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ABSTRACT

Accurate monitoring of croplands helps in making decisions (for
insurance claims, crop management and contingency plans) at
the macro-level, especially in drylands where variability in crop-
ping is very high owing to erratic weather conditions. Dryland
cereals and grain legumes are key to ensuring the food and nutri-
tional security of a large number of vulnerable populations living
in the drylands. Reliable information on area cultivated to such
crops forms part of the national accounting of food production
and supply in many Asian countries, many of which are employ-
ing remote sensing tools to improve the accuracy of assessments
of cultivated areas. This paper assesses the capabilities and limita-
tions of mapping cultivated areas in the Rabi (winter) season and
corresponding cropping patterns in three districts characterized
by small-plot agriculture. The study used Sentinel-2 Normalized
Difference Vegetation Index (NDVI) 15-day time-series at 10m
resolution by employing a Spectral Matching Technique (SMT)
approach. The use of SMT is based on the well-studied relation-
ship between temporal NDVI signatures and crop phenology. The
rabi season in India, dominated by non-rainy days, is best suited
for the application of this method, as persistent cloud cover will
hamper the availability of images necessary to generate clearly
differentiating temporal signatures. Our study showed that the
temporal signatures of wheat, chickpea and mustard are easily
distinguishable, enabling an overall accuracy of 84%, with wheat
and mustard achieving 86% and 94% accuracies, respectively. The
most significant misclassifications were in irrigated areas for mus-
tard and wheat, in small-plot mustard fields covered by trees and
in fragmented chickpea areas. A comparison of district-wise
national crop statistics and those obtained from this study
revealed a correlation of 96%.
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1. Introduction

Dryland agriculture covers about 68% of India’s total cropland area, characterized by
lower mean annual rainfall compared to potential evaporation. Dryland areas are highly
vulnerable because of high variability in rainfall. Forty percent of the rural population
and 60% of the livestock population directly depend on dryland agriculture (Singh et al.
2004; Misra et al. 2010). The changing character and extent of dryland agriculture over
the years underlines the importance of monitoring croplands continuously to ensure sus-
tainable food production. Information on district-level cropland extent and statistics are
important for decision making, not only with regard to issues concerning sustainable agri-
culture and food security, but also on crop insurance.

Crop area statistics collected by different government organizations (departments of
district revenue, agriculture and irrigation) generally show deviations of up to 30% and
don’t truly correspond to the effective seasonal cultivated area (Van Genderen et al. 1978;
Stehman et al. 2003; Gallego 2004; Biggs et al. 2006). Satellite images provide a valid alter-
native, particularly when the area needs to be estimated at the state or national level
(Thiruvengadachari and Sakthivadivel 1997; Lobell et al. 2003; Thenkabail et al. 2010).
Studies carried out in the past decades, based mainly on coarse resolution data such as
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS), demonstrated that cropland extent derived from time-series
data has higher accuracy than a single-date image (G�omez et al. 2016; Teluguntla et al.
2017; Xiong, Thenkabail, Gumma, et al. 2017; Xu et al. 2018). Studies based on Landsat-8
and Sentinel-2 single-date images have shown the advantages of moderate resolution
images for crop mapping, particularly by exploiting object-based methods (Walker and
Blaschke 2008; Pe~na-Barrag�an et al. 2011; Petitjean et al. 2012; Long et al. 2013; Matton
et al. 2015; Belgiu and Csillik 2018) and the region merging approach (Moscheni
et al. 1998).

The utility of Sentinel-2 data for agricultural applications, and specifically crop type
mapping, has been evaluated by many researchers. European Space Agency’s sen2agri
(Sentinel-2 for agriculture) project generates a crop type map with 4-5 main crops of the
region at 10m spatial resolution using the Random Forest-based methodology proposed
by Inglada J et al (Inglada et al. 2015). Vijayasekaran (Vijayasekaran 2019) assessed the
sen2agri products for the Indian agricultural scenario and reported an overall classifica-
tion accuracy of 70% on an average for various crops.

