil TP concentration
accordingly. Ultimately, we used the GMCd value to assess the risk of soil P loss. Assuming
that two soil samples, A and B, have identical total P concentrations, if the P distribution in
sample A is skewed toward larger aggregates, and the P distribution in sample B is skewed
toward smaller aggregates, then the P loss risk in sample A is lower than in sample B. This
is because larger aggregates possess stronger erosion resistance than smaller ones, thus
providing better retention of P in larger aggregates during soil erosion. Hence, assessing
the risk of P loss in soil solely based on the TP concentration is not adequate. Formula (19)
indicates that, as the aggregate size increases, the GMCd value also increases. Therefore,
the GMCd value can be used to determine P distribution in aggregates, where a higher
GMCd corresponds to more P being distributed in larger aggregates. Since multiple studies
on the effect of straw on soil P loss risk have not reached a consensus, it is essential to
supplement multiple indicators, such as the GMC and GMCd, to examine the impact of
straw on soil P loss risk.

Unfortunately, our experiment did not reveal any significant changes in the GMCd
among the different residue removal treatments. We attribute this to the fertilization
treatment being conducted too close to the sampling time, which greatly influenced the
observation results. Furthermore, the three-year duration of the straw removal treatment
may not be sufficient to observe changes in P loss risk in agricultural production. Our
experimental findings suggest that retaining straw facilitates P to be more evenly distributed
in larger aggregates. Although straw cannot directly impact the soil’s P content, it can
sequester more P in the soil’s stable aggregates, which lowers the risk of soil P loss.

5. Conclusions

In order to promote sustainable agricultural development in the purple soil region of
southwestern China, we investigated the impact of crop residue removal on soil aggregate
stability, soil erosion risk, and P loss risk in purple soil aggregates. A three-year on-
farm experiment was conducted to analyze the distribution of soil aggregates, saturated
hydraulic conductivity, soil erosion, P distribution, and P loss under different residue
removal levels. The main conclusions are as follows: (1) the GMC and GMCd can serve
as indicators for evaluating P distribution in soil aggregates and can be used to assess
soil P loss risk. (2) Complete and partial crop residue removal can damage soil aggregate
structure, increase soil erosion loss, and reduce the retention of soil P in large aggregates,
which can lead to higher risks of soil erosion and P loss in purple soils. Therefore, residue
removal practices are not recommended in the purple soil region. (3) More experimental
data should be collected to verify the feasibility of using the GMC and GMCd as indicators
for P loss risk assessment.
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