In recent times, machine-learning algorithms like Random Forest (RF), Support Vector
Machines (SVM), and Artificial Neural Networks (ANN) have been used by researchers
to classify satellite data and its derivatives into crop types. Saini et al. (Saini and Ghosh
2018) performed crop classification on a single-date Sentinel-2 image using RF and SVM
algorithms. Sun C et al. used a combination of spectral bands, derived textural measures,
and vegetation indices from Sentinel-1 SAR, Sentinel-2 optical and Landsat-8 optical data-
sets to perform crop classification using machine-learning methods SVM, ANN, and RF
(Sun et al. 2019). More similarly, Feng (Feng et al. 2019)used Sentinel-2 time-series data
alone for mapping crop types. They successfully used spectral bands, texture parameters,
vegetation indices, and phenological parameters derived from Sentinel-2 time-series data
as inputs to RF and SVM classification algorithms. They examined the use of short-wave
infra-red (SWIR) and water vapour bands of Sentinel-2 data for differentiating
between crops.

Li Q et al. applied a maximum likelihood classifier on a combination of Landsat TM
30m resolution data and features related to crop growth extracted from MODIS NDVI
time-series data (Li et al. 2014). Belgiu M and Csilik O performed both object- and pixel-
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based classification using time-weighted dynamic time warping and RF analyses on

Sentinel-2 time series NDVI images (Belgiu and Csillik 2018). Griffiths P et al. integrated

Sentinel-2 and Landsat-8 data to generate an intra-annual time-series composite of ten

days to generate a national level crop-type map of Germany using Random Forest classifi-

cation algorithm (Griffiths et al. 2019).
Many studies have applied SMTs on optical data to obtain information on different

land uses and land covers (LULC) (Thenkabail et al. 2007, Gumma et al. 2016, Gumma,

Thenkabail, Teluguntla et al. 2018). Thenkabail et al. used SMTs to map historical LULC

and irrigated areas using time-series AVHRR pathfinder datasets for the Krishna River

Basin, India. Gumma et al. (2011) applied SMTs to map rice ecosystems in South Asia for

2000-01 using MODIS NDVI monthly maximum value composite (MVC) data; to moni-

tor the spatial expansion of chickpea (Gumma et al. 2016) and to differentiate between

canal and groundwater irrigation areas in the Krishna River basin using MODIS 250m

data (Gumma et al. 2011). Recently, studies using MODIS NDVI time-series have been

reported on mapping rice-fallows for crop intensification using short duration legumes

employing NDVI time- series data (Gray et al. 2014, Gumma, Thenkabail, Deevi, et al.

2018), and mapping drought prone areas across India (Gumma et al. 2019). Coarse reso-

lution data were found to be effective in estimating the extent of homogeneous land cover

areas, but failed to accurately estimate the area, particularly in small-plot agriculture

(Gumma et al. 2014).
In the present study, an attempt was made to apply the SMT using high-resolution

(10m) satellite data at district-level. The focus was on crop type mapping with crop insur-

ance and crop yield modeling as the major consumption areas. With rising emphasis on

crop insurance in India, it has become imperative for the stakeholders to have access to

the spatial information of crop type, crop health and stress at field level. This information

also needs to be available for large areas (districts or states), and include information

about all crops grown in those areas. The presence of a wide variety of crops in a small

area has always posed difficulties in capturing the complete spatial variability of crops in

the drylands of India. In the present study, these drawbacks have been focused on, and

improvements have been made to field data collection, data processing including quality

check, and spectral matching techniques for classification, in order to obtain the best

results for the particular concerns mentioned above. The classification results for rabi sea-

son of 2018-19 in three dryland districts of India – Jhansi, Chitrakoot and Panna – were

studied. The results were validated against ground validation points and area statistics

provided by state agriculture departments. A part of a larger study, this study discusses

the advantages and shortcomings of using optical data (Sentinel-2; 10m spatial resolution)

for crop type mapping in particular.

2. Study area and data

2.1. Study area

The three study districts of Jhansi, Chitrakoot and Panna are located in Bundelkhand

region in India (Figure 1) that lies between 230500 N and 260000 N latitudes and 780000 E

and 820000 E longitudes. Bundelkhand, spread across the states of Uttar Pradesh and

Madhya Pradesh, is subject to a dry sub-humid and semi-arid climate. Jhansi district is

located in western Uttar Pradesh that spans 5,024 km2, with a population of about 1.998

million with a density of about 400/km2. The district lies in the plains region of

Bundelkhand, and thus, has a larger area (70% of the total area) under cultivation. This
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region is distinguished for its deep black soil, known as ‘mar’, and is very well suited for

cotton cultivation. Chitrakoot district covers 3,216 km2 and has a population density of

about 310/km2. The district lies in the intermediate region of Bundelkhand, which has a

higher percentage of wasteland compared to the plains region. Consequently, only about

50% of the total area of the district is under cultivation. Panna district covers an area of

7,135 km2, and has a population density of 140/km2. Of the three districts, Panna has the

highest percentage of wasteland and consequently, only 35% of its total area is under

cultivation.
The size of landholdings not only affects agricultural production, but also determines

the accuracy of spatial maps generated from satellite data. High variability in crops and

small landholdings make it necessary to use satellite data of high spatial resolution that

can capture the variability. In Jhansi and Chitrakoot districts, about 20% of the total culti-

vated area is under marginal landholdings (less than 1 ha) and in Panna district it is 11%.

Small holdings (1-2 ha) constitute 22% of the cultivated area in Jhansi district, 21% in

Chitrakoot district and 22% in Panna district. Most of the landholdings in the three dis-

tricts are semi-medium (2-4 ha) and medium (4-10 ha) in size. Fifty-four percent of the

cultivated area in Jhansi district, 46% in Chitrakoot district and 58% in Panna district are

comprised of landholdings that are 2-10 ha in size (Agriculture Census Input Survey

2001-02). Sentinel-2 data with 10m spatial resolution was chosen to map the small to

Figure 1. Study districts with location map showing climate zones. (www.FAO.org).
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medium size agricultural plots, which form the majority of the crop area in the three

study districts.
In Jhansi and Chitrakoot districts, the percentage of land under irrigation is lower than

the state average for Uttar Pradesh. About 48% of sown area in Jhansi and about 28% in

Chitrakoot is irrigated. In Panna, about 28% of sown area is irrigated (District-wise Land

Use Statistics, Ministry of Agriculture, Government of India, May 2008). In all the three

districts, more land is cultivated during rabi season than kharif season, owing to the avail-

ability of residual moisture and climatic conditions that are conducive to crop growth. In

Jhansi district, the major rabi crop is wheat, followed by chickpea, peas and beans, and

lentil. Mustard and barley are also cultivated in some areas. In Chitrakoot district, wheat

and chickpea are cultivated in most areas during rabi season, followed by lentil. Barley,

mustard, linseed, and peas and beans are found in small areas. In Panna district, chickpea

is the major crop, followed by wheat, peas and beans. This district also has lentil, and

small areas with mustard and linseed.

2.2. Sentinel-2 data

Sentinel-2 10m resolution with 6-day surface reflectance from the EU Copernicus

Programme is ideal for monitoring vegetation at a small scale (Xiong, Thenkabail, Tilton,

et al. 2017). In this study, we used Sentinel-2 products, which provide 6-day composite

images at 10m spatial resolution (bands 2, 3, 4 and 8). Sentinel-2 products include blue,

green, red, near infrared and mid-infrared bands. Four tiles covering the required region

were downloaded from the Copernicus Open Access Hub (https://scihub.copernicus.eu/).

MAPScape was used to pre-process and mosaic the tiles of the study area, and then stack

them as a single composite. Cloud contamination can be severe spanning several consecu-

tive 6-day composites, especially during early rabi seasons (October to January). We chose

to address this by generating fortnightly (FN) composites and for use in conjunction with

the 6-day composites. Each pixel in the Sentinel-2 dataset contains the best observation

during the 15-day period that it covers. The data are described in greater detail in the

Scientific Data set documentation for Sentinel-2 (Xiong, Thenkabail, Tilton, et al. 2017).

3. Methods and approaches

3.1. Ground survey data

Ground data were collected during 7–31 January 2019 for 732 sample points covering

about 4000 km of road travel in the study districts (Figure 2, Table 1). Ground data were

collected based on pre-classified output and Google Earth imagery, and a tracking GPS

attached to image-processing software captured ground survey information while moving

on the road. Detailed information certain locations were collected for training, i.e., class

identification and labelling. Point-specific information was collected from 90m� 90m

plots and consisted of GPS locations, land use categories, land cover percentages, cropping

pattern during different seasons (through farmer interviews), crop types and watering

method (irrigated, rainfed). For validation, information on crop type and point coordi-

nates (latitude and longitude values) were only collected at point locations. Samples were

obtained within large contiguous areas of a particular LULC. Sentinel-2 False colour

Composites were used as additional ground survey information in class identification. A

stratified-systematic sample design was adopted based on road network or footpath access.

Where possible, sample sites were systematically located every 5 or 10 kilometres along

GEOCARTO INTERNATIONAL 5
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Table 1. Number of training and validation samples collected for training data of each class identification
and validation.

Jhansi ground truth information

Sample class Training Validation

01. Wheat 68 79
02. Chickpea 16 11
03. Mustard/ beans 13 11
04. Wheat/mustard/chickpea 19 10
05. Pea beans 9 2
06. Other LULC 15 4
Total 140 117

Chitrakoot ground truth information

Sample class Training Validation
01. Wheat 25 20
02. Chickpea 8 4
03. Mustard/lentil 11 31
04. Wheat/mustard/chickpea/lentil 5 43
05. Other crops 0 2
06. Fallow/ mixed crops 12 9
07. Other LULC 15 7
Total 76 116

Panna ground truth information

Sample class Training Validation
01. Wheat 53 99
02. Chickpea 7 19
03. Wheat/ mustard/ lentil 19 33
04. Fallow/ other crops 9 7
05. Other LULC 16 11
Total 104 169

Figure 2. Ground survey data for different crops and spatial distribution of samples for training and validation.
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the road network by vehicle or on foot (Thenkabail et al. 2004; 2005), which is detailed in

a description of the ground survey methodological approach.
We collected two independent data sets, one for training and another for validation.

Table 1 shows sample size of training data for classification and validation data for accur-

acy assessment in each district.

3.2. Ideal NDVI temporal signatures

A prerequisite for employing SMT is to identify ideal NDVI temporal signatures for each

class of interest. In this case, Sentinel-2 time-series and ground survey data collected from

homogeneous patches along with in-depth information about the cropping system and

irrigation methods were used to generate ideal temporal NDVI signatures. The ideal spec-

tra for four major crops of Jhansi district – wheat, chickpea, peas/beans and mustard –

are shown in Figure 3. In the spectra, the beginning of the rising spectral profile marks

the germination. From Figure 3, it is evident that the germination time for wheat is mid-

December, for chickpea it is mid-November, for peas/beans mid-November and for mus-

tard early-mid November. The peak biomass period (peak of season) occurs in mid-late

March in wheat, late December in chickpea, late January-early February in peas/beans

and late January in mustard. Leaf senescence (end of season) can be observed in April in

wheat, February in chickpea and March in peas/beans and mustard. These differentiating

spectral characteristics were taken advantage of for separating various crops.

3.3. Seasonal cultivated area

Figure 4 provides an overview of the methodology used for mapping the rabi crop-

ping pattern.
MAPscape-Basic software, which supports the processing of Landsat, Sentinel-2 and

MODIS data and spaceborne Synthetic Aperture Radar data, was used to automatically

download and generate time-series of various indices related to vegetation, bare soil,

built-up, and water at a resolution of either 10m or 20m.
Sentinel-2 data for rabi cropping season, i.e., for the months of January, February and

March, for the year 2019, was considered for the present analysis. The 15-day MVCs of

NDVI were generated and stacked using functions supported by MAPscape-Basic. The K-

means classifier was applied on the NDVI MVC time-series stack to generate clusters of

similar pixels belonging to 70 classes. The NDVI MVC time-series spectra of these classes,

known as class spectra, were plotted and compared. Classes with similar spectra were

grouped using spectral similarity values (SSVs). The lower the SSV, the higher the similar-

ity between the two classes. The classes were then identified and labelled using SMT

(Gumma et al. 2014).
Intensive ground data were used for class identification. The ideal NDVI MVC spectra

for each crop type were established based on 113 unique samples selected from the

ground survey data. These samples were selected to effectively represent all major crop

types, and in homogeneous areas that are large enough to avoid confusion while deter-

mining the crop type using the time-series spectra. For each class, the ideal spectra were

taken to be the average of the spectra of all locations belonging to that class. The class

spectra were compared with the ideal spectra and labelled with the land use of the match-

ing spectra. For this step, ground reference data and Google Earth images were used to

improve class identification.

GEOCARTO INTERNATIONAL 7



3.4. Seasonal cultivated area validation

Accuracy assessment was performed based on the validation data. A total of 402 ground
survey samples (Panna ¼ 169, Chitrakoot ¼ 116 and Jhansi ¼ 117) were used to assess
the accuracy of the classification results, based on a theoretical description given by
Jensen (Jensen 2004), to generate a confusion matrix. The columns of a confusion
matrix contain the field-plot data points, and the rows represent the results of the classi-
fied crop maps (Congalton 1991). Accuracy measure is Kappa, producer, user and over-
all accuracy (Cohen 1960), representing the agreement among user and reference
ground survey data.

Figure 3. Ideal temporal profiles of NDVI for various crops (top); and temporal profiles of NDVI values from ran-
dom locations.
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3.5. Comparison with regional statistics

This study generated crop type maps for the three study districts. Area statistics were
extracted from crop type maps. District-wise maps were tested for accuracy using field-
plot data collected by the research team, and national statistical data obtained from gov-
ernment agencies. Areas generated from the present study were compared with the area
statistics available to us from the National Statistics report (http://aps.dac.gov.in/APY/
Public_Report1.aspx).

Figure 4. Workflow for rabi crop classification.
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4. Results and discussion

4.1. Crop patterns

Wheat occupied the largest cropped area followed by chickpea in all three districts. In
Jhansi district, wheat dominated almost the entire area except the north-eastern part,

which was dominated by chickpea. Mustard was mainly concentrated in the northern part
of Jhansi district (Figure 5a). Out of the 280,000 ha sown (56% of the total geographical

area of the district) in Jhansi district, wheat occupied about 64.2%, chickpea around

13.5% and mustard about 6.6% (Table 2a).
The southern part of Chitrakoot district is dominated by forest, shrub and grasslands,

with a few small pockets of cultivated land. The northern part of the district, which is
mainly cultivated land, is dominated by wheat, followed by chickpea and mustard. All the

three crops are distributed throughout the northern part of the district (Figure 5b). Table
2b shows the crop area statistics for Chitrakoot district. A total of 130,000 ha (40% of the

total geographical area of the district) was cropped in the district in rabi 2018-19, out of

which about 38% was wheat, 12.6% chickpea and 11% mustard. Lentil is another crop
that was found in small areas in Chitrakoot district.

Panna district, like Chitrakoot district, has large areas under forest, shrubs and grass-
lands. The central and northern patches have major agricultural lands, which were domi-

nated by wheat and chickpea. Peas/beans and lentil were also cultivated in small areas

(Figure 5c). Crop area statistics for Panna (Table 2c) showed that about 300,000 ha (41%
of the total geographic area of the district) was under cultivation during the season, out

of which about 40% was under wheat and 27.4% under chickpea.
The exploitation of SMT on Sentinel-2 NDVI time-series allowed the provision of

field-level information with clear field boundaries, which is important in the agricultural

scenario of Bundelkhand, where about 60% of the agricultural plots are less than 2 ha in
size. As illustrated in Figure 6, the Sentinel-2 False Colour Composite (FCC) image and

the corresponding classified image are shown for a part of Jhansi district. Temporal

Figure 5. Spatial distribution of rabi crops along with other LULC for the three districts (a) Jhansi, (b) Chitrakoot, and
(c) Panna.
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Table 2. Rabi crop area in hectares.

Jhansi

Crop categories Area (ha)

01. Wheat 180306
02. Chickpea 37992
03. Mustard 18412
04. Wheat/mustard/chickpea 38442
05. Peas/mustard 5751
06. Other classes 220559
07. Water bodies 5728

Chitrakoot

Crop categories Area (ha)

01. Wheat 49145
02. Chickpea 16150
03. Mustard 14543
04. Wheat/lentil/chickpea 42265
05. Other crops 6326
07. Fallow/mixed crops 17528
07. Other classes 152314
06. Water bodies 10095

Panna

Crop categories Area (ha)

01. Wheat 117001
02. Chickpea 80772
03. Peas & beans/lentil/wheat 28758
04. Fallow/other crops 68304
05. Other classes 410824
06. Water bodies /wetlands/fallow 5542

Figure 6. Spatial distribution of rabi crops at plot level (top) and the plot-wise spectralprofiles for wheat, chickpea
and mustard (bottom).
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NDVI profiles for the three fields in the area, one each of wheat, chickpea and mustard,

showed how the differences in the profiles of different crops were used to classify cropped

areas into crop types.

4.2. Accuracy assessment

Table 3shows user’s and producer’s accuracy for each crop in the three study districts. It

was performed independently with 404 validation sample points (Jhansi ¼ 121, Chitrakoot

¼ 116 and Panna ¼ 167). Overall accuracy for all three districts was 84% and the Kappa

coefficient was 0.72 (accuracy for Jhansi was 83%, for Chitrakoot 82% and for Panna 86%).

Producer’s accuracy for Jhansi district cropland map was 68% and user’s accuracy was 81%.

Accuracies varied based on crop homogeneity, with wheat having the highest spatial extent

of 388,717ha (55% of total cropped area), and correspondingly, the highest accuracy among

all the classes. Producer’s accuracies for wheat class were 95% for Jhansi and Chitrakoot

districts and 85% for Panna district. Total accuracy for wheat crop over all three districts

was 92% (8% error of omission). Chickpea occupied the highest area after wheat, with an

area of 134,914 ha (19% of total cropped area). Overall accuracy for chickpea crop was 70%

(with 30% error of omission), which is lower than that for wheat, because chickpea crop is

heterogeneous (fragmented fields). Overall accuracy for mustard crop was 58%, which also

has much less spatial extent with 61,713 ha (9% of total cropped areas). Table 3 shows the

overall Kappa coefficients for the three study districts.

4.3. Significance of Sentinel-2 time-series for crop type mapping

Crop classification based on Sentinel-2 NDVI 15-day time-series exploiting SMT was suc-

cessful in differentiating cropping patterns in wheat, chickpea, mustard and beans, which

Table 3. Overall accuracy with producer’s accuracy and Kappa coefficient of three districts for rabi crop area maps.

Jhansi

LULC Class User’s accuracy Producer’s accuracy Kappa Coefficient

01. Wheat 0.85 0.95 0.64
02. Chickpea 0.71 0.45
03.Mustard 0.83 0.45
04. Wheat/mustard/chickpea 0.78 0.70
05. Peas/mustard 1.00 0.50
06. Other LULC 0.67 1.00

Chitrakoot

LULC Class User’s accuracy Producer’s accuracy Kappa Coefficient

01. Wheat 0.61 0.95 0.77
02. Chickpea 0.40 1.00
03. Mustard 1.00 0.35
04. Wheat/lentil/chickpea/mustard 1.00 1.00
05. Other crops 0.67 1.00
06. Fallow/mixed crops 1.00 1.00
07. Other LULC 0.78 1.00

Panna

LULC Class User’s accuracy Producer’s accuracy Kappa Coefficient

01. Wheat 0.95 0.85 0.74
02. Chickpea 0.38 0.67
03. Peas-Beans/wheat/mustard 0.97 0.94
04. Fallows/other crops 0.92 0.65
05. Others LULC 0.40 0.86
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had not been done in earlier methods. This methodology could correctly classify wheat,

chickpea and mustard crops in the dryland areas, where a clear difference between tem-

poral signatures of different crops was identified for the rabi season (Figure 4). However,

some areas were mixed due to intercropping pattern in the eastern part of Jhansi (Figure

6). Also, other minor cropped areas with high tree cover percentage were often misclassi-

fied as shrub lands and minor fragmented cropped areas mainly in the high altitudes

where beans and mustard were the major crops contributing to most of the inaccuracy.
Existing studies show that Sentinel-2 data is sufficient for crop-type mapping provided

regular temporal availability during the crop season. They also show that machine-learn-

ing techniques like RF, SVM, and ANN are highly efficient in crop type classification.

However, these methods have not been successful in mapping crop types in small, frag-

mented fields and fields with inter-cropping. This paper proposes a scalable classification

methodology that is efficient for crop type mapping in areas with small, fragmented and

multiple crop types, which dominate the drylands of South Asia and Africa.
The results obtained were compared with national statistics district-wise and there was

very good correlation (Figure 7).
To improve accuracy, further work is needed with Hyperspectral images (ex:

Hyperion) and Sentinel-1 (SAR data) in fusion with Sentinel-2 time-series datasets (10 m

spatial resolution). This will minimize the spectral and spatio-temporal resolution, and

provide an ideal platform for mapping specific crops such as wheat, chickpea, and other

major crops with high intensity (i.e., grown during more than one season in one year).

4.4. Utilization of high resolution maps for yield assessment and insurance

High spatial resolution crop type maps generated using Sentinel-2 satellite data have

numerous important applications in food security planning, temporal change analysis to

Figure 7. Crop area statistics derived from Sentinel-2 compared with NAS (national agriculture statistics) data for
major crops in Jhansi, Panna and Chitrakoot districts.

GEOCARTO INTERNATIONAL 13



identify shifts in cropping patterns of an area with time, impact assessment studies, and

many more. Crop insurance is an area that extensively uses crop type maps at various lev-

els. Crop type, along with crop health maps generated using remote sensing technology,

are used to optimize the sampling of Crop Cutting Experiment (CCE) locations. CCEs are

the basis for crop yield estimation that is used to determine crop loss. Crop acreage esti-

mation at village/sub-district level (Figure 8) helps in making informed decisions on

claims of failed sowing and helps prevent the false insuring of more land than what is

planted under a particular crop. The satellite-derived crop area statistics can be used for

assessing national statistics and augment the decision-making and planning process by

providing accurate information of even inaccessible areas. In addition to national level

assessments, the crop area and extent maps obtained from this classification technique

can also be used for village-level crop assessment for micro-level crop management and

advisory. This study has also proven that SMT approach can be applied to high spatial

resolution data with good accuracy, and hence, can be used to study the within-field crop

variability, which is high in the dryland regions of India.
The rabi season in India, dominated by non-rainy days, is best suited for the applica-

tion of this method, as persistent cloud cover could hamper the availability of images, to

generate clearly differentiating temporal signatures. A clear difference between the tem-

poral signatures of wheat, chickpea and mustard was detected. However, there were some

areas where classification was challenging. Irrigated mustard areas were mixed with irri-

gated wheat areas, particularly in the northern part of Jhansi. Differentiating the spectral

signatures of mustard and wheat is still a challenge without auxiliary information on agro-

nomic practices (including source of irrigation). In addition, small areas cropped with

mustard with high percentage of tree cover were often misclassified as other LULC. Some

discrepancies were also found during the comparison between district-wise national statis-

tics and Sentinel-2 crop area. The mismatch between the Sentinel-2 cropped area and the

landscape patterns of cropland will inevitably lead to mixed land cover pixels.

Figure 8. (a) Spatial distribution of rabi crops at village level near Imiliya and Amarpur villages of Jhansi district. (b)
False colour composite of the region during rabi season.
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5. Conclusions

This study has led to the development of a method for mapping croplands during rabi
season using Sentinel-2 NDVI time-series, and exploiting the SMT approach along with
ground survey data. Major crop extents were mapped with higher accuracy during rabi
season for the three study districts based on intensive training data. The study showed
the potential of high-resolution temporal images and ground data for mapping cropland
at field scale. Mapping rabi crop areas is the first step in characterizing important crop-
growing environments that help macro-level planning, leading to sustainable use of
resources and improvement in drylands. Seasonal crop maps and statistics with a high
degree of accuracy such as these are important inputs for assessing the impact of abiotic
stresses, such as droughts and heat stress, which regularly affect the region and are pre-
dicted to increase in frequency and intensity in a changing climate scenario.

This methodology, however, cannot be used in kharif (monsoon) season in the Indian
sub-continent due to the persistence of cloud cover. Non-availability of enough cloud-free
Sentinel-2 data during the kharif season makes it impossible for the generation of multi-
temporal NDVI spectra that can satisfactorily differentiate between various crops. This
necessitates the use of Synthetic Aperture Radar imagery, like that provided by Sentinel-1,
which has all-weather capability.
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